1
|
Lv N, Zhou Z, Hou M, Hong L, Li H, Qian Z, Gao X, Liu M. Research progress of vascularization strategies of tissue-engineered bone. Front Bioeng Biotechnol 2024; 11:1291969. [PMID: 38312513 PMCID: PMC10834685 DOI: 10.3389/fbioe.2023.1291969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024] Open
Abstract
The bone defect caused by fracture, bone tumor, infection, and other causes is not only a problematic point in clinical treatment but also one of the hot issues in current research. The development of bone tissue engineering provides a new way to repair bone defects. Many animal experimental and rising clinical application studies have shown their excellent application prospects. The construction of rapid vascularization of tissue-engineered bone is the main bottleneck and critical factor in repairing bone defects. The rapid establishment of vascular networks early after biomaterial implantation can provide sufficient nutrients and transport metabolites. If the slow formation of the local vascular network results in a lack of blood supply, the osteogenesis process will be delayed or even unable to form new bone. The researchers modified the scaffold material by changing the physical and chemical properties of the scaffold material, loading the growth factor sustained release system, and combining it with trace elements so that it can promote early angiogenesis in the process of induced bone regeneration, which is beneficial to the whole process of bone regeneration. This article reviews the local vascular microenvironment in the process of bone defect repair and the current methods of improving scaffold materials and promoting vascularization.
Collapse
Affiliation(s)
- Nanning Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Zhangzhe Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lihui Hong
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Hongye Li
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Zhonglai Qian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuzhu Gao
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Mingming Liu
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
2
|
Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells 2022; 11:cells11223552. [PMID: 36428981 PMCID: PMC9688488 DOI: 10.3390/cells11223552] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the physiological condition, the skeletal system's bone resorption and formation are in dynamic balance, called bone homeostasis. However, bone homeostasis is destroyed under pathological conditions, leading to the occurrence of bone metabolism diseases. The expression of hypoxia-inducible factor-1α (HIF-1α) is regulated by oxygen concentration. It affects energy metabolism, which plays a vital role in preventing bone metabolic diseases. This review focuses on the HIF-1α pathway and describes in detail the possible mechanism of its involvement in the regulation of bone homeostasis and angiogenesis, as well as the current experimental studies on the use of HIF-1α in the prevention of bone metabolic diseases. HIF-1α/RANKL/Notch1 pathway bidirectionally regulates the differentiation of macrophages into osteoclasts under different conditions. In addition, HIF-1α is also regulated by many factors, including hypoxia, cofactor activity, non-coding RNA, trace elements, etc. As a pivotal pathway for coupling angiogenesis and osteogenesis, HIF-1α has been widely studied in bone metabolic diseases such as bone defect, osteoporosis, osteonecrosis of the femoral head, fracture, and nonunion. The wide application of biomaterials in bone metabolism also provides a reasonable basis for the experimental study of HIF-1α in preventing bone metabolic diseases.
Collapse
|
3
|
Moniz I, Ramalho-Santos J, Branco AF. Differential Oxygen Exposure Modulates Mesenchymal Stem Cell Metabolism and Proliferation through mTOR Signaling. Int J Mol Sci 2022; 23:ijms23073749. [PMID: 35409106 PMCID: PMC8998189 DOI: 10.3390/ijms23073749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells reside under precise hypoxic conditions that are paramount in determining cell fate and behavior (metabolism, proliferation, differentiation, etc.). In this work, we show that different oxygen tensions promote a distinct proliferative response and affect the biosynthetic demand and global metabolic profile of umbilical cord-mesenchymal stem cells (UC-MSCs). Using both gas-based strategies and CoCl2 as a substitute for the costly hypoxic chambers, we found that specific oxygen tensions influence the fate of UC-MSCs differently. While 5% O2 potentiates proliferation, stimulates biosynthetic pathways, and promotes a global hypermetabolic profile, exposure to <1% O2 contributes to a quiescent-like cell state that relies heavily on anaerobic glycolysis. We show that using CoCl2 as a hypoxia substitute of moderate hypoxia has distinct metabolic effects, when compared with gas-based strategies. The present study also highlights that, while severe hypoxia regulates global translation via mTORC1 modulation, its effects on survival-related mechanisms are mainly modulated through mTORC2. Therefore, the experimental conditions used in this study establish a robust and reliable hypoxia model for UC-MSCs, providing relevant insights into how stem cells are influenced by their physiological environment, and how different strategies of modulating hypoxia may influence experimental outcomes.
Collapse
Affiliation(s)
- Inês Moniz
- CNC—Centre for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal;
| | - João Ramalho-Santos
- CNC—Centre for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal;
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Correspondence: (J.R.-S.); (A.F.B.)
| | - Ana F. Branco
- CNC—Centre for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal;
- Correspondence: (J.R.-S.); (A.F.B.)
| |
Collapse
|
4
|
Gupta S, Rawat S, Krishnakumar V, Rao EP, Mohanty S. Hypoxia preconditioning elicit differential response in tissue-specific MSCs via immunomodulation and exosomal secretion. Cell Tissue Res 2022; 388:535-548. [PMID: 35316374 DOI: 10.1007/s00441-022-03615-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
Abstract
Mesenchymal stromal cells (MSCs) are emerging as an ideal candidate for regenerative medicine. It is known that the culture conditions impact the cellular properties of MSCs and their therapeutic behavior. Moreover, maintenance of MSCs in low oxygen tension for a short duration has shown to be beneficial for MSCs as it is similar to that of their physiological niche. However, the precise mechanism through which hypoxia pre-conditioning affects MSCs is not clear yet. Thus, in this study, we have investigated the effect of hypoxia exposure (1% O2) on tissue-specific MSCs over a period of time under serum-free culture conditions and evaluated the changes in expression of immuno-modulatory molecules and exosome biogenesis and secretion markers. It was observed that all MSCs responded differentially towards hypoxia exposure as indicated by the expression of HIF-1α. Moreover, this short-term exposure did not induce any changes in MSCs cellular morphology, proliferation rate, and surface marker profiling. In addition, we observed an enhancement in the expression of immunomodulatory factors (HLA-G, PGE-2, and IDO) after hypoxia exposure of 12 to 24 h in all tissue-specific MSCs. Interestingly, we have also observed the upregulation in exosome secretion that was further corelated to the upregulation of expression of exosome biogenesis and secretion markers (ALIX, TSG101, RAB27a, RAB27b). Though there was a differential response of MSCs where WJ-MSCs and BM-MSCs showed upregulation of these markers at 6-12 h of hypoxia pre-conditioning, while AD-MSCs showed similar changes beyond 24 h of hypoxia exposure.
Collapse
Affiliation(s)
- Suchi Gupta
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - Vishnu Krishnakumar
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - E Pranshu Rao
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India.
| |
Collapse
|
5
|
Mesenchymal Stromal Cells Preconditioning: A New Strategy to Improve Neuroprotective Properties. Int J Mol Sci 2022; 23:ijms23042088. [PMID: 35216215 PMCID: PMC8878691 DOI: 10.3390/ijms23042088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Neurological diseases represent one of the main causes of disability in human life. Consequently, investigating new strategies capable of improving the quality of life in neurological patients is necessary. For decades, researchers have been working to improve the efficacy and safety of mesenchymal stromal cells (MSCs) therapy based on MSCs’ regenerative and immunomodulatory properties and multilinear differentiation potential. Therefore, strategies such as MSCs preconditioning are useful to improve their application to restore damaged neuronal circuits following neurological insults. This review is focused on preconditioning MSCs therapy as a potential application to major neurological diseases. The aim of our work is to summarize both the in vitro and in vivo studies that demonstrate the efficacy of MSC preconditioning on neuronal regeneration and cell survival as a possible application to neurological damage.
Collapse
|
6
|
Widholz B, Westhauser F. Biomaterials for angiogenesis applications in an orthopedic context. BIOMATERIALS FOR VASCULOGENESIS AND ANGIOGENESIS 2022:415-438. [DOI: 10.1016/b978-0-12-821867-9.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Ekram S, Khalid S, Salim A, Khan I. Regulating the fate of stem cells for regenerating the intervertebral disc degeneration. World J Stem Cells 2021; 13:1881-1904. [PMID: 35069988 PMCID: PMC8727226 DOI: 10.4252/wjsc.v13.i12.1881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Lower back pain is a leading cause of disability and is one of the reasons for the substantial socioeconomic burden. The etiology of intervertebral disc (IVD) degeneration is complicated, and its mechanism is still not completely understood. Factors such as aging, systemic inflammation, biochemical mediators, toxic environmental factors, physical injuries, and genetic factors are involved in the progression of its pathophysiology. Currently, no therapy for restoring degenerated IVD is available except pain management, reduced physical activities, and surgical intervention. Therefore, it is imperative to establish regenerative medicine-based approaches to heal and repair the injured disc, repopulate the cell types to retain water content, synthesize extracellular matrix, and strengthen the disc to restore normal spine flexion. Cellular therapy has gained attention for IVD management as an alternative therapeutic option. In this review, we present an overview of the anatomical and molecular structure and the surrounding pathophysiology of the IVD. Modern therapeutic approaches, including proteins and growth factors, cellular and gene therapy, and cell fate regulators are reviewed. Similarly, small molecules that modulate the fate of stem cells for their differentiation into chondrocytes and notochordal cell types are highlighted.
Collapse
Affiliation(s)
- Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.
| |
Collapse
|
8
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
9
|
Lymphocytic microparticles suppress retinal angiogenesis via targeting Müller cells in the ischemic retinopathy mouse model. Exp Cell Res 2021; 399:112470. [PMID: 33434529 DOI: 10.1016/j.yexcr.2021.112470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 11/22/2022]
Abstract
Retinopathy of prematurity (ROP) is the primary cause of visual impairment and vision loss in premature infants, which results from the formation of aberrant retinal neovascularization (NV). An emerging body of evidence has shown that Müller cells are the predominant source of vascular endothelial growth factor (VEGF), which also serves as a chemoattractant for monocyte/macrophage lineage. The recruitment of macrophages is increased during retinal NV, and they exert a pro-angiogenic role in ROP. We have shown that lymphocytic microparticles (microvesicles; LMPs) derived from apoptotic human T lymphocytes possess strong angiogenesis-inhibiting properties. Here, we investigated the effect of LMPs on the chemotactic capacity of Müller cells in vitro using rat Müller cell rMC-1 and mouse macrophage RAW 264.7. In addition, the impact of LMPs was determined in vivo using a mouse model of oxygen-induced ischemic retinopathy (OIR). The results revealed that LMPs were internalized by rMC-1 and reduced their cell proliferation dose-dependently without inducing cell apoptosis. LMPs inhibited the chemotactic capacity of rMC-1 on RAW 264.7 via reducing the expression of VEGF. Moreover, LMPs attenuated pathological retinal NV and the infiltration of macrophages in vivo. LMPs downregulated ERK1/2 and HIF-1α both in vitro and in vivo. These findings expand our understanding of the effects of LMPs, providing evidence of LMPs as a promising therapeutic approach for the treatment of retinal NV diseases.
Collapse
|
10
|
Xu N, Fu J, Zhao L, Chu PK, Huo K. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Adv Healthc Mater 2020; 9:e2000681. [PMID: 32875743 DOI: 10.1002/adhm.202000681] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Bone fracture is prevalent among athletes and senior citizens and may require surgical insertion of bone implants. Titanium (Ti) and its alloys are widely used in orthopedics due to its high corrosion resistance, good biocompatibility, and modulus compatible with natural bone tissues. However, bone repair and regrowth are impeded by the insufficient intrinsic osteogenetic capability of Ti and Ti alloys and potential bacterial infection. The physicochemical properties of the materials and nano/microstructures on the implant surface are crucial for clinical success and loading with biofunctional elements such as Sr, Zn, Cu, Si, and Ag into nano/microstructured TiO2 coating has been demonstrated to enhance bone repair/regeneration and bacterial resistance of Ti implants. In this review, recent advances in biofunctional element-incorporated nano/microstructured coatings on Ti and Ti alloy implants are described and the prospects and limitations are discussed.
Collapse
Affiliation(s)
- Na Xu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
11
|
Pérez-Luz S, Loria F, Katsu-Jiménez Y, Oberdoerfer D, Yang OL, Lim F, Muñoz-Blanco JL, Díaz-Nido J. Altered Secretome and ROS Production in Olfactory Mucosa Stem Cells Derived from Friedreich's Ataxia Patients. Int J Mol Sci 2020; 21:ijms21186662. [PMID: 32933002 PMCID: PMC7555998 DOI: 10.3390/ijms21186662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Friedreich’s ataxia is the most common hereditary ataxia for which there is no cure or approved treatment at present. However, therapeutic developments based on the understanding of pathological mechanisms underlying the disease have advanced considerably, with the implementation of cellular models that mimic the disease playing a crucial role. Human olfactory ecto-mesenchymal stem cells represent a novel model that could prove useful due to their accessibility and neurogenic capacity. Here, we isolated and cultured these stem cells from Friedreich´s ataxia patients and healthy donors, characterizing their phenotype and describing disease-specific features such as reduced cell viability, impaired aconitase activity, increased ROS production and the release of cytokines involved in neuroinflammation. Importantly, we observed a positive effect on patient-derived cells, when frataxin levels were restored, confirming the utility of this in vitro model to study the disease. This model will improve our understanding of Friedreich´s ataxia pathogenesis and will help in developing rationally designed therapeutic strategies.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Molecular Genetics Unit, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km 2,200, 28220 Madrid, Spain
| | - Frida Loria
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Calle Budapest 1, 28922 Madrid, Spain
- Correspondence: ; Tel.: +34-911-964-594
| | - Yurika Katsu-Jiménez
- Karolinska Institutet, Department of Microbiology Tumor and Cell Biology, Solnaväjen 1, 171 77 Stockholm, Sweden;
| | - Daniel Oberdoerfer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Oscar-Li Yang
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Filip Lim
- Department of Molecular Biology, Autonomous University of Madrid, Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - José Luis Muñoz-Blanco
- Department of Neurology, Hospital Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| |
Collapse
|
12
|
Chen S, Michálek M, Galusková D, Michálková M, Švančárek P, Talimian A, Kaňková H, Kraxner J, Zheng K, Liverani L, Galusek D, Boccaccini AR. Multi-targeted B and Co co-doped 45S5 bioactive glasses with angiogenic potential for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110909. [DOI: 10.1016/j.msec.2020.110909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 02/08/2023]
|
13
|
Chen W, Zhuo Y, Duan D, Lu M. Effects of Hypoxia on Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2020; 15:332-339. [PMID: 31441734 DOI: 10.2174/1574888x14666190823144928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are distributed in many parts of the human body, including
the bone marrow, placenta, umbilical cord, fat, and nasal mucosa. One of the unique features of
MSCs is their multidirectional differentiation potential, including the ability to undergo osteogenesis,
adipogenesis, and chondrogenesis, and to produce neurons, endothelial cells, Schwann cells, medullary
nucleus cells, cardiomyocytes, and alveolar epithelial cells. MSCs have thus become a hot research
topic in recent years. Numerous studies have investigated the differentiation of MSCs into various
types of cells in vitro and their application to numerous fields. However, most studies have cultured
MSCs under atmospheric oxygen tension with an oxygen concentration of 21%, which does not reflect
a normal physiological state, given that the oxygen concentration generally used in vitro is four to ten
times that to which MSCs would be exposed in the body. We therefore review the growing number of
studies exploring the effect of hypoxic preconditioning on the differentiation of MSCs.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| |
Collapse
|
14
|
Wagatsuma A, Arakawa M, Matsumoto H, Matsuda R, Hoshino T, Mabuchi K. Cobalt chloride, a chemical hypoxia-mimicking agent, suppresses myoblast differentiation by downregulating myogenin expression. Mol Cell Biochem 2020; 470:199-214. [PMID: 32451753 DOI: 10.1007/s11010-020-03762-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/16/2020] [Indexed: 12/17/2022]
Abstract
Cobalt chloride can create hypoxia-like state in vitro (referred to as chemical hypoxia). Several studies have suggested that chemical hypoxia may cause deleterious effects on myogenesis. The intrinsic underlying mechanisms of myoblast differentiation, however, are not fully understood. Here, we show that cobalt chloride strongly suppresses myoblast differentiation in a dose-dependent manner. The impaired myoblast differentiation is accompanied by downregulation of myogenic regulatory factor myogenin. Under chemical hypoxia, myogenin stability is decreased at mRNA and protein levels. A muscle-specific E3 ubiquitin ligase MAFbx, which can target myogenin protein for proteasomal degradation, is upregulated along with changes in Akt/Foxo and AMPK/Foxo signaling pathways. A proteasome inhibitor completely prevents cobalt chloride-mediated decrease in myogenin protein. These results suggest that cobalt chloride might modulate myogenin expression at post-transcriptional and post-translational levels, resulting in the failure of the myoblasts to differentiate into myotubes.
Collapse
Affiliation(s)
- Akira Wagatsuma
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
- Department of Communication, Tokyo Women's Christian University, Tokyo, Japan.
| | - Masayuki Arakawa
- Institute of Microbial Chemistry, Biology Division, Laboratory of Virology, Tokyo, Japan
| | - Hanano Matsumoto
- Department of Food and Health Science, Faculty of Human Life Sciences, Jissen Women's University, Tokyo, Japan
| | - Ryoichi Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Hoshino
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Mabuchi
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Nguyen VT, Canciani B, Cirillo F, Anastasia L, Peretti GM, Mangiavini L. Effect of Chemically Induced Hypoxia on Osteogenic and Angiogenic Differentiation of Bone Marrow Mesenchymal Stem Cells and Human Umbilical Vein Endothelial Cells in Direct Coculture. Cells 2020; 9:cells9030757. [PMID: 32204578 PMCID: PMC7140659 DOI: 10.3390/cells9030757] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Bone is an active tissue where bone mineralization and resorption occur simultaneously. In the case of fracture, there are numerous factors required to facilitate bone healing including precursor cells and blood vessels. To evaluate the interaction between bone marrow-derived mesenchymal stem cells (BMSC)—the precursor cells able to differentiate into bone-forming cells and human umbilical vein endothelial cells (HUVEC)—a cell source widely used for the study of blood vessels. We performed direct coculture of BMSC and HUVEC in normoxia and chemically induced hypoxia using Cobalt(II) chloride and Dimethyloxaloylglycine and in the condition where oxygen level was maintained at 1% as well. Cell proliferation was analyzed by crystal violet staining. Osteogenesis was examined by Alizarin Red and Collagen type I staining. Expression of angiogenic factor-vascular endothelial growth factor (VEGF) and endothelial marker-von Willebrand factor (VWF) were demonstrated by immunohistochemistry and enzyme-linked immunosorbent assay. The quantitative polymerase chain reaction was also used to evaluate gene expression. The results showed that coculture in normoxia could retain both osteogenic differentiation and endothelial markers while hypoxic condition limits cell proliferation and osteogenesis but favors the angiogenic function even after 1 of day treatment.
Collapse
Affiliation(s)
- Van Thi Nguyen
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (V.T.N.); (B.C.); (G.M.P.)
| | - Barbara Canciani
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (V.T.N.); (B.C.); (G.M.P.)
| | - Federica Cirillo
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.C.)
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (F.C.)
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Giuseppe M. Peretti
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (V.T.N.); (B.C.); (G.M.P.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (V.T.N.); (B.C.); (G.M.P.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-02-6621-4494
| |
Collapse
|
16
|
Alijani N, Johari B, Moradi M, Kadivar M. A review on transcriptional regulation responses to hypoxia in mesenchymal stem cells. Cell Biol Int 2020; 44:14-26. [PMID: 31393053 DOI: 10.1002/cbin.11211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/03/2019] [Indexed: 01/24/2023]
Abstract
Mesenchymal stem cells (MSCs), which are known for having therapeutic applications, reside in stem cell niches where the oxygen concentration is low. At the molecular level, the master regulator of the cellular reaction to hypoxia is hypoxia-inducible transcription factor (HIF). The transcriptional response of a cell to hypoxia is affected by two major components; first, the structure of hypoxia-response elements (HREs), which primarily define how much of the HIF signal is integrated into the transcriptional output of individual genes. Second, the availability of other transcriptional factors cooperating with HIF in the context of HRE. In MSCs, the expression of a single gene by hypoxia depends on elements such as factors influencing the HIF activity, metabolic pathways, the real oxygen concentration in the cellular microenvironment, and duration of culture. In addition, specific growth factors and pro-infection cytokines, hormones, oncogenic signaling, as well as ultrasound are potent regulators of HIF in MSCs. Altogether, the response of MSCs to hypoxia is complex and mediated by several genes and molecular agents. Regarding the influence of hypoxia on MSCs, oxygen concentration must be taken into consideration based on the cell type and the aim of culture before a particular MSCs culture.
Collapse
Affiliation(s)
- Najva Alijani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Moradi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
17
|
Peng Z, Li X, Fu M, Zhu K, Long L, Zhao X, Chen Q, Deng DYB, Wan Y. Inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in spinal cord injury through suppressing the activation of Ras homolog family member A. J Neurochem 2019; 150:709-722. [PMID: 31339573 DOI: 10.1111/jnc.14833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 12/28/2022]
Abstract
Neural stem cells (NSCs) transplantation represents a promising strategy for the repair of injured neurons, since NSCs not only produce multiple neurotrophic growth factors but also differentiate into mature cells to replace damaged cells. Previous studies have shown that Notch signaling pathway had negative effects on neuronal differentiation; however, the precise mechanism remained inadequately understood. This research aimed to investigate whether inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in rat spinal cord injury through suppressing the activation of Ras homolog family member A (RhoA). QPCR, western blot, and immunofluorescence experiments were used to analyze Notch1 signaling pathways, RhoA, Ras homologous -associated coiled-coil containing protein kinase 1 (ROCK1), cleaved caspased-3, and neuronal/astrocytic differentiation markers. The expression of RhoA and ROCK1 was inhibited by lentivirus or specific biochemical inhibitors. In spinal cord injury (SCI), motor function was assessed by hind limbs movements and electrophysiology. Tissue repairing was measured by immunofluorescence, Nissl staining, Fluorogold, HE staining, QPCR, western blot, and magnetic resonance imaging (MRI) experiments. Our results demonstrate that inhibition of Notch1 in NSCs can promote the differentiation of NSCs to neurons. Knockdown of RhoA and inhibition of ROCK1 both can promote neuronal differentiation through inhibiting the activation of Notch1 signaling pathway in NSCs. In SCI, silencing RhoA enhanced neuronal differentiation and improved tissue repairing/functional recovery by inhibiting the activation of Notch1 signaling pathway. Since Notch1 inhibits neuronal differentiation through activating the RhoA/ROCK1 signaling pathway in NSCs, our data suggest that the Notch1/RhoA/ROCK1/Hes1/Hes5 signaling pathway may serve as a novel target for the treatment of SCI.
Collapse
Affiliation(s)
- Zhiming Peng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengxia Fu
- Division of Cardiac Surgery, NHC Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Zhu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingli Long
- Department of Translational Medicine Center Research Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - David Y B Deng
- Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Zhang M, Shi X, Wu J, Wang Y, Lin J, Zhao Y, Li H, Ren M, Hu R, Liu F, Deng H. CoCl 2 induced hypoxia enhances osteogenesis of rat bone marrow mesenchymal stem cells through cannabinoid receptor 2. Arch Oral Biol 2019; 108:104525. [PMID: 31472278 DOI: 10.1016/j.archoralbio.2019.104525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aims to investigate the role of Cannabinoid receptor 2 (CB2) on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) under hypoxia. MATERIALS AND METHODS BMSCs were isolated from Sprague-Dawley rats and cultured in the presence of cobalt chloride (CoCl2) to induce intracellular hypoxia. Cell proliferation was measured with MTT assay. Quantitative real-time PCR and western blot were applied to evaluate the mRNA and protein expressions of CB2 and osteogenic indicators including osteocalcin, RUNX2, collagen-1 and osterix (SP7). The osteogenic differentiation of BMSCs was further examined by ALP assay and alizarin red S (ARS) staining. Moreover, the activation of MAPKs signaling pathways was analyzed by western blot. RESULTS CoCl2 dose-dependently increased hypoxia inducible factor while higher concentrations (200 and 400 μM) of CoCl2 markedly inhibited cell proliferation. CoCl2 induced hypoxia significantly increased the protein and mRNA expressions of osteocalcin, RUNX2, collagen-1 and osterix, along with enhanced ALP and ARS staining. Interestingly, such effects can be inhibited by the addition of CB2 inhibitor AM630. Moreover, AM630 partially inhibited hypoxia-induced p38 and ERK pathways, which may lead to a decrease in the osteogenic transcripts of RUNX2, collagen-1 and osterix. CONCLUSIONS CoCl2 induced hypoxia could promote osteogenesis of rat BMSCs possibly through CB2.
Collapse
Affiliation(s)
- Menghan Zhang
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinlian Shi
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxiang Wu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Lin
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya Zhao
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huimin Li
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Manman Ren
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongdang Hu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fen Liu
- Department of Histology and Embryology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hui Deng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
19
|
Hu Y, Li X, Huang G, Wang J, Lu W. Fasudil may induce the differentiation of bone marrow mesenchymal stem cells into neuron‑like cells via the Wnt/β‑catenin pathway. Mol Med Rep 2019; 19:3095-3104. [PMID: 30816472 PMCID: PMC6423592 DOI: 10.3892/mmr.2019.9978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 02/18/2019] [Indexed: 01/27/2023] Open
Abstract
Bone mesenchymal stem cells (MSCs) are an excellent donor graft source due to their potential for self-renewal and multidirectional differentiation. However, it is difficult to obtain high quality MSCs and to induce them to differentiate into neuron-like cells. Fasudil, a Rho kinase inhibitor, exhibits therapeutic potential in spinal cord injuries and stroke. The present study investigated the effect of fasudil on the differentiation of MSCs into neuron-like cells. MSCs were obtained from rat femur marrow, expanded in culture medium, and used at the third passage for subsequent experiments. MSCs were pre-induced with 10 ng/ml basic fibroblast growth factor (bFGF) for 24 h, which was followed by induction with fasudil. A control untreated group and a group treated with fasudil + XAV939, a Wnt/β-catenin pathway inhibitor, were also used in the present study. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunofluorescence staining were performed in order to detect neuron-specific markers, including neuron-specific enolase (NSE), nestin and neurofilament-M (NF-M). Following induction with fasudil, neuron-like cell morphology was observed. In the fasudil + XAV939 and control groups, no obvious changes in cell shape were observed. The results of RT-qPCR, western blot analysis and immunofluorescence staining indicated that expression of the neuron-specific markers NSE, nestin and NF-M was detected in the fasudil group. The differentiation of MSCs into neuron-like cells induced by fasudil was eliminated when the Wnt/β-catenin pathway was inhibited. The present study demonstrated that fasudil may induce MSCs to differentiate into neuron-like cells, however further studies are required to determine the specific mechanisms involved in the effect of fasudil on the Wnt/β-catenin pathway. In addition, further research is required to examine the functional characteristics of the induced neuron-like cells, in order to establish their suitability for clinical treatments in the future.
Collapse
Affiliation(s)
- Yahui Hu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Guowei Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jizuo Wang
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Wei Lu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
20
|
Abstract
BACKGROUND Parkinson disease (PD) is a neurodegenerative disorder affecting the basal nuclei, causing motor and cognitive disorders. Bearing in mind that standard treatments are ineffective in delaying the disease progression, alternative treatments capable of eliminating symptoms and reversing the clinical condition have been sought. Possible alternative treatments include cell therapy, especially with the use of mesenchymal stem cells (MSC). REVIEW SUMMARY MSC are adult stem cells which have demonstrated remarkable therapeutic power in parkinsonian animals due to their differentiation competence, migratory capacity and the production of bioactive molecules. This review aims to analyze the main studies involving MSC and PD in more than a decade of studies, addressing their different methodologies and common characteristics, as well as suggesting perspectives on the application of MSC in PD. CONCLUSIONS The results of MSC therapy in animal models and some clinical trials suggest that such cellular therapy may slow the progression of PD and promote neuroregeneration. However, further research is needed to address the limitations of an eventual clinical application.
Collapse
|
21
|
Sun Y, Selvaraj S, Pandey S, Humphrey KM, Foster JD, Wu M, Watt JA, Singh BB, Ohm JE. MPP + decreases store-operated calcium entry and TRPC1 expression in Mesenchymal Stem Cell derived dopaminergic neurons. Sci Rep 2018; 8:11715. [PMID: 30082759 PMCID: PMC6079049 DOI: 10.1038/s41598-018-29528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder involving the progressive loss of dopaminergic neurons (DNs), with currently available therapeutics, such as L-Dopa, only able to relieve some symptoms. Stem cell replacement is an attractive therapeutic option for PD patients, and DNs derived by differentiating patient specific stem cells under defined in-vitro conditions may present a viable opportunity to replace dying neurons. We adopted a previously published approach to differentiate Mesenchymal Stem Cells (MSCs) into DN using a 12-day protocol involving FGF-2, bFGF, SHH ligand and BDNF. While MSC-derived DNs have been characterized for neuronal markers and electrophysiological properties, we investigated store-operated calcium entry (SOCE) mechanisms of these DNs under normal conditions, and upon exposure to environmental neurotoxin, 1-methyl, 4-phenyl pyridinium ion (MPP+). Overall, we show that MSC-derived DNs are functional with regard to SOCE mechanisms, and MPP+ exposure dysregulates calcium signaling, making them vulnerable to neurodegeneration. Since in-vitro differentiation of MSCs into DNs is an important vehicle for PD disease modeling and regenerative medicine, the results of this study may help with understanding of the pathological mechanisms underlying PD.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Senthil Selvaraj
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Sumali Pandey
- Biosciences Department, Minnesota State University, Moorhead, Moorhead, MN, USA
| | - Kristen M Humphrey
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - James D Foster
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - John A Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Brij B Singh
- School of Dentistry, UT Health Science Center San Antonio, TX, 78229, San Antonio, USA.
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
| |
Collapse
|
22
|
Zeng J. Values of detection of NF-κB activation level combined with IL-6 and TNF-α levels in peripheral neutrophils in the prediction of multiple organ dysfunction syndrome in patients with severe multiple trauma. Exp Ther Med 2018; 16:2478-2482. [PMID: 30210598 PMCID: PMC6122592 DOI: 10.3892/etm.2018.6472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/01/2018] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to analyze the dynamic changes and predictive values of nuclear factor-κB (NF-κB) combined with interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in peripheral blood in multiple organ dysfunction syndrome (MODS) in patients with severe multiple trauma. Seventy patients diagnosed with severe multiple trauma in Emergency Department of Sichuan Provincial People's Hospital (Chengdu, China) from April 2014 to April 2016 were selected and retrospectively analyzed. The patients enrolled were divided into the MODS group (n=25) and the non-MODS group (n=45). The injury severity scores (ISSs), acute physiology and chronic health evaluation II (APACHE II) scores, NF-κB, IL-6 and TNF-α levels in patients were detected at different time points (12, 24 and 48 h after admission), the changes in different indexes and the areas under the receiver operating characteristic (ROC) curve (AUC) were analyzed. The predictive values of different detection methods in MODS patients were discussed and compared. The ISS, APACHE II score, NF-κB, IL-6 and TNF-α levels in the MODS group at admission and 24 and 48 h after admission were higher than those in the non-MODS group (P<0.05). Those indexes in the deceased patients at 12, 24 and 48 h after admission were higher than those in survivors (P<0.05). The ISS, APACHE II score, NF-κB, IL-6 and TNF-α levels were not the risk factors of MODS in patients with severe multiple trauma (P>0.05). AUCs of ISS >22 points and APACHE II score >14 points in predicting MODS were lower than that of combined detection of NF-κB >1.20. In conclusion, the combined detection of NF-κB, IL-6 and TNF-α in peripheral blood of patients with acute multiple trauma is more helpful to predict the occurrence of MODS, which has a certain guiding significance for the prognosis of patients with MODS.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
23
|
Marrella A, Lee TY, Lee DH, Karuthedom S, Syla D, Chawla A, Khademhosseini A, Jang HL. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:362-376. [PMID: 30100812 PMCID: PMC6082025 DOI: 10.1016/j.mattod.2017.10.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Blood vessels and nerve fibers are distributed throughout the entirety of skeletal tissue, and play important roles during bone development and fracture healing by supplying oxygen, nutrients, and cells. However, despite the successful development of bone mimetic materials that can replace damaged bone from a structural point of view, most of the available bone biomaterials often do not induce sufficient formation of blood vessels and nerves. In part, this is due to the difficulty of integrating and regulating multiple tissue types within artificial materials, which causes a gap between native skeletal tissue. Therefore, understanding the anatomy and underlying interaction mechanisms of blood vessels and nerve fibers in skeletal tissue is important to develop biomaterials that can recapitulate its complex microenvironment. In this perspective, we highlight the structure and osteogenic functions of the vascular and nervous system in bone, in a coupled manner. In addition, we discuss important design criteria for engineering vascularized, innervated, and neurovascularized bone implant materials, as well as recent advances in the development of such biomaterials. We expect that bone implant materials with neurovascularized networks can more accurately mimic native skeletal tissue and improve the regeneration of bone tissue.
Collapse
Affiliation(s)
- Alessandra Marrella
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Tae Yong Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dong Hoon Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Sobha Karuthedom
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Denata Syla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Aditya Chawla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
24
|
Chai YC, Mendes LF, van Gastel N, Carmeliet G, Luyten FP. Fine-tuning pro-angiogenic effects of cobalt for simultaneous enhancement of vascular endothelial growth factor secretion and implant neovascularization. Acta Biomater 2018; 72:447-460. [PMID: 29626696 DOI: 10.1016/j.actbio.2018.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Rapid neovascularization of a tissue-engineered (TE) construct by the host vasculature is quintessential to warrant effective bone regeneration. This process can be promoted through active induction of angiogenic growth factor secretion or by implementation of in vitro pre-vascularization strategies. In this study, we aimed at optimizing the pro-angiogenic effect of Cobalt (Co2+) to enhance vascular endothelial growth factor (VEGF) expression by human periosteum-derived mesenchymal stem cells (hPDCs). Simultaneously we set out to promote microvascular network formation by co-culturing with human umbilical vein endothelial cells (HUVECs). The results showed that Co2+ treatments (at 50, 100 or 150 µM) significantly upregulated in vitro VEGF expression, but inhibited hPDCs growth and HUVECs network formation in co-cultures. These inhibitory effects were mitigated at lower Co2+ concentrations (at 5, 10 or 25 µM) while VEGF expression remained significantly upregulated and further augmented in the presence of Ascorbic Acid and Dexamethasone possibly through Runx2 upregulation. The supplements also facilitated HUVECs network formation, which was dependent on the quantity and spatial distribution of collagen type-1 matrix deposited by the hPDCs. When applied to hPDCs seeded onto calcium phosphate scaffolds, the supplements significantly induced VEGF secretion in vitro, and promoted higher vascularization upon ectopic implantation in nude mice shown by an increase of CD31 positive blood vessels within the scaffolds. Our findings provided novel insights into the pleotropic effects of Co2+ on angiogenesis (i.e. promoted VEGF secretion and inhibited endothelial network formation), and showed potential to pre-condition TE constructs under one culture regime for improved implant neovascularization in vivo. STATEMENT OF SIGNIFICANT Cobalt (Co2+) is known to upregulate vascular endothelial growth factor (VEGF) secretion, however it also inhibits in vitro angiogenesis through unknown Co2+-induced events. This limits the potential of Co2+ for pro-angiogenesis of tissue engineered (TE) implants. We showed that Co2+ upregulated VEGF expression by human periosteum-derived cells (hPDCs) but reduced the cell growth, and endothelial network formation due to reduction of col-1 matrix deposition. Supplementation with Ascorbic acid and Dexamethasone concurrently improved hPDCs growth, endothelial network formation, and upregulated VEGF secretion. In vitro pre-conditioning of hPDC-seeded TE constructs with this fine-tuned medium enhanced VEGF secretion and implant neovascularization. Our study provided novel insights into the pleotropic effects of Co2+ on angiogenesis and formed the basis for improving implant neovascularization.
Collapse
|
25
|
The Methods and Mechanisms to Differentiate Endothelial-Like Cells and Smooth Muscle Cells from Mesenchymal Stem Cells for Vascularization in Vaginal Reconstruction. Mol Biotechnol 2018; 60:396-411. [DOI: 10.1007/s12033-018-0079-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Yamamoto T, Ugawa Y, Kawamura M, Yamashiro K, Kochi S, Ideguchi H, Takashiba S. Modulation of microenvironment for controlling the fate of periodontal ligament cells: the role of Rho/ROCK signaling and cytoskeletal dynamics. J Cell Commun Signal 2018; 12:369-378. [PMID: 29086204 PMCID: PMC5842188 DOI: 10.1007/s12079-017-0425-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022] Open
Abstract
Cells behave in a variety of ways when they perceive changes in their microenvironment; the behavior of cells is guided by their coordinated interactions with growth factors, niche cells, and extracellular matrix (ECM). Modulation of the microenvironment affects the cell morphology and multiple gene expressions. Rho/Rho-associated coiled-coil-containing protein kinase (ROCK) signaling is one of the key regulators of cytoskeletal dynamics and actively and/or passively determines the cell fate, such as proliferation, migration, differentiation, and apoptosis, by reciprocal communication with the microenvironment. During periodontal wound healing, it is important to recruit the residential stem cells into the defect site for regeneration and homeostasis of the periodontal tissue. Periodontal ligament (PDL) cells contain a heterogeneous fibroblast population, including mesenchymal stem cells, and contribute to the reconstruction of tooth-supporting tissues. Therefore, bio-regeneration of PDL cells has been the ultimate goal of periodontal therapy for decades. Recent stem cell researches have shed light on intrinsic ECM properties, providing paradigm shifts in cell fate determination. This review focuses on the role of ROCK activity and the effects of Y-27632, a specific inhibitor of ROCK, in the modulation of ECM-microenvironment. Further, it presents the current understanding of how Rho/ROCK signaling affects the fate determination of stem cells, especially PDL cells. In addition, we have also discussed in detail the underlying mechanisms behind the reciprocal response to the microenvironment.
Collapse
Affiliation(s)
- Tadashi Yamamoto
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yuki Ugawa
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mari Kawamura
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shinsuke Kochi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shogo Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
27
|
Littmann E, Autefage H, Solanki A, Kallepitis C, Jones J, Alini M, Peroglio M, Stevens M. Cobalt-containing bioactive glasses reduce human mesenchymal stem cell chondrogenic differentiation despite HIF-1α stabilisation. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 2018; 38:877-886. [PMID: 29456294 PMCID: PMC5738970 DOI: 10.1016/j.jeurceramsoc.2017.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/01/2017] [Indexed: 05/19/2023]
Abstract
Bioactive glasses (BGs) are excellent delivery systems for the sustained release of therapeutic ions and have been extensively studied in the context of bone tissue engineering. More recently, due to their osteogenic properties and expanding application to soft tissue repair, BGs have been proposed as promising materials for use at the osteochondral interface. Since hypoxia plays a critical role during cartilage formation, we sought to investigate the influence of BGs releasing the hypoxia-mimicking agent cobalt (CoBGs) on human mesenchymal stem cell (hMSC) chondrogenesis, as a novel approach that may guide future osteochondral scaffold design. The CoBG dissolution products significantly increased the level of hypoxia-inducible factor-1 alpha in hMSCs in a cobalt dose-dependent manner. Continued exposure to the cobalt-containing BG extracts significantly reduced hMSC proliferation and metabolic activity, as well as chondrogenic differentiation. Overall, this study demonstrates that prolonged exposure to cobalt warrants careful consideration for cartilage repair applications.
Collapse
Affiliation(s)
- E. Littmann
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - H. Autefage
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Corresponding authors at: Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| | - A.K. Solanki
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - C. Kallepitis
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - J.R. Jones
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - M. Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M. Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M.M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Corresponding authors at: Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| |
Collapse
|
28
|
Barui A, Chowdhury F, Pandit A, Datta P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials 2018; 156:28-44. [DOI: 10.1016/j.biomaterials.2017.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
|
29
|
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2017; 2:224-247. [PMID: 29744432 PMCID: PMC5935655 DOI: 10.1016/j.bioactmat.2017.05.007] [Citation(s) in RCA: 954] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023] Open
Abstract
Bone grafts have been predominated used to treat bone defects, delayed union or non-union, and spinal fusion in orthopaedic clinically for a period of time, despite the emergency of synthetic bone graft substitutes. Nevertheless, the integration of allogeneic grafts and synthetic substitutes with host bone was found jeopardized in long-term follow-up studies. Hence, the enhancement of osteointegration of these grafts and substitutes with host bone is considerably important. To address this problem, addition of various growth factors, such as bone morphogenetic proteins (BMPs), parathyroid hormone (PTH) and platelet rich plasma (PRP), into structural allografts and synthetic substitutes have been considered. Although clinical applications of these factors have exhibited good bone formation, their further application was limited due to high cost and potential adverse side effects. Alternatively, bioinorganic ions such as magnesium, strontium and zinc are considered as alternative of osteogenic biological factors. Hence, this paper aims to review the currently available bone grafts and bone substitutes as well as the biological and bio-inorganic factors for the treatments of bone defect.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China
| |
Collapse
|
30
|
Growth Factor-Reinforced ECM Fabricated from Chemically Hypoxic MSC Sheet with Improved In Vivo Wound Repair Activity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2578017. [PMID: 29018809 PMCID: PMC5605873 DOI: 10.1155/2017/2578017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023]
Abstract
MSC treatment can promote cutaneous wound repair through multiple mechanisms, and paracrine mediators secreted by MSC are responsible for most of its therapeutic benefits. Recently, MSC sheet composed of live MSCs and their secreted ECMs was reported to promote wound healing; however, whether its ECM alone could accelerate wound closure remained unknown. In this study, Nc-ECM and Cc-ECM were prepared from nonconditioned and CoCl2-conditioned MSC sheets, respectively, and their wound healing properties were evaluated in a mouse model of full-thickness skin defect. Our results showed that Nc-ECM can significantly promote wound repair through early adipocyte recruitment, rapid reepithelialization, enhanced granulation tissue growth, and augmented angiogenesis. Moreover, conditioning of MSC sheet with CoCl2 dramatically enriched its ECM with collagen I, collagen III, TGF-β1, VEGF, and bFGF via activation of HIF-1α and hence remarkably improved its ECM's in vivo wound healing potency. All the Cc-ECM-treated wounds completely healed on day 7, while Nc-ECM-treated wounds healed about 85.0% ± 8.6%, and no-treatment wounds only healed 69.8% ± 9.6% (p < 0.05). Therefore, we believe that such growth factor-reinforced ECM fabricated from chemically hypoxic MSC sheet has the potential for clinical translation and will lead to a MSC-derived, cost-effective, bankable biomaterial for wound management.
Collapse
|
31
|
Dai Y, Li W, Zhong M, Chen J, Cheng Q, Liu Y, Li T. The paracrine effect of cobalt chloride on BMSCs during cognitive function rescue in the HIBD rat. Behav Brain Res 2017; 332:99-109. [PMID: 28576310 DOI: 10.1016/j.bbr.2017.05.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
Hypoxia-ischemia (HI)-induced perinatal encephalopathy frequently causes chronic neurological morbidities and acute mortality. Bone mesenchymal stem cell (BMSC) transplantation could potentially promote functional and anatomical recovery of ischemic tissue. In vitro hypoxic preconditioning is an effective strategy to improve the survival of BMSCs in ischemic tissue. In this study, cobalt chloride (CoCl2) preconditioned medium from BMSC cultures was injected into the left lateral ventricle of HI rats using a micro-osmotic pump at a flow rate 1.0μl/h for 7 days. The protein levels of HIF-1α and its target genes, vascular endothelial growth factor and erythropoietin, markedly increased after CoCl2 preconditioning in BMSCs. In 7-week-old rats that received CoCl2 preconditioned BMSC medium, results of the Morris water maze test indicated ameliorated spatial working memory function following hypoxia-ischemia damage. Neuronal loss, cellular disorganization, and shrinkage in brain tissue were also ameliorated. Extracellular field excitatory postsynaptic potentials (fEPSPs) in the brain slices of 8-week-old rats were recorded; administration of CoCl2 preconditioned BMSC culture medium induced a progressive increment of baseline and amplitude of the fEPSPs. Immunohistochemical quantification showed that GluR2 protein expression increased. In conclusion, CoCl2 activates HIF-1α signals in BMSCs. CoCl2 preconditioned BMSC culture medium likely effects neuroprotection by inducing long-term potentiation (LTP), which could be associated with GluR2 expression. The paracrine effects of hypoxia preconditioning on BMSCs could have applications in novel cell-based therapeutic strategies for hypoxic and ischemic brain injury.
Collapse
MESH Headings
- Animals
- Brain/pathology
- Brain/physiopathology
- Cells, Cultured
- Cobalt/pharmacology
- Culture Media, Conditioned
- Disease Models, Animal
- Excitatory Postsynaptic Potentials
- Female
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/physiopathology
- Hypoxia-Ischemia, Brain/psychology
- Hypoxia-Ischemia, Brain/therapy
- Male
- Maze Learning/physiology
- Memory, Short-Term/physiology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/physiology
- Neuroprotection/physiology
- Protective Agents/pharmacology
- Rats, Sprague-Dawley
- Receptors, AMPA/metabolism
- Spatial Memory/physiology
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Ying Dai
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Wendi Li
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Min Zhong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Chen
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Qian Cheng
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Youxue Liu
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China.
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China.
| |
Collapse
|
32
|
RBM4 Regulates Neuronal Differentiation of Mesenchymal Stem Cells by Modulating Alternative Splicing of Pyruvate Kinase M. Mol Cell Biol 2017; 37:MCB.00466-16. [PMID: 27821480 DOI: 10.1128/mcb.00466-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
RBM4 promotes differentiation of neuronal progenitor cells and neurite outgrowth of cultured neurons via its role in splicing regulation. In this study, we further explored the role of RBM4 in neuronal differentiation. During neuronal differentiation, energy production shifts from glycolysis to oxidative phosphorylation. We found that the splice isoform change of the metabolic enzyme pyruvate kinase M (PKM) from PKM2 to PKM1 occurs during brain development and is impaired in RBM4-deficient brains. The PKM isoform change could be recapitulated in human mesenchymal stem cells (MSCs) during neuronal induction. Using a PKM minigene, we demonstrated that RBM4 plays a direct role in regulating alternative splicing of PKM. Moreover, RBM4 antagonized the function of the splicing factor PTB and induced the expression of a PTB isoform with attenuated splicing activity in MSCs. Overexpression of RBM4 or PKM1 induced the expression of neuronal genes, increased the mitochondrial respiration capacity in MSCs, and, accordingly, promoted neuronal differentiation. Finally, we demonstrated that RBM4 is induced and is involved in the PKM splicing switch and neuronal gene expression during hypoxia-induced neuronal differentiation. Hence, RBM4 plays an important role in the PKM isoform switch and the change in mitochondrial energy production during neuronal differentiation.
Collapse
|
33
|
Zhou J, Zhao L. Hypoxia-mimicking Co doped TiO2 microporous coating on titanium with enhanced angiogenic and osteogenic activities. Acta Biomater 2016; 43:358-368. [PMID: 27477850 DOI: 10.1016/j.actbio.2016.07.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 11/18/2022]
Abstract
UNLABELLED Advanced titanium (Ti) based bone implant with both angiogenesis and osteogenesis stimulating activities for enhanced clinical performance is stringently needed. In the present work, TiO2/calcium-phosphate (TCP) coatings on Ti doped with cobalt (Co) of various amounts (designated as C2-TCP, C7-TCP, and C13-TCP where the Arabic numbers indicate the mean Co contents) are developed by a simple micro-arc oxidation procedure. The Co doped TCP coatings possess a microporous structure (pore size of 3-4μm in average diameter) which is evenly covered by nano-grains of 30-60nm in size. Successful Co incorporation in TCP is determined by X-ray photoelectron spectroscopy. The microstructure, TiO2 phase compositions, surface roughness, and wettability of TCP are not apparently affected by the Co incorporation. The Co doped coatings bond firmly to the Ti substrate and show good long-term adhesion strength stability in biological environment. Then the behaviors of rat bone marrow stem cells (MSCs) on the Co-incorporated TCP are evaluated. The Co incorporation leads to enhanced expression of the markers for both angiogenesis and osteogenesis, and the effects are positively related to the incorporated Co amount. Overdose of Co incorporation (C13-TCP) can induce certain cytotoxicity and an optimal dose of Co incorporation is essential to get the enhanced angiogenic and osteogenic activities without showing cytotoxicity. Between C2-TCP and C7-TCP that show no significant cytotoxicity, C7-TCP exhibits higher angiogenic and osteogenic activities. In conclusion, the Co doping is feasible to enhance the angiogenic and osteogenic activities of orthopedic and dental Ti implants for potentially improved clinical performance. STATEMENT OF SIGNIFICANCE TiO2/calcium-phosphate coatings on Ti doped with cobalt are developed by a simple micro-arc oxidation procedure. The Co doped coatings bond firmly to the Ti substrate and show good long-term adhesion strength stability in biological environment. Furthermore, the cobalt doping is feasible to enhance the angiogenic and osteogenic activities of orthopedic and dental Ti implants for potentially improved clinical performance.
Collapse
Affiliation(s)
- Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
34
|
Schäfer R, Spohn G, Baer PC. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy? Transfus Med Hemother 2016; 43:256-267. [PMID: 27721701 DOI: 10.1159/000447458] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy.
Collapse
Affiliation(s)
- Richard Schäfer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt/M., Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt/M., Germany
| | - Patrick C Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe University, Frankfurt/M., Germany
| |
Collapse
|
35
|
Shahjouei S, Ansari S, Pourmotabbed T, Zand R. Potential Roles of Adropin in Central Nervous System: Review of Current Literature. Front Mol Biosci 2016; 3:25. [PMID: 27446928 PMCID: PMC4921473 DOI: 10.3389/fmolb.2016.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/27/2016] [Indexed: 01/04/2023] Open
Abstract
Adropin is a 4.9 kDa peptide that is important for maintenance of metabolic and non-metabolic homeostasis. It regulates glucose and fatty acid metabolism and is involved in endothelial cell function and endothelial nitric oxide (NO) synthase bioactivity as well as physical activity and motor coordination. Adropin is expressed in many tissues and organs including central nervous system (CNS). This peptide plays a crucial role in the development of various CNS disorders such as stroke, schizophrenia, bipolar disorder as well as Alzheimer's, Parkinson's, and Huntington's diseases. In this comprehensive review, the potential roles of adropin in cellular signaling pathways that lead to pathogenesis and/or treatment of CNS disorders will be discussed.
Collapse
Affiliation(s)
- Shima Shahjouei
- Department of Neurosurgery, Tehran University of Medical Sciences Tehran, Iran
| | - Saeed Ansari
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Tayebeh Pourmotabbed
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center Memphis, TN, USA
| | - Ramin Zand
- Department of Neurology, University of Tennessee Health Science CenterMemphis, TN, USA; Biocomplexity Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| |
Collapse
|
36
|
Rodriguez-Pallares J, Rodriguez-Perez AI, Muñoz A, Parga JA, Toledo-Aral JJ, Labandeira-Garcia JL. Effects of Rho Kinase Inhibitors on Grafts of Dopaminergic Cell Precursors in a Rat Model of Parkinson's Disease. Stem Cells Transl Med 2016; 5:804-15. [PMID: 27075764 DOI: 10.5966/sctm.2015-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/25/2016] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED In models of Parkinson's disease (PD), Rho kinase (ROCK) inhibitors have antiapoptotic and axon-stabilizing effects on damaged neurons, decrease the neuroinflammatory response, and protect against dopaminergic neuron death and axonal retraction. ROCK inhibitors have also shown protective effects against apoptosis induced by handling and dissociation of several types of stem cells. However, the effect of ROCK inhibitors on dopaminergic cell grafts has not been investigated. In the present study, treatment of dopaminergic cell suspension with ROCK inhibitors yielded significant decreases in the number of surviving dopaminergic neurons, in the density of graft-derived dopaminergic fibers, and in graft vascularization. Dopaminergic neuron death also markedly increased in primary mesencephalic cultures when the cell suspension was treated with ROCK inhibitors before plating, which suggests that decreased angiogenesis is not the only factor leading to cell death in grafts. Interestingly, treatment of the host 6-hydroxydopamine-lesioned rats with ROCK inhibitors induced a slight, nonsignificant increase in the number of surviving neurons, as well as marked increases in the density of graft-derived dopaminergic fibers and the size of the striatal reinnervated area. The study findings discourage treatment of cell suspensions before grafting. However, treatment of the host induces a marked increase in graft-derived striatal reinnervation. Because ROCK inhibitors have also exerted neuroprotective effects in several models of PD, treatment of the host with ROCK inhibitors, currently used against vascular diseases in clinical practice, before and after grafting may be a useful adjuvant to cell therapy in PD. SIGNIFICANCE Cell-replacement therapy is one promising therapy for Parkinson's disease (PD). However, many questions must be addressed before widespread application. Rho kinase (ROCK) inhibitors have been used in a variety of applications associated with stem cell research and may be an excellent strategy for improving survival of grafted neurons and graft-derived dopaminergic innervation. The present results discourage the treatment of suspensions of dopaminergic precursors with ROCK inhibitors in the pregrafting period. However, treatment of the host (patients with PD) with ROCK inhibitors, currently used against vascular diseases, may be a useful adjuvant to cell therapy in PD.
Collapse
Affiliation(s)
- Jannette Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Muñoz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A Parga
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J Toledo-Aral
- Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain Instituto de Biomedicina de Sevilla (IBIS), Department de Fisiología Médica y Biofísica, Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/Universidad de Sevilla, Seville, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 2016; 92:41-51. [PMID: 27012163 DOI: 10.1016/j.diff.2016.02.005] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/15/2016] [Accepted: 02/25/2016] [Indexed: 11/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that represent a promising source for regenerative medicine. MSCs are capable of osteogenic, chondrogenic, adipogenic and myogenic differentiation. Efficacy of differentiated MSCs to regenerate cells in the injured tissues requires the ability to maintain the differentiation toward the desired cell fate. Since MSCs represent an attractive source for autologous transplantation, cellular and molecular signaling pathways and micro-environmental changes have been studied in order to understand the role of cytokines, chemokines, and transcription factors on the differentiation of MSCs. The differentiation of MSC into a mesenchymal lineage is genetically manipulated and promoted by specific transcription factors associated with a particular cell lineage. Recent studies have explored the integration of transcription factors, including Runx2, Sox9, PPARγ, MyoD, GATA4, and GATA6 in the differentiation of MSCs. Therefore, the overexpression of a single transcription factor in MSCs may promote trans-differentiation into specific cell lineage, which can be used for treatment of some diseases. In this review, we critically discussed and evaluated the role of transcription factors and related signaling pathways that affect the differentiation of MSCs toward adipocytes, chondrocytes, osteocytes, skeletal muscle cells, cardiomyocytes, and smooth muscle cells.
Collapse
Affiliation(s)
- Sami G Almalki
- Departments of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
38
|
Therapy Effects of Bone Marrow Stromal Cells on Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7682960. [PMID: 27069533 PMCID: PMC4812472 DOI: 10.1155/2016/7682960] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/25/2016] [Indexed: 01/01/2023]
Abstract
Stroke is the second most common cause of death and major cause of disability worldwide. Recently, bone marrow stromal cells (BMSCs) have been shown to improve functional outcome after stroke. In this review, we will focus on the protective effects of BMSCs on ischemic brain and the relative molecular mechanisms underlying the protective effects of BMSCs on stroke.
Collapse
|
39
|
Transplantation of mesenchymal stem cells in a laryngeal carcinoma patient with radiation myelitis. Stem Cell Res Ther 2015; 6:213. [PMID: 26537898 PMCID: PMC4634631 DOI: 10.1186/s13287-015-0203-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/20/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022] Open
Abstract
Radiation myelitis is a rather rare but devastating complication following therapeutic irradiation to neoplasms when the spinal cord is included within the radiation field. Symptoms of radiation myelitis with the therapeutic doses of radiation commonly employed are usually delayed and most often appear about 6 to 24 months following irradiation. So far, no treatment has proved satisfactory. Transplantation of allogeneic mesenchymal stem cells has been a promising therapy strategy for many disorders in the central nervous system, such as multiple sclerosis, neuromyelitis optica, and autoimmune encephalomyelitis. The cell-base therapy has shown to act to limit inflammation of central nervous system, stimulate neurogenesis, protect axons and promote remyelination. But it has not been established as a therapeutic option for radiation myelitis. In this report, we describe the outcome of allogeneic umbilical cord-derived mesenchymal stem cell transplantation in a patient with laryngeal carcinoma who developed radiation-induced myelitis of his spinal cord with characteristic magnetic resonance imaging changes.
Collapse
|
40
|
Chen O, Wu M, Jiang L. The Effect of Hypoxic Preconditioning on Induced Schwann Cells under Hypoxic Conditions. PLoS One 2015; 10:e0141201. [PMID: 26509259 PMCID: PMC4624905 DOI: 10.1371/journal.pone.0141201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECT Our objective was to explore the protective effects of hypoxic preconditioning on induced Schwann cells exposed to an environment with low concentrations of oxygen. It has been observed that hypoxic preconditioning of induced Schwann cells can promote axonal regeneration under low oxygen conditions. METHOD Rat bone marrow mesenchymal stem cells (MSCs) were differentiated into Schwann cells and divided into a normal oxygen control group, a hypoxia-preconditioning group and a hypoxia group. The ultrastructure of each of these groups of cells was observed by electron microscopy. In addition, flow cytometry was used to measure changes in mitochondrial membrane potential. Annexin V-FITC/PI staining was used to detect apoptosis, and Western blots were used to detect the expression of Bcl-2/Bax. Fluorescence microscopic observations of axonal growth in NG-108 cells under hypoxic conditions were also performed. RESULTS The hypoxia-preconditioning group maintained mitochondrial cell membrane and crista integrity, and these cells exhibited less edema than the hypoxia group. In addition, the cells in the hypoxia-preconditioning group were found to be in early stages of apoptosis, whereas cells from the hypoxia group were in the later stages of apoptosis. The hypoxia-preconditioning group also had higher levels of Bcl-2/Bax expression and longer NG-108 cell axons than were observed in the hypoxia group. CONCLUSION Hypoxic preconditioning can improve the physiological state of Schwann cells in a severe hypoxia environment and improve the ability to promote neurite outgrowth.
Collapse
Affiliation(s)
- Ou Chen
- Department of Orthopedic Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Miaomiao Wu
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail:
| | - Liangfu Jiang
- Department of Hand and Plastic Surgery, The 2nd Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
41
|
Esfahani M, Karimi F, Afshar S, Niknazar S, Sohrabi S, Najafi R. Prolyl hydroxylase inhibitors act as agents to enhance the efficiency of cell therapy. Expert Opin Biol Ther 2015; 15:1739-55. [PMID: 26325448 DOI: 10.1517/14712598.2015.1084281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION In stem cell-based therapy as a subtype of regenerative medicine, stem cells can be used to replace or repair injured tissue and cells in order to treat disease. Stem cells have the ability to integrate into injured areas and produce new cells via processes of proliferation and differentiation. Several studies have demonstrated that hypoxia increases self-renewal, proliferation and post-homing differentiation of stem cells through the regulation of hypoxia-inducible factor-1 (HIF-1)-mediated gene expression. Thus, pharmacological interventions including prolyl hydroxylase (PHD) inhibitors are considered as promising solutions for stem cell-based therapy. PHD inhibitors stabilize the HIF-1 and activate its pathway through preventing proteasomal degradation of HIF-1. AREAS COVERED This review focuses on the role of hypoxia, HIF-1 and especially PHD inhibitors on cell therapy. PHD structure and function are discussed as well as their inhibitors. In addition, we have investigated several preclinical studies in which PHD inhibitors improved the efficiency of cell-based therapies. EXPERT OPINION The data reviewed here suggest that PHD inhibitors are effective operators in improving stem cell therapy. However, because of some limitations, these compounds should be properly examined before clinical application.
Collapse
Affiliation(s)
- Maryam Esfahani
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Fatemeh Karimi
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Saeid Afshar
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Somayeh Niknazar
- b 2 Shahid Beheshti University of Medical Science, Hearing Disorders Research Center , Tehran, the Islamic Republic of Iran
| | - Sareh Sohrabi
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Rezvan Najafi
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| |
Collapse
|
42
|
Tian T, Han Y, Ma B, Wu C, Chang J. Novel Co-akermanite (Ca2CoSi2O7) bioceramics with the activity to stimulate osteogenesis and angiogenesis. J Mater Chem B 2015; 3:6773-6782. [DOI: 10.1039/c5tb01244a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Both osteogenesis and angiogenesis of bioactive materials play the vital role in the regeneration of large skeletal defects.
Collapse
Affiliation(s)
- Tian Tian
- Biomaterials and Tissue Engineering Research Center
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yan Han
- Med-X Research Institute
- Department of Biomedical Engineering
- Shanghai Jiaotong University
- Shanghai 200030
- China
| | - Bing Ma
- Biomaterials and Tissue Engineering Research Center
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Chengtie Wu
- Biomaterials and Tissue Engineering Research Center
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiang Chang
- Biomaterials and Tissue Engineering Research Center
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
43
|
Lee HS, Kim KS, Lim HS, Choi M, Kim HK, Ahn HY, Shin JC, Joe YA. Priming Wharton's Jelly-Derived Mesenchymal Stromal/Stem Cells With ROCK Inhibitor Improves Recovery in an Intracerebral Hemorrhage Model. J Cell Biochem 2014; 116:310-9. [DOI: 10.1002/jcb.24969] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 08/29/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Hyun-Sun Lee
- Cancer Research Institute and Department of Medical Life Sciences; College of Medicine; The Catholic University of Korea; Seoul 137-701 Korea
| | - Kwang S. Kim
- Cancer Research Institute and Department of Medical Life Sciences; College of Medicine; The Catholic University of Korea; Seoul 137-701 Korea
| | - Hee-Suk Lim
- Cancer Research Institute and Department of Medical Life Sciences; College of Medicine; The Catholic University of Korea; Seoul 137-701 Korea
| | - Moran Choi
- Cancer Research Institute and Department of Medical Life Sciences; College of Medicine; The Catholic University of Korea; Seoul 137-701 Korea
| | - Hyun-Kyung Kim
- Cancer Research Institute and Department of Medical Life Sciences; College of Medicine; The Catholic University of Korea; Seoul 137-701 Korea
| | - Hyun-Young Ahn
- Department of Obstetrics and Gynecology; College of Medicine; The Catholic University of Korea; Seoul 137-701 Korea
| | - Jong-Chul Shin
- Department of Obstetrics and Gynecology; College of Medicine; The Catholic University of Korea; Seoul 137-701 Korea
| | - Young Ae Joe
- Cancer Research Institute and Department of Medical Life Sciences; College of Medicine; The Catholic University of Korea; Seoul 137-701 Korea
| |
Collapse
|
44
|
Nakamura M, Kamishibahara Y, Kitazawa A, Kawaguchi H, Shimizu N. Differentiation patterns of mouse embryonic stem cells and induced pluripotent stem cells into neurons. Cytotechnology 2014; 68:409-17. [PMID: 25354731 DOI: 10.1007/s10616-014-9792-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/27/2014] [Indexed: 10/24/2022] Open
Abstract
Mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have the ability to differentiate in vitro into various cell lineages including neurons. The differentiation of these cells into neurons has potential applications in regenerative medicine. Previously, we reported that a chick dorsal root ganglion (DRG)-conditioned medium (CM) promoted the differentiation of mouse ES and iPS cells into neurons. Here, we used real-time PCR to investigate the differentiation patterns of ES and iPS cells into neurons when DRG-CM was added. DRG-CM promoted the expression levels of βIII-tubulin gene (a marker of postmitotic neurons) in ES and iPS cells. ES cells differentiated into neurons faster than iPS cells, and the maximum peaks of gene expression involved in motor, sensory, and dopaminergic neurons were different. Rho kinase (ROCK) inhibitors could be very valuable at numerous stages in the production and use of stem cells in basic research and eventual cell-based therapies. Thus, we investigated whether the addition of a ROCK inhibitor Y-27632 and DRG-CM on the basis of the differentiation patterns promotes the neuronal differentiation of ES cells. When the ROCK inhibitor was added to the culture medium at the initial stages of cultivation, it stimulated the neuronal differentiation of ES cells more strongly than that stimulated by DRG-CM. Moreover, the combination of the ROCK inhibitor and DRG-CM promoted the neuronal differentiation of ES cells when the ROCK inhibitor was added to the culture medium at day 3. The ROCK inhibitor may be useful for promoting neuronal differentiation of ES cells.
Collapse
Affiliation(s)
- Mai Nakamura
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Yu Kamishibahara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Ayako Kitazawa
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.,Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan
| | - Hideo Kawaguchi
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Norio Shimizu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan. .,Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan.
| |
Collapse
|
45
|
Li J, Li D, Ju X, Shi Q, Wang D, Wei F. Umbilical cord-derived mesenchymal stem cells retain immunomodulatory and anti-oxidative activities after neural induction. Neural Regen Res 2014; 7:2663-72. [PMID: 25337112 PMCID: PMC4200734 DOI: 10.3969/j.issn.1673-5374.2012.34.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/16/2012] [Indexed: 01/14/2023] Open
Abstract
The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilical cord and induced to differentiate with basic fibroblast growth factor, nerve growth factor, epidermal growth factor, brain-derived neurotrophic factor and forskolin. The mesenchymal stem cells became rounded with long processes and expressed the neural markers, Tuj1, neurofilament 200, microtubule-associated protein-2 and neuron-specific enolase. Nestin expression was significantly reduced after neural induction. The expression of immunoregulatory and anti-oxidative genes was largely unchanged prior to and after neural induction in mesenchymal stem cells. There was no significant difference in the effects of control and induced mesenchymal stem cells on lymphocyte proliferation in co-culture experiments. However, the expression of human leukocyte antigen-G decreased significantly in induced neuron-like cells. These results suggest that growth factor-based methods enable the differentiation of mesenchymal stem cell toward immature neuronal-like cells, which retain their immunomodulatory and anti-oxidative activities.
Collapse
Affiliation(s)
- Jianjun Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Xiuli Ju
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Dakun Wang
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Fengcai Wei
- Department of Stomatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
46
|
Azevedo MM, Tsigkou O, Nair R, Jones JR, Jell G, Stevens MM. Hypoxia inducible factor-stabilizing bioactive glasses for directing mesenchymal stem cell behavior. Tissue Eng Part A 2014; 21:382-9. [PMID: 25167933 DOI: 10.1089/ten.tea.2014.0083] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oxygen tension is a known regulator of mesenchymal stem cell (MSC) plasticity, differentiation, proliferation, and recruitment to sites of injury. Materials capable of affecting the MSC oxygen-sensing pathway, independently of the environmental oxygen pressure, are therefore of immense interest to the tissue engineering (TE) and regenerative medicine community. In this study, we describe the evaluation of the effect of hypoxia inducible factor (HIF)-stabilizing bioactive glasses (BGs) on human MSCs. The dissolution products from these hypoxia-mimicking BGs stabilized HIF-1α in a concentration-dependent manner, altered cell proliferation and metabolism, and upregulated a number of genes involved in the hypoxic response (HIF1A, HIF2A, and VHL), MSC survival (SAG and BCL2), extracellular matrix remodeling (MMP1), and angiogenesis (VEGF and PDGF). These HIF-stabilizing materials can therefore be used to improve MSC survival and enhance regeneration in a number of TE strategies.
Collapse
Affiliation(s)
- Maria M Azevedo
- 1 Department of Materials, Imperial College London , London, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Zhang Z, Han Y, Song J, Luo R, Jin X, Mu D, Su S, Ji X, Ren YF, Liu H. Interferon-γ regulates the function of mesenchymal stem cells from oral lichen planus via indoleamine 2,3-dioxygenase activity. J Oral Pathol Med 2014; 44:15-27. [PMID: 25212102 DOI: 10.1111/jop.12224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Little is known about mesenchymal stem cells (MSCs) in normal or inflammatory oral mucosal tissues, such as in oral lichen planus (OLP). Our objectives were to identify, isolate, and characterize MSCs from normal human oral mucosa and OLP lesions, and to evaluate indoleamine 2,3 dioxygenase (IDO) activity in mediating immunomodulation of MSCs from these tissues. METHODS Expressions of MSCs-related markers were examined in isolated cells by flow cytometry. Self-renewal and multilineage differentiations were studied to characterize these MSCs. Interferon-γ (IFN-γ), IDO, and STRO-1 were assessed by immunofluorescence. MSCs from oral mucosa and OLP or IFN-γ-pretreated MSCs were co-cultured with allogeneic mixed lymphocyte reaction assays (MLR). Proliferation and apoptosis of MLR or MSCs were detected by CCK8 and the annexin V-FITC apoptosis detection kit, respectively. IDO expression and activity were measured by real-time PCR, Western blotting, and high-performance liquid chromatography. RESULTS Isolated cells from oral mucosa and OLP expressed MSC-related markers STRO-1, CD105, and CD90 but were absent for hematopoietic stem cell markers CD34. Besides, they all showed self-renewal and multilineage differentiation capacities. MSCs in OLP presented STRO-1/IDO+ phenotype by immunofluorescence. MSCs and IFN-γ-pretreated MSCs could inhibit lymphocyte proliferation via IDO activity, but not via cell apoptosis. Long-term IFN-γ could also inhibit MSC proliferation via IDO activity. CONCLUSIONS Mesenchymal stem cells can be isolated from human oral mucosa and OLP tissues. Besides self-renewal and multilineage differentiation properties, these cells may participate in immunomodulation mediated by IFN-γ via IDO activity in human OLP.
Collapse
Affiliation(s)
- Zhihui Zhang
- School and Hospital of Stomatology, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kamishibahara Y, Kawaguchi H, Shimizu N. Promotion of mouse embryonic stem cell differentiation by Rho kinase inhibitor Y-27632. Neurosci Lett 2014; 579:58-63. [PMID: 25038419 DOI: 10.1016/j.neulet.2014.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 01/15/2023]
Abstract
Rho kinase (ROCK) is one of the major downstream mediators of Rho. Rho plays crucial regulatory roles in the cellular proliferation and differentiation. Because a ROCK inhibitor, Y-27632, is known to inhibit the dissociation-induced cell death in human embryonic stem (ES) cells, we investigated the effects of this ROCK inhibitor on the differentiation of the mouse ES cells. The ROCK inhibitor promoted the differentiation of the ES cells into neurons, particularly motor and sensory neurons. The addition of both ROCK inhibitor and nerve growth factor (NGF) strongly stimulated the differentiation of the ES cells into neurons. Moreover, the ROCK inhibitor promoted the differentiation of the ES cells into muscle cells. The ES cells primarily differentiated into neurons rather than muscle cells. We found that the ROCK inhibitor may promote the neuronal differentiation of the ES cells by activating the extracellular signal-regulated kinase (ERK) signaling pathway. These results suggest that the ROCK inhibitor has a significant potential to regulate the differentiation of the ES cells.
Collapse
Affiliation(s)
- Yu Kamishibahara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| | - Hideo Kawaguchi
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| | - Norio Shimizu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan; Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan.
| |
Collapse
|
49
|
Borrajo A, Rodriguez-Perez AI, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL. Inhibition of the microglial response is essential for the neuroprotective effects of Rho-kinase inhibitors on MPTP-induced dopaminergic cell death. Neuropharmacology 2014; 85:1-8. [PMID: 24878243 DOI: 10.1016/j.neuropharm.2014.05.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/18/2014] [Accepted: 05/14/2014] [Indexed: 01/20/2023]
Abstract
Several recent studies have shown that activation of the RhoA/Rho-associated kinase (ROCK) pathway is involved in the MPTP-induced dopaminergic cell degeneration and possibly in Parkinson's disease. ROCK inhibitors have been suggested as candidate neuroprotective drugs for Parkinson's disease. However, the mechanism responsible for the increased survival of dopaminergic neurons after treatment with ROCK inhibitors is not clear. We exposed primary (neuron-glia) mesencephalic cultures, cultures of the MES 23.5 dopaminergic neuron cell line and primary mesencephalic cultures lacking microglial cells to the dopaminergic neurotoxin MPP+ and the ROCK inhibitor Y-27632 in order to study the effects of ROCK inhibition on dopaminergic cell loss and the length of neurites of surviving dopaminergic neurons. In primary (neuron-glia) cultures, simultaneous treatment with MPP+ and the ROCK inhibitor significantly reduced the loss of dopaminergic neurons. In the absence of microglia, treatment with the ROCK inhibitor did not induce a significant reduction in the dopaminergic cell loss. Treatment with the ROCK inhibitor induced a significant decrease in axonal retraction in primary cultures with and without microglia and in cultures of the MES 23.5 neuron cell line. In conclusion, inhibition of microglial ROCK is essential for the neuroprotective effects of ROCK inhibitors against cell death induced by the dopaminergic neurotoxin MPP+. In addition, ROCK inhibition induced a direct effect against axonal retraction in surviving neurons. However, the latter effect was not sufficient to cause a significant increase in the survival of dopaminergic neurons after treatment with MPP+.
Collapse
Affiliation(s)
- Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
50
|
Schäfer R. Does the adult stroma contain stem cells? ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 129:177-89. [PMID: 23117643 DOI: 10.1007/10_2012_160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well accepted that adult mesenchymal stromal cells (MSCs) comprise subpopulations of cells sharing common phenotypical and functional properties. However, there is emerging evidence that MSC subpopulations may also feature distinct characteristics. This chapter focuses on MSC subpopulations reflecting their possible stem cell properties relative to defined pluripotent stem cells (PSCs) such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). This attempt at an ontogenetic reflection on MSCs can be useful for both basic and translational research in the field.
Collapse
Affiliation(s)
- Richard Schäfer
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305-5487, USA,
| |
Collapse
|