1
|
Ji XL, Zhao LL, Liu B, Yuan YB, Han Y, You CX, An JP. MdZFP7 integrates JA and GA signals via interaction with MdJAZ2 and MdRGL3a in regulating anthocyanin biosynthesis and undergoes degradation by the E3 ubiquitin ligase MdBRG3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1339-1363. [PMID: 39936840 DOI: 10.1111/jipb.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinate many aspects of plant growth and development, including anthocyanin biosynthesis. However, the crossover points of JA and GA signals and the pathways through which they interact to regulate anthocyanin biosynthesis are poorly understood. Here, we investigated the molecular mechanism by which the zinc finger protein (ZFP) transcription factor Malus domestica ZFP7 (MdZFP7) regulates anthocyanin biosynthesis by integrating JA and GA signals at the transcriptional and post-translational levels. MdZFP7 is a positive regulator of anthocyanin biosynthesis, which fulfills its role by directly activating the expression of MdMYB1 and enhancing the transcriptional activation of MdWRKY6 on the target genes MdDFR and MdUF3GT. MdZFP7 integrates JA and GA signals by interacting with the JA repressor apple JASMONATE ZIM-DOMAIN2 (MdJAZ2) and the GA repressor apple REPRESSOR-of-ga1-3-like 3a (MdRGL3a). MdJAZ2 weakens the transcriptional activation of MdMYB1 by MdZFP7 and disrupts the MdZFP7-MdWRKY6 interaction, thereby reducing the anthocyanin biosynthesis promoted by MdZFP7. MdRGL3a contributes to the stimulation of anthocyanin biosynthesis by MdZFP7 by sequestering MdJAZ2 from the MdJAZ2-MdZFP7 complex. The E3 ubiquitin ligase apple BOI-related E3 ubiquitin-protein ligase 3 (MdBRG3), which is antagonistically regulated by JA and GA, targets the ubiquitination degradation of MdZFP7. The MdBRG3-MdZFP7 module moves the crosstalk of JA and GA signals from the realm of transcriptional regulation and into the protein post-translational modification. In conclusion, this study not only elucidates the node-role of MdZFP7 in the integration of JA and GA signals, but also describes the transcriptional and post-translational regulatory network of anthocyanin biosynthesis with MdZFP7 as the hub.
Collapse
Affiliation(s)
- Xing-Long Ji
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling-Ling Zhao
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Yong-Bing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
2
|
Enenkel C, Ernst OP. Proteasome dynamics in response to metabolic changes. Front Cell Dev Biol 2025; 13:1523382. [PMID: 40099196 PMCID: PMC11911490 DOI: 10.3389/fcell.2025.1523382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Proteasomes, essential protease complexes in protein homeostasis, adapt to metabolic changes through intracellular movements. As the executive arm of the ubiquitin-proteasome system, they selectively degrade poly-ubiquitinated proteins in an ATP-dependent process. The primary proteasome configuration involved in this degradation is the 26S proteasome, which is composed of a proteolytically active core particle flanked by two regulatory particles. In metabolically active cells, such as proliferating yeast and mammalian cancer cells, 26S proteasomes are predominantly nuclear and actively engaged in protein degradation. However, during nutrient deprivation or stress-induced quiescence, proteasome localization changes. In quiescent yeast, proteasomes initially accumulate at the nuclear envelope. During prolonged quiescence with decreased ATP levels, proteasomes exit the nucleus and are sequestered into cytoplasmic membraneless organelles, so-called proteasome storage granules (PSGs). In mammalian cells, starvation and stress trigger formation of membraneless organelles containing proteasomes and poly-ubiquitinated substrates. The proteasome condensates are motile, reversible, and contribute to stress resistance and improved fitness during aging. Proteasome condensation may involve liquid-liquid phase separation, a mechanism underlying the assembly of membraneless organelles.
Collapse
Affiliation(s)
- Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Oliver P. Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Wang L, Sooram B, Kumar R, Schedin‐Weiss S, Tjernberg LO, Winblad B. Tau degradation in Alzheimer's disease: Mechanisms and therapeutic opportunities. Alzheimers Dement 2025; 21:e70048. [PMID: 40109019 PMCID: PMC11923393 DOI: 10.1002/alz.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/22/2025]
Abstract
In Alzheimer's disease (AD), tau undergoes abnormal post-translational modifications and aggregations. Impaired intracellular degradation pathways further exacerbate the accumulation of pathological tau. A new strategy - targeted protein degradation - recently emerged as a modality in drug discovery where bifunctional molecules bring the target protein close to the degradation machinery to promote clearance. Since 2016, this strategy has been applied to tau pathologies and attracted broad interest in academia and the pharmaceutical industry. However, a systematic review of recent studies on tau degradation mechanisms is lacking. Here we review tau degradation mechanisms (the ubiquitin-proteasome system and the autophagy-lysosome pathway), their dysfunction in AD, and tau-targeted degraders, such as proteolysis-targeting chimeras and autophagy-targeting chimeras. We emphasize the need for a continuous exploration of tau degradation mechanisms and provide a future perspective for developing tau-targeted degraders, encouraging researchers to work on new treatment options for AD patients. HIGHLIGHTS: Post-translational modifications, aggregation, and mutations affect tau degradation. A vicious circle exists between impaired degradation pathways and tau pathologies. Ubiquitin plays an important role in complex degradation pathways. Tau-targeted degraders provide promising strategies for novel AD treatment.
Collapse
Affiliation(s)
- Lisha Wang
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Banesh Sooram
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Rajnish Kumar
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
- Department of Pharmaceutical Engineering & TechnologyIndian Institute of Technology (BHU)VaranasiIndia
| | - Sophia Schedin‐Weiss
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Lars O. Tjernberg
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Bengt Winblad
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
- Theme Inflammation and AgingKarolinska University HospitalHuddingeSweden
| |
Collapse
|
4
|
Martin RA, Viggars MR, Sanford JA, Taylor ZW, Hansen JR, Clair GC, Adkins JN, Douglas CM, Esser KA. Alterations of the skeletal muscle nuclear proteome after acute exercise reveals a post-transcriptional influence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607176. [PMID: 39149399 PMCID: PMC11326304 DOI: 10.1101/2024.08.08.607176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Exercise is firmly established as a key contributor to overall well-being and is frequently employed as a therapeutic approach to mitigate various health conditions. One pivotal aspect of the impact of exercise lies in the systemic transcriptional response, which underpins its beneficial adaptations. While extensive research has been devoted to understanding the transcriptional response to exercise, our knowledge of the protein constituents of nuclear processes that accompany gene expression in skeletal muscle remains largely elusive. We hypothesize that alterations in the nuclear proteome following exercise hold vital clues for comprehending the transcriptional regulation and other related nuclear functions. We isolated skeletal muscle nuclei from C57BL/6 mice both sedentary control and one-hour post 30-minute treadmill running, to gain insights into the nuclear proteome after exercise. A substantial number of the 2,323 proteins identified, were related to nuclear functions. For instance, we found 59 proteins linked to nucleocytoplasmic transport were higher in sedentary mice compared to exercise, hinting at an exercise-induced modulation to nuclear trafficking. Furthermore, 135 proteins exhibited increased abundance after exercise (FDR < 0.1) while 89 proteins decreased, with the most prominent changes in proteins linked to mRNA processing and splicing. Super resolution microscopy further highlights potential localization change in mRNA processing proteins post-exercise, further suggesting changes in nuclear transport dynamics. Nonetheless, our data provide important considerations for the study of the nuclear proteome and supports a paradigm through which exercise downregulated mRNA processing and splicing, offering valuable insights into the broader landscape of the impact from acute exercise. New & Noteworthy Exercise plays a crucial role in promoting muscle health, but our understanding of nuclear proteins orchestrating exercise responses is limited. Isolation of skeletal muscle nuclei coupled with mass spectrometry enhanced the identification of nuclear proteins. This approach was used to investigate the effects of acute exercise, revealing changes in the muscle nuclear proteome 1-hour post-exercise, including proteins linked to post-transcriptional processing and splicing. Our findings offer insights into the exercise-induced changes within muscle nuclear proteins.
Collapse
Affiliation(s)
- Ryan A. Martin
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Mark R. Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | | | - Zane W. Taylor
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Joshua N. Adkins
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Collin M. Douglas
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Chen M, Huang X, Shi Y, Wang W, Huang Z, Tong Y, Zou X, Xu Y, Dai Z. CRISPR/Pepper-tDeg: A Live Imaging System Enables Non-Repetitive Genomic Locus Analysis with One Single-Guide RNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402534. [PMID: 38924638 PMCID: PMC11348139 DOI: 10.1002/advs.202402534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Indexed: 06/28/2024]
Abstract
CRISPR-based genomic-imaging systems have been utilized for spatiotemporal imaging of the repetitive genomic loci in living cells, but they are still challenged by limited signal-to-noise ratio (SNR) at a non-repetitive genomic locus. Here, an efficient genomic-imaging system is proposed, termed CRISPR/Pepper-tDeg, by engineering the CRISPR sgRNA scaffolds with the degron-binding Pepper aptamers for binding fluorogenic proteins fused with Tat peptide derived degron domain (tDeg). The target-dependent stability switches of both sgRNA and fluorogenic protein allow this system to image repetitive telomeres sensitively with a 5-fold higher SNR than conventional CRISPR/MS2-MCP system using "always-on" fluorescent protein tag. Subsequently, CRISPR/Pepper-tDeg is applied to simultaneously label and track two different genomic loci, telomeres and centromeres, in living cells by combining two systems. Given a further improved SNR by the split fluorescent protein design, CRISPR/Pepper-tDeg system is extended to non-repetitive sequence imaging using only one sgRNA with two aptamer insertions. Neither complex sgRNA design nor difficult plasmid construction is required, greatly reducing the technical barriers to define spatiotemporal organization and dynamics of both repetitive and non-repetitive genomic loci in living cells, and thus demonstrating the large application potential of this genomic-imaging system in biological research, clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Wen Wang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510275China
| | - Zhan Huang
- School of ChemistrySun Yat‐Sen UniversityGuangzhou510275China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Xiaoyong Zou
- School of ChemistrySun Yat‐Sen UniversityGuangzhou510275China
| | - Yuzhi Xu
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| |
Collapse
|
6
|
El-Mergawy R, Chafin L, Ovando-Ricardez JA, Rosas L, Tsai M, Rojas M, Mora AL, Mallampalli RK. FOXK2 targeting by the SCF-E3 ligase subunit FBXO24 for ubiquitin mediated degradation modulates mitochondrial respiration. J Biol Chem 2024; 300:107359. [PMID: 38735474 PMCID: PMC11209018 DOI: 10.1016/j.jbc.2024.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
FOXK2 is a crucial transcription factor implicated in a wide array of biological activities and yet understanding of its molecular regulation at the level of protein turnover is limited. Here, we identify that FOXK2 undergoes degradation in lung epithelia in the presence of the virulent pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae through ubiquitin-proteasomal processing. FOXK2 through its carboxyl terminus (aa 428-478) binds the Skp-Cullin-F-box ubiquitin E3 ligase subunit FBXO24 that mediates multisite polyubiquitylation of the transcription factor resulting in its nuclear degradation. FOXK2 was detected within the mitochondria and targeted depletion of the transcription factor or cellular expression of FOXK2 mutants devoid of key carboxy terminal domains significantly impaired mitochondrial function. In experimental bacterial pneumonia, Fbxo24 heterozygous mice exhibited preserved mitochondrial function and Foxk2 protein levels compared to WT littermates. The results suggest a new mode of regulatory control of mitochondrial energetics through modulation of FOXK2 cellular abundance.
Collapse
Affiliation(s)
- Rabab El-Mergawy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lexie Chafin
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jose A Ovando-Ricardez
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lorena Rosas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - MuChun Tsai
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Ana L Mora
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Rama K Mallampalli
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
7
|
Charousova M, Kudlickova Peskova M, Takacsova P, Kapolkova K, Haddad Y, Bilek J, Sivak L, Bartejs T, Heger Z, Pekarik V. Engineered human H-chain ferritin with reversed charge of the internal cavity exhibits RNA-mediated spongelike effect for loading RNA/DNA-binding molecules. Biomater Sci 2024; 12:1249-1262. [PMID: 38247338 DOI: 10.1039/d3bm01257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Ferritins are globular proteins with an internal cavity that enables the encapsulation of a plethora of low-mass compounds. Unfortunately, the overall negative surface charge of ferritin's internal cavity hampers efficient loading of negatively charged molecules. Therefore, we produced a genetically engineered human H-chain ferritin containing a cationic RKRK domain, reversing the natural net charge of the cavity to positive, thus allowing for efficient encapsulation of negatively charged siRNA. Due to the reversed, positive charge mediated by RKRK domains, the recombinant ferritin produced in E. coli inherently carries a load of bacterial RNA inside its cavity, turning the protein into an effective sponge possessing high affinity for DNA/RNA-binding substances that can be loaded with markedly higher efficiency compared to the wildtype protein. Using doxorubicin as payload, we show that due to its loading through the RNA sponge, doxorubicin is released in a sustained manner, with a cytotoxicity profile similar to the free drug. In summary, this is the first report demonstrating a ferritin/nucleic acid hybrid delivery vehicle with a broad spectrum of properties exploitable in various fields of biomedical applications.
Collapse
Affiliation(s)
- Marketa Charousova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Marie Kudlickova Peskova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-625 00, Czechia.
| | - Paulina Takacsova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Katerina Kapolkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Jan Bilek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Tomas Bartejs
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-625 00, Czechia.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Vladimir Pekarik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-625 00, Czechia.
| |
Collapse
|
8
|
Sepulveda GP, Gushchanskaia ES, Mora-Martin A, Esse R, Nikorich I, Ceballos A, Kwan J, Blum BC, Dholiya P, Emili A, Perissi V, Cardamone MD, Grishok A. DOT1L stimulates MYC/Mondo transcription factor activity by promoting its degradation cycle on chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579191. [PMID: 38370658 PMCID: PMC10871221 DOI: 10.1101/2024.02.06.579191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The proto-oncogene c-MYC is a key representative of the MYC transcription factor network regulating growth and metabolism. MML-1 (Myc- and Mondo-like) is its homolog in C. elegans. The functional and molecular cooperation between c-MYC and H3 lysine 79 methyltransferase DOT1L was demonstrated in several human cancer types, and we have earlier discovered the connection between C. elegans MML-1 and DOT-1.1. Here, we demonstrate the critical role of DOT1L/DOT-1.1 in regulating c-MYC/MML-1 target genes genome-wide by ensuring the removal of "spent" transcription factors from chromatin by the nuclear proteasome. Moreover, we uncover a previously unrecognized proteolytic activity of DOT1L, which may facilitate c-MYC turnover. This new mechanism of c-MYC regulation by DOT1L may lead to the development of new approaches for cancer treatment.
Collapse
Affiliation(s)
- Gian P. Sepulveda
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ekaterina S. Gushchanskaia
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Tessera Therapeutics, Somerville, MA, 02143, USA
| | - Alexandra Mora-Martin
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Ruben Esse
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Cell and Gene Therapy Catapult, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Iana Nikorich
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ainhoa Ceballos
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Present address: Research Unit, Diagnostica Longwood S.L. 50011 Zaragoza, Spain
| | - Julian Kwan
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
| | - Benjamin C. Blum
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
| | - Prakruti Dholiya
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrew Emili
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
- Division of Computational Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: OHSU Knight Cancer Institute, School of Medicine, Portland, OR, 97239, USA
| | - Valentina Perissi
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Maria D. Cardamone
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Korro Bio Inc., Cambridge, MA, 02139, USA
| | - Alla Grishok
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Genome Science Institute, Boston University, Boston, MA, 02118, USA
| |
Collapse
|
9
|
Arnold B, Riegger RJ, Okuda EK, Slišković I, Keller M, Bakisoglu C, McNicoll F, Zarnack K, Müller-McNicoll M. hGRAD: A versatile "one-fits-all" system to acutely deplete RNA binding proteins from condensates. J Cell Biol 2024; 223:e202304030. [PMID: 38108808 PMCID: PMC10726014 DOI: 10.1083/jcb.202304030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Nuclear RNA binding proteins (RBPs) are difficult to study because they often belong to large protein families and form extensive networks of auto- and crossregulation. They are highly abundant and many localize to condensates with a slow turnover, requiring long depletion times or knockouts that cannot distinguish between direct and indirect or compensatory effects. Here, we developed a system that is optimized for the rapid degradation of nuclear RBPs, called hGRAD. It comes as a "one-fits-all" plasmid, and integration into any cell line with endogenously GFP-tagged proteins allows for an inducible, rapid, and complete knockdown. We show that the nuclear RBPs SRSF3, SRSF5, SRRM2, and NONO are completely cleared from nuclear speckles and paraspeckles within 2 h. hGRAD works in various cell types, is more efficient than previous methods, and does not require the expression of exogenous ubiquitin ligases. Combining SRSF5 hGRAD degradation with Nascent-seq uncovered transient transcript changes, compensatory mechanisms, and an effect of SRSF5 on transcript stability.
Collapse
Affiliation(s)
- Benjamin Arnold
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ricarda J. Riegger
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ellen Kazumi Okuda
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- International Max Planck Research School for Cellular Biophysics, Frankfurt am Main, Germany
| | - Irena Slišković
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mario Keller
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Cem Bakisoglu
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - François McNicoll
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kathi Zarnack
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
10
|
Mohallem R, Aryal UK. Nuclear Phosphoproteome Reveals Prolyl Isomerase PIN1 as a Modulator of Oncogene-Induced Senescence. Mol Cell Proteomics 2024; 23:100715. [PMID: 38216124 PMCID: PMC10864342 DOI: 10.1016/j.mcpro.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
Mammalian cells possess intrinsic mechanisms to prevent tumorigenesis upon deleterious mutations, including oncogene-induced senescence (OIS). The molecular mechanisms underlying OIS are, however, complex and remain to be fully characterized. In this study, we analyzed the changes in the nuclear proteome and phosphoproteome of human lung fibroblast IMR90 cells during the progression of OIS induced by oncogenic RASG12V activation. We found that most of the differentially regulated phosphosites during OIS contained prolyl isomerase PIN1 target motifs, suggesting PIN1 is a key regulator of several promyelocytic leukemia nuclear body proteins, specifically regulating several proteins upon oncogenic Ras activation. We showed that PIN1 knockdown promotes cell proliferation, while diminishing the senescence phenotype and hallmarks of senescence, including p21, p16, and p53 with concomitant accumulation of the protein PML and the dysregulation of promyelocytic leukemia nuclear body formation. Collectively, our data demonstrate that PIN1 plays an important role as a tumor suppressor in response to oncogenic ER:RasG12V activation.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|
11
|
Pispa J, Mikkonen E, Arpalahti L, Jin C, Martínez-Fernández C, Cerón J, Holmberg CI. AKIR-1 regulates proteasome subcellular function in Caenorhabditis elegans. iScience 2023; 26:107886. [PMID: 37767001 PMCID: PMC10520889 DOI: 10.1016/j.isci.2023.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Polyubiquitinated proteins are primarily degraded by the ubiquitin-proteasome system (UPS). Proteasomes are present both in the cytoplasm and nucleus. Here, we investigated mechanisms coordinating proteasome subcellular localization and activity in a multicellular organism. We identified the nuclear protein-encoding gene akir-1 as a proteasome regulator in a genome-wide Caenorhabditis elegans RNAi screen. We demonstrate that depletion of akir-1 causes nuclear accumulation of endogenous polyubiquitinated proteins in intestinal cells, concomitant with slower in vivo proteasomal degradation in this subcellular compartment. Remarkably, akir-1 is essential for nuclear localization of proteasomes both in oocytes and intestinal cells but affects differentially the subcellular distribution of polyubiquitinated proteins. We further reveal that importin ima-3 genetically interacts with akir-1 and influences nuclear localization of a polyubiquitin-binding reporter. Our study shows that the conserved AKIR-1 is an important regulator of the subcellular function of proteasomes in a multicellular organism, suggesting a role for AKIR-1 in proteostasis maintenance.
Collapse
Affiliation(s)
- Johanna Pispa
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Elisa Mikkonen
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Leena Arpalahti
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Congyu Jin
- Department of Anatomy, Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Carmen Martínez-Fernández
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Julián Cerón
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Carina I. Holmberg
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
12
|
Fiore APZP, Vogel C. Fractionation of Native Protein Complexes from Mammalian Cells to Determine the Differential Proteasome Activity and Abundance. Bio Protoc 2023; 13:e4822. [PMID: 37753477 PMCID: PMC10518779 DOI: 10.21769/bioprotoc.4822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 09/28/2023] Open
Abstract
Eukaryotic cells have different types of proteasomes that differ in size. The smallest proteolytically active particle is the 20S proteasome, which degrades damaged and oxidized proteins; the most common larger particle is the 26S proteasome, which degrades ubiquitylated proteins. The 26S proteasome is formed by a 20S particle capped with one or two regulatory particles, named 19S. While proteasome particles function in the cytoplasm, endoplasmic reticulum, and nucleus, our understanding of their abundance and activity in different cellular compartments is still limited. We provide a three-step protocol that first involves detergent-based fractionation of the cytoplasmic and nuclear compartments, maintaining the integrity and activity of proteasome complexes. Second, the protocol employs native gel separation of large multiprotein complexes in the fractions and a fluorescence-based in-gel quantitation of the activity and different proteasome particles. Finally, the protocol involves protein in-gel denaturation and transfer to a PVDF membrane. Western blotting then detects and quantifies the different proteasome particles. Therefore, the protocol allows for sensitive measurements of activity and abundance of individual proteasome particles from different cellular compartments. It has been optimized for motor neurons induced from mouse embryonic stem cells but can be applied to a variety of mammalian cell lines. Key features • Protocol for fractionation of active nuclear and cytoplasmic proteasome complexes. • Native electrophoresis and fluorescence-based in-gel activity assay, which allows the visualization and quantification of active complexes within the acrylamide gel matrix. • In-gel protein denaturation followed by transfer of complexes to PVDF membrane, which allows the analysis of complexes' abundance using antibodies.
Collapse
Affiliation(s)
| | - Christine Vogel
- Center of Genomic and System Biology, Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
13
|
Lee HJ, Alirzayeva H, Koyuncu S, Rueber A, Noormohammadi A, Vilchez D. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. NATURE AGING 2023; 3:546-566. [PMID: 37118550 DOI: 10.1038/s43587-023-00383-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/17/2023] [Indexed: 04/30/2023]
Abstract
Aging is a primary risk factor for neurodegenerative disorders that involve protein aggregation. Because lowering body temperature is one of the most effective mechanisms to extend longevity in both poikilotherms and homeotherms, a better understanding of cold-induced changes can lead to converging modifiers of pathological protein aggregation. Here, we find that cold temperature (15 °C) selectively induces the trypsin-like activity of the proteasome in Caenorhabditis elegans through PSME-3, the worm orthologue of human PA28γ/PSME3. This proteasome activator is required for cold-induced longevity and ameliorates age-related deficits in protein degradation. Moreover, cold-induced PA28γ/PSME-3 diminishes protein aggregation in C. elegans models of age-related diseases such as Huntington's and amyotrophic lateral sclerosis. Notably, exposure of human cells to moderate cold temperature (36 °C) also activates trypsin-like activity through PA28γ/PSME3, reducing disease-related protein aggregation and neurodegeneration. Together, our findings reveal a beneficial role of cold temperature that crosses evolutionary boundaries with potential implications for multi-disease prevention.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hafiza Alirzayeva
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Amirabbas Rueber
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alireza Noormohammadi
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Yamamoto T, Tsuge T, Araki M, Maeda M. Cyclic AMP (cAMP)-dependent proteolysis of GATA6 by proteasome: Zinc-finger domain of GATA6 has signals for nuclear export and proteolysis, both of which are responsive to cAMP. Drug Discov Ther 2023; 17:1-9. [PMID: 36740253 DOI: 10.5582/ddt.2022.01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcription factor GATA6 stably expressed in Chinese hamster ovary (CHO)-K1 cells is exported from the nucleus to the cytoplasm and degraded there by proteasome upon treatment with dibutylyl-cyclic AMP (dbcAMP), which is a membrane-permeable cyclic AMP (cAMP) analogue. The cAMP-dependent proteolysis of GATA6 was characterized by dissection of the GATA6 protein into a zinc-finger domain (Zf) and the surrounding region (ΔZf). These segments were separately expressed in CHO-K1 cells stably, and followed by treatment with dbcAMP. The nuclear localized Zf was degraded by proteasome similarly to the full-length GATA6. Site-directed mutants of nuclear localizing signal (NLS) (345RKRKPK350 → AAAAPK and AAAAPA) and closely related GATA4 showed the same behavior. Although nuclear-localized ΔZf was degraded by proteasome, the cytoplasmic-located ΔZf was resistant to proteolysis in contrast to the NLS mutants. We also searched for a potential NLS and nuclear export signal (NES) with computational prediction programs and compared the results with ours. All these results suggest that the amino acid sequence(s) of the Zf of GATA6 is responsive to cAMP-dependent nuclear export and proteolysis.
Collapse
Affiliation(s)
- Tomohisa Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takeshi Tsuge
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | - Masatomo Maeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
15
|
Shin J, Kim YH, Lee B, Chang JH, Choi HY, Lee H, Song KC, Kwak MS, Choi JE, Shin JS. USP13 regulates HMGB1 stability and secretion through its deubiquitinase activity. Mol Med 2022; 28:164. [PMID: 36585612 PMCID: PMC9801610 DOI: 10.1186/s10020-022-00596-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that plays a central role in innate immunity. HMGB1 acts as a late mediator of inflammation when actively secreted in response to inflammatory stimuli. Several post-translational modifications (PTMs), including acetylation, phosphorylation, and oxidation, are involved in HMGB1 secretion. However, the E3 ligases of HMGB1 and the mechanism by which DUBs regulate HMGB1 deubiquitination are not well known. METHODS LC-MS/MS, proximity ligation assay, immunoprecipitation were used to identify ubiquitin-specific protease 13 (USP13) as a binding partner of HMGB1 and to investigate ubiquitination of HMGB1. USP13 domain mutant was constructed for domain study and Spautin-1 was treated for inhibition of USP13. Confocal microscopy image showed localization of HMGB1 by USP13 overexpression. The data were analyzed using one-way analysis of variance with Tukey's honestly significant difference post-hoc test for multiple comparisons or a two-tailed Student's t-test. RESULTS We identified ubiquitin-specific protease 13 (USP13) as a novel binding partner of HMGB1 and demonstrated that USP13 plays a role in stabilizing HMGB1 from ubiquitin-mediated degradation. USP13 overexpression increased nucleocytoplasmic translocation of HMGB1 and promoted its secretion, which was inhibited by treatment with Spautin-1, a selective inhibitor of USP13. CONCLUSION Taken together, we suggest that USP13 is a novel deubiquitinase of HMGB1 that regulates the stability and secretion of HMGB1.
Collapse
Affiliation(s)
- Jaemin Shin
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Young Hun Kim
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Bin Lee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Jae Ho Chang
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea
| | - Hee Youn Choi
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Hoojung Lee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Ki Chan Song
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea
| | - Man Sup Kwak
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Ji Eun Choi
- grid.31501.360000 0004 0470 5905Department of Pediatrics, Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Boramaero 5 Gil 20, Dongjakgu, Seoul, 07061 South Korea
| | - Jeon-Soo Shin
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722 South Korea
| |
Collapse
|
16
|
Zhang Y, Karmon O, Das K, Wiener R, Lehming N, Pines O. Ubiquitination Occurs in the Mitochondrial Matrix by Eclipsed Targeted Components of the Ubiquitination Machinery. Cells 2022; 11:cells11244109. [PMID: 36552873 PMCID: PMC9777009 DOI: 10.3390/cells11244109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Ubiquitination is a critical type of post-translational modification in eukaryotic cells. It is involved in regulating nearly all cellular processes in the cytosol and nucleus. Mitochondria, known as the metabolism heart of the cell, are organelles that evolved from bacteria. Using the subcellular compartment-dependent α-complementation, we detect multiple components of ubiquitination machinery as being eclipsed distributed to yeast mitochondria. Ubiquitin conjugates and mono-ubiquitin can be detected in lysates of isolated mitochondria from cells expressing HA-Ub and treated with trypsin. By expressing MTS (mitochondrial targeting sequence) targeted HA-tagged ubiquitin, we demonstrate that certain ubiquitination events specifically occur in yeast mitochondria and are independent of proteasome activity. Importantly, we show that the E2 Rad6 affects the pattern of protein ubiquitination in mitochondria and provides an in vivo assay for its activity in the matrix of the organelle. This study shows that ubiquitination occurs in the mitochondrial matrix by eclipsed targeted components of the ubiquitin machinery, providing a new perspective on mitochondrial and ubiquitination research.
Collapse
Affiliation(s)
- Yu Zhang
- NUS-HUJ-CREATE Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138602, Singapore
| | - Ofri Karmon
- NUS-HUJ-CREATE Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138602, Singapore
| | - Koyeli Das
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
| | - Norbert Lehming
- NUS-HUJ-CREATE Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138602, Singapore
| | - Ophry Pines
- NUS-HUJ-CREATE Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138602, Singapore
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
- Correspondence:
| |
Collapse
|
17
|
Day-Walsh PE, Keeble B, Pirabagar G, Fountain SJ, Kroon PA. Transcriptional and Post-Translational Regulation of Junctional Adhesion Molecule-B (JAM-B) in Leukocytes under Inflammatory Stimuli. Int J Mol Sci 2022; 23:ijms23158646. [PMID: 35955781 PMCID: PMC9369439 DOI: 10.3390/ijms23158646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Junctional adhesion molecules (JAMs; comprising JAM-A, -B and -C) act as receptors for viruses, mediate cell permeability, facilitate leukocyte migration during sterile and non-sterile inflammation and are important for the maintenance of epithelial barrier integrity. As such, they are implicated in the development of both communicable and non-communicable chronic diseases. Here, we investigated the expression and regulation of JAM-B in leukocytes under pathogen- and host-derived inflammatory stimuli using immunoassays, qPCR and pharmacological inhibitors of inflammatory signalling pathways. We show that JAM-B is expressed at both the mRNA and protein level in leukocytes. JAM-B protein is localised to the cytoplasm, Golgi apparatus and in the nucleus around ring-shaped structures. We also provide evidence that JAM-B nuclear localisation occurs via the classical importin-α/β pathway, which is likely mediated through JAM-B protein nuclear localisation signals (NLS) and export signals (NES). In addition, we provide evidence that under both pathogen- and host-derived inflammatory stimuli, JAM-B transcription is regulated via the NF-κB-dependent pathways, whereas at the post-translational level JAM-B is regulated by ubiquitin-proteosome pathways. Anaphase-promoting ubiquitin ligase complex (APC/C) and herpes simplex virus-associated ubiquitin-specific protease (HAUSP/USP) were identified as candidates for JAM-B ubiquitination and de-ubiquitination, respectively. The expression and regulation of JAM-B in leukocytes reported here is a novel observation and contrasts with previous reports. The data reported here suggest that JAM-B expression in leukocytes is under the control of common inflammatory pathways.
Collapse
Affiliation(s)
- Priscilla E. Day-Walsh
- Quadram Institute Bioscience, Food Innovation & Health Programme, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK; (P.E.D.-W.); (B.K.); (G.P.)
| | - Bryony Keeble
- Quadram Institute Bioscience, Food Innovation & Health Programme, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK; (P.E.D.-W.); (B.K.); (G.P.)
| | - Gothai Pirabagar
- Quadram Institute Bioscience, Food Innovation & Health Programme, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK; (P.E.D.-W.); (B.K.); (G.P.)
| | - Samuel J. Fountain
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Paul A. Kroon
- Quadram Institute Bioscience, Food Innovation & Health Programme, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK; (P.E.D.-W.); (B.K.); (G.P.)
- Correspondence:
| |
Collapse
|
18
|
Enenkel C, Kang RW, Wilfling F, Ernst OP. Intracellular localization of the proteasome in response to stress conditions. J Biol Chem 2022; 298:102083. [PMID: 35636514 PMCID: PMC9218506 DOI: 10.1016/j.jbc.2022.102083] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin–proteasome system fulfills an essential role in regulating protein homeostasis by spatially and temporally controlling proteolysis in an ATP- and ubiquitin-dependent manner. However, the localization of proteasomes is highly variable under diverse cellular conditions. In yeast, newly synthesized proteasomes are primarily localized to the nucleus during cell proliferation. Yeast proteasomes are transported into the nucleus through the nuclear pore either as immature subcomplexes or as mature enzymes via adapter proteins Sts1 and Blm10, while in mammalian cells, postmitotic uptake of proteasomes into the nucleus is mediated by AKIRIN2, an adapter protein essentially required for nuclear protein degradation. Stressful growth conditions and the reversible halt of proliferation, that is quiescence, are associated with a decline in ATP and the reorganization of proteasome localization. Cellular stress leads to proteasome accumulation in membraneless granules either in the nucleus or in the cytoplasm. In quiescence, yeast proteasomes are sequestered in an ubiquitin-dependent manner into motile and reversible proteasome storage granules in the cytoplasm. In cancer cells, upon amino acid deprivation, heat shock, osmotic stress, oxidative stress, or the inhibition of either proteasome activity or nuclear export, reversible proteasome foci containing polyubiquitinated substrates are formed by liquid–liquid phase separation in the nucleus. In this review, we summarize recent literature revealing new links between nuclear transport, ubiquitin signaling, and the intracellular organization of proteasomes during cellular stress conditions.
Collapse
Affiliation(s)
- Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Ryu Won Kang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max-Planck-Institute of Biophysics, Frankfurt, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Guo X. Localized Proteasomal Degradation: From the Nucleus to Cell Periphery. Biomolecules 2022; 12:biom12020229. [PMID: 35204730 PMCID: PMC8961600 DOI: 10.3390/biom12020229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
The proteasome is responsible for selective degradation of most cellular proteins. Abundantly present in the cell, proteasomes not only diffuse in the cytoplasm and the nucleus but also associate with the chromatin, cytoskeleton, various membranes and membraneless organelles/condensates. How and why the proteasome gets to these specific subcellular compartments remains poorly understood, although increasing evidence supports the hypothesis that intracellular localization may have profound impacts on the activity, substrate accessibility and stability/integrity of the proteasome. In this short review, I summarize recent advances on the functions, regulations and targeting mechanisms of proteasomes, especially those localized to the nuclear condensates and membrane structures of the cell, and I discuss the biological significance thereof in mediating compartmentalized protein degradation.
Collapse
Affiliation(s)
- Xing Guo
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| |
Collapse
|
20
|
Cytosolic Quality Control of Mitochondrial Protein Precursors-The Early Stages of the Organelle Biogenesis. Int J Mol Sci 2021; 23:ijms23010007. [PMID: 35008433 PMCID: PMC8745001 DOI: 10.3390/ijms23010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
With few exceptions, proteins that constitute the proteome of mitochondria originate outside of this organelle in precursor forms. Such protein precursors follow dedicated transportation paths to reach specific parts of mitochondria, where they complete their maturation and perform their functions. Mitochondrial precursor targeting and import pathways are essential to maintain proper mitochondrial function and cell survival, thus are tightly controlled at each stage. Mechanisms that sustain protein homeostasis of the cytosol play a vital role in the quality control of proteins targeted to the organelle. Starting from their synthesis, precursors are constantly chaperoned and guided to reduce the risk of premature folding, erroneous interactions, or protein damage. The ubiquitin-proteasome system provides proteolytic control that is not restricted to defective proteins but also regulates the supply of precursors to the organelle. Recent discoveries provide evidence that stress caused by the mislocalization of mitochondrial proteins may contribute to disease development. Precursors are not only subject to regulation but also modulate cytosolic machinery. Here we provide an overview of the cellular pathways that are involved in precursor maintenance and guidance at the early cytosolic stages of mitochondrial biogenesis. Moreover, we follow the circumstances in which mitochondrial protein import deregulation disturbs the cellular balance, carefully looking for rescue paths that can restore proteostasis.
Collapse
|
21
|
Herbst WA, Deng W, Wohlschlegel JA, Achiro JM, Martin KC. Neuronal activity regulates the nuclear proteome to promote activity-dependent transcription. J Cell Biol 2021; 220:e202103087. [PMID: 34617965 PMCID: PMC8504181 DOI: 10.1083/jcb.202103087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
The formation and plasticity of neuronal circuits relies on dynamic activity-dependent gene expression. Although recent work has revealed the identity of important transcriptional regulators and of genes that are transcribed and translated in response to activity, relatively little is known about the cell biological mechanisms by which activity alters the nuclear proteome of neurons to link neuronal stimulation to transcription. Using nucleus-specific proteomic mapping in silenced and stimulated neurons, we uncovered an understudied mechanism of nuclear proteome regulation: activity-dependent proteasome-mediated degradation. We found that the tumor suppressor protein PDCD4 undergoes rapid stimulus-induced degradation in the nucleus of neurons. We demonstrate that degradation of PDCD4 is required for normal activity-dependent transcription and that PDCD4 target genes include those encoding proteins critical for synapse formation, remodeling, and transmission. Our findings highlight the importance of the nuclear proteasome in regulating the activity-dependent nuclear proteome and point to a specific role for PDCD4 as a regulator of activity-dependent transcription in neurons.
Collapse
Affiliation(s)
- Wendy A. Herbst
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Weixian Deng
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Jennifer M. Achiro
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Kelsey C. Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
22
|
Androgen Receptor-Mediated Nuclear Transport of NRDP1 in Prostate Cancer Cells Is Associated with Worse Patient Outcomes. Cancers (Basel) 2021; 13:cancers13174425. [PMID: 34503235 PMCID: PMC8430998 DOI: 10.3390/cancers13174425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary NRDP1 is an E3 ubiquitin ligase that has been shown by our group and others to target ErbB3 for proteasomal degradation in prostate and breast cancer cells and thereby decrease the likelihood cancer progression. Our group has found that NRDP1 can be located in the nucleus as well as the cytoplasm of prostate cancer (CaP) cells, which is unexpected as NRDP1 lacks a nuclear localization signal. Here we elucidate the mechanism by which nuclear translocation of NRDP1 can occur and demonstrate that nuclear NRDP1 retains its ubiquitin ligase activity. Our patient data and cell line studies indicate that increased levels of nuclear NRDP1 contributes CaP progression, thereby underscoring the clinical relevance of our findings and supporting continued investigation and elucidation of the specific role(s) played by NRDP1 in the nucleus of CaP cells. Abstract To our knowledge, our group is the first to demonstrate that NRDP1 is located in the nucleus as well as the cytoplasm of CaP cells. Subcellular fractionation, immunohistochemistry, and immunofluorescence analysis combined with confocal microscopy were used to validate this finding. Subcellular fractionation followed by western blot analysis revealed a strong association between AR and NRDP1 localization when AR expression and/or cellular localization was manipulated via treatment with R1881, AR-specific siRNA, or enzalutamide. Transfection of LNCaP with various NRDP1 and AR constructs followed by immunoprecipitation confirmed binding of NRDP1 to AR is possible and determined that binding requires the hinge region of AR. Co-transfection with NRDP1 constructs and HA-ubiquitin followed by subcellular fractionation confirmed that nuclear NRDP1 retains its ubiquitin ligase activity. We also show that increased nuclear NRDP1 is associated with PSA recurrence in CaP patients (n = 162, odds ratio; 1.238, p = 0.007) and that higher levels of nuclear NRDP1 are found in castration resistant cell lines (CWR22Rv1 and PC3) compared to androgen sensitive cell lines (LNCaP and MDA-PCa-3B). The combined data indicate that NRDP1 plays a role in mediating CaP progression and supports further investigation of both the mechanism by which nuclear transport occurs and the identification of specific nuclear targets.
Collapse
|
23
|
Sferra A, Fortugno P, Motta M, Aiello C, Petrini S, Ciolfi A, Cipressa F, Moroni I, Leuzzi V, Pieroni L, Marini F, Boespflug Tanguy O, Eymard-Pierre E, Danti FR, Compagnucci C, Zambruno G, Brusco A, Santorelli FM, Chiapparini L, Francalanci P, Loizzo AL, Tartaglia M, Cestra G, Bertini E. Biallelic mutations in RNF220 cause laminopathies featuring leukodystrophy, ataxia and deafness. Brain 2021; 144:3020-3035. [PMID: 33964137 DOI: 10.1093/brain/awab185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Leukodystrophies are a heterogeneous group of rare inherited disorders that involve preferentially the white matter of the central nervous system (CNS). These conditions are characterized by a primary glial cell and myelin sheath pathology of variable etiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in 5 large consanguineous nuclear families allowed to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness. We report on two homozygous missense variants (p.R363Q and p.R365Q) in the ubiquitin E3 ligase RNF220 as the cause underlying a novel form of leukodystrophy with ataxia and sensorineural deafness having fibrotic cardiomyopathy and hepatopathy as associated features, in seven consanguineous families. Mass spectrometry analysis identified lamin B1 as RNF220 binding protein and co-immunoprecipitation experiments demonstrated reduced binding of both RNF220 mutants to lamin B1. We demonstrate that RNF220 silencing in Drosophila melanogaster specifically affects proper localization of lamin Dm0, the fly lamin B1 orthologue, promotes its aggregation, and causes a neurodegenerative phenotype, strongly supporting the functional link between RNF220 and lamin B1. Finally, we demonstrate that RNF220 plays a crucial role in the maintenance of nuclear morphology: mutations primary skin fibroblasts determine nuclear abnormalities such as blebs, herniations and invaginations, which are typically observed in cells of patients affected by laminopathies. Overall, our data identify RNF220 as a gene implicated in leukodystrophy with ataxia and sensorineural deafness, and document a critical role of RNF220 in the regulation of nuclear lamina. Our findings provide further evidence on the direct link between nuclear lamina dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Antonella Sferra
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Paola Fortugno
- Department of Life, Health and Environmental Sciences University of L'Aquila, 00167 Rome, Italy.,Human Functional Genomics, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Marialetizia Motta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Chiara Aiello
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Francesca Cipressa
- University of Rome "Sapienza", Department of Biology and Biotechnology, 00185 Rome, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University, 00185 Rome, Italy
| | | | - Federica Marini
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.,Department of Laboratory Diagnostic and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Odile Boespflug Tanguy
- Service de Neurologie Pédiatrique, Centre de reference leucodystrophies et leucoencephalopathies de cause rare (LEUKOFRANCE), APHP Hopital Robert-Debré, 75019 Paris, France.,Université de Paris, NeuroDiderot, UMR 1141 INSERM 75651 Paris, France
| | - Eleonore Eymard-Pierre
- Service de Cytogénétique Médicale CHU de Clermont Ferrand, Hopital ESTAING 63003 CLERMONT FERRAND, France
| | - Federica Rachele Danti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Giovanna Zambruno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10124 Turin, Italy
| | | | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Paola Francalanci
- Department of Laboratories, Pathology Unit, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Anna Livia Loizzo
- DIDASCO Società Cooperativa Sociale- Centro di riabilitazione, 00185 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Gianluca Cestra
- University of Rome "Sapienza", Department of Biology and Biotechnology, 00185 Rome, Italy.,Santa Lucia IRCCS Foundation, 00179 Rome, Italy.,Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) 00185 Rome, Italy
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
24
|
Van Houten B, Schnable B, Kumar N. Chaperones for dancing on chromatin: Role of post-translational modifications in dynamic damage detection hand-offs during nucleotide excision repair. Bioessays 2021; 43:e2100011. [PMID: 33620094 PMCID: PMC9756857 DOI: 10.1002/bies.202100011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
We highlight a recent study exploring the hand-off of UV damage to several key nucleotide excision repair (NER) proteins in the cascade: UV-DDB, XPC and TFIIH. The delicate dance of DNA repair proteins is choreographed by the dynamic hand-off of DNA damage from one recognition complex to another damage verification protein or set of proteins. These DNA transactions on chromatin are strictly chaperoned by post-translational modifications (PTM). This new study examines the role that ubiquitylation and subsequent DDB2 degradation has during this process. In total, this study suggests an intricate cellular timer mechanism that under normal conditions DDB2 helps recruit and ubiquitylate XPC, stabilizing XPC at damaged sites. If DDB2 persists at damaged sites too long, it is turned over by auto-ubiquitylation and removed from DNA by the action of VCP/p97 for degradation in the 26S proteosome.
Collapse
Affiliation(s)
- Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC-Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brittani Schnable
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC-Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Namrata Kumar
- UPMC-Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Shmueli MD, Sheban D, Eisenberg-Lerner A, Merbl Y. Histone degradation by the proteasome regulates chromatin and cellular plasticity. FEBS J 2021; 289:3304-3316. [PMID: 33914417 PMCID: PMC9292675 DOI: 10.1111/febs.15903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
Histones constitute the primary protein building blocks of the chromatin and play key roles in the dynamic control of chromatin compaction and epigenetic regulation. Histones are regulated by intricate mechanisms that alter their functionality and stability, thereby expanding the regulation of chromatin‐transacting processes. As such, histone degradation is tightly regulated to provide spatiotemporal control of cellular histone abundance. While several mechanisms have been implicated in controlling histone stability, here, we discuss proteasome‐dependent degradation of histones and the protein modifications that are associated with it. We then highlight specific cellular and physiological states that are associated with altered histone degradation by cellular proteasomes.
Collapse
Affiliation(s)
- Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
The Effect of Neddylation Inhibition on Inflammation-Induced MMP9 Gene Expression in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22041716. [PMID: 33572115 PMCID: PMC7915196 DOI: 10.3390/ijms22041716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Inhibition of the protein neddylation process by the small-molecule inhibitor MLN4924 has been recently indicated as a promising direction for cancer treatment. However, the knowledge of all biological consequences of MLN4924 for cancer cells is still incomplete. Here, we report that MLN4924 inhibits tumor necrosis factor-alpha (TNF-α)-induced matrix metalloproteinase 9 (MMP9)-driven cell migration. Using real-time polymerase chain reaction (PCR) and gelatin zymography, we found that MLN4924 inhibited expression and activity of MMP9 at the messenger RNA (mRNA) and protein levels in both resting cells and cells stimulated with TNF-α, and this inhibition was closely related to impaired cell migration. We also revealed that MLN4924, similar to TNF-α, induced phosphorylation of inhibitor of nuclear factor kappa B-alpha (IκB-α). However, contrary to TNF-α, MLN4924 did not induce IκB-α degradation in treated cells. In coimmunoprecipitation experiments, nuclear IκB-α which formed complexes with nuclear factor kappa B p65 subunit (NFκB/p65) was found to be highly phosphorylated at Ser32 in the cells treated with MLN4924, but not in the cells treated with TNF-α alone. Moreover, in the presence of MLN4924, nuclear NFκB/p65 complexes were found to be enriched in c-Jun and cyclin dependent kinase inhibitor 1 A (CDKN1A/p21) proteins. In these cells, NFκB/p65 was unable to bind to the MMP9 gene promoter, which was confirmed by the chromatin immunoprecipitation (ChIP) assay. Taken together, our findings identified MLN4924 as a suppressor of TNF-α-induced MMP9-driven cell migration in esophageal squamous cell carcinoma (ESCC), likely acting by affecting the nuclear ubiquitin–proteasome system that governs NFκB/p65 complex formation and its DNA binding activity in regard to the MMP9 promoter, suggesting that inhibition of neddylation might be a new therapeutic strategy to prevent invasion/metastasis in ESCC patients.
Collapse
|
27
|
Hanford HE, Von Dwingelo J, Abu Kwaik Y. Bacterial nucleomodulins: A coevolutionary adaptation to the eukaryotic command center. PLoS Pathog 2021; 17:e1009184. [PMID: 33476322 PMCID: PMC7819608 DOI: 10.1371/journal.ppat.1009184] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Through long-term interactions with their hosts, bacterial pathogens have evolved unique arsenals of effector proteins that interact with specific host targets and reprogram the host cell into a permissive niche for pathogen proliferation. The targeting of effector proteins into the host cell nucleus for modulation of nuclear processes is an emerging theme among bacterial pathogens. These unique pathogen effector proteins have been termed in recent years as "nucleomodulins." The first nucleomodulins were discovered in the phytopathogens Agrobacterium and Xanthomonas, where their nucleomodulins functioned as eukaryotic transcription factors or integrated themselves into host cell DNA to promote tumor induction, respectively. Numerous nucleomodulins were recently identified in mammalian pathogens. Bacterial nucleomodulins are an emerging family of pathogen effector proteins that evolved to target specific components of the host cell command center through various mechanisms. These mechanisms include: chromatin dynamics, histone modification, DNA methylation, RNA splicing, DNA replication, cell cycle, and cell signaling pathways. Nucleomodulins may induce short- or long-term epigenetic modifications of the host cell. In this extensive review, we discuss the current knowledge of nucleomodulins from plant and mammalian pathogens. While many nucleomodulins are already identified, continued research is instrumental in understanding their mechanisms of action and the role they play during the progression of pathogenesis. The continued study of nucleomodulins will enhance our knowledge of their effects on nuclear chromatin dynamics, protein homeostasis, transcriptional landscapes, and the overall host cell epigenome.
Collapse
Affiliation(s)
- Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Juanita Von Dwingelo
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
- Center for Predicative Medicine, College of Medicine, University of Louisville, Kentucky, United States of America
| |
Collapse
|
28
|
Berruti G. Destruction or Reconstruction: A Subtle Liaison between the Proteolytic and Signaling Role of Protein Ubiquitination in Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:215-240. [PMID: 34453739 DOI: 10.1007/978-3-030-77779-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ubiquitination is one of the most diverse forms of protein post-translational modification that changes the function of the landscape of substrate proteins in response to stimuli, without the need for "de novo" protein synthesis. Ubiquitination is involved in almost all aspects of eukaryotic cell biology, from the best-studied role in promoting the removal of faulty or unnecessary proteins by the way of the ubiquitin proteasome system and autophagy-lysosome pathway to the recruitment of proteins in specific non-proteolytic signaling pathways, as emerged by the more recent discoveries about the protein signature with peculiar types of ubiquitin chains. Spermatogenesis, on its own, is a complex cellular developmental process in which mitosis, meiosis, and cell differentiation coexist so to result in the continuous formation of haploid spermatozoa. Successful spermatogenesis is thus at the same time a mixed result of the precise expression and correct intracellular destination of structural proteins and enzymes, from one hand, and the fine removal by targeted degradation of unfolded or damaged proteins as well as of obsolete, outlived proteins, from the other hand. In this minireview, I will focus on the importance of the ubiquitin system all over the spermatogenic process, discussing both proteolytic and non-proteolytic functions of protein ubiquitination. Alterations in the ubiquitin system have been in fact implicated in pathologies leading to male infertility. Notwithstanding several aspects of the multifaceted world of the ubiquitin system have been clarified, the physiological meaning of the so-called ubiquitin code remains still partially elusive. The studies reviewed in this chapter provide information that could aid the investigators to pursue new promising discoveries in the understanding of human and animal reproductive potential.
Collapse
|
29
|
den Brave F, Cairo LV, Jagadeesan C, Ruger-Herreros C, Mogk A, Bukau B, Jentsch S. Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Rep 2020; 31:107680. [PMID: 32492414 PMCID: PMC7273177 DOI: 10.1016/j.celrep.2020.107680] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 04/02/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
The formation of insoluble inclusions in the cytosol and nucleus is associated with impaired protein homeostasis and is a hallmark of several neurodegenerative diseases. Due to the absence of the autophagic machinery, nuclear protein aggregates require a solubilization step preceding degradation by the 26S proteasome. Using yeast, we identify a nuclear protein quality control pathway required for the clearance of protein aggregates. The nuclear J-domain protein Apj1 supports protein disaggregation together with Hsp70 but independent of the canonical disaggregase Hsp104. Disaggregation mediated by Apj1/Hsp70 promotes turnover rather than refolding. A loss of Apj1 activity uncouples disaggregation from proteasomal turnover, resulting in accumulation of toxic soluble protein species. Endogenous substrates of the Apj1/Hsp70 pathway include both nuclear and cytoplasmic proteins, which aggregate inside the nucleus upon proteotoxic stress. These findings demonstrate the coordinated activity of the Apj1/Hsp70 disaggregation system with the 26S proteasome in facilitating the clearance of toxic inclusions inside the nucleus.
Collapse
Affiliation(s)
- Fabian den Brave
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Lucas V Cairo
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Chandhuru Jagadeesan
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Carmen Ruger-Herreros
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
30
|
Poreba E, Durzynska J. Nuclear localization and actions of the insulin-like growth factor 1 (IGF-1) system components: Transcriptional regulation and DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108307. [PMID: 32430099 DOI: 10.1016/j.mrrev.2020.108307] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor (IGF) system stimulates growth, proliferation, and regulates differentiation of cells in a tissue-specific manner. It is composed of two insulin-like growth factors (IGF-1 and IGF-2), six insulin-like growth factor-binding proteins (IGFBPs), and two insulin-like growth factor receptors (IGF-1R and IGF-2R). IGF actions take place mostly through the activation of the plasma membrane-bound IGF-Rs by the circulating ligands (IGFs) released from the IGFBPs that stabilize their levels in the serum. This review focuses on the IGF-1 part of the system. The IGF-1 gene, which is expressed mainly in the liver as well as in other tissues, comprises six alternatively spliced exons that code for three protein isoforms (pro-IGF-1A, pro-IGF-1B, and pro-IGF-1C), which are processed to mature IGF-1 and E-peptides. The IGF-1R undergoes autophosphorylation, resulting in a signaling cascade involving numerous cytoplasmic proteins such as AKT and MAPKs, which regulate the expression of target genes. However, a more complex picture of the axis has recently emerged with all its components being translocated to the nuclear compartment. IGF-1R takes part in the regulation of gene expression by forming transcription complexes, modifying the activity of chromatin remodeling proteins, and participating in DNA damage tolerance mechanisms. Four IGFBPs contain a nuclear localization signal (NLS), which targets them to the nucleus, where they regulate gene expression (IGFBP-2, IGFBP-3, IGFBP-5, IGFBP-6) and DNA damage repair (IGFBP-3 and IGFBP-6). Last but not least, the IGF-1B isoform has been reported to be localized in the nuclear compartment. However, no specific molecular actions have been assigned to the nuclear pro-IGF-1B or its derivative EB peptide. Therefore, further studies are needed to shed light on their nuclear activity. These recently uncovered nuclear actions of different components of the IGF-1 axis are relevant in cancer cell biology and are discussed in this review.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Julia Durzynska
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
31
|
Ahmed MU, Velkov T, Zhou QT, Fulcher AJ, Callaghan J, Zhou F, Chan K, Azad MAK, Li J. Intracellular localization of polymyxins in human alveolar epithelial cells. J Antimicrob Chemother 2020; 74:48-57. [PMID: 30357331 DOI: 10.1093/jac/dky409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Background Current inhaled polymyxin therapy is empirical and often large doses are administered, which can lead to pulmonary adverse effects. There is a dearth of information on the mechanisms of polymyxin-induced lung toxicity and their intracellular localization in lung epithelial cells. Objectives To investigate the intracellular localization of polymyxins in human lung epithelial A549 cells. Methods A549 cells were treated with polymyxin B and intracellular organelles (early and late endosomes, endoplasmic reticulum, mitochondria, lysosomes and autophagosomes), ubiquitin protein and polymyxin B were visualized using immunostaining and confocal microscopy. Fluorescence intensities of the organelles and polymyxin B were quantified and correlated for co-localization using ImageJ and Imaris platforms. Results Polymyxin B co-localized with early endosomes, lysosomes and ubiquitin at 24 h. Significantly increased lysosomal activity and the autophagic protein LC3A were observed after 0.5 and 1.0 mM polymyxin B treatment at 24 h. Polymyxin B also significantly co-localized with mitochondria (Pearson's R = 0.45) and led to the alteration of mitochondrial morphology from filamentous to fragmented form (n = 3, P < 0.001). These results are in line with the polymyxin-induced activation of the mitochondrial apoptotic pathway observed in A549 cells. Conclusions Accumulation of polymyxins on mitochondria probably caused mitochondrial toxicity, resulting in increased oxidative stress and cell death. The formation of autophagosomes and lysosomes was likely a cellular response to the polymyxin-induced stress and played a defensive role by disassembling dysfunctional organelles and proteins. Our study provides new mechanistic information on polymyxin-induced lung toxicity, which is vital for optimizing inhaled polymyxins in the clinic.
Collapse
Affiliation(s)
- Maizbha U Ahmed
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Victoria, Australia
| | - Judy Callaghan
- Monash Micro Imaging, Monash University, Victoria, Australia
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Kim Chan
- School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Mohammad A K Azad
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| |
Collapse
|
32
|
Lessons Learned from Proteasome Inhibitors, the Paradigm for Targeting Protein Homeostasis in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:147-162. [PMID: 32297217 DOI: 10.1007/978-3-030-40204-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeting aberrant protein homeostasis (proteostasis) in cancer is an attractive therapeutic strategy. However, this approach has thus far proven difficult to bring to clinical practice, with one major exception: proteasome inhibition. These small molecules have dramatically transformed outcomes for patients with the blood cancer multiple myeloma. However, these agents have failed to make an impact in more common solid tumors. Major questions remain about whether this therapeutic strategy can be extended to benefit even more patients. Here we discuss the role of the proteasome in normal and tumor cells, the basic, preclinical, and clinical development of proteasome inhibitors, and mechanisms proposed to govern both intrinsic and acquired resistance to these drugs. Years of study of both the mechanism of action and modes of resistance to proteasome inhibitors reveal these processes to be surprisingly complex. Here, we attempt to draw lessons from experience with proteasome inhibitors that may be relevant for other compounds targeting proteostasis in cancer, as well as extending the reach of proteasome inhibitors beyond blood cancers.
Collapse
|
33
|
Fagová Z, Domoráková I, Danková M, Mechírová E, Kunová A, Stebnický M. Ubiquitin and endogenous antioxidant enzymes participate in neuroprotection of the rabbit spinal cord after ischemia and bradykinin postconditioning. Acta Histochem 2019; 121:732-741. [PMID: 31270014 DOI: 10.1016/j.acthis.2019.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate neuroprotective effect of bradykinin postconditioning on the rabbit spinal cord after 20 min of ischemia and 3 days of reperfusion. Bradykinin was administered by single i.p. application at 1, 6, 12 or 24 h after ischemia. Assessment of neurological function of hind limbs (Tarlov score) was estimated. Quantitative analysis was evaluated by Fluoro Jade B method, NeuN and ubiquitin immunohistochemistry in anterior horn neurons of the spinal cord. Histomorphologically distribution of ubiquitin and endogenous antioxidant enzymes (SOD1, SOD2, catalase) immunoreaction was described. Bradykinin postconditioning showed decreased number of degenerated neurons, increased number of surviving neurons and increase in number of ubiquitin positive neurons in all bradykinin postconditioned groups versus ischemia/reperfusion group. According to our results bradykinin postconditioning applied 24 h after ischemia significantly decreased (p < 0.001) number of degenerated neurons versus ischemia/reperfusion group. The least effective time window for bradykinin postconditioning was at 12 h after ischemia. Tarlov score was significantly improved (p < 0.05) in groups with bradykinin postconditioning applied 1, 6 or 24 h after ischemia versus ischemia/reperfusion group. Tarlov score in group with bradykinin application 12 h after ischemia was significantly decreased (p < 0.05) versus sham control group. Neuronal immunoreaction of ubiquitin, SOD1, SOD2 and catalase influenced by bradykinin postconditioning was dependent on neuronal survival or degeneration. In conclusion, bradykinin postconditioning showed protective effect on neurons in anterior horns of the rabbit spinal cord and improved motor function of hind limbs.
Collapse
|
34
|
Realgar transforming solution-induced differentiation of NB4 cell by the degradation of PML/RARα partially through the ubiquitin–proteasome pathway. Arch Pharm Res 2019; 42:684-694. [DOI: 10.1007/s12272-019-01170-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
|
35
|
Scott MR, Meador-Woodruff JH. Intracellular compartment-specific proteasome dysfunction in postmortem cortex in schizophrenia subjects. Mol Psychiatry 2019; 25:776-790. [PMID: 30683941 PMCID: PMC6658356 DOI: 10.1038/s41380-019-0359-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
Protein homeostasis is an emerging component of schizophrenia (SZ) pathophysiology. Proteomic alterations in SZ are well-documented and changes in transcript expression are frequently not associated with changes in protein expression in SZ brain. The underlying mechanism driving these changes remains unknown, though altered expression of ubiquitin proteasome system (UPS) components have implicated protein degradation. Previous studies have been limited to protein and transcript expression, however, and do not directly test the function of the proteasome. To address this gap in knowledge, we measured enzymatic activity associated with the proteasome (chymotrypsin-, trypsin-, and caspase-like) in the superior temporal gyrus (STG) of 25 SZ and 25 comparison subjects using flourogenic substrates. As localization regulates which cellular processes the proteasome contributes to, we measured proteasome activity and subunit expression in fractions enriched for nucleus, cytosolic, and membrane compartments. SZ subjects had decreased trypsin-like activity in total homogenate. This finding was specific to the nucleus-enriched fraction and was not associated with changes in proteasome subunit expression. Interestingly, both chymotrypsin-like activity and protein expression of 19S RP subunits, which facilitate ubiquitin-dependent degradation, were decreased in the cytosol-enriched fraction of SZ subjects. Intracellular compartment-specific proteasome dysfunction implicates dysregulation of protein expression both through altered ubiquitin-dependent degradation of cytosolic proteins and regulation of protein synthesis due to degradation of transcription factors and transcription machinery in the nucleus. Together, these findings implicate proteasome dysfunction in SZ, which likely has a broad impact on the proteomic landscape and cellular function in the pathophysiology of this illness.
Collapse
Affiliation(s)
- Madeline R. Scott
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
36
|
Zhao Z, Wang L, Volk AG, Birch NW, Stoltz KL, Bartom ET, Marshall SA, Rendleman EJ, Nestler CM, Shilati J, Schiltz GE, Crispino JD, Shilatifard A. Regulation of MLL/COMPASS stability through its proteolytic cleavage by taspase1 as a possible approach for clinical therapy of leukemia. Genes Dev 2018; 33:61-74. [PMID: 30573454 PMCID: PMC6317322 DOI: 10.1101/gad.319830.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
In this study, Zhao et al. investigated the biological significance of MLL1 cleavage by the endopeptidase taspase1. They demonstrate that taspase1-dependent cleavage of MLL1 results in the destabilization of MLL, and thus their findings provide insights into the direct regulation of the stability of MLL1 through its cleavage by taspase1. Chromosomal translocations of the Mixed-lineage leukemia 1 (MLL1) gene generate MLL chimeras that drive the pathogenesis of acute myeloid and lymphoid leukemia. The untranslocated MLL1 is a substrate for proteolytic cleavage by the endopeptidase threonine aspartase 1 (taspase1); however, the biological significance of MLL1 cleavage by this endopeptidase remains unclear. Here, we demonstrate that taspase1-dependent cleavage of MLL1 results in the destabilization of MLL. Upon loss of taspase1, MLL1 association with chromatin is markedly increased due to the stabilization of its unprocessed version, and this stabilization of the uncleaved MLL1 can result in the displacement of MLL chimeras from chromatin in leukemic cells. Casein kinase II (CKII) phosphorylates MLL1 proximal to the taspase1 cleavage site, facilitating its cleavage, and pharmacological inhibition of CKII blocks taspase1-dependent MLL1 processing, increases MLL1 stability, and results in the displacement of the MLL chimeras from chromatin. Accordingly, inhibition of CKII in a MLL-AF9 mouse model of leukemia delayed leukemic progression in vivo. This study provides insights into the direct regulation of the stability of MLL1 through its cleavage by taspase1, which can be harnessed for targeted therapeutic approaches for the treatment of aggressive leukemia as the result of MLL translocations.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Andrew G Volk
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Noah W Birch
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Kristen L Stoltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Carson M Nestler
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Joseph Shilati
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Gary E Schiltz
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, USA.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
37
|
Fan Y, Sanyal S, Bruzzone R. Breaking Bad: How Viruses Subvert the Cell Cycle. Front Cell Infect Microbiol 2018; 8:396. [PMID: 30510918 PMCID: PMC6252338 DOI: 10.3389/fcimb.2018.00396] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023] Open
Abstract
Interactions between the host and viruses during the course of their co-evolution have not only shaped cellular function and the immune system, but also the counter measures employed by viruses. Relatively small genomes and high replication rates allow viruses to accumulate mutations and continuously present the host with new challenges. It is therefore, no surprise that they either escape detection or modulate host physiology, often by redirecting normal cellular pathways to their own advantage. Viruses utilize a diverse array of strategies and molecular targets to subvert host cellular processes, while evading detection. These include cell-cycle regulation, major histocompatibility complex-restricted antigen presentation, intracellular protein transport, apoptosis, cytokine-mediated signaling, and humoral immune responses. Moreover, viruses routinely manipulate the host cell cycle to create a favorable environment for replication, largely by deregulating cell cycle checkpoints. This review focuses on our current understanding of the molecular aspects of cell cycle regulation that are often targeted by viruses. Further study of their interactions should provide fundamental insights into cell cycle regulation and improve our ability to exploit these viruses.
Collapse
Affiliation(s)
- Ying Fan
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| |
Collapse
|
38
|
Abstract
Zika virus (ZIKV) is a significant global health threat, as infection has been linked to serious neurological complications, including microcephaly. Using a human stem cell-derived neural progenitor model system, we find that a critical cellular quality control process called the nonsense-mediated mRNA decay (NMD) pathway is disrupted during ZIKV infection. Importantly, disruption of the NMD pathway is a known cause of microcephaly and other neurological disorders. We further identify an interaction between the capsid protein of ZIKV and up-frameshift protein 1 (UPF1), the master regulator of NMD, and show that ZIKV capsid targets UPF1 for degradation. Together, these results offer a new mechanism for how ZIKV infection can cause neuropathology in the developing brain. Zika virus (ZIKV) infection of neural progenitor cells (NPCs) in utero is associated with neurological disorders, such as microcephaly, but a detailed molecular understanding of ZIKV-induced pathogenesis is lacking. Here we show that in vitro ZIKV infection of human cells, including NPCs, causes disruption of the nonsense-mediated mRNA decay (NMD) pathway. NMD is a cellular mRNA surveillance mechanism that is required for normal brain size in mice. Using affinity purification-mass spectrometry, we identified multiple cellular NMD factors that bind to the viral capsid protein, including the central NMD regulator up-frameshift protein 1 (UPF1). Endogenous UPF1 interacted with the ZIKV capsid protein in coimmunoprecipitation experiments, and capsid expression posttranscriptionally downregulated UPF1 protein levels, a process that we confirmed occurs during ZIKV infection. Cellular fractionation studies show that the ZIKV capsid protein specifically targets nuclear UPF1 for degradation via the proteasome. A further decrease in UPF1 levels by RNAi significantly enhanced ZIKV infection in NPC cultures, consistent with a model in which NMD restricts ZIKV infection in the fetal brain. We propose that ZIKV, via the capsid protein, has evolved a strategy to lower UPF1 levels and dampen antiviral activities of NMD, which in turn contributes to neuropathology in vivo.
Collapse
|
39
|
An JP, An XH, Yao JF, Wang XN, You CX, Wang XF, Hao YJ. BTB protein MdBT2 inhibits anthocyanin and proanthocyanidin biosynthesis by triggering MdMYB9 degradation in apple. TREE PHYSIOLOGY 2018; 38:1578-1587. [PMID: 29897546 DOI: 10.1093/treephys/tpy063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Indexed: 05/10/2023]
Abstract
MdMYB9 is a positive regulator in the biosynthesis of anthocyanin and proanthocyanidin in apple. However, its posttranslational regulation is unclear. Here, we demonstrated that the BTB protein MdBT2 had a negative role in the biosynthesis of anthocyanin and proanthocyanidin. MdBT2 interacted with MdMYB9 and negatively regulated the abundance of MdMYB9 protein through the 26S proteasome system. The degradation of MdMYB9 by MdBT2 reduced the expression of MdMYB9-mediated anthocyanin and proanthocyanidin-related genes and reduced the accumulation of anthocyanin and proanthocyanidin, which functioned in an MdCUL3-independent pathway. Our results indicated that MdBT2 negatively regulated the stability of MdMYB9, which provides new insight into the homeostasis of anthocyanin and proanthocyanidin in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiu-Hong An
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Ji-Fang Yao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Na Wang
- College of Life Science, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
40
|
The intrinsically disordered E-domains regulate the IGF-1 prohormones stability, subcellular localisation and secretion. Sci Rep 2018; 8:8919. [PMID: 29891966 PMCID: PMC5995926 DOI: 10.1038/s41598-018-27233-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 02/08/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is synthesised as a prohormone (proIGF-1) requiring enzymatic activity to yield the mature IGF-1. Three proIGF-1s are encoded by alternatively spliced IGF-1 mRNAs: proIGF-1Ea, proIGF-1Eb and proIGF-1Ec. These proIGF-1s have a common IGF-1 mature sequence but different E-domains. The structure of the E-domains has not been resolved, and their molecular functions are still unclear. Here, we show that E-domains are Intrinsically Disordered Regions that have distinct regulatory functions on proIGF-1s production. In particular, we identified a highly conserved N-glycosylation site in the Ea-domain, which regulated intracellular proIGF-1Ea level preventing its proteasome-mediated degradation. The inhibition of N-glycosylation by tunicamycin or glucose starvation markedly reduced proIGF-1Ea and mature IGF-1 production. Interestingly, 2-deoxyglucose, a glucose and mannose analogue, increased proIGF-1Ea and mature IGF-1 levels, probably leading to an accumulation of an under-glycosylated proIGF-1Ea that was still stable and efficiently secreted. The proIGF-1Eb and proIGF-1Ec were devoid of N-glycosylation sites, and hence their production was unaffected by N-glycosylation inhibitors. Moreover, we demonstrated that alternative Eb- and Ec-domains controlled the subcellular localisation of proIGF-1s, leading to the nuclear accumulation of both proIGF-1Eb and proIGF-1Ec. Our results demonstrated that E-domains are regulatory elements that control IGF-1 production and secretion.
Collapse
|
41
|
Khanna R, Krishnamoorthy V, Parnaik VK. E3 ubiquitin ligase RNF123 targets lamin B1 and lamin-binding proteins. FEBS J 2018; 285:2243-2262. [PMID: 29676528 DOI: 10.1111/febs.14477] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/26/2018] [Accepted: 04/13/2018] [Indexed: 12/27/2022]
Abstract
Lamins are key nuclear proteins which are important for maintaining nuclear structure and function. Mutations in lamins cause a spectrum of genetic diseases termed as laminopathies. RING finger containing E3 ubiquitin ligase, RNF123, is transcriptionally upregulated in cells expressing rod domain lamin A mutations. However, the functional relevance of RNF123 in laminopathic cells is not clear. Using a mass spectrometry-based approach, we identified lamins and lamin-binding proteins retinoblastoma protein (pRb), lamina-associated polypeptide 2α (LAP2α), and emerin as RNF123-interacting proteins. We determined that RNF123 mediated the ubiquitination of these proteins and caused the proteasomal degradation of pRb, LAP2α, and lamin B1. Furthermore, these proteins were also targeted for proteasomal degradation in cells expressing lamin A rod domain mutants G232E, Q294P, and R386K. Overexpression of RNF123 resulted in delayed transit through the S-phase which was alleviated by coexpression of pRb or LAP2α. Our findings imply that RNF123-mediated ubiquitination of lamin-binding proteins may contribute to disease-causing mechanisms in laminopathies by depletion of key nuclear proteins and defects in cell cycle kinetics.
Collapse
Affiliation(s)
- Richa Khanna
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Veena K Parnaik
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
42
|
Zhao W, Oginuma M, Ajima R, Kiso M, Okubo A, Saga Y. Ripply2 recruits proteasome complex for Tbx6 degradation to define segment border during murine somitogenesis. eLife 2018; 7:33068. [PMID: 29761784 PMCID: PMC5953544 DOI: 10.7554/elife.33068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/30/2018] [Indexed: 12/23/2022] Open
Abstract
The metameric structure in vertebrates is based on the periodic formation of somites from the anterior end of the presomitic mesoderm (PSM). The segmentation boundary is defined by the Tbx6 expression domain, whose anterior limit is determined by Tbx6 protein destabilization via Ripply2. However, the molecular mechanism of this process is poorly understood. Here, we show that Ripply2 directly binds to Tbx6 in cultured cells without changing the stability of Tbx6, indicating an unknown mechanism for Tbx6 degradation in vivo. We succeeded in reproducing in vivo events using a mouse ES induction system, in which Tbx6 degradation occurred via Ripply2. Mass spectrometry analysis of the PSM-fated ES cells revealed that proteasomes are major components of the Ripply2-binding complex, suggesting that recruitment of a protein-degradation-complex is a pivotal function of Ripply2. Finally, we identified a motif in the T-box, which is required for Tbx6 degradation independent of binding with Ripply2 in vivo.
Collapse
Affiliation(s)
- Wei Zhao
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Oginuma
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan
| | - Rieko Ajima
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan.,Mouse Research Supporting Unit, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Makoto Kiso
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan.,Mouse Research Supporting Unit, National Institute of Genetics, Mishima, Japan
| | - Akemi Okubo
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Mouse Research Supporting Unit, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| |
Collapse
|
43
|
Alberti S, Carra S. Quality Control of Membraneless Organelles. J Mol Biol 2018; 430:4711-4729. [PMID: 29758260 DOI: 10.1016/j.jmb.2018.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
The formation of membraneless organelles (MLOs) by phase separation has emerged as a new way of organizing the cytoplasm and nucleoplasm of cells. Examples of MLOs forming via phase separation are nucleoli in the nucleus and stress granules in the cytoplasm. The main components of these MLOs are macromolecules such as RNAs and proteins. In order to assemble by phase separation, these proteins and RNAs have to undergo many cooperative interactions. These cooperative interactions are supported by specific molecular features within phase-separating proteins, such as multivalency and the presence of disordered domains that promote weak and transient interactions. However, these features also predispose phase-separating proteins to aberrant behavior. Indeed, evidence is emerging for a strong link between phase-separating proteins, MLOs, and age-related diseases. In this review, we discuss recent progress in understanding the formation, properties, and functions of MLOs. We pay special attention to the emerging link between MLOs and age-related diseases, and we explain how changes in the composition and physical properties of MLOs promote their conversion into an aberrant state. Furthermore, we discuss the key role of the protein quality control machinery in regulating the properties and functions of MLOs and thus in preventing age-related diseases.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Center for Neuroscience and Neurotechnology, 41125 Modena, Italy.
| |
Collapse
|
44
|
The Heteroaryldihydropyrimidine Bay 38-7690 Induces Hepatitis B Virus Core Protein Aggregates Associated with Promyelocytic Leukemia Nuclear Bodies in Infected Cells. mSphere 2018; 3:3/2/e00131-18. [PMID: 29669885 PMCID: PMC5907649 DOI: 10.1128/mspheredirect.00131-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023] Open
Abstract
Heteroaryldihydropyrimidines (HAPs) are compounds that inhibit hepatitis B virus (HBV) replication by modulating viral capsid assembly. While their biophysical effects on capsid assembly in vitro have been previously studied, the effect of HAP treatment on capsid protein (Cp) in individual HBV-infected cells remains unknown. We report here that the HAP Bay 38-7690 promotes aggregation of recombinant Cp in vitro and causes a time- and dose-dependent decrease of Cp in infected cells, consistent with previously studied HAPs. Interestingly, immunofluorescence analysis showed Cp aggregating in nuclear foci of Bay 38-7690-treated infected cells in a time- and dose-dependent manner. We found these foci to be associated with promyelocytic leukemia (PML) nuclear bodies (NBs), which are structures that affect many cellular functions, including DNA damage response, transcription, apoptosis, and antiviral responses. Cp aggregation is not an artifact of the cell system used, as it is observed in HBV-expressing HepAD38 cells, in HepG2 cells transfected with an HBV-expressing plasmid, and in HepG2-NTCP cells infected with HBV. Use of a Cp overexpression vector without HBV sequences shows that aggregation is independent of viral replication, and use of an HBV-expressing plasmid harboring a HAP resistance mutation in Cp abrogated the aggregation, demonstrating that the effect is due to direct compound-Cp interactions. These studies provide novel insight into the effects of HAP-based treatment at a single-cell level.IMPORTANCE Despite the availability of effective vaccines and treatments, HBV remains a significant global health concern, with more than 240 million individuals chronically infected. Current treatments are highly effective at controlling viral replication and disease progression but rarely cure infections. Therefore, much emphasis is being placed on finding therapeutics with new drug targets, such as viral gene expression, covalently closed circular DNA formation and stability, capsid formation, and host immune modulators, with the ultimate goal of an HBV cure. Understanding the mechanisms by which novel antiviral agents act will be imperative for the development of curative HBV therapies.
Collapse
|
45
|
Sharma R, Pramanik MM, Chandramouli B, Rastogi N, Kumar N. Understanding organellar protein folding capacities and assessing their pharmacological modulation by small molecules. Eur J Cell Biol 2018; 97:114-125. [DOI: 10.1016/j.ejcb.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 01/06/2018] [Indexed: 02/08/2023] Open
|
46
|
Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol 2017; 217:51-63. [PMID: 29127110 PMCID: PMC5748993 DOI: 10.1083/jcb.201709072] [Citation(s) in RCA: 538] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
Ensuring cellular protein homeostasis, or proteostasis, requires precise control of protein synthesis, folding, conformational maintenance, and degradation. A complex and adaptive proteostasis network coordinates these processes with molecular chaperones of different classes and their regulators functioning as major players. This network serves to ensure that cells have the proteins they need while minimizing misfolding or aggregation events that are hallmarks of age-associated proteinopathies, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It is now clear that the capacity of cells to maintain proteostasis undergoes a decline during aging, rendering the organism susceptible to these pathologies. Here we discuss the major proteostasis pathways in light of recent research suggesting that their age-dependent failure can both contribute to and result from disease. We consider different strategies to modulate proteostasis capacity, which may help develop urgently needed therapies for neurodegeneration and other age-dependent pathologies.
Collapse
Affiliation(s)
- Courtney L Klaips
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
47
|
Abstract
Previously thought to reside exclusively in the cytoplasm, the cytoskeletal protein keratin 17 (K17) has been recently identified inside the nucleus of tumor epithelial cells with a direct impact on cell proliferation and gene expression. We comment on fundamental questions raised by this new finding and the associated significance.
Collapse
Affiliation(s)
- Ryan P Hobbs
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Justin T Jacob
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Andreoletti G, Seaby EG, Dewing JM, O'Kelly I, Lachlan K, Gilbert RD, Ennis S. AMMECR1: a single point mutation causes developmental delay, midface hypoplasia and elliptocytosis. J Med Genet 2016; 54:269-277. [PMID: 27811305 PMCID: PMC5502304 DOI: 10.1136/jmedgenet-2016-104100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/03/2016] [Accepted: 09/26/2016] [Indexed: 11/12/2022]
Abstract
Background Deletions in the Xq22.3–Xq23 region, inclusive of COL4A5, have been associated with a contiguous gene deletion syndrome characterised by Alport syndrome with intellectual disability (Mental retardation), Midface hypoplasia and Elliptocytosis (AMME). The extrarenal biological and clinical significance of neighbouring genes to the Alport locus has been largely speculative. We sought to discover a genetic cause for two half-brothers presenting with nephrocalcinosis, early speech and language delay and midface hypoplasia with submucous cleft palate and bifid uvula. Methods Whole exome sequencing was undertaken on maternal half-siblings. In-house genomic analysis included extraction of all shared variants on the X chromosome in keeping with X-linked inheritance. Patient-specific mutants were transfected into three cell lines and microscopically visualised to assess the nuclear expression pattern of the mutant protein. Results In the affected half-brothers, we identified a hemizygous novel non-synonymous variant of unknown significance in AMMECR1 (c.G530A; p.G177D), a gene residing in the AMME disease locus. Transfected cell lines with the p.G177D mutation showed aberrant nuclear localisation patterns when compared with the wild type. Blood films revealed the presence of elliptocytes in the older brother. Conclusions Our study shows that a single missense mutation in AMMECR1 causes a phenotype of midface hypoplasia, mild intellectual disability and the presence of elliptocytes, previously reported as part of a contiguous gene deletion syndrome. Functional analysis confirms mutant-specific protein dysfunction. We conclude that AMMECR1 is a critical gene in the pathogenesis of AMME, causing midface hypoplasia and elliptocytosis and contributing to early speech and language delay, infantile hypotonia and hearing loss, and may play a role in dysmorphism, nephrocalcinosis and submucous cleft palate.
Collapse
Affiliation(s)
- Gaia Andreoletti
- Human Genetics & Genomic Medicine, University of Southampton, Duthie Building (Mailpoint 808), Southampton General Hospital, Southampton, UK
| | - Eleanor G Seaby
- Human Genetics & Genomic Medicine, University of Southampton, Duthie Building (Mailpoint 808), Southampton General Hospital, Southampton, UK
| | - Jennifer M Dewing
- Centre for Human Development, Stem Cells and Regeneration HDH, University of Southampton, IDS Building, Southampton General Hospital, Southampton, UK
| | - Ita O'Kelly
- Centre for Human Development, Stem Cells and Regeneration HDH, University of Southampton, IDS Building, Southampton General Hospital, Southampton, UK
| | - Katherine Lachlan
- Human Genetics & Genomic Medicine, University of Southampton, Duthie Building (Mailpoint 808), Southampton General Hospital, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Princess Anne Hospital, Southampton, UK
| | - Rodney D Gilbert
- Wessex Regional Paediatric Nephro-Urology Service, Southampton Children's Hospital, Southampton, UK
| | - Sarah Ennis
- Human Genetics & Genomic Medicine, University of Southampton, Duthie Building (Mailpoint 808), Southampton General Hospital, Southampton, UK
| |
Collapse
|
49
|
High nuclear expression of proteasome activator complex subunit 1 predicts poor survival in soft tissue leiomyosarcomas. Clin Sarcoma Res 2016; 6:17. [PMID: 27733900 PMCID: PMC5045577 DOI: 10.1186/s13569-016-0057-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022] Open
Abstract
Background Previous studies on high grade sarcomas using mass spectrometry imaging showed proteasome activator complex subunit 1 (PSME1) to be associated with poor survival in soft tissue sarcoma patients. PSME1 is involved in immunoproteasome assembly for generating tumor antigens presented by MHC class I molecules. In this study, we aimed to validate PSME1 as a prognostic biomarker in an independent and larger series of soft tissue sarcomas by immunohistochemistry. Methods Tissue microarrays containing leiomyosarcomas (n = 34), myxofibrosarcomas (n = 14), undifferentiated pleomorphic sarcomas (n = 15), undifferentiated spindle cell sarcomas (n = 4), pleomorphic liposarcomas (n = 4), pleomorphic rhabdomyosarcomas (n = 2), and uterine leiomyomas (n = 7) were analyzed for protein expression of PSME1 using immunohistochemistry. Survival times were compared between high and low expression groups using Kaplan–Meier analysis. Cox regression models as multivariate analysis were performed to evaluate whether the associations were independent of other important clinical covariates. Results PSME1 expression was variable among soft tissue sarcomas. In leiomyosarcomas, high expression was associated with overall poor survival (p = 0.034), decreased metastasis-free survival (p = 0.002) and lower event-free survival (p = 0.007). Using multivariate analysis, the association between PSME1 expression and metastasis-free survival was still significant (p = 0.025) and independent of the histological grade. Conclusions High expression of PSME1 is associated with poor metastasis-free survival in soft tissue leiomyosarcoma patients, and might be used as an independent prognostic biomarker. Electronic supplementary material The online version of this article (doi:10.1186/s13569-016-0057-z) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Singh P, Li D, Gui Y, Zheng XL. Atrogin-1 Increases Smooth Muscle Contractility Through Myocardin Degradation. J Cell Physiol 2016; 232:806-817. [PMID: 27403897 DOI: 10.1002/jcp.25485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/11/2016] [Indexed: 01/25/2023]
Abstract
Atrogin-1, an E3 ligase present in skeletal, cardiac and smooth muscle, down-regulates myocardin protein during skeletal muscle differentiation. Myocardin, the master regulator of smooth muscle cell (SMC) differentiation, induces expression of smooth muscle marker genes through its association with serum response factor (SRF), which binds to the CArG box in the promoter. Myocardin undergoes ubiquitylation and proteasomal degradation. Evidence suggests that proteasomal degradation of myocardin is critical for myocardin to exert its transcriptional activity, but there is no report about the E3 ligase responsible for myocardin ubiquitylation and subsequent transactivation. Here, we showed that overexpression of atrogin-1 increased contractility of cultured SMCs and mouse aortic tissues in organ culture. Overexpression of dominant-negative myocardin attenuated the increase in SMC contractility induced by atrogin-1. Atrogin-1 overexpression increased expression of the SM contractile markers while downregulated expression of myocardin protein but not mRNA. Atrogin-1 also ubiquitylated myocardin for proteasomal degradation in vascular SMCs. Deletion studies showed that atrogin-1 directly interacted with myocardin through its amino acids 284-345. Immunostaining studies showed nuclear localization of atrogin-1, myocardin, and the Rpt6 subunit of the 26S proteasome. Atrogin-1 overexpression not only resulted in degradation of myocardin but also increased recruitment of RNA Polymerase II onto the promoters of myocardin target genes. In summary, our results have revealed the roles for atrogin-1 in the regulation of smooth muscle contractility through enhancement of myocardin ubiquitylation/degradation and its transcriptional activity. J. Cell. Physiol. 232: 806-817, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pavneet Singh
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dong Li
- Department of Physiology and Pharmacology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yu Gui
- Department of Physiology and Pharmacology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|