1
|
Sousa-Squiavinato ACM, Morgado-Díaz JA. A glimpse into cofilin-1 role in cancer therapy: A potential target to improve clinical outcomes? Biochim Biophys Acta Rev Cancer 2024; 1879:189087. [PMID: 38395237 DOI: 10.1016/j.bbcan.2024.189087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Cofilin-1 (CFL1) modulates dynamic actin networks by severing and enhancing depolymerization. The upregulation of cofilin-1 expression in several cancer types is associated with tumor progression and metastasis. However, recent discoveries indicated relevant cofilin-1 functions under oxidative stress conditions, interplaying with mitochondrial dynamics, and apoptosis networks. In this scenario, these emerging roles might impact the response to clinical therapy and could be used to enhance treatment efficacy. Here, we highlight new perspectives of cofilin-1 in the therapy resistance context and discussed how cofilin-1 is involved in these events, exploring aspects of its contribution to therapeutic resistance. We also provide an analysis of CFL1 expression in several tumors predicting survival. Therefore, understanding how exactly coflin-1 plays, particularly in therapy resistance, may pave the way to the development of treatment strategies and improvement of patient survival.
Collapse
Affiliation(s)
| | - Jose Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Howard J, Goh CY, Gorzel KW, Higgins M, McCann A. The potential role of cofilin-1 in promoting triple negative breast cancer (TNBC) metastasis via the extracellular vesicles (EVs). Transl Oncol 2022; 15:101247. [PMID: 34678587 PMCID: PMC8529549 DOI: 10.1016/j.tranon.2021.101247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 02/09/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive cancer, particularly prone to metastasis and is associated with poor survival outcomes. The key to unravelling the aggressiveness of TNBC lies in decoding the mechanism by which it metastasises. Cofilin-1 is a well-studied member of the cofilin family, involved in actin depolymerisation. Studies have described the diverse roles of cofilin-1 including cell motility, apoptosis and lipid metabolism. Levels of cofilin-1 have been shown to be increased in many different types of malignant cells, with increased cofilin-1 protein levels associated with poor prognosis in patients with TNBC. Extracellular vesicles (EVs) are microvesicles typically around 100 nm in size, found in all biological fluids examined to date (Lötvall et al., 2014). Proteomic studies on extracellular vesicles (EVs) have shown that cofilin-1 is amongst the most frequently detected. Moreover, decreased levels of cofilin-1 potentially inhibit the release of EVs from cells. Additionally, Cofilin-1 is essential for the maturation of EVs and may also play a key role in the establishment of the pre-metastatic niche, thus promoting tumour cell migration. Further work into the exact mechanism by which cofilin-1 advances TNBC metastasis, may potentially prevent disease progression and improve outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Jane Howard
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland.
| | - Chia Yin Goh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland
| | - Karolina Weiner Gorzel
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; St Vincent's University Hospital (SVUH), Elm Park, Dublin 4, Ireland
| | - Michaela Higgins
- St Vincent's University Hospital (SVUH), Elm Park, Dublin 4, Ireland
| | - Amanda McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes. Proc Natl Acad Sci U S A 2021; 118:2021571118. [PMID: 33990464 DOI: 10.1073/pnas.2021571118] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
YAP/TAZ is a master regulator of mechanotransduction whose functions rely on translocation from the cytoplasm to the nucleus in response to diverse physical cues. Substrate stiffness, substrate dimensionality, and cell shape are all input signals for YAP/TAZ, and through this pathway, regulate critical cellular functions and tissue homeostasis. Yet, the relative contributions of each biophysical signal and the mechanisms by which they synergistically regulate YAP/TAZ in realistic tissue microenvironments that provide multiplexed input signals remain unclear. For example, in simple two-dimensional culture, YAP/TAZ nuclear localization correlates strongly with substrate stiffness, while in three-dimensional (3D) environments, YAP/TAZ translocation can increase with stiffness, decrease with stiffness, or remain unchanged. Here, we develop a spatial model of YAP/TAZ translocation to enable quantitative analysis of the relationships between substrate stiffness, substrate dimensionality, and cell shape. Our model couples cytosolic stiffness to nuclear mechanics to replicate existing experimental trends, and extends beyond current data to predict that increasing substrate activation area through changes in culture dimensionality, while conserving cell volume, forces distinct shape changes that result in nonlinear effect on YAP/TAZ nuclear localization. Moreover, differences in substrate activation area versus total membrane area can account for counterintuitive trends in YAP/TAZ nuclear localization in 3D culture. Based on this multiscale investigation of the different system features of YAP/TAZ nuclear translocation, we predict that how a cell reads its environment is a complex information transfer function of multiple mechanical and biochemical factors. These predictions reveal a few design principles of cellular and tissue engineering for YAP/TAZ mechanotransduction.
Collapse
|
4
|
Kłopocka W, Korczyński J, Pomorski P. Cytoskeleton and Nucleotide Signaling in Glioma C6 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:109-128. [PMID: 32034711 DOI: 10.1007/978-3-030-30651-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter describes signaling pathways, stimulated by the P2Y2 nucleotide receptor (P2Y2R), that regulate cellular processes dependent on actin cytoskeleton dynamics in glioma C6 cells. P2Y2R coupled with G-proteins, in response to ATP or UTP, regulates the level of iphosphatidylinositol-4,5-bisphosphate (PIP2) which modulates a variety of actin binding proteins and is involved in calcium response and activates Rac1 and RhoA proteins. The RhoA/ROCK signaling pathway plays an important role in contractile force generation needed for the assembly of stress fibers, focal adhesions and for tail retraction during cell migration. Blocking of this pathway by a specific Rho-kinase inhibitor induces changes in F-actin organization and cell shape and decreases the level of phosphorylated myosin II and cofilin. In glioma C6 cells these changes are reversed after UTP stimulation of P2Y2R. Signaling pathways responsible for this compensation are calcium signaling which regulates MLC kinase activation via calmodulin, and the Rac1/PAK/LIMK cascade. Stimulation of the Rac1 mediated pathway via Go proteins needs additional interaction between αvβ5 integrins and P2Y2Rs. Calcium free medium, or growing of the cells in suspension, prevents Gαo activation by P2Y2 receptors. Rac1 activation is necessary for cofilin phosphorylation as well as integrin activation needed for focal complexes formation and stabilization of lamellipodium. Inhibition of positive Rac1 regulation prevents glioma C6 cells from recovery of control cell like morphology.
Collapse
Affiliation(s)
- Wanda Kłopocka
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, Warsaw, Poland.
| | - Jarosław Korczyński
- M. Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Pomorski
- M. Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Kwon J, Seong MJ, Piao X, Jo YJ, Kim NH. LIMK1/2 are required for actin filament and cell junction assembly in porcine embryos developing in vitro. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1579-1589. [PMID: 32054159 PMCID: PMC7463081 DOI: 10.5713/ajas.19.0744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/06/2020] [Indexed: 12/28/2022]
Abstract
Objective This study was conducted to investigate the roles of LIM kinases (LIMK1 and LIMK2) during porcine early embryo development. We checked the mRNA expression patterns and localization of LIMK1/2 to evaluate their characterization. We further explored the function of LIMK1/2 in developmental competence and their relationship between actin assembly and cell junction integrity, specifically during the first cleavage and compaction. Methods Pig ovaries were transferred from a local slaughterhouse within 1 h and cumulus oocyte complexes (COCs) were collected. COCs were matured in in vitro maturation medium in a CO2 incubator. Metaphase II oocytes were activated using an Electro Cell Manipulator 2001 and microinjected to insert LIMK1/2 dsRNA into the cytoplasm. To confirm the roles of LIMK1/2 during compaction and subsequent blastocyst formation, we employed a LIMK inhibitor (LIMKi3). Results LIMK1/2 was localized in cytoplasm in embryos and co-localized with actin in cell-to-cell boundaries after the morula stage. LIMK1/2 knockdown using LIMK1/2 dsRNA significantly decreased the cleavage rate, compared to the control group. Protein levels of E-cadherin and β-catenin, present in adherens junctions, were reduced at the cell-to-cell boundaries in the LIMK1/2 knockdown embryos. Embryos treated with LIMKi3 at the morula stage failed to undergo compaction and could not develop into blastocysts. Actin intensity at the cortical region was considerably reduced in LIMKi3-treated embryos. LIMKi3-induced decrease in cortical actin levels was attributed to the disruption of adherens junction and tight junction assembly. Phosphorylation of cofilin was also reduced in LIMKi3-treated embryos. Conclusion The above results suggest that LIMK1/2 is crucial for cleavage and compaction through regulation of actin organization and cell junction assembly.
Collapse
Affiliation(s)
- Jeongwoo Kwon
- Department of Animal Sciences, Chungbuk Natonal University, Cheongju 28864, Korea
| | - Min-Jung Seong
- Department of Animal Sciences, Chungbuk Natonal University, Cheongju 28864, Korea
| | - Xuanjing Piao
- Department of Animal Sciences, Chungbuk Natonal University, Cheongju 28864, Korea
| | - Yu-Jin Jo
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56216, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk Natonal University, Cheongju 28864, Korea.,School of Biotechnology and Healthcare, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
6
|
O'Banion CP, Goswami A, Lawrence DS. Design, construction, and validation of optogenetic proteins. Methods Enzymol 2019; 621:171-190. [PMID: 31128778 PMCID: PMC7003698 DOI: 10.1016/bs.mie.2019.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cellular optogenetics employs light-regulated, genetically encoded protein actuators to perturb cellular signaling with unprecedented spatial and temporal control. Here, we present a potentially generalized approach for transforming a given protein of interest (POI) into an optogenetic species. We describe the rational and methods by which we developed three different optogenetic POIs utilizing the Cry2-Cib photodimerizing pair. The process pipeline is highlighted by (1) developing a low level, constitutively active POI that is independent of endogenous regulation, (2) fusion of the mutant protein of interest to an optogenetic photodimerizing system, and (3) light-mediated recruitment of the light-responsive POI to specific subcellular regions.
Collapse
Affiliation(s)
- Colin P O'Banion
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Anwesha Goswami
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - David S Lawrence
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
7
|
Optimizing leading edge F-actin labeling using multiple actin probes, fixation methods and imaging modalities. Biotechniques 2019; 66:113-119. [DOI: 10.2144/btn-2018-0112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We systematically evaluated the performance and reliability of several widely used, commercially available actin-filament probes in a highly motile breast adenocarcinoma cell line to optimize the visualization of F-actin-rich dynamic lamellipodia. We evaluated four Phalloidin-fluorophores, two anti-actin antibodies, and three live-cell actin probes in five fixation conditions across three imaging platforms as a basis for the design of optimized protocols. Of the fluorescent phalloidin-dye conjugates tested, Alexa Fluor-488 Phalloidin ranked best in overall labeling of the actin cytoskeleton and maintenance of the fluorescence signal over time. Use of actin monoclonal antibodies revealed significant limitations under a variety of fixation–permeabilization conditions. Evaluation of commonly used live-cell probes provides evidence for actin filament bias, with TagRFP-Lifeact excluded from lamellipodia, but not mEGFP-Lifeact or F-tractin-EGFP.
Collapse
|
8
|
Mantovani G, Treppiedi D, Giardino E, Catalano R, Mangili F, Vercesi P, Arosio M, Spada A, Peverelli E. Cytoskeleton actin-binding proteins in clinical behavior of pituitary tumors. Endocr Relat Cancer 2019; 26:R95-R108. [PMID: 30589642 DOI: 10.1530/erc-18-0442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
Although generally benign, pituitary tumors are frequently locally invasive, with reduced success of neurosurgery and unresponsive to pharmacological treatment with somatostatin or dopamine analogues. The molecular basis of the different biological behavior of pituitary tumors are still poorly identified, but a body of work now suggests that the activity of specific cytoskeleton proteins is a key factor regulating both the invasiveness and drug resistance of these tumors. This review recapitulates the experimental evidence supporting a role for the actin-binding protein filamin A (FLNA) in the regulation of somatostatin and dopamine receptors expression and signaling in pituitary tumors, thus in determining the responsiveness to currently used drugs, somatostatin analogues and dopamine receptor type 2 agonists. Regarding the regulation of invasive behavior of pituitary tumoral cells, we bring evidence to the role of the actin-severing protein cofilin, whose activation status may be modulated by dopaminergic and somatostatinergic drugs, through FLNA involvement. Molecular mechanisms involved in the regulation of FLNA expression and function in pituitary tumors will also be discussed.
Collapse
Affiliation(s)
- G Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - R Catalano
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - F Mangili
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - P Vercesi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Regulation of cofilin phosphorylation in glomerular podocytes by testis specific kinase 1 (TESK1). Sci Rep 2018; 8:12286. [PMID: 30115939 PMCID: PMC6095849 DOI: 10.1038/s41598-018-30115-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
Expression of a constitutively active Rho A (V14Rho) in podocytes in vivo induces albuminuria and foot process (FP) effacement. These effects may be mediated by the Rho A effector Rho kinase (ROK); but inhibition of ROK with Y27632 failed to attenuate albuminuria or FP effacement in V14Rho mice. ROK activates LIM kinases (LIMKs), which phosphorylate and inhibit the actin depolymerizing factor cofilin 1 (CFL1). Sustained phosphorylation of CFL1 is implicated in human nephrotic diseases, but Y27632 did not inhibit phosphorylation of CFL1 in vivo, despite effective ROK inhibition. CFL1 is also phosphorylated by testis-specific kinase 1 (TESK1) on the same serine residue. TESK1 was expressed in podocytes, and, similar to the in vivo situation, Y27632 had little effect on phospho-CFL1 (pCFL1) levels in cultured podocytes. In contrast, Y27632 reduced pCFL1 levels in TESK1 knockout (KO) cells. ROK inhibition enhanced podocyte motility but, the motility promoting effect of Y27632 was absent in TESK1 KO podocytes. Thus, TESK1 regulates podocyte cytoskeletal dynamics in glomerular podocytes and may play an important role in regulating glomerular filtration barrier integrity in glomerular disease processes.
Collapse
|
10
|
Coumans JVF, Davey RJ, Moens PDJ. Cofilin and profilin: partners in cancer aggressiveness. Biophys Rev 2018; 10:1323-1335. [PMID: 30027463 DOI: 10.1007/s12551-018-0445-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/08/2018] [Indexed: 02/07/2023] Open
Abstract
This review covers aspects of cofilin and profilin regulations and their influence on actin polymerisation responsible for cell motility and metastasis. The regulation of their activity by phosphorylation and nitration, miRs, PI(4,5)P2 binding, pH, oxidative stress and post-translational modification is described. In this review, we have highlighted selected similarities, complementarities and differences between the two proteins and how their interplay affects actin filament dynamics.
Collapse
Affiliation(s)
- Joelle V F Coumans
- School of Rural Medicine, University of New England, Armidale, Australia
| | - Rhonda J Davey
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
| | - Pierre D J Moens
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia.
| |
Collapse
|
11
|
Zheng J, Zhang M, Zhang L, Ding X, Li W, Lu S. HSPC159 promotes proliferation and metastasis by inducing epithelial-mesenchymal transition and activating the PI3K/Akt pathway in breast cancer. Cancer Sci 2018; 109:2153-2163. [PMID: 29737572 PMCID: PMC6029831 DOI: 10.1111/cas.13631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023] Open
Abstract
HSPC159 is a novel human galectin‐related protein that has been shown to be involved in carcinogenesis. Little is known about HSPC159 expression and function in breast cancer. Herein we showed that HSPC159 was aberrantly expressed in both breast cancer cell lines and tumor tissues and that its expression was associated with poor prognosis of breast cancer patients. Using gain‐ and loss‐of‐function methods we found that HSPC159 enhanced breast cancer cell proliferation and metastasis in vitro and in vivo. Mechanistically, HSPC159 was found to induce epithelial‐mesenchymal transition (EMT) and the F‐actin polymerization process of breast cancer cells. Moreover, HSPC159 promoted proliferation, migration and invasion through activating the PI3K/Akt signaling pathway in breast cancer. In conclusion, our findings showed that HSPC159 contributed to breast cancer progression through the PI3K/Akt pathway and might serve as a potential therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Diagnostic Pathology, Weifang Medical University, Weifang, China.,Key Lab of Neurological Disease and Regeneration&Repair, Weifang Medical University, Weifang, China.,Key Lab of Applied Pharmacology in Universities of Shandong, Weifang Medical University, Weifang, China
| | - Mengxue Zhang
- Department of Diagnostic Pathology, Weifang Medical University, Weifang, China.,Key Lab of Neurological Disease and Regeneration&Repair, Weifang Medical University, Weifang, China
| | - Liying Zhang
- Department of Diagnostic Pathology, Weifang Medical University, Weifang, China
| | - Xiaodi Ding
- Department of Diagnostic Pathology, Weifang Medical University, Weifang, China
| | - Wentong Li
- Department of Diagnostic Pathology, Weifang Medical University, Weifang, China
| | - Shijun Lu
- Department of Diagnostic Pathology, Weifang Medical University, Weifang, China
| |
Collapse
|
12
|
Jia L, Liu W, Cao B, Li H, Yin C. MiR-507 inhibits the migration and invasion of human breastcancer cells through Flt-1 suppression. Oncotarget 2017; 7:36743-36754. [PMID: 27167339 PMCID: PMC5095036 DOI: 10.18632/oncotarget.9163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/16/2016] [Indexed: 02/04/2023] Open
Abstract
Vascular endothelial growth factor receptor-1/fms-related tyrosine kinase-1 (VEGFR-1/Flt-1) is a tyrosine kinase receptor that binds placental growth factor (PlGF). Flt-1 is also highly expressed in breast-cancer tissues and breast-cancer cell lines. However, the molecular mechanism by which Flt-1 promotes breast-cancer invasion and metastasis by binding to PlGF-1 is unclear. In this study, we discovered that PlGF-1 and Flt-1 played a key role in the migration and invasion of breast cancer. Flt-1 promoted the migration and chemotaxis of breast-cancer cells by binding to PlGF-1. In addition, Flt-1 was confirmed to be a direct target gene of miR-507. miR-507 up-regulation inhibited the invasion and metastasis of breast-cancer cells in vitro and in vivo. Flt-1 overexpression rescued the invasion partially caused by the ectopic expression of miR-507. miR-507 expression in breast-cancer tissues and cell lines was lower than that in adjacent non-neoplastic tissues and normal cells. Clinical analysis indicated that miR-507 was negatively correlated with tumor differentiation, lymphatic metastasis, and the expression of Flt-1 in breast cancer. Furthermore, we showed that miR-507 down-regulation was due to the hypermethylation of its promotor region. Our results indicated that miR-507 represented potential therapeutic targets in breast cancer by modulating Flt-1.
Collapse
Affiliation(s)
- Liyan Jia
- Affiliated Hospital, Weifang Medical University, Weifang, 261053, China
| | - Wei Liu
- Affiliated Hospital, Weifang Medical University, Weifang, 261053, China
| | - Bo Cao
- Affiliated Hospital, Weifang Medical University, Weifang, 261053, China
| | - Hongli Li
- Medicine Research Center, Weifang Medical University, Weifang, 261053, China
| | - Chonggao Yin
- College of Nursing, Weifang Medical University, Weifang, 261053, China
| |
Collapse
|
13
|
Peverelli E, Giardino E, Treppiedi D, Catalano R, Mangili F, Locatelli M, Lania AG, Arosio M, Spada A, Mantovani G. A novel pathway activated by somatostatin receptor type 2 (SST2): Inhibition of pituitary tumor cell migration and invasion through cytoskeleton protein recruitment. Int J Cancer 2017; 142:1842-1852. [PMID: 29226331 DOI: 10.1002/ijc.31205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/15/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
The pharmacological therapy of GH-secreting pituitary tumors is based on somatostatin (SS) analogs that reduce GH secretion and cell proliferation by binding mainly SS receptors type 2 (SST2). Antimigratory effects of SS have been demonstrated in different cell models, but no data on pituitary tumors are available. Aims of our study were to evaluate SST2 effects on migration and invasion of human and rat tumoral somatotrophs, and to elucidate the molecular mechanism involved focusing on the role of cofilin and filamin A (FLNA). Our data revealed that SST2 agonist BIM23120 significantly reduced GH3 cells migration (-22% ± 3.6%, p < 0.001) and invasion on collagen IV (-31.3% ± 12.2%, p < 0.01), both these effects being reproduced by octreotide and pasireotide. Similar results were obtained in primary cultured cells from human GH-secreting tumors. These inhibitory actions were accompanied by a marked increase in RhoA/ROCK-dependent cofilin phosphorylation (about 2.7-fold in GH3 and 2.1-fold in human primary cells). Accordingly, the anti-invasive effect of the SS analog was mimicked by the overexpression in GH3 cells of the S3D phosphomimetic cofilin mutant, and abolished by both phosphodeficient S3A cofilin and a specific ROCK inhibitor that prevented cofilin phosphorylation. Moreover, FLNA silencing and FLNA dominant-negative mutants FLNA19-20 and FLNA21-24 transfection demonstrated that FLNA plays a scaffold function for SST2-mediated cofilin phosphorylation. Accordingly, cofilin recruitment to agonist-activated SST2 was completely lost in FLNA silenced cells. In conclusion, we demonstrated that SST2 inhibits rat and human tumoral somatotrophs migration and invasion through a molecular mechanism that involves FLNA-dependent cofilin recruitment and phosphorylation.
Collapse
Affiliation(s)
- E Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - R Catalano
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - F Mangili
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Locatelli
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A G Lania
- Endocrinology Unit, IRCCS Humanitas Research Hospital, Humanitas University, Rozzano, Italy
| | - M Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - G Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Hu W, Zhu L, Yang X, Lin J, Yang Q. The epidermal growth factor receptor regulates cofilin activity and promotes transmissible gastroenteritis virus entry into intestinal epithelial cells. Oncotarget 2017; 7:12206-21. [PMID: 26933809 PMCID: PMC4914279 DOI: 10.18632/oncotarget.7723] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV), a coronavirus, causes severe diarrhea and high mortality in newborn piglets. The porcine intestinal epithelium is the target of TGEV infection, but the mechanisms that TGEV disrupts the actin cytoskeleton and invades the host epithelium remain largely unknown. We not only found that TGEV infection stimulates F-actin to gather at the cell membrane but the disruption of F-actin inhibits TGEV entry as well. Cofilin is involved in F-actin reorganization and TGEV entry. The TGEV spike protein is capable of binding with EGFR, activating the downstream phosphoinositide-3 kinase (PI3K), then causing the phosphorylation of cofilin and F-actin polymerization via Rac1/Cdc42 GTPases. Inhibition of EGFR and PI3K decreases the entry of TGEV. EGFR is also the upstream activator of mitogen-activated protein kinase (MAPK) signaling pathways that is involved in F-actin reorganization. Additionally, lipid rafts act as signal platforms for the EGFR-associated signaling cascade and correlate with the adhesion of TGEV. In conlusion, these results provide valuable data of the mechanisms which are responsible for the TGEV pathogenesis and may lead to the development of new methods about controlling TGEV.
Collapse
Affiliation(s)
- Weiwei Hu
- Veterinary College, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Liqi Zhu
- Veterinary College, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xing Yang
- Veterinary College, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Jian Lin
- Life Science College, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qian Yang
- Veterinary College, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
15
|
Han F, Zhuang TT, Chen JJ, Zhu XL, Cai YF, Lu YP. Novel derivative of Paeonol, Paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimer's disease concurrent with cofilin1/phosphorylated-cofilin1 and RAC1/CDC42 alterations in rats. PLoS One 2017; 12:e0185102. [PMID: 28934273 PMCID: PMC5608314 DOI: 10.1371/journal.pone.0185102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/06/2017] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a typical hippocampal amnesia and the most common senile dementia. Many studies suggest that cognitive impairments are more closely correlated with synaptic loss than the burden of amyloid deposits in AD progression. To date, there is no effective treatment for this disease. Paeonol has been widely employed in traditional Chinese medicine. This compound improves learning behavior in an animal model; however, the mechanism remains unclear. In this study, Paeononlsilatie sodium (Pa), a derivative of Paeonol, attenuated D-galactose (D-gal) and AlCl3-induced behavioral damages in rats based on evaluations of the open field test (OFT), elevated plus maze test (EPMT), and Morris water maze test (MWMT). Pa increased the dendritic complexity and the density of dendritic spines. Correlation analysis indicated that morphological changes in neuronal dendrites are closely correlated with behavioral changes. Pa treatment reduced the production of Aβ, affected the phosphorylation and redistribution of cofilin1 and inhibited rod-like formation in hippocampal neurons. The induction of D-gal and AlCl3 promoted the expression of RAC1/CDC42 expression; however, the tendency of gene expression was inhibited by pretreatment with Pa. Taken together, our results suggest that Pa may represent a novel therapeutic agent for the improvement of cognitive and emotional behaviors and dendritic morphology in an AD animal model.
Collapse
Affiliation(s)
- Fei Han
- College of Life Science, Anhui Normal University, Wuhu, China
| | | | - Jing-Jing Chen
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, Wuhu, China
- Department of Anatomy, Wannan Medical College, Wuhu, China
| | - Ya-Fei Cai
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, Wuhu, China
- * E-mail:
| |
Collapse
|
16
|
Sun M, Spill F, Zaman MH. A Computational Model of YAP/TAZ Mechanosensing. Biophys J 2017; 110:2540-2550. [PMID: 27276271 DOI: 10.1016/j.bpj.2016.04.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/24/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022] Open
Abstract
In cell proliferation, stem cell differentiation, chemoresistance, and tissue organization, the ubiquitous role of YAP/TAZ continues to impact our fundamental understanding in numerous physiological and disease systems. YAP/TAZ is an important signaling nexus integrating diverse mechanical and biochemical signals, such as ECM stiffness, adhesion ligand density, or cell-cell contacts, and thus strongly influences cell fate. Recent studies show that YAP/TAZ mechanical sensing is dependent on RhoA-regulated stress fibers. However, current understanding of YAP/TAZ remains limited due to the unknown interaction between the canonical Hippo pathway and cell tension. Furthermore, the multiscale relationship connecting adhesion signaling to YAP/TAZ activity through cytoskeleton dynamics remains poorly understood. To identify the roles of key signaling molecules in mechanical signal sensing and transduction, we present a, to our knowledge, novel computational model of the YAP/TAZ signaling pathway. This model converts extracellular-matrix mechanical properties to biochemical signals via adhesion, and integrates intracellular signaling cascades associated with cytoskeleton dynamics. We perform perturbations of molecular levels and sensitivity analyses to predict how various signaling molecules affect YAP/TAZ activity. Adhesion molecules, such as FAK, are predicted to rescue YAP/TAZ activity in soft environments via the RhoA pathway. We also found that changes of molecule concentrations result in different patterns of YAP/TAZ stiffness response. We also investigate the sensitivity of YAP/TAZ activity to ECM stiffness, and compare with that of SRF/MAL, which is another important regulator of differentiation. In addition, the model shows that the unresolved synergistic effect of YAP/TAZ activity between the mechanosensing and the Hippo pathways can be explained by the interaction of LIM-kinase and LATS. Overall, our model provides a, to our knowledge, novel platform for studying YAP/TAZ activity in the context of integrating different signaling pathways. This platform can be used to gain, to our knowledge, new fundamental insights into roles of key molecular and mechanical regulators on development, tissue engineering, or tumor progression.
Collapse
Affiliation(s)
- Meng Sun
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Fabian Spill
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Howard Hughes Medical Institute, Boston University, Boston, Massachusetts.
| |
Collapse
|
17
|
Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells. Int J Mol Sci 2016; 18:ijms18010010. [PMID: 28025492 PMCID: PMC5297645 DOI: 10.3390/ijms18010010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Identification of actin-depolymerizing factor homology (ADF-H) domains in the structures of several related proteins led first to the formation of the ADF/cofilin family, which then expanded to the ADF/cofilin superfamily. This superfamily includes the well-studied cofilin-1 (Cfl-1) and about a dozen different human proteins that interact directly or indirectly with the actin cytoskeleton, provide its remodeling, and alter cell motility. According to some data, Cfl-1 is contained in various human malignant cells (HMCs) and is involved in the formation of malignant properties, including invasiveness, metastatic potential, and resistance to chemotherapeutic drugs. The presence of other ADF/cofilin superfamily proteins in HMCs and their involvement in the regulation of cell motility were discovered with the use of various OMICS technologies. In our review, we discuss the results of the study of Cfl-1 and other ADF/cofilin superfamily proteins, which may be of interest for solving different problems of molecular oncology, as well as for the prospects of further investigations of these proteins in HMCs.
Collapse
|
18
|
An Essential Role of INI1/hSNF5 Chromatin Remodeling Protein in HIV-1 Posttranscriptional Events and Gag/Gag-Pol Stability. J Virol 2016; 90:9889-9904. [PMID: 27558426 PMCID: PMC5068538 DOI: 10.1128/jvi.00323-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/16/2016] [Indexed: 11/23/2022] Open
Abstract
INI1/hSNF5/SMARCB1/BAF47 is an HIV-specific integrase (IN)-binding protein that influences HIV-1 transcription and particle production. INI1 binds to SAP18 (Sin3a-associated protein, 18 kDa), and both INI1 and SAP18 are incorporated into HIV-1 virions. To determine the significance of INI1 and the INI1-SAP18 interaction during HIV-1 replication, we isolated a panel of SAP18-interaction-defective (SID)-INI1 mutants using a yeast reverse two-hybrid screen. The SID-INI1 mutants, which retained the ability to bind to IN, cMYC, and INI1 but were impaired for binding to SAP18, were tested for their effects on HIV-1 particle production. SID-INI1 dramatically reduced the intracellular Gag/Gag-Pol protein levels and, in addition, decreased viral particle production. The SID-INI1-mediated effects were less dramatic in trans complementation assays using IN deletion mutant viruses with Vpr-reverse transcriptase (RT)-IN. SID-INI1 did not inhibit long-terminal-repeat (LTR)-mediated transcription, but it marginally decreased the steady-state gag RNA levels, suggesting a posttranscriptional effect. Pulse-chase analysis indicated that in SID-INI1-expressing cells, the pr55Gag levels decreased rapidly. RNA interference analysis indicated that small hairpin RNA (shRNA)-mediated knockdown of INI1 reduced the intracellular Gag/Gag-Pol levels and further inhibited HIV-1 particle production. These results suggest that SID-INI1 mutants inhibit multiple stages of posttranscriptional events of HIV-1 replication, including intracellular Gag/Gag-Pol RNA and protein levels, which in turn inhibits assembly and particle production. Interfering INI1 leads to a decrease in particle production and Gag/Gag-Pol protein levels. Understanding the role of INI1 and SAP18 in HIV-1 replication is likely to provide novel insight into the stability of Gag/Gag-Pol, which may lead to the development of novel therapeutic strategies to inhibit HIV-1 late events.
IMPORTANCE Significant gaps exist in our current understanding of the mechanisms and host factors that influence HIV-1 posttranscriptional events, including gag RNA levels, Gag/Gag-Pol protein levels, assembly, and particle production. Our previous studies suggested that the IN-binding host factor INI1 plays a role in HIV-1 assembly. An ectopically expressed minimal IN-binding domain of INI1, S6, potently and selectively inhibited HIV-1 Gag/Gag-Pol trafficking and particle production. However, whether or not endogenous INI1 and its interacting partners, such as SAP18, are required for late events was unknown. Here, we report that endogenous INI1 and its interaction with SAP18 are necessary to maintain intracellular levels of Gag/Gag-Pol and for particle production. Interfering INI1 or the INI1-SAP18 interaction leads to the impairment of these processes, suggesting a novel strategy for inhibiting posttranscriptional events of HIV-1 replication.
Collapse
|
19
|
Abstract
The actin depolymerizing factor (ADF)/cofilin family comprises small actin-binding proteins with crucial roles in development, tissue homeostasis and disease. They are best known for their roles in regulating actin dynamics by promoting actin treadmilling and thereby driving membrane protrusion and cell motility. However, recent discoveries have increased our understanding of the functions of these proteins beyond their well-characterized roles. This Cell Science at a Glance article and the accompanying poster serve as an introduction to the diverse roles of the ADF/cofilin family in cells. The first part of the article summarizes their actions in actin treadmilling and the main mechanisms for their intracellular regulation; the second part aims to provide an outline of the emerging cellular roles attributed to the ADF/cofilin family, besides their actions in actin turnover. The latter part discusses an array of diverse processes, which include regulation of intracellular contractility, maintenance of nuclear integrity, transcriptional regulation, nuclear actin monomer transfer, apoptosis and lipid metabolism. Some of these could, of course, be indirect consequences of actin treadmilling functions, and this is discussed.
Collapse
Affiliation(s)
- Georgios Kanellos
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Margaret C Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
20
|
Lu Y, Cao L, Egami Y, Kawai K, Araki N. Cofilin contributes to phagocytosis of IgG-opsonized particles but not non-opsonized particles in RAW264 macrophages. Microscopy (Oxf) 2016; 65:233-42. [PMID: 26754560 DOI: 10.1093/jmicro/dfv376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/30/2015] [Indexed: 12/16/2022] Open
Abstract
Cofilin is an actin-binding protein that severs actin filaments. It plays a key role in regulating actin cytoskeletal remodeling, thereby contributing to diverse cellular functions. However, the involvement of cofilin in phagocytosis remains to be elucidated. We examined the spatiotemporal localization of cofilin during phagocytosis of IgG-opsonized erythrocytes, IgG-opsonized latex beads and non-opsonized latex beads. Live-cell imaging showed that GFP-cofilin accumulates in the sites of IgG-opsonized particle binding and in phagocytic cups. Moreover, immunofluorescence microscopy revealed that endogenous cofilin localizes to phagocytic cups engulfing IgG-opsonized particles, but not non-opsonized latex beads. Scanning electron microscopy demonstrated a notable difference in morphology between phagocytic structures in IgG-dependent and IgG-independent phagocytosis. In phagocytosis of IgG-opsonized particles, sheet-like pseudopodia extended along the surface of IgG-opsonized particles to form phagocytic cups. In contrast, in opsonin-independent phagocytosis, long finger-like filopodia captured non-opsonized latex beads. Importantly, non-opsonized beads sank into the cells without extending phagocytic cups. Our analysis of cofilin mutant expression demonstrates that phagocytosis of IgG-opsonized particles is enhanced in cells expressing wild-type cofilin or active mutant cofilin-S3A, whereas the uptake of non-opsonized latex beads is not. These data suggest that cofilin promotes actin cytoskeletal remodeling to form phagocytic cups by accelerating actin turnover and thereby facilitating phagosome formation. In contrast, cofilin is not involved in opsonin-independent phagocytosis of latex beads.
Collapse
Affiliation(s)
- Yanmeng Lu
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan Laboratory of Electron Microscopy, Southern Medical University, Guangzhou 510515, China
| | - Lei Cao
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan Department of Information Technology, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| |
Collapse
|
21
|
Chronophin coordinates cell leading edge dynamics by controlling active cofilin levels. Proc Natl Acad Sci U S A 2015; 112:E5150-9. [PMID: 26324884 DOI: 10.1073/pnas.1510945112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cofilin, a critical player of actin dynamics, is spatially and temporally regulated to control the direction and force of membrane extension required for cell locomotion. In carcinoma cells, although the signaling pathways regulating cofilin activity to control cell direction have been established, the molecular machinery required to generate the force of the protrusion remains unclear. We show that the cofilin phosphatase chronophin (CIN) spatiotemporally regulates cofilin activity at the cell edge to generate persistent membrane extension. We show that CIN translocates to the leading edge in a PI3-kinase-, Rac1-, and cofilin-dependent manner after EGF stimulation to activate cofilin, promotes actin free barbed end formation, accelerates actin turnover, and enhances membrane protrusion. In addition, we establish that CIN is crucial for the balance of protrusion/retraction events during cell migration. Thus, CIN coordinates the leading edge dynamics by controlling active cofilin levels to promote MTLn3 cell protrusion.
Collapse
|
22
|
Classic Ras Proteins Promote Proliferation and Survival via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells. J Neuropathol Exp Neurol 2015; 74:568-86. [PMID: 25946318 DOI: 10.1097/nen.0000000000000201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras, and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis, and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras, and K-Ras are coexpressed with their activators (guanine nucleotide exchange factors) in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells, and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras, and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation, and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades.
Collapse
|
23
|
Romarowski A, Battistone MA, La Spina FA, Puga Molina LDC, Luque GM, Vitale AM, Cuasnicu PS, Visconti PE, Krapf D, Buffone MG. PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis. Dev Biol 2015; 405:237-49. [PMID: 26169470 DOI: 10.1016/j.ydbio.2015.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023]
Abstract
Mammalian sperm must acquire their fertilizing ability after a series of biochemical modifications in the female reproductive tract collectively called capacitation to undergo acrosomal exocytosis, a process that is essential for fertilization. Actin dynamics play a central role in controlling the process of exocytosis in somatic cells as well as in sperm from several mammalian species. In somatic cells, small GTPases of the Rho family are widely known as master regulators of actin dynamics. However, the role of these proteins in sperm has not been studied in detail. In the present work we characterized the participation of small GTPases of the Rho family in the signaling pathway that leads to actin polymerization during mouse sperm capacitation. We observed that most of the proteins of this signaling cascade and their effector proteins are expressed in mouse sperm. The activation of the signaling pathways of cAMP/PKA, RhoA/C and Rac1 is essential for LIMK1 activation by phosphorylation on Threonine 508. Serine 3 of Cofilin is phosphorylated by LIMK1 during capacitation in a transiently manner. Inhibition of LIMK1 by specific inhibitors (BMS-3) resulted in lower levels of actin polymerization during capacitation and a dramatic decrease in the percentage of sperm that undergo acrosomal exocytosis. Thus, we demonstrated for the first time that the master regulators of actin dynamics in somatic cells are present and active in mouse sperm. Combining the results of our present study with other results from the literature, we have proposed a working model regarding how LIMK1 and Cofilin control acrosomal exocytosis in mouse sperm.
Collapse
Affiliation(s)
- Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María A Battistone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florenza A La Spina
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lis del C Puga Molina
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandra M Vitale
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia S Cuasnicu
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusets, Amherst, MA 01003, USA
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario 2000 Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
24
|
Hansen HT, Rasmussen SH, Adolph SK, Plass M, Krogh A, Sanford J, Nielsen FC, Christiansen J. Drosophila Imp iCLIP identifies an RNA assemblage coordinating F-actin formation. Genome Biol 2015; 16:123. [PMID: 26054396 PMCID: PMC4477473 DOI: 10.1186/s13059-015-0687-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/29/2015] [Indexed: 11/30/2022] Open
Abstract
Background Post-transcriptional RNA regulons ensure coordinated expression of monocistronic mRNAs encoding functionally related proteins. In this study, we employ a combination of RIP-seq and short- and long-wave individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) technologies in Drosophila cells to identify transcripts associated with cytoplasmic ribonucleoproteins (RNPs) containing the RNA-binding protein Imp. Results We find extensive binding of Imp to 3′ UTRs of transcripts that are involved in F-actin formation. A common denominator of the RNA–protein interface is the presence of multiple motifs with a central UA-rich element flanked by CA-rich elements. Experiments in single cells and intact flies reveal compromised actin cytoskeletal dynamics associated with low Imp levels. The former shows reduced F-actin formation and the latter exhibits abnormal neuronal patterning. This demonstrates a physiological significance of the defined RNA regulon. Conclusions Our data imply that Drosophila Imp RNPs may function as cytoplasmic mRNA assemblages that encode proteins which participate in actin cytoskeletal remodeling. Thus, they may facilitate coordinated protein expression in sub-cytoplasmic locations such as growth cones. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0687-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi Theil Hansen
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| | - Simon Horskjær Rasmussen
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| | - Sidsel Kramshøj Adolph
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| | - Mireya Plass
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| | - Anders Krogh
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| | - Jeremy Sanford
- MCD Biology, University of California, Santa Cruz, CA, 95064, USA.
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Jan Christiansen
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
25
|
Valenzuela-Iglesias A, Sharma VP, Beaty BT, Ding Z, Gutierrez-Millan LE, Roy P, Condeelis JS, Bravo-Cordero JJ. Profilin1 regulates invadopodium maturation in human breast cancer cells. Eur J Cell Biol 2015; 94:78-89. [PMID: 25613364 PMCID: PMC4322761 DOI: 10.1016/j.ejcb.2014.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 01/23/2023] Open
Abstract
Invadopodia are actin-driven membrane protrusions that show oscillatory assembly and disassembly causing matrix degradation to support invasion and dissemination of cancer cells in vitro and in vivo. Profilin1, an actin and phosphoinositide binding protein, is downregulated in several adenocarcinomas and it is been shown that its depletion enhances invasiveness and motility of breast cancer cells by increasing PI(3,4)P2 levels at the leading edge. In this study, we show for the first time that depletion of profilin1 leads to an increase in the number of mature invadopodia and these assemble and disassemble more rapidly than in control cells. Previous work by Sharma et al. (2013a), has shown that the binding of the protein Tks5 with PI(3,4)P2 confers stability to the invadopodium precursor causing it to mature into a degradation-competent structure. We found that loss of profilin1 expression increases the levels of PI(3,4)P2 at the invadopodium and as a result, enhances recruitment of the interacting adaptor Tks5. The increased PI(3,4)P2-Tks5 interaction accelerates the rate of invadopodium anchorage, maturation, and turnover. Our results indicate that profilin1 acts as a molecular regulator of the levels of PI(3,4)P2 and Tks5 recruitment in invadopodia to control the invasion efficiency of invadopodia.
Collapse
Affiliation(s)
- A Valenzuela-Iglesias
- Department of Scientific and Technological Research DICTUS, University of Sonora, Hermosillo, Mexico.
| | - V P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States
| | - B T Beaty
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States
| | - Z Ding
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - L E Gutierrez-Millan
- Department of Scientific and Technological Research DICTUS, University of Sonora, Hermosillo, Mexico
| | - P Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - J S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States.
| | - J J Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States.
| |
Collapse
|
26
|
Hughes RM, Lawrence DS. Optogenetic engineering: light-directed cell motility. Angew Chem Int Ed Engl 2014; 53:10904-7. [PMID: 25156888 PMCID: PMC4196877 DOI: 10.1002/anie.201404198] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/25/2014] [Indexed: 11/10/2022]
Abstract
Genetically encoded, light-activatable proteins provide the means to probe biochemical pathways at specific subcellular locations with exquisite temporal control. However, engineering these systems in order to provide a dramatic jump in localized activity, while retaining a low dark-state background remains a significant challenge. When placed within the framework of a genetically encodable, light-activatable heterodimerizer system, the actin-remodelling protein cofilin induces dramatic changes in the F-actin network and consequent cell motility upon illumination. We demonstrate that the use of a partially impaired mutant of cofilin is critical for maintaining low background activity in the dark. We also show that light-directed recruitment of the reduced activity cofilin mutants to the cytoskeleton is sufficient to induce F-actin remodeling, formation of filopodia, and directed cell motility.
Collapse
Affiliation(s)
- Robert M. Hughes
- Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry, and Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599 (USA)
| | - David S. Lawrence
- Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry, and Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599 (USA)
| |
Collapse
|
27
|
Hughes RM, Lawrence DS. Optogenetic Engineering: Light-Directed Cell Motility. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Lee ICJ, Leung T, Tan I. Adaptor protein LRAP25 mediates myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) regulation of LIMK1 protein in lamellipodial F-actin dynamics. J Biol Chem 2014; 289:26989-27003. [PMID: 25107909 DOI: 10.1074/jbc.m114.588079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) has been shown to localize to the lamella of mammalian cells through its interaction with an adaptor protein, leucine repeat adaptor protein 35a (LRAP35a), which links it with myosin 18A (MYO18A) for activation of the lamellar actomyosin network essential for cell migration. Here, we report the identification of another adaptor protein LRAP25 that mediates MRCK association with LIM kinase 1 (LIMK1). The lamellipodium-localized LRAP25-MRCK complex is essential for the regulation of local LIMK1 and its downstream F-actin regulatory factor cofilin. Functionally, inhibition of either MRCK or LRAP25 resulted in a marked suppression of LIMK1 activity and down-regulation of cofilin phosphorylation in response to aluminum fluoride induction in B16-F1 cells, which eventually resulted in deregulation of lamellipodial F-actin and reorganization of cytoskeletal structures causing defects in cell polarization and motility. These biochemical and functional characterizations thus underline the functional relevance of the LRAP25-MRCK complex in LIMK1-cofilin signaling and the importance of LRAP adaptors as key determinants of MRCK cellular localization and downstream specificities.
Collapse
Affiliation(s)
- Irene Cheng Jie Lee
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673 and; Department of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | - Thomas Leung
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673 and; Department of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | - Ivan Tan
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673 and.
| |
Collapse
|
29
|
Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 2014; 82:444-59. [PMID: 24742465 DOI: 10.1016/j.neuron.2014.03.021] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 11/13/2022]
Abstract
Synapses store information by long-lasting modifications of their structure and molecular composition, but the precise chronology of these changes has not been studied at single-synapse resolution in real time. Here we describe the spatiotemporal reorganization of postsynaptic substructures during long-term potentiation (LTP) at individual dendritic spines. Proteins translocated to the spine in four distinct patterns through three sequential phases. In the initial phase, the actin cytoskeleton was rapidly remodeled while active cofilin was massively transported to the spine. In the stabilization phase, cofilin formed a stable complex with F-actin, was persistently retained at the spine, and consolidated spine expansion. In contrast, the postsynaptic density (PSD) was independently remodeled, as PSD scaffolding proteins did not change their amount and localization until a late protein synthesis-dependent third phase. Our findings show how and when spine substructures are remodeled during LTP and explain why synaptic plasticity rules change over time.
Collapse
Affiliation(s)
- Miquel Bosch
- RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jorge Castro
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Takeo Saneyoshi
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Hitomi Matsuno
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yasunori Hayashi
- RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; Saitama University Brain Science Institute, Saitama University, Saitama 338-8570, Japan.
| |
Collapse
|
30
|
Raungrut P, Wongkotsila A, Lirdprapamongkol K, Svasti J, Geater SL, Phukaoloun M, Suwiwat S, Thongsuksai P. Prognostic Significance of 14-3-3γ Overexpression in Advanced Non-Small Cell Lung Cancer. Asian Pac J Cancer Prev 2014; 15:3513-8. [DOI: 10.7314/apjcp.2014.15.8.3513] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Calabrese B, Saffin JM, Halpain S. Activity-dependent dendritic spine shrinkage and growth involve downregulation of cofilin via distinct mechanisms. PLoS One 2014; 9:e94787. [PMID: 24740405 PMCID: PMC3989342 DOI: 10.1371/journal.pone.0094787] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/19/2014] [Indexed: 01/09/2023] Open
Abstract
A current model posits that cofilin-dependent actin severing negatively impacts dendritic spine volume. Studies suggested that increased cofilin activity underlies activity-dependent spine shrinkage, and that reduced cofilin activity induces activity-dependent spine growth. We suggest instead that both types of structural plasticity correlate with decreased cofilin activity. However, the mechanism of inhibition determines the outcome for spine morphology. RNAi in rat hippocampal cultures demonstrates that cofilin is essential for normal spine maintenance. Cofilin-F-actin binding and filament barbed-end production decrease during the early phase of activity-dependent spine shrinkage; cofilin concentration also decreases. Inhibition of the cathepsin B/L family of proteases prevents both cofilin loss and spine shrinkage. Conversely, during activity-dependent spine growth, LIM kinase stimulates cofilin phosphorylation, which activates phospholipase D-1 to promote actin polymerization. These results implicate novel molecular mechanisms and prompt a revision of the current model for how cofilin functions in activity-dependent structural plasticity.
Collapse
Affiliation(s)
- Barbara Calabrese
- Division of Biological Sciences, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jean-Michel Saffin
- Division of Biological Sciences, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Shelley Halpain
- Division of Biological Sciences, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Veit F, Pak O, Egemnazarov B, Roth M, Kosanovic D, Seimetz M, Sommer N, Ghofrani HA, Seeger W, Grimminger F, Brandes RP, Schermuly RT, Weissmann N. Function of NADPH oxidase 1 in pulmonary arterial smooth muscle cells after monocrotaline-induced pulmonary vascular remodeling. Antioxid Redox Signal 2013; 19:2213-31. [PMID: 23706097 DOI: 10.1089/ars.2012.4904] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS Chronic hypoxia induces pulmonary hypertension (PH) that is concomitant with pulmonary vascular remodeling. Reactive oxygen species (ROS) are thought to play a major role in this. Recent findings suggest that ROS production by NADPH oxidase 4 (Nox4) is important in this remodeling. We investigated whether ROS production by Nox is also important in an inflammatory model of monocrotaline (MCT)-induced PH. We examined ROS production, their possible sources, and their impact on the function of pulmonary arterial smooth muscle cells (PASMC) isolated from MCT-treated and healthy rats. RESULTS MCT-PASMC showed increased intracellular superoxide production, migration, and proliferation compared with healthy controls due to increased Nox1 expression. A comparison of PASMC from MCT- and nontreated rats revealed an up-regulation of Sod2, Nrf2, cyclin D1, and matrix metalloproteinase-9 (MMP-9) as well as an increased phosphorylation of cofilin and extracellular signal-regulated kinases (Erk). Expression of Sod2, Nrf2, and cyclin D1 and phosphorylation of cofilin and Erk were Nox1 dependent. INNOVATION The role of ROS in PH is not fully understood. Mitochondria and Nox have been suggested as sources of altered ROS generation in PH, yet it remains unclear whether increased or decreased ROS contributes to the development of PH. Our studies provide evidence that for different triggers of PH, different Nox isoforms regulate proliferation and migration of PASMC. CONCLUSION In contrast to hypoxia-induced PH, Nox1 but not Nox4 is responsible for pathophysiological proliferation and migration of PASMC in an inflammatory model of MCT-induced PH via increased superoxide production. Thus, different Nox isoforms may be targeted in different forms of PH.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellencecluster Cardio-Pulmonary System (ECCPS), German Lung Center (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen , Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang B, Yin C, Li H, Shi L, Liu N, Sun Y, Lu S, Liu Y, Sun L, Li X, Chen W, Qi Y. Nir1 promotes invasion of breast cancer cells by binding to chemokine (C-C motif) ligand 18 through the PI3K/Akt/GSK3β/Snail signalling pathway. Eur J Cancer 2013; 49:3900-3913. [PMID: 24001613 DOI: 10.1016/j.ejca.2013.07.146] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/30/2013] [Accepted: 07/29/2013] [Indexed: 12/22/2022]
Abstract
Chemokine (C-C motif) ligand 18 (CCL18), which is derived from tumour-associated macrophages (TAMs), plays a critical role in promoting breast cancer metastasis via its receptor, PYK2 N-terminal domain interacting receptor 1 (Nir1). However, the molecular mechanism by which Nir1 promotes breast cancer metastasis by binding to CCL18 remains elusive. In this study, Nir1 expression was associated with lymph node and distant metastasis in patients with invasive ductal carcinoma. For the first time, we report that Nir1 binding to CCL18 promotes the phosphorylation of Akt, LIN-11, Isl1 and MEC-3 protein domain kinase (LIMK), and cofilin, which is a critical step in cofilin recycling and actin polymerisation. Interestingly, Nir1 binding to CCL18 can enhance cell mesenchymal properties and induce epithelial-mesenchymal transition (EMT). Mechanistically, Nir1 binding to CCL18 stabilises Snail via the Akt/GSK3β signalling pathway. In support of these observations, Nir1 binding to CCL18 promoted lung metastasis and LY294002 could inhibit it in vivo. In summary, our in vitro and in vivo results indicate that Nir1 binding to CCL18 plays an important role in breast cancer invasion/metastasis. This study identified both Nir1 and CCL18 as potential anti-invasion targets for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Baogang Zhang
- Department of Pathology, Key Clinical Specialty for Pathology of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang 261053, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yin C, Li H, Zhang B, Liu Y, Lu G, Lu S, Sun L, Qi Y, Li X, Chen W. RAGE-binding S100A8/A9 promotes the migration and invasion of human breast cancer cells through actin polymerization and epithelial-mesenchymal transition. Breast Cancer Res Treat 2013; 142:297-309. [PMID: 24177755 DOI: 10.1007/s10549-013-2737-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/12/2013] [Indexed: 01/17/2023]
Abstract
S100A8/A9 proteins are members of EF-hand calcium-binding proteins secreted by neutrophils and activated monocytes. S100A8/A9 has cell growth-promoting activity at low concentrations by binding to the receptor for advanced glycation end products (RAGE). In this study, we report for the first time that S100A8/A9 promoted the invasion of breast cancer cells depending on RAGE. In addition, RAGE binding to S100A8/A9 promoted the phosphorylation of LIN-11, Isl1, and MEC-3 protein domain kinase, as well as cofilin. This phosphorylation is a critical step in cofilin recycling and actin polymerization. Interestingly, RAGE binding to S100A8/A9 enhanced cell mesenchymal properties and induced epithelial-mesenchymal transition. Mechanistically, RAGE binding to S100A8/A9 stabilized Snail through the NF-κB signaling pathway. Based on these observations, RAGE expression in breast cancer cells was associated with lymph node and distant metastases in patients with invasive ductal carcinoma. Moreover, RAGE binding to S100A8/A9 promoted lung metastasis in vivo. In summary, our in vitro and in vivo results indicated that RAGE binding to S100A8/A9 played an important role in breast cancer invasion/metastasis. This study identified both RAGE and S100A8/A9 as potential anti-invasion targets for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Chonggao Yin
- College of Nursing, Weifang Medical University, Weifang, 261053, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shaheed SU, Rustogi N, Scally A, Wilson J, Thygesen H, Loizidou MA, Hadjisavvas A, Hanby A, Speirs V, Loadman P, Linforth R, Kyriacou K, Sutton CW. Identification of stage-specific breast markers using quantitative proteomics. J Proteome Res 2013; 12:5696-708. [PMID: 24106833 DOI: 10.1021/pr400662k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Matched healthy and diseased tissues from breast cancer patients were analyzed by quantitative proteomics. By comparing proteomic profiles of fibroadenoma (benign tumors, three patients), DCIS (noninvasive cancer, three patients), and invasive ductal carcinoma (four patients), we identified protein alterations that correlated with breast cancer progression. Three 8-plex iTRAQ experiments generated an average of 826 protein identifications, of which 402 were common. After excluding those originating from blood, 59 proteins were significantly changed in tumor compared with normal tissues, with the majority associated with invasive carcinomas. Bioinformatics analysis identified relationships between proteins in this subset including roles in redox regulation, lipid transport, protein folding, and proteasomal degradation, with a substantial number increased in expression due to Myc oncogene activation. Three target proteins, cofilin-1 and p23 (increased in invasive carcinoma) and membrane copper amine oxidase 3 (decreased in invasive carcinoma), were subjected to further validation. All three were observed in phenotype-specific breast cancer cell lines, normal (nontransformed) breast cell lines, and primary breast epithelial cells by Western blotting, but only cofilin-1 and p23 were detected by multiple reaction monitoring mass spectrometry analysis. All three proteins were detected by both analytical approaches in matched tissue biopsies emulating the response observed with proteomics analysis. Tissue microarray analysis (361 patients) indicated cofilin-1 staining positively correlating with tumor grade and p23 staining with ER positive status; both therefore merit further investigation as potential biomarkers.
Collapse
Affiliation(s)
- Sadr-ul Shaheed
- Institute of Cancer Therapeutics, University of Bradford , Tumbling Hill Street, Bradford BD7 1DP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schulte B, John I, Simon B, Brockmann C, Oelmeier SA, Jahraus B, Kirchgessner H, Riplinger S, Carlomagno T, Wabnitz GH, Samstag Y. A reducing milieu renders cofilin insensitive to phosphatidylinositol 4,5-bisphosphate (PIP2) inhibition. J Biol Chem 2013; 288:29430-9. [PMID: 24003227 PMCID: PMC3795243 DOI: 10.1074/jbc.m113.479766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress can lead to T cell hyporesponsiveness. A reducing micromilieu (e.g. provided by dendritic cells) can rescue T cells from such oxidant-induced dysfunction. However, the reducing effects on proteins leading to restored T cell activation remained unknown. One key molecule of T cell activation is the actin-remodeling protein cofilin, which is dephosphorylated on serine 3 upon T cell costimulation and has an essential role in formation of mature immune synapses between T cells and antigen-presenting cells. Cofilin is spatiotemporally regulated; at the plasma membrane, it can be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2). Here, we show by NMR spectroscopy that a reducing milieu led to structural changes in the cofilin molecule predominantly located on the protein surface. They overlapped with the PIP2- but not actin-binding sites. Accordingly, reduction of cofilin had no effect on F-actin binding and depolymerization and did not influence the cofilin phosphorylation state. However, it did prevent inhibition of cofilin activity through PIP2. Therefore, a reducing milieu may generate an additional pool of active cofilin at the plasma membrane. Consistently, in-flow microscopy revealed increased actin dynamics in the immune synapse of untransformed human T cells under reducing conditions. Altogether, we introduce a novel mechanism of redox regulation: reduction of the actin-remodeling protein cofilin renders it insensitive to PIP2 inhibition, resulting in enhanced actin dynamics.
Collapse
Affiliation(s)
- Bianca Schulte
- From the Institute for Immunology, Ruprecht Karls University, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ditlev JA, Mayer BJ, Loew LM. There is more than one way to model an elephant. Experiment-driven modeling of the actin cytoskeleton. Biophys J 2013; 104:520-32. [PMID: 23442903 DOI: 10.1016/j.bpj.2012.12.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022] Open
Abstract
Mathematical modeling has established its value for investigating the interplay of biochemical and mechanical mechanisms underlying actin-based motility. Because of the complex nature of actin dynamics and its regulation, many of these models are phenomenological or conceptual, providing a general understanding of the physics at play. But the wealth of carefully measured kinetic data on the interactions of many of the players in actin biochemistry cries out for the creation of more detailed and accurate models that could permit investigators to dissect interdependent roles of individual molecular components. Moreover, no human mind can assimilate all of the mechanisms underlying complex protein networks; so an additional benefit of a detailed kinetic model is that the numerous binding proteins, signaling mechanisms, and biochemical reactions can be computationally organized in a fully explicit, accessible, visualizable, and reusable structure. In this review, we will focus on how comprehensive and adaptable modeling allows investigators to explain experimental observations and develop testable hypotheses on the intracellular dynamics of the actin cytoskeleton.
Collapse
Affiliation(s)
- Jonathon A Ditlev
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | |
Collapse
|
38
|
Bravo-Cordero JJ, Magalhaes MAO, Eddy RJ, Hodgson L, Condeelis J. Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 2013; 14:405-15. [PMID: 23778968 DOI: 10.1038/nrm3609] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, a consensus has emerged that cofilin severing activity can generate free actin filament ends that are accessible for F-actin polymerization and depolymerization without changing the rate of G-actin association and dissociation at either filament end. The structural basis of actin filament severing by cofilin is now better understood. These results have been integrated with recently discovered mechanisms for cofilin activation in migrating cells, which led to new models for cofilin function that provide insights into how cofilin regulation determines the temporal and spatial control of cell behaviour.
Collapse
Affiliation(s)
- Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
39
|
Bravo-Cordero JJ, Sharma VP, Roh-Johnson M, Chen X, Eddy R, Condeelis J, Hodgson L. Spatial regulation of RhoC activity defines protrusion formation in migrating cells. J Cell Sci 2013; 126:3356-69. [PMID: 23704350 DOI: 10.1242/jcs.123547] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protrusion formation is the first step that precedes cell movement of motile cells. Spatial control of actin polymerization is necessary to achieve directional protrusion during cell migration. Here we show that the spatial coordinators p190RhoGEF and p190RhoGAP regulate actin polymerization during leading edge protrusions by regulating the actin barbed end distribution and amplitude. The distribution of RhoC activity and proper balance of cofilin activation achieved by p190RhoGEF and p190RhoGAP determines the direction of final protrusive activity. These findings provide a new insight into the dynamic plasticity in the amplitude and distribution of barbed ends, which can be modulated by fine-tuning RhoC activity by upstream GEFs and GAPs for directed cell motility.
Collapse
Affiliation(s)
- Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Chung H, Kim B, Jung SH, Won KJ, Jiang X, Lee CK, Lim SD, Yang SK, Song KH, Kim HS. Does phosphorylation of cofilin affect the progression of human bladder cancer? BMC Cancer 2013; 13:45. [PMID: 23374291 PMCID: PMC3568060 DOI: 10.1186/1471-2407-13-45] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/28/2013] [Indexed: 12/11/2022] Open
Abstract
Background We determined the differently expressed protein profiles and their functions in bladder cancer tissues with the aim of identifying possible target proteins and underlying molecular mechanisms for taking part in their progression. Methods We examined the expression of proteins by proteomic analysis and western blot in normal urothelium, non-muscle-invasive bladder cancers (NMIBCs), and muscle-invasive bladder cancers (MIBCs). The function of cofilin was analyzed using T24 human bladder cancer cells. Results The expression levels of 12 proteins were altered between bladder cancers and normal bladder tissues. Of these proteins, 14-3-3σ was upregulated in both NMIBCs and MIBCs compared with controls. On the other hand, myosin regulatory light chain 2, galectin-1, lipid-binding AI, annexin V, transthyretin, CARD-inhibitor of NF-κB-activating ligand, and actin prepeptide were downregulated in cancer samples. Cofilin, an actin-depolymerizing factor, was prominent in both NMIBCs and MIBCs compared with normal bladder tissues. Furthermore, we confirmed that cofilin phosphorylation was more prominent in MIBCs than in NMIBCs using immunoblotting and immunohistochemcal analyses. Epidermal growth factor (EGF) increased the phosphorylation of cofilin and elevated the migration in T24 cells. Knockdown of cofilin expression with small interfering RNA attenuated the T24 cell migration in response to EGF. Conclusions These results demonstrate that the increased expression and phosphorylation of cofilin might play a role in the occurrence and invasiveness of bladder cancer. We suspected that changes in cofilin expression may participate in the progression of the bladder cancer.
Collapse
Affiliation(s)
- Hong Chung
- Department of Urology, School of Medicine, Konkuk University, 82 Gugwon-daero, Chungju, Chungbuk 380-704, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Veith C, Schmitt S, Veit F, Dahal BK, Wilhelm J, Klepetko W, Marta G, Seeger W, Schermuly RT, Grimminger F, Ghofrani HA, Fink L, Weissmann N, Kwapiszewska G. Cofilin, a hypoxia-regulated protein in murine lungs identified by 2DE: Role of the cytoskeletal protein cofilin in pulmonary hypertension. Proteomics 2013; 13:75-88. [DOI: 10.1002/pmic.201200206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 10/08/2012] [Accepted: 10/29/2012] [Indexed: 01/18/2023]
Affiliation(s)
- Christine Veith
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Sigrid Schmitt
- Department of Biochemistry; University of Giessen; Giessen Germany
| | - Florian Veit
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Bhola Kumar Dahal
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Walter Klepetko
- Department of Cardiac Surgery; University of Vienna; Vienna Austria
| | - Gabriel Marta
- Department of Cardiac Surgery; University of Vienna; Vienna Austria
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | | | | | | | - Ludger Fink
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Grazyna Kwapiszewska
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
- Ludwig Boltzmann Institute for Lung Vascular Research; Graz Austria
| |
Collapse
|
42
|
Cytoskeleton and nucleotide signaling in glioma C6 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:103-19. [PMID: 22879066 DOI: 10.1007/978-94-007-4719-7_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter describes signaling pathways stimulated by the P2Y(2) nucleotide receptor (P2Y(2)R), that regulate cellular processes dependent on actin cytoskeleton dynamics in glioma C6 cells. P2Y(2)R coupled with G-proteins, in response to ATP or UTP, regulates the level of phosphatidylinositol-4,5-bisphosphate (PIP(2)) which modulates a variety of actin binding proteins and is involved in calcium response and activates Rac1 and RhoA proteins. The RhoA/ROCK signaling pathway plays an important role in contractile force generation needed for the assembly of stress fibers, focal adhesions and for tail retraction during cell migration. Blocking of this pathway by a specific Rho-kinase inhibitor induces changes in F-actin organization and cell shape and decreases the level of phosphorylated myosin II and cofilin. In glioma C6 cells these changes are reversed after UTP stimulation of P2Y(2)R. Signaling pathways responsible for this compensation are connected with calcium signaling. Stimulation of the Rac1 mediated pathway via G(o) proteins needs additional interaction between α(v)β(5) integrins and P2Y(2)Rs. Rac1 activation is necessary for cofilin phosphorylation as well as integrin activation needed for focal complexes formation and stabilization of lamellipodium. Inhibition of positive Rac1 regulation prevents glioma C6 cells from recovery of control cell like morphology.
Collapse
|
43
|
Jayo A, Parsons M, Adams JC. A novel Rho-dependent pathway that drives interaction of fascin-1 with p-Lin-11/Isl-1/Mec-3 kinase (LIMK) 1/2 to promote fascin-1/actin binding and filopodia stability. BMC Biol 2012; 10:72. [PMID: 22883572 PMCID: PMC3488970 DOI: 10.1186/1741-7007-10-72] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/10/2012] [Indexed: 12/24/2022] Open
Abstract
Background Fascin-1 is an actin crosslinking protein that is important for the assembly of cell protrusions in neurons, skeletal and smooth muscle, fibroblasts, and dendritic cells. Although absent from most normal adult epithelia, fascin-1 is upregulated in many human carcinomas, and is associated with poor prognosis because of its promotion of carcinoma cell migration, invasion, and metastasis. Rac and Cdc42 small guanine triphosphatases have been identified as upstream regulators of the association of fascin-1 with actin, but the possible role of Rho has remained obscure. Additionally, experiments have been hampered by the inability to measure the fascin-1/actin interaction directly in intact cells. We investigated the hypothesis that fascin-1 is a functional target of Rho in normal and carcinoma cells, using experimental approaches that included a novel fluorescence resonance energy transfer (FRET)/fluorescence lifetime imaging (FLIM) method to measure the interaction of fascin-1 with actin. Results Rho activity modulates the interaction of fascin-1 with actin, as detected by a novel FRET method, in skeletal myoblasts and human colon carcinoma cells. Mechanistically, Rho regulation depends on Rho kinase activity, is independent of the status of myosin II activity, and is not mediated by promotion of the fascin/PKC complex. The p-Lin-11/Isl-1/Mec-3 kinases (LIMK), LIMK1 and LIMK2, act downstream of Rho kinases as novel binding partners of fascin-1, and this complex regulates the stability of filopodia. Conclusions We have identified a novel activity of Rho in promoting a complex between fascin-1 and LIMK1/2 that modulates the interaction of fascin-1 with actin. These data provide new mechanistic insight into the intracellular coordination of contractile and protrusive actin-based structures. During the course of the study, we developed a novel FRET method for analysis of the fascin-1/actin interaction, with potential general applicability for analyzing the activities of actin-binding proteins in intact cells.
Collapse
Affiliation(s)
- Asier Jayo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
44
|
Poukkula M, Kremneva E, Serlachius M, Lappalainen P. Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken) 2011; 68:471-90. [PMID: 21850706 DOI: 10.1002/cm.20530] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/29/2011] [Accepted: 08/05/2011] [Indexed: 11/09/2022]
Abstract
Actin filaments form contractile and protrusive structures that play central roles in many processes such as cell migration, morphogenesis, endocytosis, and cytokinesis. During these processes, the dynamics of the actin filaments are precisely regulated by a large array of actin-binding proteins. The actin-depolymerizing factor homology (ADF-H) domain is a structurally conserved protein motif, which promotes cytoskeletal dynamics by interacting with monomeric and/or filamentous actin, and with the Arp2/3 complex. Despite their structural homology, the five classes of ADF-H domain proteins display distinct biochemical activities and cellular roles, only parts of which are currently understood. ADF/cofilin promotes disassembly of aged actin filaments, whereas twinfilin inhibits actin filament assembly via sequestering actin monomers and interacting with filament barbed ends. GMF does not interact with actin, but instead binds Arp2/3 complex and promotes dissociation of Arp2/3-mediated filament branches. Abp1 and drebrin are multidomain proteins that interact with actin filaments and regulate the activities of other proteins during various actin-dependent processes. The exact function of coactosin is currently incompletely understood. In this review article, we discuss the biochemical functions, cellular roles, and regulation of the five groups of ADF-H domain proteins.
Collapse
Affiliation(s)
- Minna Poukkula
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
45
|
Tania N, Prosk E, Condeelis J, Edelstein-Keshet L. A temporal model of cofilin regulation and the early peak of actin barbed ends in invasive tumor cells. Biophys J 2011; 100:1883-92. [PMID: 21504724 DOI: 10.1016/j.bpj.2011.02.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/27/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022] Open
Abstract
Cofilin is an important regulator of actin polymerization, cell migration, and chemotaxis. Recent experimental data on mammary carcinoma cells reveal that stimulation by epidermal growth factor (EGF) generates a pool of active cofilin that results in a peak of actin filament barbed ends on the timescale of 1 min. Here, we present results of a mathematical model for the dynamics of cofilin and its transition between several pools in response to EGF stimulation. We describe the interactions of phospholipase C, membrane lipids (PIP(2)), and cofilin bound to PIP(2) and to F-actin, as well as diffusible cofilin in active G-actin-monomer-bound or phosphorylated states. We consider a simplified representation in which the thin cell edge (lamellipod) and the cell interior are represented by two compartments that are linked by diffusion. We demonstrate that a high basal level of active cofilin stored by binding to PIP(2), as well as the highly enriched local milieu of F-actin at the cell edge, is essential to capture the EGF-induced barbed-end amplification observed experimentally.
Collapse
Affiliation(s)
- Nessy Tania
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
46
|
Abstract
The actin cytoskeleton is indispensable for normal cellular function. In particular, several actin-based structures coordinate cellular motility, a process hijacked by tumor cells in order to facilitate their propagation to distant sites. The actin cytoskeleton, therefore, represents a point for chemotherapeutic intervention. The challenge in disrupting the actin cytoskeleton is in preserving actin-driven contraction of cardiac and skeletal muscle. By targeting actin-binding proteins with altered expression in malignancy, it may be possible to achieve tumor-specific toxicity. A number of actin-binding proteins act cooperatively and synergistically to regulate actin structures required for motility. The actin cytoskeleton is characterized by a significant degree of plasticity. Targeting specific actin-binding proteins for chemotherapy will only be successful if no other compensatory mechanisms exist.
Collapse
|
47
|
Bravo-Cordero JJ, Oser M, Chen X, Eddy R, Hodgson L, Condeelis J. A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol 2011; 21:635-44. [PMID: 21474314 PMCID: PMC3081966 DOI: 10.1016/j.cub.2011.03.039] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/28/2011] [Accepted: 03/14/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND RhoGTPases have been implicated in the regulation of cancer metastasis. Invasive carcinoma cells form invadopodia, F-actin-rich matrix-degrading protrusions that are thought to be important for tumor cell invasion and intravasation. Regulation of actin dynamics at invadopodial protrusions is crucial to drive invasion. This process requires the severing activity of cofilin to generate actin-free barbed ends. Previous work demonstrates that cofilin's severing activity is tightly regulated through multiple mechanisms, including regulation of cofilin serine phosphorylation by Rho GTPases. However, it is not known which Rho GTPase is involved in regulating cofilin's phosphorylation status at invadopodia. RESULTS We show here, for the first time, how RhoC activation is controlled at invadopodia and how this activation regulates cofilin phosphorylation to control cofilin's generation of actin-free barbed ends. Live-cell imaging of fluorescent RhoC biosensor reveals that RhoC activity is spatially confined to areas surrounding invadopodia. This spatiotemporal restriction of RhoC activity is controlled by "spatially distinct regulatory elements" that confine RhoC activation within this compartment. p190RhoGEF localizes around invadopodia to activate RhoC, whereas p190RhoGAP localizes inside invadopodia to deactivate the GTPase within the structure. RhoC activation enhances cofilin phosphorylation outside invadopodia. CONCLUSION These results show how RhoC activity is spatially regulated at invadopodia by p190RhoGEF and p190RhoGAP. RhoC activation in areas surrounding invadopodia restricts cofilin activity to within the invadopodium core, resulting in a focused invadopodial protrusion. This mechanism likely enhances tumor cell invasion during metastasis.
Collapse
Affiliation(s)
- Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Spiering D, Hodgson L. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr 2011; 5:170-80. [PMID: 21178402 PMCID: PMC3084983 DOI: 10.4161/cam.5.2.14403] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/07/2010] [Indexed: 01/10/2023] Open
Abstract
The p21 Rho-family of small GTPases are master regulators of actin cytoskeleton rearrangements. Their functions have been well characterized in terms of their effects toward various actin-modulating protein targets. However, more recent studies have shown that the dynamics of Rho GTPase activities are highly complex and tightly regulated in order to achieve their specific subcellular localization. Furthermore, these localized effects are highly dynamic, often spanning the time-scale of seconds, making the interpretation of traditional biochemical approaches inadequate to fully decipher these rapid mechanisms in vivo. Here, we provide an overview of Rho family GTPase biology, and introduce state-of-the-art approaches to study the dynamics of these important signaling proteins that ultimately coordinate the actin cytoskeleton rearrangements during cell migration.
Collapse
Affiliation(s)
- Désirée Spiering
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine of Yeshiva University; Bronx, NY USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine of Yeshiva University; Bronx, NY USA
- Gruss Lipper Biophotonics Center; Albert Einstein College of Medicine of Yeshiva University; Bronx, NY USA
| |
Collapse
|
49
|
Mak AS. p53 regulation of podosome formation and cellular invasion in vascular smooth muscle cells. Cell Adh Migr 2011; 5:144-9. [PMID: 21164280 DOI: 10.4161/cam.5.2.14375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The p53 transcription factor, discovered in 1979 ( 1;2) , is well known as a potent suppressor of tumor development by inhibiting cell cycle progression, and promoting senescence or apoptosis, when the genome is compromised or under oncogenic stress ( 3) . Accumulating evidence has pointed to an alternative role of p53 in the curtailment of tumor progression and colonization of secondary sites by negatively regulating tumor cell metastasis ( 4;5) . Recently, we have found that p53 suppresses Src-induced formation of podosomes and associated invasive phenotypes in fibroblasts and vascular smooth muscle cells (VSMC) ( 6;7) . In this review, I will focus on some recent studies that have identified p53 as a suppressor of cell migration and invasion in general, and VSMC podosome formation and ECM degradation in particular.
Collapse
Affiliation(s)
- Alan S Mak
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
50
|
Manetti F. LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators. Med Res Rev 2011; 32:968-98. [PMID: 22886629 DOI: 10.1002/med.20230] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The LIM kinases 1 and 2 (LIMK1 and LIMK2) are dual specificity (serine/threonine and tyrosine) kinases. Although they show significant structural similarity, LIMK1 and LIMK2 show different expression, subcellular localization, and functions. They are involved in many cellular functions, such as migration, cycle, and neuronal differentiation and also have a role in pathological processes, such as cancer cell invasion and metastatis, as well as in neurodevelopmental disorders (namely, the William's syndrome). LIM kinases have a relevant number of known partners that are able to induce or limit the ability of LIMK1 and LIMK2 to phosphorylate and inactivate their major substrate, cofilin. On the contrary, only a limited number of small molecules that interact with the two proteins to modulate their kinase activity have been identified. In this review, the most important partners of LIM kinases and their modulating activity toward LIMKs are described. The small compounds identified as LIMK1 and LIMK2 modulators are also reported, as well as their role as possible therapeutic agents for LIMK-induced diseases.
Collapse
Affiliation(s)
- Fabrizio Manetti
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, via Alcide de Gasperi 2, I-53100 Siena, Italy.
| |
Collapse
|