1
|
Robinson KS, Sennhenn P, Yuan DS, Liu H, Taddei D, Qian Y, Luo W. TMBIM6/BI-1 is an intracellular environmental regulator that induces paraptosis in cancer via ROS and Calcium-activated ERAD II pathways. Oncogene 2025; 44:494-512. [PMID: 39609612 PMCID: PMC11832424 DOI: 10.1038/s41388-024-03222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Transmembrane B cell lymphoma 2-associated X protein inhibitor motif-containing (TMBIM) 6, also known as Bax Inhibitor-1 (BI-1), has been heavily researched for its cytoprotective functions. TMBIM6 functional diversity includes modulating cell survival, stress, metabolism, cytoskeletal dynamics, organelle function, regulating cytosolic acidification, calcium, and reactive oxygen species (ROS). Clinical research shows TMBIM6 plays a key role in many of the world's top diseases/injuries (i.e., Alzheimer's, Parkinson's, diabetes, obesity, brain injury, liver disease, heart disease, aging, etc.), including cancer, where TMBIM6 expression impacts patient survival, chemoresistance, cancer progression, and metastasis. We show TMBIM6 is activated by, and undergoes, different conformational changes that dictate its function following a significant change in the cell's IntraCellular Environment (ICE). TMBIM6 agonism, following ICE change, can help the cell overcome multiple stresses including toxin exposure, viral infection, wound healing, and excitotoxicity. However, in cancer cells TMBIM6 agonism results in rapid paraptotic induction irrespective of the cancer type, sub-type, genotype or phenotype. Furthermore, the level of TMBIM6 expression in cancer did not dictate the level of paraptotic induction; however, it did dictate the rate at which paraptosis occurred. TMBIM6 agonism did not induce paraptosis in cancer via canonical routes involving p38 MAPK, JNK, ERK, UPR, autophagy, proteasomes, or Caspase-9. Instead, TMBIM6 agonism in cancer upregulates cytosolic Ca2+ and ROS, activates lysosome biogenesis, and induces paraptosis via ERAD II mechanisms. In xenograft models, we show TMBIM6 agonism induces rapid cancer cell death with no toxicity, even at high doses of TMBIM6 agonist (>450 mg/kg). In summary, this study shows TMBIM6's functional diversity is only activated by severe ICE change in diseased/injured cells, highlighting its transformative potential as a therapeutic target across various diseases and injuries, including cancer.
Collapse
Affiliation(s)
| | | | | | - Hai Liu
- Viva Biotech, Shanghai, China
| | | | | | - Wei Luo
- MicroQuin, Cambridge, MA, USA
| |
Collapse
|
2
|
Huang LY, Liu YN, Chen J, Zhu HX, Li LL, Liang ZY, Song JX, Li YJ, Hu ZL, Demon D, Wullaert A, Wang W, Qi SH. Caspase-12 is Expressed in Purkinje Neurons and Prevents Psychiatric-Like Behavior in Mice. Mol Neurobiol 2025; 62:1705-1719. [PMID: 39023795 DOI: 10.1007/s12035-024-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Caspase-12 is a caspase family member for which functions in regulating cell death and inflammation have previously been suggested. In this study, we used caspase-12 lacZ reporter mice to elucidate the expression pattern of caspase-12 in order to obtain an idea about its possible in vivo function. Strikingly, these reporter mice showed that caspase-12 is expressed explicitly in Purkinje neurons of the cerebellum. As this observation suggested a function for caspase-12 in Purkinje neurons, we analyzed the brain and behavior of caspase-12 deficient mice in detail. Extensive histological analyses showed that caspase-12 was not crucial for establishing cerebellum structure or for maintaining Purkinje cell numbers. We then performed behavioral tests to investigate whether caspase-12 deficiency affects memory, motor, and psychiatric functions in mice. Interestingly, while the absence of caspase-12 did not affect memory and motor function, caspase-12 deficient mice showed depression and hyperactivity tendencies, together resembling manic behavior. Next, suggesting a possible molecular mechanistic explanation, we showed that caspase-12 deficient cerebella harbored diminished signaling through the brain-derived neurotrophic factor/tyrosine kinase receptor B/cyclic-AMP response binding protein axis, as well as strongly enhanced expression of the neuronal activity marker c-Fos. Thus, our study establishes caspase-12 expression in mouse Purkinje neurons and opens novel avenues of research to investigate the role of caspase-12 in regulating psychiatric behavior.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Yi-Ning Liu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jie Chen
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou, 221002, China
| | - Hai-Xue Zhu
- Department of Ophthalmology, The Affiliated Huai'an Hospital of Xuzhou Medical University, No.62 Huaihai South Road, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Li-Li Li
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Zhi-Yan Liang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jin-Xiu Song
- Department of Pharmacology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Yu-Jie Li
- Department of Clinical Laboratory, Kunshan First People's Hospital, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Zhao-Li Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dieter Demon
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
- Cell Death Signaling Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Sun Z, He W, Meng H, Ji Z, Qu J, Yu G. Lactate activates ER stress to promote alveolar epithelial cells apoptosis in pulmonary fibrosis. Respir Res 2024; 25:401. [PMID: 39522031 PMCID: PMC11550544 DOI: 10.1186/s12931-024-03016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive lung disease characterized by fibroblast proliferation, extensive extracellular matrix and collagen deposition, accompanied by inflammatory damage, ultimately leading to death due to respiratory failure. Endoplasmic reticulum (ER) stress in pulmonary fibrotic tissue is indeed recognized as a significant factor exacerbating PF development. Emerging evidences indicated a potential association between ER stress induced by lactate and cellular apoptosis in PF. However, the mechanisms in this process need further elucidation. In this paper, pulmonary fibrosis model was induced by bleomycin (BLM) intratracheally in mice. In the cellular model, type II epithelial cells were treated by lactate and TGF-β to detect ER stress and apoptosis markers. Lactate could promote ER stress response and apoptosis. Mechanically, lactate activated Caspase-12 via ATF4-Chop axis to induce cell apoptosis and promote fibrosis. ER stress inhibitor could effectively suppress alveolar epithelial cells apoptosis and pulmonary fibrosis. We concluded that pro-fibrotic properties of lactate are associated with alveolar epithelial cells apoptosis by causing ER stress and thus provide new potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China.
| | - Wanyu He
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Huiwen Meng
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Zhihua Ji
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China.
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Xinxiang, Henan, China.
| | - Guoying Yu
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China.
| |
Collapse
|
4
|
Jiang Y, Liu X, Shang Y, Li J, Gao B, Ren Y, Meng X. Physiological and Transcriptomic Analyses Provide Insights into Nitrite Stress Responses of the Swimming Crab Portunus trituberculatus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1040-1052. [PMID: 39115588 DOI: 10.1007/s10126-024-10353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/26/2024] [Indexed: 10/17/2024]
Abstract
Nitrite is a common environmental pollutant in intensive aquaculture systems. In this study, physiological and transcriptomic analyses were performed to investigate nitrite stress responses in the swimming crab Portunus trituberculatus, an important aquaculture species in China. The results revealed that nitrite can affect neurotransmitter signaling via the expression of neurotransmitter receptors such as octopamine receptor (OAR) and 5-hydroxytryptamine receptor (5-HTR), and depress ecdysteroid signaling by downregulating ecdysteroid receptor (EcR) as well as its downstream transcription factors in hepatopancreas. In addition, nitrite suppressed the expression of hemocyanins, the oxygen-transporting protein, which at least partly contributed to tissue hypoxia, resulting in a switchover of energy metabolism from aerobic to anaerobic pathway. To meet the energy demand, glycogens and lipids were mobilized and transported to the hemolymph, and the catabolism of amino acids and fatty acids was enhanced to provide energy for hepatopancreas. β-oxidation of fatty acids, the major process by which fatty acids are oxidized to generate energy, seems to occur mainly not in mitochondria but in peroxisomes. Although the cellular protective mechanisms, including antioxidant defense, heat shock response (HSR), unfolded protein response (UPR), and autophagy, were activated, nitrite-induced cellular stress overwhelmed the repairing capacity and caused significant increase in the levels of apoptosis. These results indicated that nitrite stress influences neurotransmitter and endocrine signaling, disturbs energy metabolism, damages cellular components, and induces apoptosis in P. trituberculatus. The findings of this study provide new insights into nitrite stress response in the swimming crab and provide valuable information for aquaculture management of this species.
Collapse
Affiliation(s)
- Yi Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xiaochen Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yan Shang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
| | - Baoquan Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xianliang Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
5
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
6
|
Ingle J, Tirkey A, Pandey S, Basu S. Small-Molecule Endoplasmic Reticulum Stress Inducer Triggers Apoptosis in Cancer Cells. ChemMedChem 2023; 18:e202300433. [PMID: 37964696 DOI: 10.1002/cmdc.202300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Endoplasmic reticulum (ER) is highly critical for the sub-cellular protein synthesis, post-translational modifications and myriads of signalling pathways to maintain cellular homeostasis. Consequently, dysregulation in the ER functions leads to the ER stress in different pathological situations including cancer. Hence, exploring small molecules to induce ER stress emerged as one of the unorthodox strategies for future cancer therapeutics. However, development of ER targeted novel small molecules remains elusive due to the dearth of ER targeting moieties. Herein we have synthesized a small library of 3-methoxy-pyrrole-enamine through a concise strategy. Screening of this library in cervical (HeLa), colon (HCT-116), breast (MCF7) and lung cancer (A549) cells identified a novel small molecule which localized into the ER of the HeLa cervical cancer cells within 3 h, induced ER stress through the increased expression of ER stress markers (CHOP, IRE1α, PERK, BiP and Cas-12) and triggered the programmed cell death (apoptosis) leading to remarkable HeLa cell killing. This novel small molecule can be explored further as a tool to understand the chemical biology of ER towards the development of ER targeted cancer therapeutics.
Collapse
Affiliation(s)
- Jaypalsing Ingle
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Anjana Tirkey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Shalini Pandey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Wu C, Zou P, Feng S, Zhu L, Li F, Liu TCY, Duan R, Yang L. Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain Disorders. Mol Neurobiol 2023; 60:1749-1765. [PMID: 36567361 DOI: 10.1007/s12035-022-03175-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
Oxidative stress and neuroinflammation are the main physiopathological changes involved in the initiation and progression of various neurodegenerative disorders or brain injuries. Since the landmark finding reported in 2007 found that hydrogen reduced the levels of peroxynitrite anions and hydroxyl free radicals in ischemic stroke, molecular hydrogen's antioxidative and anti-inflammatory effects have aroused widespread interest. Due to its excellent antioxidant and anti-inflammatory properties, hydrogen therapy via different routes of administration exhibits great therapeutic potential for a wide range of brain disorders, including Alzheimer's disease, neonatal hypoxic-ischemic encephalopathy, depression, anxiety, traumatic brain injury, ischemic stroke, Parkinson's disease, and multiple sclerosis. This paper reviews the routes for hydrogen administration, the effects of hydrogen on the previously mentioned brain disorders, and the primary mechanism underlying hydrogen's neuroprotection. Finally, we discuss hydrogen therapy's remaining issues and challenges in brain disorders. We conclude that understanding the exact molecular target, finding novel routes, and determining the optimal dosage for hydrogen administration is critical for future studies and applications.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Fanghui Li
- School of Sports Science, Nanjing Normal University, Nanjing, 210046, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Sanchez-Collado J, Nieto-Felipe J, Jardin I, Bhardwaj R, Berna-Erro A, Salido GM, Smani T, Hediger MA, Lopez JJ, Rosado JA. Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation. Cancers (Basel) 2022; 15:cancers15010203. [PMID: 36612199 PMCID: PMC9818078 DOI: 10.3390/cancers15010203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
N-linked glycosylation is a post-translational modification that affects protein function, structure, and interaction with other proteins. The store-operated Ca2+ entry (SOCE) core proteins, Orai1 and STIM1, exhibit N-glycosylation consensus motifs. Abnormal SOCE has been associated to a number of disorders, including cancer, and alterations in Orai1 glycosylation have been related to cancer invasiveness and metastasis. Here we show that treatment of non-tumoral breast epithelial cells with tunicamycin attenuates SOCE. Meanwhile, tunicamycin was without effect on SOCE in luminal MCF7 and triple negative breast cancer (TNBC) MDA-MB-231 cells. Ca2+ imaging experiments revealed that expression of the glycosylation-deficient Orai1 mutant (Orai1N223A) did not alter SOCE in MCF10A, MCF7 and MDA-MB-231 cells. However, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) significantly attenuated SOCE in MCF10A cells but was without effect in SOCE in MCF7 and MDA-MB-231 cells. In non-tumoral cells impairment of STIM1 N-linked glycosylation attenuated thapsigargin (TG)-induced caspase-3 activation while in breast cancer cells, which exhibit a smaller caspase-3 activity in response to TG, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) was without effect on TG-evoked caspase-3 activation. Summarizing, STIM1 N-linked glycosylation is essential for full SOCE activation in non-tumoral breast epithelial cells; by contrast, SOCE in breast cancer MCF7 and MDA-MB-231 cells is insensitive to Orai1 and STIM1 N-linked glycosylation, and this event might participate in the development of apoptosis resistance.
Collapse
Affiliation(s)
- Jose Sanchez-Collado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Joel Nieto-Felipe
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Isaac Jardin
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Rajesh Bhardwaj
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Alejandro Berna-Erro
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Gines M. Salido
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, 41013 Sevilla, Spain
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Jose J. Lopez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
- Correspondence: Correspondence: (J.J.L.); (J.A.R.)
| | - Juan A. Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
- Correspondence: Correspondence: (J.J.L.); (J.A.R.)
| |
Collapse
|
9
|
Pritchard KA, Jing X, Teng M, Wells C, Jia S, Afolayan AJ, Jarzembowski J, Day BW, Naylor S, Hessner MJ, Konduri GG, Teng RJ. Role of endoplasmic reticulum stress in impaired neonatal lung growth and bronchopulmonary dysplasia. PLoS One 2022; 17:e0269564. [PMID: 36018859 PMCID: PMC9417039 DOI: 10.1371/journal.pone.0269564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Myeloperoxidase (MPO), oxidative stress (OS), and endoplasmic reticulum (ER) stress are increased in the lungs of rat pups raised in hyperoxia, an established model of bronchopulmonary dysplasia (BPD). However, the relationship between OS, MPO, and ER stress has not been examined in hyperoxia rat pups. We treated Sprague-Dawley rat pups with tunicamycin or hyperoxia to determine this relationship. ER stress was detected using immunofluorescence, transcriptomic, proteomic, and electron microscopic analyses. Immunofluorescence observed increased ER stress in the lungs of hyperoxic rat BPD and human BPD. Proteomic and morphometric studies showed that tunicamycin directly increased ER stress of rat lungs and decreased lung complexity with a BPD phenotype. Previously, we showed that hyperoxia initiates a cycle of destruction that we hypothesized starts from increasing OS through MPO accumulation and then increases ER stress to cause BPD. To inhibit ER stress, we used tauroursodeoxycholic acid (TUDCA), a molecular chaperone. To break the cycle of destruction and reduce OS and MPO, we used N-acetyl-lysyltyrosylcysteine amide (KYC). The fact that TUDCA improved lung complexity in tunicamycin- and hyperoxia-treated rat pups supports the idea that ER stress plays a causal role in BPD. Additional support comes from data showing TUDCA decreased lung myeloid cells and MPO levels in the lungs of tunicamycin- and hyperoxia-treated rat pups. These data link OS and MPO to ER stress in the mechanisms mediating BPD. KYC's inhibition of ER stress in the tunicamycin-treated rat pup's lung provides additional support for the idea that MPO-induced ER stress plays a causal role in the BPD phenotype. ER stress appears to expand our proposed cycle of destruction. Our results suggest ER stress evolves from OS and MPO to increase neonatal lung injury and impair growth and development. The encouraging effect of TUDCA indicates that this compound has the potential for treating BPD.
Collapse
Affiliation(s)
- Kirkwood A. Pritchard
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Xigang Jing
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Clive Wells
- Electron Microscope Facility, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Shuang Jia
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Adeleye J. Afolayan
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Jason Jarzembowski
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Billy W. Day
- ReNeuroGen L.L.C. Milwaukee, Elm Grove, Wisconsin, United States of America
| | - Stephen Naylor
- ReNeuroGen L.L.C. Milwaukee, Elm Grove, Wisconsin, United States of America
| | - Martin J. Hessner
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - G. Ganesh Konduri
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Ru-Jeng Teng
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| |
Collapse
|
10
|
Lin S, Que Y, Que C, Li F, Deng M, Xu D. Exosome miR-3184-5p inhibits gastric cancer growth by targeting XBP1 to regulate the AKT, STAT3, and IRE1 signalling pathways. Asia Pac J Clin Oncol 2022; 19:e27-e38. [PMID: 35394683 DOI: 10.1111/ajco.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
MicroRNAs can regulate the transcription of protein-coding genes associated with the development and progression of cancer. In this study, we explored the potential diagnostic function of exosome miR-3184-5p in gastric cancer. This exosome was isolated from the blood samples of 150 patients with gastric cancer and 60 healthy participants. The mean particle size and concentration of serum exosome in the patients with gastric cancer were 104.6 nm (93.97-115.84) and 6.21e+009 particles/ml (5.15e+009-7.12e+009), respectively. miR-3184-5p expression was substantially downregulated in the patients with gastric cancer compared with that in the healthy participants. The gastric cancer cell line HGC-27 was cultured and transfected with the mimic and an inhibitor to overexpress and inhibit miR-3184-5p expression. miR-3184-5p strongly suppressed cell proliferation, migration, and invasion but induced cell apoptosis. Luciferase reporter assay revealed that XBP1 was the target of miR-3184-5p. miR-3184-5p substantially downregulated the expression of CD44, cyclin D1, MMP2, p65, p-AKT, and p-STAT3 but upregulated that of GRP78, IRE1, p-JNK, and CHOP. Moreover, miR-3184-5p cleaved caspase-12 and inhibited BCL-2 expression. These results suggested that the downregulation of miR-3184-5p in patients with gastric cancer might regulate the AKT, STAT3, and IRE1 pathways to promote the vitality of gastric cancer cells.
Collapse
Affiliation(s)
- Shuangming Lin
- Department of Gastrointestinal and Anal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| | - Yonggu Que
- Department of Gastrointestinal and Anal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| | - Changrong Que
- Department of Gastrointestinal and Anal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| | - Fudi Li
- Department of Gastrointestinal and Anal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| | - Maoqing Deng
- Department of laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| | - Dongbo Xu
- Department of Gastrointestinal and Anal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| |
Collapse
|
11
|
Xiao W, Cao RC, Yang WJ, Tan JH, Liu RQ, Kan HP, Zhou L, Zhang N, Chen ZY, Chen XM, Xu J, Zhang GW, Shen P. Roles and Clinical Significances of ATF6, EMC6, and APAF1 in Prognosis of Pancreatic Cancer. Front Genet 2022; 12:730847. [PMID: 35222510 PMCID: PMC8873166 DOI: 10.3389/fgene.2021.730847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Pancreatic cancer (PC) is prevalent among malignant tumors with poor prognosis and lacks efficient therapeutic strategies. Endoplasmic reticulum (ER) stress and apoptosis are associated with chronic inflammation and cancer progression. However, the prognostic value of ER stress-related, and apoptosis-related genes in PC remains to be further elucidated. Our study aimed at confirming the prognostic values of the ER stress-related genes, ATF6, EMC6, XBP1, and CHOP, and the apoptosis-related gene, APAF1, in PC patients. Methods: Gene Expression Profiling Interactive Analysis 2 (GEPIA2) was used to evaluate prognosis value of ATF6, EMC6, XBP1, CHOP, and APAF1 in PC. Clinical data from 69 PC patients were retrospectively analyzed. Immunohistochemistry, Western blotting, and qRT-PCR were used for the assessment of gene or protein expression. The cell counting kit-8 (CCK-8) and the Transwell invasion assays were, respectively, used for the assessment of the proliferative and invasive abilities of PC cells. The prognostic values of ATF6, XBP1, CHOP, EMC6, and APAF1 in PC patients were evaluated using Kaplan–Meier and Cox regression analyses. Results: XBP1 and CHOP expressions were not associated with PC recurrence-free survival (RFS), overall survival (OS) and disease-specific survival (DSS). ATF6 upregulation and EMC6 and APAF1 downregulations significantly correlated with the poor RFS, OS, and DSS of PC patients. ATF6 promoted PC cell proliferation and invasion, while EMC6 and APAF1 inhibited these events. Conclusion: ATF6 upregulation and EMC6 and APAF1 downregulations may be valid indicators of poor prognosis of PC patients. Moreover, ATF6, EMC6, and APAF1 may constitute potential therapeutic targets in PC patients.
Collapse
Affiliation(s)
- Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-Chang Cao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-Hui Tan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo-Qi Liu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - He-Ping Kan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Department of Hepoctobiliary Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Na Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Ye Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Mei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Guo-Wei Zhang, ; Peng Shen,
| | - Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Guo-Wei Zhang, ; Peng Shen,
| |
Collapse
|
12
|
Jangde S, Purohit MR, Saraf F, Merchant N, Bhaskar LVKS. Dietary Phytocompounds for Colon Cancer Therapy. ONCO THERAPEUTICS 2022; 9:69-82. [DOI: 10.1615/oncotherap.2022046215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
13
|
Effects of Inositol Supplementation in Sperm Extender on the Quality of Cryopreserved Mesopotamian Catfish ( Silurus triostegus, H. 1843) Sperm. Animals (Basel) 2021; 11:ani11113029. [PMID: 34827763 PMCID: PMC8614312 DOI: 10.3390/ani11113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
In this study, the effects of supplemented inositol on sperm extenders were examined on the spermatozoa motility rate and duration, total antioxidant and oxidant status, apoptotic spermatozoa and DNA damage, during the sperm post-thaw process of Mesopotamian Catfish (Silurus triostegus, H. 1843). The semen was frozen in diluents containing different inositol concentrations (5, 10, 20 and 40 mg). Increasing levels of inositol linearly improved the spermatozoa motility rate and duration significantly (p < 0.05). MDA and TOS were linearly decreased, however, TAS and GSH linearly increased (p < 0.05). The increasing inositol levels resulted in a linear and quadratic decrease in DNA damage in the comet assay, 8-hydroxydeoxyguanosine and the determined percentage of apoptotic spermatozoa (p < 0.05). These results suggest that there are many positive effects of the use of supplemental inositol on enhancing sperm cryopreservation efficiency in Silurus triostegus.
Collapse
|
14
|
Pandey S, Sharma VK, Biswas A, Lahiri M, Basu S. Small molecule-mediated induction of endoplasmic reticulum stress in cancer cells. RSC Med Chem 2021; 12:1604-1611. [PMID: 34671742 PMCID: PMC8459384 DOI: 10.1039/d1md00095k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is one of the crucial sub-cellular organelles controlling myriads of functions including protein biosynthesis, folding, misfolding and unfolding. As a result, dysregulation of these pathways in the ER is implicated in cancer development and progression. Subsequently, targeting the ER in cancer cells emerged as an interesting unorthodox strategy in next-generation anticancer therapy. However, development of small molecules to selectively target the ER for cancer therapy remained elusive and unexplored. To address this, herein, we have developed a novel small molecule library of sulfonylhydrazide-hydrazones through a short and concise chemical synthetic strategy. We identified a fluorescent small molecule that localized into the endoplasmic reticulum (ER) of HeLa cells, induced ER stress followed by triggering autophagy which was subsequently inhibited by chloroquine (autophagy inhibitor) to initiate apoptosis. This small molecule showed remarkable cancer cell killing efficacy in different cancer cells as mono and combination therapy with chloroquine, thus opening a new direction to illuminate ER-biology towards the development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Shalini Pandey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Homi Bhabha Road, Pashan Pune 411008 India
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar Palaj Gandhinagar Gujarat 382355 India
| | - Virender Kumar Sharma
- Department of Biology, Indian Institute of Science Education and Research (IISER)-Pune Homi Bhabha Road, Pashan Pune 411008 India
| | - Ankur Biswas
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Homi Bhabha Road, Pashan Pune 411008 India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research (IISER)-Pune Homi Bhabha Road, Pashan Pune 411008 India
| | - Sudipta Basu
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar Palaj Gandhinagar Gujarat 382355 India
| |
Collapse
|
15
|
The Role of Caspase-12 in Retinal Bystander Cell Death and Innate Immune Responses against MCMV Retinitis. Int J Mol Sci 2021; 22:ijms22158135. [PMID: 34360899 PMCID: PMC8348425 DOI: 10.3390/ijms22158135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022] Open
Abstract
(1) Background: caspase-12 is activated during cytomegalovirus retinitis, although its role is presently unclear. (2) Methods: caspase-12−/− (KO) or caspase-12+/+ (WT) mice were immunosup eyes were analyzed by plaque assay, TUNEL assay, immunohistochemical staining, western blotting, and real-time PCR. (3) Results: increased retinitis and a more extensive virus spread were detected in the retina of infected eyes of KO mice compared to WT mice at day 14 p.i. Compared to MCMV injected WT eyes, mRNA levels of interferons α, β and γ were significantly reduced in the neural retina of MCMV-infected KO eyes at day 14 p.i. Although similar numbers of MCMV infected cells, similar virus titers and similar numbers of TUNEL-staining cells were detected in injected eyes of both KO and WT mice at days 7 and 10 p.i., significantly lower amounts of cleaved caspase-3 and p53 protein were detected in infected eyes of KO mice at both time points. (4) Conclusions: caspase-12 contributes to caspase-3-dependent and independent retinal bystander cell death during MCMV retinitis and may also play an important role in innate immunity against virus infection of the retina.
Collapse
|
16
|
Yan L, Luo H, Li X, Li Y. d-Pinitol protects against endoplasmic reticulum stress and apoptosis in hepatic ischemia-reperfusion injury via modulation of AFT4-CHOP/GRP78 and caspase-3 signaling pathways. Int J Immunopathol Pharmacol 2021; 35:20587384211032098. [PMID: 34275383 PMCID: PMC8287360 DOI: 10.1177/20587384211032098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a major unavoidable clinical problem
often accompanying various liver surgery and transplantation.
d-Pinitol, a cyclic polyol, exhibits hepatoprotective efficacy. The
objective of this study is to determine the possible mechanism of action of
pinitol against endoplasmic reticulum (ER) stress regulation-mediated hepatic
IRI and compare its effects with thymoquinone (TQ) in experimental rats. Male
Sprague Dawley rats were pre-treated orally with either vehicle (DMSO) or
d-Pinitol (5, 10, and 20 mg/kg) or TQ (30 mg/kg) for 21 days and
subjected to 60 min of partial hepatic ischemia followed by 24 h of reperfusion.
Pre-treatment with pinitol (10 and 20 mg/kg) effectively
(P < 0.05) protected against
IRI-induced hepatic damage reflected by attenuation of elevated oxidative stress
and pro-inflammatory cytokines. Additionally, western blot and ELISA analyses
suggested that pinitol significantly
(P < 0.05) down-regulated expression of
endoplasmic reticulum stress apoptotic markers, namely glucose-regulated protein
(GRP)-78, CCAAT/enhancer-binding protein homologous protein (CHOP), activating
transcription factor (AFT)-4 and -6α, X-box binding protein-1, and caspase-3, 9,
and 12. Additionally, pinitol pre-treatment effectively
(P < 0.05) improved mitochondrial
function and phosphorylation of Extracellular signal-regulated kinase (ERK)-1/2
and p38. Pinitol markedly (P < 0.05)
protected hepatic apoptosis determined by flow cytometry. Further, pinitol
provided effective (P < 0.05) protection
against hepatic histological and ultrastructural aberrations induced by IRI. TQ
showed more pronounced protective effect against attenuation of IRI-induced
hepatic injury as compared to d-Pinitol. Pinitol offered protection
against endoplasmic reticulum stress-mediated phosphorylation of ERK1/2 and p38,
thereby inhibiting AFT4-CHOP/GRP78 signaling response and caspase-3 induced
hepatocellular apoptosis during hepatic ischemia-reperfusion insults. Thus,
Pinitol can be considered as a viable option for the management of hepatic
IRI.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China.,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi'an, Shaanxi, China
| | - Heng Luo
- Reproductive Medicine Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xingsheng Li
- Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Yongyong Li
- Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| |
Collapse
|
17
|
Hachlafi NEL, Aanniz T, Menyiy NE, Baaboua AE, Omari NE, Balahbib A, Shariati MA, Zengin G, Fikri-Benbrahim K, Bouyahya A. In Vitro and in Vivo Biological Investigations of Camphene and Its Mechanism Insights: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1936007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Morocco
| | - Tariq Aanniz
- Medical Biotechnology Laboratory (Medbiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Naoual El Menyiy
- Health and of Life (SNAMOPEQ). Faculty of Sciences Dhar El Mahraz. University Sidi Mohamed Ben Abdellah, Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Fez, Morocco
| | - Aicha El Baaboua
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohammad Ali Shariati
- Departement of Technology of Food Production, K.G. Razumoysky Moscow State University of Technologies and Management (The First Cossack University) 109004, Moscow, Russian Federation
| | - Gokhan Zengin
- Biochemistry and Physiology Research Laboratory, Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| | - Kawtar Fikri-Benbrahim
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, And Genomic Center of Human Pathologies, Mohammed V University in Rabat, Morocco
| |
Collapse
|
18
|
Rezghi Barez S, Movahedian Attar A, Aghaei M. MicroRNA-30c-2-3p regulates ER stress and induces apoptosis in ovarian cancer cells underlying ER stress. EXCLI JOURNAL 2021; 20:922-934. [PMID: 34121978 PMCID: PMC8192875 DOI: 10.17179/excli2020-2970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is a common gynecologic cancer with a high rate of recurrence, drug resistance, and mortality, thereby necessitating novel molecular target therapies. Ovarian cancer as a solid tumor has constantly been challenged by endoplasmic reticulum stress (ERS). Currently, XBP1 as a therapeutic target in solid tumors plays a key role in adaptation to ERS. Single-stranded RNAs usually modulate posttranscriptional of the gene activity. miR-30c-2-3p has been demonstrated to inhibit the expression of XBP1. Here, we evaluated the effect of miR-30c-2-3p on controlling XBP1-CHOP-BIM and its apoptotic effects on ovarian cancer cell lines during ERS. The ER stress was assessed using Thioflavin T staining in OVCAR3 and SKOV3 cells. The expression of ER stress genes was measured by QRT-PCR. The protein levels of XBP1(s), BIP/GRP78, CHOP, and BIM were evaluated using Western blotting. Cell viability and apoptosis in STF-083010 and Tunicamycin (Tm) co-treated cells were evaluated using BrdU, MTT, Annexin V-FITC/PI staining, and caspase-12 and -3 activities assays. We found that miR-30c-2-3p significantly decreased the folding capacity of ER, leading to ERS intensification (P<0.05). Additionally, the Western blot analysis showed the modest up-regulation of CHOP and BIM with pro-apoptotic activity and down-regulation of the BIP protein. Furthermore, mimic miR-30c-2-3p transfection not only decreased cell proliferation but also induced cell death in ovarian cancer cells in response to the Tm-treatment. Our results indicated that the apoptotic pathway was induced possibly through activation of caspases -12 and -3 and elevation of the Bax/Bcl-2 ratio. Overall, the present paper adds new evidence to the possible treatment of miR-30c-2-3p via impeding the XBP1 transcription in ovarian cancer cells provoking apoptotic pathways by XBP1/CHOP/BIM mediators.
Collapse
Affiliation(s)
- Shekufe Rezghi Barez
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedian Attar
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Modulation of Tubular pH by Acetazolamide in a Ca 2+ Transport Deficient Mice Facilitates Calcium Nephrolithiasis. Int J Mol Sci 2021; 22:ijms22063050. [PMID: 33802660 PMCID: PMC8002449 DOI: 10.3390/ijms22063050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023] Open
Abstract
Proximal tubular (PT) acidosis, which alkalinizes the urinary filtrate, together with Ca2+ supersaturation in PT can induce luminal calcium phosphate (CaP) crystal formation. While such CaP crystals are known to act as a nidus for CaP/calcium oxalate (CaOx) mixed stone formation, the regulation of PT luminal Ca2+ concentration ([Ca2+]) under elevated pH and/or high [Ca2+] conditions are unknown. Since we found that transient receptor potential canonical 3 (TRPC3) knockout (KO; -/-) mice could produce mild hypercalciuria with CaP urine crystals, we alkalinized the tubular pH in TRPC3-/- mice by oral acetazolamide (0.08%) to develop mixed urinary crystals akin to clinical signs of calcium nephrolithiasis (CaNL). Our ratiometric (λ340/380) intracellular [Ca2+] measurements reveal that such alkalization not only upsurges Ca2+ influx into PT cells, but the mode of Ca2+ entry switches from receptor-operated to store-operated pathway. Electrophysiological experiments show enhanced bicarbonate related current activity in treated PT cells which may determine the stone-forming phenotypes (CaP or CaP/CaOx). Moreover, such alkalization promotes reactive oxygen species generation, and upregulation of calcification, inflammation, fibrosis, and apoptosis in PT cells, which were exacerbated in absence of TRPC3. Altogether, the pH-induced alteration of the Ca2+ signaling signature in PT cells from TRPC3 ablated mice exacerbated the pathophysiology of mixed urinary stone formation, which may aid in uncovering the downstream mechanism of CaNL.
Collapse
|
20
|
Functional role of TRPC6 and STIM2 in cytosolic and endoplasmic reticulum Ca2+ content in resting estrogen receptor-positive breast cancer cells. Biochem J 2021; 477:3183-3197. [PMID: 32794568 DOI: 10.1042/bcj20200560] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
TRPC6 forms non-selective cation channels activated by a variety of stimuli that are involved in a wide number of cellular functions. In estrogen receptor-positive (ER+) breast cancer cells, the store-operated Ca2+ entry has been reported to be dependent on STIM1, STIM2 and Orai3, with TRPC6 playing a key role in the activation of store-operated Ca2+ entry as well as in proliferation, migration and viability of breast cancer cells. We have used a combination of biotinylation, Ca2+ imaging as well as protein knockdown and overexpression of a dominant-negative TRPC6 mutant (TRPC6dn) to show that TRPC6 and STIM2 are required for the maintenance of cytosolic and endoplasmic reticulum Ca2+ content under resting conditions in ER+ breast cancer MCF7 cells. These cells exhibit a greater plasma membrane expression of TRPC6 under resting conditions than non-tumoral breast epithelial cells. Attenuation of STIM2, TRPC6 and Orai3, alone or in combination, results in impairment of resting cytosolic and endoplasmic reticulum Ca2+ homeostasis. Similar results were observed when cells were transfected with expression plasmid for TRPC6dn. TRPC6 co-immunoprecipitates with STIM2 in resting MCF7 cells, a process that is impaired by rises in cytosolic Ca2+ concentration. Impairment of TRPC6 function leads to abnormal Ca2+ homeostasis and endoplasmic reticulum stress, thus, suggesting that TRPC6 might be a potential target for the development of anti-tumoral therapies.
Collapse
|
21
|
Khodavirdipour A, Piri M, Jabbari S, Keshavarzi S, Safaralizadeh R, Alikhani MY. Apoptosis Detection Methods in Diagnosis of Cancer and Their Potential Role in Treatment: Advantages and Disadvantages: a Review. J Gastrointest Cancer 2021; 52:422-430. [PMID: 33392962 DOI: 10.1007/s12029-020-00576-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Interruption of regulation of apoptosis can play a leading role in cancers where elevated apoptosis causes neurodegeneration, autoimmunity, AIDS, and ischemia. One famous example can be p53's downregulation, which is a tumor suppressor gene, which consequently can cause a decrease in apoptosis rate and intense tumor growth and progression and development and inactivation of 53; it can be extended to many cancers in human. Anyhow, apoptosis is a double-edge sword. There are many trials and studies are going on observation and understanding of different steps involved in apoptosis. Apoptosis has a very major role in carcinogenesis and the treatment of cancer. AIM In this updated-cum-comprehensive review, we would like to cover what is apoptosis and cancer and also, will discuss all known methods of apoptosisdetection, their applicability in the treatment of cancer, and their advantages, disadvantages, and limitations. MATERIAL AND METHODS Published articles on indexing sources such as PubMed, Scopus from 2000 to date. RESULT By considering all above information including each methods pros and cons, these routine methods could be great tool with distinctive qualities in treatmentwhich can be great help from patient perspective and as well from government ad health care system point of view. CONCLUSION Accurate diagnosis of cell apoptotic biopathways at different stages assists in evaluating near to exact apoptotic index, which is the perfect sign andindicator for metastasis and also prognosis, thus foreseeing treatment outcome.
Collapse
Affiliation(s)
- Amir Khodavirdipour
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.,Division of Human Genetics, Department of Anatomy, St. John's Hospital, Bangalore, India
| | - Motahareh Piri
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Sarvin Jabbari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shiva Keshavarzi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
22
|
Kim SM, Choi KC. Acrylonitrile induced cell cycle arrest and apoptosis by promoting the formation of reactive oxygen species in human choriocarcinoma cells. J Toxicol Sci 2020; 45:713-724. [PMID: 33132245 DOI: 10.2131/jts.45.713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acrylonitrile (AN), which is widely utilized in the manufacture of plastics, acrylamide, acrylic fibers, and resins, is also one of main components of cigarette smoke (CS). In this study, we examined the effects of AN on the cell viability and apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cell lines. A cell viability assay confirmed that AN decreased the cell proliferation of JEG-3 and BeWo cells in a dose-dependent manner. Additionally, Western blot assay revealed that protein expression of cyclin D and cyclin E decreased, while protein expression of p21 and p27 increased in response to AN treatment for 48 hr. The changes in reactive oxygen species (ROS) levels in JEG-3 and BeWo cells exposed to AN were also measured by a dichlorofluorescein diacetate (DCFH-DA) assay, which revealed that ROS levels increased in response to AN treatment for 48 hr. Moreover, western blot assay confirmed that AN treatment of JEG-3 and BeWo cells for 4 hr promoted the expression of phosphorylated eukaryotic initiation factor 2 alpha protein (p-eIF2α), C/EBP homologous protein (CHOP) and caspase 12, which are known to be involved in ROS-mediated endoplasmic reticulum stress (ER-stress)-related apoptosis. Overall, the protein expression of p53 and Bax (a pro-apoptosis marker) increased, while the expression of Bcl-xl (an anti-apoptotic marker) decreased and the number of apoptotic cells increased in response to AN treatment for 48 hr. Taken together, these results suggest that AN has the potential to induce apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cells by activating ROS.
Collapse
Affiliation(s)
- Soo-Min Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Korea
| |
Collapse
|
23
|
Vesela B, Kratochvilova A, Svandova E, Benes P, Rihova K, Poliard A, Matalova E. Caspase-12 Is Present During Craniofacial Development and Participates in Regulation of Osteogenic Markers. Front Cell Dev Biol 2020; 8:589136. [PMID: 33178702 PMCID: PMC7593616 DOI: 10.3389/fcell.2020.589136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Caspases are evolutionary conserved proteases traditionally known as participating in apoptosis and inflammation but recently discovered also in association with other processes such as proliferation or differentiation. This investigation focuses on caspase-12, ranked among inflammatory caspases but displaying other, not yet defined functions. A screening analysis pointed to statistically significant (P < 0.001) increase in expression of caspase-12 in a decisive period of mandibular bone formation when the original mesenchymal condensation turns into vascularized bone tissue. Immunofluorescence analysis confirmed the presence of caspase-12 protein in osteoblasts. Therefore, the osteoblastic cell line MC3T3-E1 was challenged to investigate any impact of caspase-12 on the osteogenic pathways. Pharmacological inhibition of caspase-12 in MC3T3-E1 cells caused a statistically significant decrease in expression of some major osteogenic genes, including those for alkaline phosphatase, osteocalcin and Phex. This downregulation was further confirmed by an alkaline phosphatase activity assay and by a siRNA inhibition approach. Altogether, this study demonstrates caspase-12 expression and points to its unknown physiological engagement in bone cells during the course of craniofacial development.
Collapse
Affiliation(s)
- Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Adela Kratochvilova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Petr Benes
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Kamila Rihova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Anne Poliard
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, UFR Odontology Montrouge, Paris University, Paris, France
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia.,Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| |
Collapse
|
24
|
K V A, Madhana RM, Bais AK, Singh VB, Malik A, Sinha S, Lahkar M, Kumar P, Samudrala PK. Cognitive Improvement by Vorinostat through Modulation of Endoplasmic Reticulum Stress in a Corticosterone-Induced Chronic Stress Model in Mice. ACS Chem Neurosci 2020; 11:2649-2657. [PMID: 32673474 DOI: 10.1021/acschemneuro.0c00315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is the leading cause of memory impairment today. Various stress-based models are being developed for studying cognitive impairment. Repurposing of existing drugs in a new pharmacology class is the safest and cheapest option for treatment instead of new drug discovery. Vorinostat (VOR) is the first histone deacetylase (HDAC) inhibitor approved for the treatment of cutaneous T-cell lymphoma by the U.S. FDA. VOR follows the rule of five and is reported to cross the blood-brain barrier. Therefore, we aimed to evaluate the procognitive potential of VOR (25 mg/kg) administered by intraperitoneal (ip) route in a stress-based model of chronic corticosterone (CORT) injections (20 mg/kg, subcutaneously (sc)). The study comprised six groups. Normal mice were administered vehicle (VEH) (days 1-21, sc) in the first group, VOR (days 8-21, 25 mg/kg, ip) in the second group, and fluoxetine (FLX) (days 8-21, 15 mg/kg, oral) in the third group. Mice in the remaining three groups were given 20 mg/kg (sc) CORT for 21 days, and VOR (days 8-21, 25 mg/kg, ip) or FLX (days 8-21, 15 mg/kg, oral) was additionally administered to the treatment groups. Behavioral tests such as Morris water maze test, novel object recognition test, and object in place test were performed at the end of the dosing schedule to assess cognition. After behavior tests, mice were sacrificed, and hippocampus was separated from brain tissue for reverse transcriptase polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry studies. VOR treatment attenuated endoplasmic reticulum (ER) stress in CORT mice as evident from the reduction in DNA damage-inducible transcript 3 (Ddit3) (gene encoding CHOP), caspase 12 (Casp12), and calpain-2 (Capn2) mRNA levels, and cleaved caspase 3 (CASP3) protein expression. Bax inhibitor-1 (BI-1) was significantly increased in VOR-treated CORT mice. VOR also reversed CORT induced increase in HDAC2 level in the CA3 region. The protective effects of VOR were comparable to that of FLX in CORT mice. Thus, VOR has the potential to reverse cognitive dysfunction via modulation of ER stress markers and HDAC2.
Collapse
Affiliation(s)
- Athira K V
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041 Kerala, India
| | - Rajaram Mohanrao Madhana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| | - Akhilesh Kumar Bais
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| | - Vijay Bahadur Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| | - Arpit Malik
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| | - Swapnil Sinha
- DST WOS-A Scientist, Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| | - Mangala Lahkar
- Department of Pharmacology, Gauhati Medical College, Guwahati, 781032 Assam, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781125 Assam, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| |
Collapse
|
25
|
Hałas-Wiśniewska M, Zielińska W, Izdebska M, Grzanka A. The Synergistic Effect of Piperlongumine and Sanguinarine on the Non-Small Lung Cancer. Molecules 2020; 25:E3045. [PMID: 32635287 PMCID: PMC7411589 DOI: 10.3390/molecules25133045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancers are one of the leading causes of deaths nowadays. The development of new treatment schemes for oncological diseases is an interesting direction in experimental medicine. Therefore, the evaluation of the influence of two alkaloids-piperlongumine (PL), sanguinarine (SAN) and their combination-on the basic life processes of the A549 cell line was considered reasonable. METHODS The aim was achieved by analyzing the cytotoxic effects of PL and SAN and their combination in the ratio of 4:1 on the induction of cell death, changes in the distribution of cell cycle phases, reorganization of cytoskeleton and metastatic potential of A549 cells. The versatility of the applied concentration ratio was evaluated in terms of other cancer cell lines: MCF-7, H1299 and HepG2. RESULTS The results obtained from the MTT assay indicated that the interaction between the alkaloids depends on the concentration and type of cells. Additionally, the compounds and their combination did not exhibit a cytotoxic effect against normal cells. The combined effects of PL and SAN increased apoptosis and favored metastasis inhibition. CONCLUSION Selected alkaloids exhibit a cytotoxic effect on A549 cells. In turn, treatment with the combination of PL and SAN in a 4:1 ratio indicates a synergistic effect and is associated with an increase in the level of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.Z.); (M.I.); (A.G.)
| | | | | | | |
Collapse
|
26
|
Wang X, Li W, Zhou Q, Li J, Wang X, Zhang J, Li D, Qi X, Liu T, Zhao X, Li S, Yang L, Xie L. MANF Promotes Diabetic Corneal Epithelial Wound Healing and Nerve Regeneration by Attenuating Hyperglycemia-Induced Endoplasmic Reticulum Stress. Diabetes 2020; 69:1264-1278. [PMID: 32312869 DOI: 10.2337/db19-0835] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/15/2020] [Indexed: 11/13/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neurotrophic factor widely expressed in mammalian tissues, and it exerts critical protective effects on neurons and other cell types in various disease models, such as those for diabetes. However, to date, the expression and roles of MANF in the cornea, with or without diabetic keratopathy (DK), remain unclear. Here, we demonstrate that MANF is abundantly expressed in normal corneal epithelial cells; however, MANF expression was significantly reduced in both unwounded and wounded corneal epithelium in streptozotocin-induced type 1 diabetic C57BL/6 mice. Recombinant human MANF significantly promoted normal and diabetic corneal epithelial wound healing and nerve regeneration. Furthermore, MANF inhibited hyperglycemia-induced endoplasmic reticulum (ER) stress and ER stress-mediated apoptosis. Attenuation of ER stress with 4-phenylbutyric acid (4-PBA) also ameliorated corneal epithelial closure and nerve regeneration. However, the beneficial effects of MANF and 4-PBA were abolished by an Akt inhibitor and Akt-specific small interfering RNA (siRNA). Finally, we reveal that the subconjunctival injection of MANF-specific siRNA prevents corneal epithelial wound healing and nerve regeneration. Our results provide important evidence that hyperglycemia-suppressed MANF expression may contribute to delayed corneal epithelial wound healing and impaired nerve regeneration by increasing ER stress, and MANF may be a useful therapeutic modality for treating DK.
Collapse
Affiliation(s)
- Xiaochuan Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Weina Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Jing Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Jing Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Dewei Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xiaowen Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Suxia Li
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| |
Collapse
|
27
|
Zhang IX, Ren J, Vadrevu S, Raghavan M, Satin LS. ER stress increases store-operated Ca 2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells. J Biol Chem 2020; 295:5685-5700. [PMID: 32179650 PMCID: PMC7186166 DOI: 10.1074/jbc.ra120.012721] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress-inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion-activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Jianhua Ren
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | | | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan 48105.
| |
Collapse
|
28
|
Shi Z, Xu L, Xie H, Ouyang R, Ke Y, Zhou R, Yung WH. Attenuation of intermittent hypoxia-induced apoptosis and fibrosis in pulmonary tissues via suppression of ER stress activation. BMC Pulm Med 2020; 20:92. [PMID: 32299413 PMCID: PMC7161195 DOI: 10.1186/s12890-020-1123-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Background Obstructive sleep apnea (OSA) is associated with pulmonary fibrosis and endothelial apoptosis in pulmonary tissues. Chronic intermittent hypoxia (IH) is considered to be the primary player in OSA, but the mechanisms underlying its effect on pulmonary tissues are unknown. Endoplasmic reticulum (ER) stress induced by IH treatment plays an important role in accelerating the process of fibrosis and induction of apoptosis. Methods Mice were placed in IH chambers for 4 weeks with an oscillating oxygen (O2) concentration between 5 and 21%, cycling every 90s for 8 h daily. Mice were randomly divided into four groups: control group (normal oxygen), tauroursodeoxycholic acid (TUDCA) group (normal oxygen intraperitoneally injected with TUDCA), IH group and IH + TUDCA group. After 4 weeks, the proteins in three branch signaling pathways of ER stress, including protein kinase RNA (PKR)-like/Pancreatic ER kinase (PERK), activating transcription factor 6 (ATF-6) and inositol-requiring enzyme 1 (IRE-1), were evaluated. The cleaved caspase-3, caspase-12 and TUNNEL staining was assessed. Furthermore, the expression of transforming growth factor-β1 (TGF-β1) and thrombospondin-1(TSP-1), two extracellular matrix proteins that play critical role in fibrosis, were examined. Finally, Masson’s trichrome staining was performed to detect the expression of collagen. Results After 4 weeks of IH treatment, the expressions of two ER stress markers, glucose regulated protein-78 (Grp78) and transcription factor C/EBP homologous protein (CHOP) were increased which was prevented by administration of the ER stress attenuator, TUDCA. The expressions of PERK, but not those of ATF-6 and IRE-1, were increased. The effects of IH were accompanied by an increased number of apoptotic cells and increased expressions of cleaved caspase-3 and caspase-12 in pulmonary tissues. In addition, histological examination suggested the presence of fibrosis after chronic IH treatment, indicated by increased expression of collagen, which was associated with the up-regulation of TGF-β1 and TSP-1 that are known to promote fibrosis. Similarly, TUDCA could reduce the extent of fibrotic area and the expression levels of these proteins. Conclusions It reveals the roles of ER stress, especially the PERK pathway, in IH induced apoptosis and fibrosis in pulmonary tissues that might underlie the pulmonary complications observed in OSA.
Collapse
Affiliation(s)
- Zhihui Shi
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central-South University, Changsha, China.,Research Unit of Respiratory Disease, Central-South University, Changsha, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Linhao Xu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.,Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central-South University, Changsha, China.,Research Unit of Respiratory Disease, Central-South University, Changsha, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Rui Zhou
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central-South University, Changsha, China. .,Research Unit of Respiratory Disease, Central-South University, Changsha, China.
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.
| |
Collapse
|
29
|
Powell N, Pantazi E, Pavlidis P, Tsakmaki A, Li K, Yang F, Parker A, Pin C, Cozzetto D, Minns D, Stolarczyk E, Saveljeva S, Mohamed R, Lavender P, Afzali B, Digby-Bell J, Tjir-Li T, Kaser A, Friedman J, MacDonald TT, Bewick GA, Lord GM. Interleukin-22 orchestrates a pathological endoplasmic reticulum stress response transcriptional programme in colonic epithelial cells. Gut 2020; 69:578-590. [PMID: 31792136 PMCID: PMC7034350 DOI: 10.1136/gutjnl-2019-318483] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The functional role of interleukin-22 (IL22) in chronic inflammation is controversial, and mechanistic insights into how it regulates target tissue are lacking. In this study, we evaluated the functional role of IL22 in chronic colitis and probed mechanisms of IL22-mediated regulation of colonic epithelial cells. DESIGN To investigate the functional role of IL22 in chronic colitis and how it regulates colonic epithelial cells, we employed a three-dimentional mini-gut epithelial organoid system, in vivo disease models and transcriptomic datasets in human IBD. RESULTS As well as inducing transcriptional modules implicated in antimicrobial responses, IL22 also coordinated an endoplasmic reticulum (ER) stress response transcriptional programme in colonic epithelial cells. In the colon of patients with active colonic Crohn's disease (CD), there was enrichment of IL22-responsive transcriptional modules and ER stress response modules. Strikingly, in an IL22-dependent model of chronic colitis, targeting IL22 alleviated colonic epithelial ER stress and attenuated colitis. Pharmacological modulation of the ER stress response similarly impacted the severity of colitis. In patients with colonic CD, antibody blockade of IL12p40, which simultaneously blocks IL12 and IL23, the key upstream regulator of IL22 production, alleviated the colonic epithelial ER stress response. CONCLUSIONS Our data challenge perceptions of IL22 as a predominantly beneficial cytokine in IBD and provide novel insights into the molecular mechanisms of IL22-mediated pathogenicity in chronic colitis. Targeting IL22-regulated pathways and alleviating colonic epithelial ER stress may represent promising therapeutic strategies in patients with colitis. TRIAL REGISTRATION NUMBER NCT02749630.
Collapse
Affiliation(s)
- Nick Powell
- School of Immunology and Microbial Sciences, King's College London, London, UK
- National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Eirini Pantazi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Sciences and Medicine, Kings College London, London, UK
| | - Katherine Li
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Feifei Yang
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Aimee Parker
- Quadram Institute Bioscience, Norwich, Norfolk, UK
| | - Carmen Pin
- Quadram Institute Bioscience, Norwich, Norfolk, UK
| | - Domenico Cozzetto
- National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
- Department of Translational Bioinformatics, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Danielle Minns
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Emilie Stolarczyk
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Svetlana Saveljeva
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Rami Mohamed
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Paul Lavender
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Behdad Afzali
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jonathan Digby-Bell
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Tsui Tjir-Li
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Joshua Friedman
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Thomas T MacDonald
- Centre for Immunology and Infectious Disease, Bart's & the London School of Medicine and Dentistry, Blizard Institute of Cell and Molecular Science, London, UK
| | - Gavin A Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Sciences and Medicine, Kings College London, London, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK
- National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
30
|
Jeong PS, Yoon SB, Lee MH, Son HC, Lee HY, Lee S, Koo BS, Jeong KJ, Lee JH, Jin YB, Song BS, Kim JS, Kim SU, Koo DB, Sim BW. Embryo aggregation regulates in vitro stress conditions to promote developmental competence in pigs. PeerJ 2019; 7:e8143. [PMID: 31844571 PMCID: PMC6913270 DOI: 10.7717/peerj.8143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022] Open
Abstract
Embryo aggregation is a useful method to produce blastocysts with high developmental competence to generate more offspring in various mammals, but the underlying mechanism(s) regarding the beneficial effects are largely unknown. In this study, we investigated the effects of embryo aggregation using 4-cell stage embryos in in vitro developmental competence and the relationship of stress conditions in porcine early embryogenesis. We conducted aggregation using the well of the well system and confirmed that aggregation using two or three embryos was useful for obtaining blastocysts. Aggregated embryos significantly improved developmental competence, including blastocyst formation rate, blastomere number, ICM/TE ratio, and cellular survival rate, compared to non-aggregated embryos. Investigation into the relationship between embryo aggregation and stress conditions revealed that mitochondrial function increased, and oxidative and endoplasmic reticulum (ER)-stress decreased compared to 1X (non-aggregated embryos) blastocysts. In addition, 3X (three-embryo aggregated) blastocysts increased the expression of pluripotency, anti-apoptosis, and implantation related genes, and decreased expression of pro-apoptosis related genes. Therefore, these findings indicate that embryo aggregation regulates in vitro stress conditions to increase developmental competence and contributes to the in vitro production of high-quality embryos and the large-scale production of transgenic and chimeric pigs.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Seung-Bin Yoon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Mun-Hyeong Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Hee-Chang Son
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Hwal-Yong Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Sanghoon Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jong-Hee Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Ji-Su Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| |
Collapse
|
31
|
Nam SM, Jeon YJ. Proteostasis In The Endoplasmic Reticulum: Road to Cure. Cancers (Basel) 2019; 11:E1793. [PMID: 31739582 PMCID: PMC6895847 DOI: 10.3390/cancers11111793] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that is responsible for the biosynthesis, folding, maturation, stabilization, and trafficking of transmembrane and secretory proteins. Therefore, cells evolve protein quality-control equipment of the ER to ensure protein homeostasis, also termed proteostasis. However, disruption in the folding capacity of the ER caused by a large variety of pathophysiological insults leads to the accumulation of unfolded or misfolded proteins in this organelle, known as ER stress. Upon ER stress, unfolded protein response (UPR) of the ER is activated, integrates ER stress signals, and transduces the integrated signals to relive ER stress, thereby leading to the re-establishment of proteostasis. Intriguingly, severe and persistent ER stress and the subsequently sustained unfolded protein response (UPR) are closely associated with tumor development, angiogenesis, aggressiveness, immunosuppression, and therapeutic response of cancer. Additionally, the UPR interconnects various processes in and around the tumor microenvironment. Therefore, it has begun to be delineated that pharmacologically and genetically manipulating strategies directed to target the UPR of the ER might exhibit positive clinical outcome in cancer. In the present review, we summarize recent advances in our understanding of the UPR of the ER and the UPR of the ER-mitochondria interconnection. We also highlight new insights into how the UPR of the ER in response to pathophysiological perturbations is implicated in the pathogenesis of cancer. We provide the concept to target the UPR of the ER, eventually discussing the potential of therapeutic interventions for targeting the UPR of the ER for cancer treatment.
Collapse
Affiliation(s)
- Su Min Nam
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
32
|
Hseu YC, Cho HJ, Gowrisankar YV, Thiyagarajan V, Chen XZ, Lin KY, Huang HC, Yang HL. Kalantuboside B induced apoptosis and cytoprotective autophagy in human melanoma A2058 cells: An in vitro and in vivo study. Free Radic Biol Med 2019; 143:397-411. [PMID: 31442557 DOI: 10.1016/j.freeradbiomed.2019.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 12/28/2022]
Abstract
Kalantuboside B (KB), a natural bufadienolide derivative extracted from the succulent plant Kalanchoe tubiflora, is well-known for its cardiotonic, immunomodulatory, and anti-inflammatory properties. In this study, we tested in vitro and in vivo anti-cancer efficacy with low concentrations of KB (5-30 ng/mL; 8.7-52.2 nM) on A2058 melanoma cells; and for the molecular mechanisms that underlie them. KB significantly inhibited the cell viability and colony formation via arresting the cell cycle at G2/M phase. There was an association with a decrease in Cyclin A/B1, Cdc25C, and Cdc2 expressions. Further, this treatment indicated the induction of apoptosis, DNA fragmentation, cytochrome c release, and caspase-3, -8, -9, and -12 activation, and PARP cleavage, which shows that mitochondrial, death-receptor, and ER-stress signaling pathways are involved. KB-induced autophagy was apparent from enhanced LC3-II accumulation, GFP-LC3 puncta, and AVO formation. Surprisingly, KB-mediated cell death was potentiated by 3-MA and CQ to suggest the role of autophagy as a cytoprotective mechanism. Moreover, KB-treated A2058 cells enhanced intracellular ROS generation and antioxidant NAC prevented apoptosis and reversed cytoprotective autophagy. Interestingly, KB-induced apoptosis (PARP cleavage) and cytoprotective autophagy (LC3-II accumulation) were mediated by the up-regulation of the ERK signaling pathway. It was also shown that KB promoted cytoprotective autophagy by a calcium dependent-p53 downregulation pathway. In vivo data showed that KB suppressed tumor growth significantly in A2058-xenografted nude mice. A Western blot indicated cell-cycle inhibition (cyclin A reduction), apoptosis induction (PARP cleavage and Bcl-2 inhibition), and cytoprotective autophagy (LC3-II upregulation and p53 downregulation) in KB-treated A2058-xenografted mice. Our findings suggested that KB-induced ROS pathway plays a role in mediating the apoptosis and cytoprotective autophagy in human melanoma cells. Thus, KB is considered to be a putative anti-tumor agent.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Hsin-Ju Cho
- Institute of Nutrition, China Medical University, Taichung, 40402, Taiwan
| | - Yugandhar Vudhya Gowrisankar
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Xuan-Zao Chen
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 71004, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
33
|
Yan W, Li K, Buhe A, Li T, Tian P, Hong J. Salidroside inhibits the proliferation and migration of gastric carcinoma cells and tumor growth via the activation of ERS-dependent autophagy and apoptosis. RSC Adv 2019; 9:25655-25666. [PMID: 35530072 PMCID: PMC9070095 DOI: 10.1039/c9ra00044e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/08/2019] [Indexed: 12/04/2022] Open
Abstract
The endoplasmic reticulum stress (ERS)-induced autophagy and apoptosis are favorable for the suppression of many cancer types. Salidroside (Salid) has been proven to be capable of inducing the apoptosis of many cancer cells. However, the underlying mechanisms and whether Salid can activate the autophagic system have still not been explained thoroughly. Herein, the inhibition effect of Salid on the growth and progress of gastric cancer and the underlying mechanisms were investigated. With the SGC-7901 cells acting as the cancer model cells, we ascertained that Salid exerted a superior antagonism effect on the growth and migration of gastric cancer cells in a dose-dependent manner. Additionally, Salid exhibited strong capacity to induce cell apoptosis by the down-regulation of proliferation-related genes (Ki67 and PCNA), increase in the pro-apoptotic protein C-caspase-3, and changing the levels of other related genes. A mechanism study revealed that the levels of the ERS-related genes, such as CHOP, C-caspase-12, GADD34, and BiP, in the SGC-7901 cells dramatically changed post-treatment by Salid, indicating the involvement of ERS in Salid-inducing cell apoptosis. In addition, the increased LC3+ autophagic vacuoles, enhanced conversion of LC3-I to LC3-II, and inhibition of the PI3K/Akt/mTOR pathway further confirmed the activation of autophagy induced by Salid. Importantly, the effect of Salid in regulating the levels of autophagy-related proteins or the signaling pathway could be markedly depressed by co-incubating with Wortmannin (Wort), an autophagy inhibitor. The final evaluation of the tumor therapy efficacy exhibited satisfactory cancer growth inhibition by Salid with negligible toxicity to normal tissues. In summary, the present work provides a comprehensive effective evaluation of Salid for treating gastric cancer. The detailed investigation of the underlying mechanisms may offer a rational reference for the future applications of Salid in clinic. The endoplasmic reticulum stress (ERS)-induced autophagy and apoptosis are favorable for the suppression of many cancer types.![]()
Collapse
Affiliation(s)
- Wei Yan
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University China
| | - Kai Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University China
| | - Amin Buhe
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University China
| | - Tianxiong Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University China
| | - Peirong Tian
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University China
| | - Jun Hong
- Department of Surgery, Vanderbilt University Medical Center USA
| |
Collapse
|
34
|
Ahmed K, Zaidi SF, Cui ZG, Zhou D, Saeed SA, Inadera H. Potential proapoptotic phytochemical agents for the treatment and prevention of colorectal cancer. Oncol Lett 2019; 18:487-498. [PMID: 31289520 PMCID: PMC6540497 DOI: 10.3892/ol.2019.10349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality among men and women. Chemo-resistance, adverse effects and disease recurrence are major challenges in the development of effective cancer therapeutics. Substantial literature on this subject highlights that populations consuming diets rich in fibers, fruits and vegetables have a significantly reduced incidence rate of CRC. This chemo-preventive effect is primarily associated with the presence of phytochemicals in the dietary components. Plant-derived chemical agents act as a prominent source of novel compounds for drug discovery. Phytochemicals have been the focus of an increasing number of studies due to their ability to modulate carcinogenic processes through the alteration of multiple cancer cell survival pathways. Despite promising results from experimental studies, only a limited number of phytochemicals have entered into clinical trials. The purpose of the current review is to compile previously published pre-clinical and clinical evidence of phytochemicals in cases of CRC. A PubMed, Google Scholar and Science Direct search was performed for relevant articles published between 2008-2018 using the following key terms: 'Phytochemicals with colorectal cancers', 'apoptosis', 'cell cycle', 'reactive oxygen species' and 'clinical anticancer activities'. The present review may aid in identifying the most investigated phytochemicals in CRC cells, and due to the limited number of studies that make it from the laboratory bench to clinical trial stage, may provide a novel foundation for future research.
Collapse
Affiliation(s)
- Kanwal Ahmed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Syed Faisal Zaidi
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Zheng-Guo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Dejun Zhou
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Sheikh Abdul Saeed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Hidekuni Inadera
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
35
|
Erdogan S, Turkekul K, Dibirdik I, Doganlar ZB, Doganlar O, Bilir A. Midkine silencing enhances the anti–prostate cancer stem cell activity of the flavone apigenin: cooperation on signaling pathways regulated by ERK, p38, PTEN, PARP, and NF-κB. Invest New Drugs 2019; 38:246-263. [DOI: 10.1007/s10637-019-00774-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
|
36
|
Zahednasab H, Firouzi M, Kaboudanian-Ardestani S, Mojallal-Tabatabaei Z, Karampour S, Keyvani H. The protective effect of rifampicin on behavioral deficits, biochemical, and neuropathological changes in a cuprizone model of demyelination. Cytokine 2019; 113:417-426. [DOI: 10.1016/j.cyto.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/16/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
|
37
|
Pandey VK, Mathur A, Kakkar P. Emerging role of Unfolded Protein Response (UPR) mediated proteotoxic apoptosis in diabetes. Life Sci 2018; 216:246-258. [PMID: 30471281 DOI: 10.1016/j.lfs.2018.11.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) is a crucial single membrane organelle that acts as a quality control system for cellular proteins as it is intricately involved in their synthesis, folding and trafficking to the respective targets. Type 2 diabetes is characterized by enhanced blood glucose level that promotes insulin resistance and hampers cellular glucose metabolism. Hyperglycemia provokes mitochondrial ROS production and glycation of proteins which exert a tremendous load on ER for conventional refolding of misfolded/unfolded and nascent proteins that perturb ER homeostasis resulting in apoptotic cell death. Impairment in ER functions is suspected to be through specific ER membrane-bound proteins known as Unfolded Protein Response (UPR) sensor proteins. Conformational changes in these proteins induce oligomerization and cross-autophosphorylation which facilitate processes required for the restoration of ER homeostatic imbalance. Multiple studies have reported the involvement of UPR mediated autophagy and apoptotic pathways in the progression of metabolic disorders including diabetes, cardiac ischemia/reperfusion injury and hypoxia-mediated cell death. In this review, the involvement of UPR pathways in the progression of diabetes associated complications have been addressed, which underscores molecular crosstalks during neuropathy, nephropathy, hepatic injury and retinopathy. A better understanding of these molecular interventions may reveal advanced therapeutic approaches for preventing diabetic comorbidities. The article also highlights the importance of phytochemicals that are emerging as novel ER stress inhibitors and are being explored for targeted interaction in preventing cell death responses during diabetes.
Collapse
Affiliation(s)
- Vivek Kumar Pandey
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Alpana Mathur
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Poonam Kakkar
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
38
|
Vajjala A, Biswas D, Tay WH, Hanski E, Kline KA. Streptolysin-induced endoplasmic reticulum stress promotes group A Streptococcal host-associated biofilm formation and necrotising fasciitis. Cell Microbiol 2018; 21:e12956. [PMID: 30239106 DOI: 10.1111/cmi.12956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Abstract
Group A Streptococcus (GAS) is a human pathogen that causes infections ranging from mild to fulminant and life-threatening. Biofilms have been implicated in acute GAS soft-tissue infections such as necrotising fasciitis (NF). However, most in vitro models used to study GAS biofilms have been designed to mimic chronic infections and insufficiently recapitulate in vivo conditions along with the host-pathogen interactions that might influence biofilm formation. Here, we establish and characterise an in vitro model of GAS biofilm development on mammalian cells that simulates microcolony formation observed in a mouse model of human NF. We show that on mammalian cells, GAS forms dense aggregates that display hallmark biofilm characteristics including a 3D architecture and enhanced tolerance to antibiotics. In contrast to abiotic-grown biofilms, host-associated biofilms require the expression of secreted GAS streptolysins O and S (SLO, SLS) that induce endoplasmic reticulum (ER) stress in the host. In an in vivo mouse model, the streptolysin null mutant is attenuated in both microcolony formation and bacterial spread, but pretreatment of soft-tissue with an ER stressor restores the ability of the mutant to form wild-type-like microcolonies that disseminate throughout the soft tissue. Taken together, we have identified a new role of streptolysin-driven ER stress in GAS biofilm formation and NF disease progression.
Collapse
Affiliation(s)
- Anuradha Vajjala
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Debabrata Biswas
- Cellular and Molecular Mechanisms of Inflammation, Campus for Research Excellence and Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore (NUS)-The Hebrew University of Jerusalem (HUJ), Singapore
| | - Wei Hong Tay
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Emanuel Hanski
- Cellular and Molecular Mechanisms of Inflammation, Campus for Research Excellence and Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore (NUS)-The Hebrew University of Jerusalem (HUJ), Singapore.,Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
39
|
Kim SH, Cho SN, Lim YJ, Choi JA, Lee J, Go D, Song CH. Phagocytosis influences the intracellular survival of Mycobacterium smegmatis via the endoplasmic reticulum stress response. Cell Biosci 2018; 8:52. [PMID: 30288253 PMCID: PMC6162933 DOI: 10.1186/s13578-018-0250-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Background Mycobacterium smegmatis, a rapidly growing non-tuberculosis mycobacterium, is a good model for studying the pathogenesis of tuberculosis because of its genetic similarity to Mycobacterium tuberculosis (Mtb). Macrophages remove mycobacteria during an infection. Macrophage apoptosis is a host defense mechanism against intracellular bacteria. We have reported that endoplasmic reticulum (ER) stress is an important host defense mechanism against Mtb infection. Results In this study, we found that M. smegmatis induced strong ER stress. M. smegmatis-induced reactive oxygen species (ROS) play a critical role in the induction of ER stress-mediated apoptosis. Pretreatment with an ROS scavenger suppressed M. smegmatis-induced ER stress. Elimination of ROS decreased the ER stress response and significantly increased the intracellular survival of M. smegmatis. Interestingly, inhibition of phagocytosis significantly decreased ROS synthesis, ER stress response induction, and cytokine production. Conclusions Phagocytosis of M. smegmatis induces ROS production, leading to production of proinflammatory cytokines. Phagocytosis-induced ROS is associated with the M. smegmatis-mediated ER stress response in macrophages. Therefore, phagocytosis plays a critical role in the induction of ER stress-mediated apoptosis during mycobacterial infection.
Collapse
Affiliation(s)
- Seon-Hwa Kim
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Soo-Na Cho
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Yun-Ji Lim
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea.,2Research Institute for Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Ji-Ae Choi
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea.,2Research Institute for Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Junghwan Lee
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Dam Go
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Chang-Hwa Song
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea.,2Research Institute for Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea.,3Department of Microbiology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
| |
Collapse
|
40
|
Wang Y, Wang X, Li H, Xu M, Frank J, Luo J. Binge ethanol exposure induces endoplasmic reticulum stress in the brain of adult mice. Toxicol Appl Pharmacol 2018; 356:172-181. [PMID: 30114398 DOI: 10.1016/j.taap.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 12/16/2022]
Abstract
Alcohol abuse causes brain damage and cognitive dysfunction. However, the underlying mechanisms remain elusive. Endoplasmic reticulum (ER) acts as machinery to ensure the proper folding of newly synthesized proteins. The perturbation of ER, i.e., ER stress, plays a pivotal role in some neurological disorders. Mammalian target of rapamycin (mTOR), a serine/threonine kinase, is involved in the regulation of ER stress. The current study sought to determine whether binge ethanol exposure induces ER stress in adult mouse brain and the role mTOR signaling during this process. Adult C57BL6 mice received binge ethanol exposure by daily gavage (5 g/kg, 25% ethanol w/v) for 1, 5 or 10 days. Binge ethanol exposure caused neurodegeneration and neuroinflammation after 5 days of exposure, and a concomitant increase of ER stress and inhibition of mTOR. However, ethanol exposure did not significantly alter spatial learning and memory, and spontaneous locomotor activity. Ethanol treatment induced ER stress and the death of cultured neuronal cells. Cotreatment with an ER stress inhibitor, sodium 4-phenylbutyrate (4-PBA) significantly diminished ethanol-induced ER stress and neuronal apoptosis, suggesting that ER stress contributes to ethanol-induced neurodegeneration. Furthermore, the blockage of mTOR activity by rapamycin increased ER stress in cultured neuronal cells; whereas the activation or inhibition of ER stress by tunicamycin or 4-PBA respectively had little effects on mTOR signaling. These results suggested that mTOR signaling is upstream of ER stress and may thereby mediate ethanol-induced ER stress.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Xin Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Center for Health Services Research, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Hui Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Jacqueline Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
41
|
Rahman HS. Phytochemical analysis and antioxidant and anticancer activities of mastic gum resin from Pistacia atlantica subspecies kurdica. Onco Targets Ther 2018; 11:4559-4572. [PMID: 30122948 PMCID: PMC6084073 DOI: 10.2147/ott.s170827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The mastic gum resin has been used in traditional Kurdish medicine for treating various disorders such as topical wound and gastric ulcer. The study designed to evaluate the total polyphenol and flavonoid content, free radical scavenging activity, and anticancer effects of mastic gum resin derived from Pistacia atlantica subspecies kurdica. MATERIALS AND METHODS Folin -Ciocalteau and the aluminum chloride colorimetric assays were used to determine the total phenol and flavonoid contents in the mastic gum resin respectively. Whereas, DPPH and ABTS+ assays were used to determine the antioxidant activities of mastic gum resin. Regarding anticancer activities, the MTT assay was used to study the effect of mastic gum resin on the proliferation of various cancer cells and the morphological changes were identified after Acridine Orange/Propidium Iodide staining. Flow cytometry was applied to determine the influence of mastic gum resin on the apoptosis rate by Annexin V double staining and to investigate the influence on cell cycle progression. Caspase colorimetric assay was used to estimate the hallmark enzyme of apoptosis, and finally RNA were obtained from COLO205 cells and analyzed by qRT-PCR analyses. RESULTS The MTT results showed that the mastic gum resin at concentrations from 0.01 to 100 μM induced death of cancer cells in a dose and time-dependent manner. The mastic gum resin suppressed proliferation of human cancer cells with 72 h IC50 value of 15.34 ± 0.21, 11.52 ± 0.18, 8.11 ± 0.23 and 5.2 ± 0.8 μg/mL for bile duct cancer (cholangiocarcinoma) (KMBC), pancreatic carcinoma (PANC-1), gastric adenocarcinoma (CRL-1739), and colonic adenocarcinoma (COLO205) cells, respectively. Normal human colon fibroblast (CCD-18Co) cells were not adversely affected by resin treatment. Flow cytometry showed that the mastic gum resin significantly (P<0.05) arrested COLO205 cell proliferation at the G2/M phase of cell cycle. The resin caused apoptotic morphological changes in COLO205 cells. The apoptotic effect to mastic gum resin was via the mitochondrial as shown by the up-regulation of Bax, down-regulation of Bcl-2 genes, and activation of caspase-9 and -3 activities. CONCLUSION It was confirmed that the antiproliferative efficacy of the resin is positively correlated with its polyphenolic contents, suggesting a causal link related to exudate content of phenolic acid and flavonoids. The results revealed that the mastic gum resin has potential to be developed as an anticancer and antioxidant product due to its high content of polyphenol compounds.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani, Kurdistan Region, Republic of Iraq,
- Department of Medical Laboratory Sciences, College of Science, Komar University of Science and Technology, Chaq-Chaq Qularaisee, Sarchinar District, Sulaimani, Kurdistan Region, Republic of Iraq,
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia,
| |
Collapse
|
42
|
Kawano A, Shigematsu H, Miki K, Ichiki Y, Morita C, Yanagita K, Takahashi K, Dohmen K, Nomura H, Ishibashi H, Shimoda S. Diabetes Mellitus Prevents an Improvement in the Serum Albumin Level During Interferon-free Sofosbuvir-based Therapy for Chronic Hepatitis C Patients: A Multi-institutional Joint Study. Intern Med 2018; 57:1533-1542. [PMID: 29321441 PMCID: PMC6028685 DOI: 10.2169/internalmedicine.9857-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
Objective Interferon-free regimens of direct-acting antiviral agents have improved the treatment response for chronic hepatitis C virus (HCV) infection, and improvement in the serum albumin level during interferon-free therapy has been reported. The aim of this study was to identify the factors that influence the improvement in the serum albumin level in patients receiving interferon-free antiviral therapy. Methods This retrospective, multicenter study consisted of 471 Japanese patients with chronic hepatitis and compensated liver cirrhosis infected with HCV who completed 12-week interferon-free sofosbuvir (SOF)-based therapy [SOF plus ledipasvir for genotype 1 (n=276) and SOF with ribavirin for genotype 2 (n=195)]. We evaluated the changes in the serum albumin level from baseline to the end of treatment (ΔAlb). Results When compared with the normal-albumin group (baseline serum albumin >35 g/L, n=406), the low-albumin group (baseline serum albumin ≤35 g/L, n=65) showed a significant increase in the mean ΔAlb (5.5 g/L vs. 1.0 g/L, p<0.001). In the low-albumin group, a multivariate logistic regression analysis extracted diabetes mellitus as a negative predictive factor of median ΔAlb >5.0 g/L (odds ratio: 0.19, 95% confidence interval: 0.048-0.79, p=0.020). In the low-albumin group, the mean ΔAlb was significantly lower in the diabetic patients (n=14) than in the non-diabetic patients (n=51) (3.9 g/L and 5.7 g/L, p=0.049). Conclusion Interferon-free SOF-based therapy significantly improved the serum albumin in the low-albumin group patients with chronic HCV infection. However, the improvement in the serum albumin level was significantly lower in the diabetic patients than in the non-diabetic patients.
Collapse
Affiliation(s)
- Akira Kawano
- Department of Internal Medicine, Kitakyushu Municipal Medical Center, Japan
| | | | - Koichiro Miki
- Department of Internal Medicine, Kitakyushu Municipal Medical Center, Japan
| | - Yasunori Ichiki
- Department of Internal Medicine, Japan Community Health care Organization Kyushu Hospital, Japan
| | - Chie Morita
- Department of Internal Medicine, JR Kyushu Hospital, Japan
| | | | | | | | | | - Hiromi Ishibashi
- Department of Hepato-Biliary-Pancreatic Medicine, Fukuoka Sanno Hospital, Japan
| | - Shinji Shimoda
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
43
|
Wang X, An Y, Jiao W, Zhang Z, Han H, Gu X, Teng X. Selenium Protects against Lead-induced Apoptosis via Endoplasmic Reticulum Stress in Chicken Kidneys. Biol Trace Elem Res 2018; 182:354-363. [PMID: 28748446 DOI: 10.1007/s12011-017-1097-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
Lead (Pb) is a toxic heavy metal and can harm organisms by inducing apoptosis. Selenium (Se), an essential trace element for humans and animals, can alleviate heavy metal toxicity. The aim of our study is to investigate alleviative effect of Se on Pb-induced apoptosis via endoplasmic reticulum (ER) stress in chicken kidneys. One hundred and eighty male chickens were randomly divided into four groups at 7 days of age and were fed with commercial diet (containing 0.49 mg/kg Se) and drinking water, Na2SeO3-added commercial diet (containing 1 mg/kg Se) and drinking water, the commercial diet and (CH3OO)2Pb-added drinking water (containing 350 mg/L Pb), and Na2SeO3-added commercial diet (containing 1 mg/kg Se) and (CH3OO)2Pb-added drinking water (containing 350 mg/L Pb), respectively. On the 30th, 60th, and 90th days of the experiment period, 15 chickens in each group were euthanized and the kidneys were collected. Following contents were performed: kidney ultrastructure; nitric oxide (NO) content; inducible nitric oxide synthase (iNOS) activity; relative messenger RNA (mRNA) and protein expression of iNOS, ER-related genes (glucose-regulated protein (GRP)78, GRP94, activating transcription factor (ATF)4, ATF6, and iron-responsive element (IRE)), and apoptosis-related genes (caspase-3 and B cell lymphoma-2 (Bcl-2)); and caspase-12 protein expression. The results indicated that Pb changed kidney ultrastructural structure; decreased Bcl-2 mRNA and protein expression; and increased NO content, iNOS activity, relative mRNA and protein expression of iNOS, ER-related genes, and caspase-3 and caspase-12 protein expression. Se attenuated above changes caused by Pb. Pb had time-dependent manners on NO content, GRP78, GRP94, ATF4, IRE, and caspase-3 mRNA expression. Se attenuated Pb-induced apoptosis via ER stress in the chicken kidneys.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Animal Science and Technology, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Yang An
- College of Animal Science and Technology, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Wanying Jiao
- College of Animal Science and Technology, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Zhongyuan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Hui Han
- College of Animal Science and Technology, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Xianhong Gu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, 150030, Harbin, People's Republic of China.
| |
Collapse
|
44
|
Polymyxin B causes DNA damage in HK-2 cells and mice. Arch Toxicol 2018; 92:2259-2271. [PMID: 29556720 DOI: 10.1007/s00204-018-2192-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Increasing incidence of multidrug-resistant bacteria presents an imminent risk to global health. Polymyxins are 'last-resort' antibiotics against Gram-negative 'superbugs'; however, nephrotoxicity remains a key impediment in their clinical use. Molecular mechanisms underlying this nephrotoxicity remain poorly defined. Here, we examined the pathways which led to polymyxin B induced cell death in vitro and in vivo. Human proximal tubular cells were treated with polymyxin B (12.5-100 μM) for up to 24 h and showed a significant increase in micronuclei frequency, as well as abnormal mitotic events (over 40% in treated cells, p < 0.05). Time-course studies were performed using a mouse nephrotoxicity model (cumulative 72 mg/kg). Kidneys were collected over 48 h and investigated for histopathology and DNA damage. Notable increases in γH2AX foci (indicative of double-stranded breaks) were observed in both cell culture (up to ~ 44% cells with 5+ foci at 24 h, p < 0.05) and mice treated with polymyxin B (up to ~ 25%, p < 0.05). Consistent with these results, in vitro assays showed high binding affinity of polymyxin B to DNA. Together, our results indicate that polymyxin B nephrotoxicity is associated with DNA damage, leading to chromosome missegregation and genome instability. This novel mechanistic information may lead to new strategies to overcome the nephrotoxicity of this important last-line class of antibiotics.
Collapse
|
45
|
Xie T, Liang J, Geng Y, Liu N, Kurkciyan A, Kulur V, Leng D, Deng N, Liu Z, Song J, Chen P, Noble PW, Jiang D. MicroRNA-29c Prevents Pulmonary Fibrosis by Regulating Epithelial Cell Renewal and Apoptosis. Am J Respir Cell Mol Biol 2017; 57:721-732. [PMID: 28799781 DOI: 10.1165/rcmb.2017-0133oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Successful repair and renewal of alveolar epithelial cells (AECs) are critical in prohibiting the accumulation of myofibroblasts in pulmonary fibrogenesis. MicroRNAs (miRNAs) are multifocal regulators involved in lung injury and repair. However, the contribution of miRNAs to AEC2 renewal and apoptosis is incompletely understood. We report that miRNA-29c (miR-29c) expression is lower in AEC2s of individuals with idiopathic pulmonary fibrosis than in healthy lungs. Epithelial cells overexpressing miR-29c show higher proliferative rates and viability. miR-29c protects epithelial cells from apoptosis by targeting forkhead box O3a (Foxo3a). Both overexpression of miR-29c conventionally and AEC2s specifically lead to less fibrosis and better recovery in vivo. Furthermore, deficiency of miR-29c in AEC2s results in higher apoptosis and reduced epithelial renewal. Interestingly, a gene network including a subset of apoptotic genes was coregulated by both Toll-like receptor 4 and miR-29c. Taken together, miR-29c maintains epithelial integrity and promotes recovery from lung injury, thereby attenuating lung fibrosis in mice.
Collapse
Affiliation(s)
- Ting Xie
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jiurong Liang
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yan Geng
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ningshan Liu
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Adrianne Kurkciyan
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Vrishika Kulur
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dong Leng
- 2 Clinical Laboratory and Laboratory Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Nan Deng
- 3 Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Zhenqiu Liu
- 3 Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Jianbo Song
- 4 Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter Chen
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Paul W Noble
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dianhua Jiang
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
46
|
Inhibition of Starvation-Triggered Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in ARPE-19 Cells by Taurine through Modulating the Expression of Calpain-1 and Calpain-2. Int J Mol Sci 2017; 18:ijms18102146. [PMID: 29036897 PMCID: PMC5666828 DOI: 10.3390/ijms18102146] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex disease with multiple initiators and pathways that converge on death for retinal pigment epithelial (RPE) cells. In this study, effects of taurine on calpains, autophagy, endoplasmic reticulum (ER) stress, and apoptosis in ARPE-19 cells (a human RPE cell line) were investigated. We first confirmed that autophagy, ER stress and apoptosis in ARPE-19 cells were induced by Earle’s balanced salt solution (EBSS) through starvation to induce RPE metabolic stress. Secondly, inhibition of ER stress by 4-phenyl butyric acid (4-PBA) alleviated autophagy and apoptosis, and suppression of autophagy by 3-methyl adenine (3-MA) reduced the cell apoptosis, but the ER stress was minimally affected. Thirdly, the apoptosis, ER stress and autophagy were inhibited by gene silencing of calpain-2 and overexpression of calpain-1, respectively. Finally, taurine suppressed both the changes of the important upstream regulators (calpain-1 and calpain-2) and the activation of ER stress, autophagy and apoptosis, and taurine had protective effects on the survival of ARPE-19 cells. Collectively, this data indicate that taurine inhibits starvation-triggered endoplasmic reticulum stress, autophagy, and apoptosis in ARPE-19 cells by modulating the expression of calpain-1 and calpain-2.
Collapse
|
47
|
Soni KK, Shin YS, Choi BR, Karna KK, Kim HK, Lee SW, Kim CY, Park JK. Protective effect of DA-9401 in finasteride-induced apoptosis in rat testis: inositol requiring kinase 1 and c-Jun N-terminal kinase pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2969-2979. [PMID: 29066868 PMCID: PMC5644560 DOI: 10.2147/dddt.s140543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Finasteride is used to treat male pattern baldness and benign prostatic hyperplasia. This study investigated the toxicity of finasteride and recovery by DA-9401 using Sprague Dawley (SD) rats. Forty adult male SD rats were assigned to four groups: control (CTR), finasteride 1 mg/kg/day (F), finasteride 1 mg/kg + DA-9401 100 mg/kg/day (F + DA 100) and finasteride 1 mg/kg + DA-9401 200 mg/kg/day (F + DA 200). Treatments were by oral delivery once daily for 90 consecutive days. The gross anatomical parameters assessed included: genital organ weight; vas deferens sperm count and sperm motility; testosterone, dihydrotestosterone (DHT) and malondialdehyde levels; and histological and terminal deoxynucleotidyl transferase enzyme mediated dUTP nick-end labeling (TUNEL) staining of testis for spermatogenic cell density, Johnsen’s score and apoptosis. Testicular tissue was also used for evaluating endoplasmic reticulum (ER) stress and apoptotic proteins. Epididymis weight, seminal vesicle weight, prostate weight, penile weight and vas deferens sperm motility showed significant differences between the F group and the CTR, F + DA 100 and F + DA 200 groups. There was no significant change in the testosterone level. DHT level decreased significantly in the F group compared with the CTR group. Testis tissue revealed significant changes in spermatogenic cell density, Johnsen’s score and apoptotic index. Western blot showed significant changes in the ER stress and apoptotic markers. Finasteride resulted in reduced fertility and increased ER stress and apoptotic markers, which were recovered by administration of DA-9401 in the SD rats.
Collapse
Affiliation(s)
- Kiran Kumar Soni
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju
| | - Yu Seob Shin
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju
| | - Bo Ram Choi
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju
| | - Keshab Kumar Karna
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju
| | | | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University Medical School, Seoul
| | - Chul Young Kim
- College of Pharmacy, Hangyang University, Ansan, Republic of Korea
| | - Jong Kwan Park
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju
| |
Collapse
|
48
|
Johnson BG, Dang LT, Marsh G, Roach AM, Levine ZG, Monti A, Reyon D, Feigenbaum L, Duffield JS. Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. J Clin Invest 2017; 127:3954-3969. [PMID: 28990932 DOI: 10.1172/jci93817] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
Uromodulin-associated kidney disease (UAKD) is caused by mutations in the uromodulin (UMOD) gene that result in a misfolded form of UMOD protein, which is normally secreted by nephrons. In UAKD patients, mutant UMOD is poorly secreted and accumulates in the ER of distal kidney epithelium, but its role in disease progression is largely unknown. Here, we modeled UMOD accumulation in mice by expressing the murine equivalent of the human UMOD p.Cys148Trp point mutation (UmodC147W/+ mice). Like affected humans, these UmodC147W/+ mice developed spontaneous and progressive kidney disease with organ failure over 24 weeks. Analysis of diseased kidneys and purified UMOD-producing cells revealed early activation of the PKR-like ER kinase/activating transcription factor 4 (PERK/ATF4) ER stress pathway, innate immune mediators, and increased apoptotic signaling, including caspase-3 activation. Unexpectedly, we also detected autophagy deficiency. Human cells expressing UMOD p.Cys147Trp recapitulated the findings in UmodC147W/+ mice, and autophagy activation with mTOR inhibitors stimulated the intracellular removal of aggregated mutant UMOD. Human cells producing mutant UMOD were susceptible to TNF-α- and TRAIL-mediated apoptosis due to increased expression of the ER stress mediator tribbles-3. Blocking TNF-α in vivo with the soluble recombinant fusion protein TNFR:Fc slowed disease progression in UmodC147W/+ mice by reducing active caspase-3, thereby preventing tubule cell death and loss of epithelial function. These findings reveal a targetable mechanism for disease processes involved in UAKD.
Collapse
Affiliation(s)
- Bryce G Johnson
- Research and Development, Biogen, Cambridge, Massachusetts, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lan T Dang
- Research and Development, Biogen, Cambridge, Massachusetts, USA
| | - Graham Marsh
- Research and Development, Biogen, Cambridge, Massachusetts, USA
| | - Allie M Roach
- Research and Development, Biogen, Cambridge, Massachusetts, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Anthony Monti
- Research and Development, Biogen, Cambridge, Massachusetts, USA
| | - Deepak Reyon
- Research and Development, Biogen, Cambridge, Massachusetts, USA
| | | | - Jeremy S Duffield
- Research and Development, Biogen, Cambridge, Massachusetts, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
49
|
Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis 2017; 8:e3081. [PMID: 28981117 PMCID: PMC5680575 DOI: 10.1038/cddis.2017.453] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/06/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022]
Abstract
Oxidative stress-related apoptosis and autophagy play crucial roles in the development of osteoarthritis (OA), a progressive cartilage degenerative disease with multifactorial etiologies. Here, we determined autophagic flux changes and apoptosis in human OA and tert-Butyl hydroperoxide (TBHP)-treated chondrocytes. In addition, we explored the potential protective effects of trehalose, a novel Mammalian Target of Rapamycin (mTOR)-independent autophagic inducer, in TBHP-treated mouse chondrocytes and a destabilized medial meniscus (DMM) mouse OA model. We found aberrant p62 accumulation and increased apoptosis in human OA cartilage and chondrocytes. Consistently, p62 and cleaved caspase-3 levels increased in mouse chondrocytes under oxidative stress. Furthermore, trehalose restored oxidative stress-induced autophagic flux disruption and targeted autophagy selectively by activating BCL2 interacting protein 3 (BNIP3) and Phosphoglycerate mutase family member 5 (PGAM5). Trehalose could ameliorate oxidative stress-mediated mitochondrial membrane potential collapse, ATP level decrease, dynamin-related protein 1 (drp-1) translocation into the mitochondria, and the upregulation of proteins involved in mitochondria and endoplasmic reticulum (ER) stress-related apoptosis pathway. In addition, trehalose suppressed the cleavage of caspase 3 and poly(ADP-ribose) polymerase (PARP) and prevented DNA damage under oxidative stress. However, the anti-apoptotic effects of trehalose in TBHP-treated chondrocytes were partially abolished by autophagic flux inhibitor chloroquine and BNIP3- siRNA. The protective effect of trehalose was also found in mouse OA model. Taken together, these results indicate that trehalose has anti-apoptotic effects through the suppression of oxidative stress-induced mitochondrial injury and ER stress which is dependent on the promotion of autophagic flux and the induction of selective autophagy. Thus, trehalose is a promising therapeutic agent for OA.
Collapse
|
50
|
Mammalian ECD Protein Is a Novel Negative Regulator of the PERK Arm of the Unfolded Protein Response. Mol Cell Biol 2017; 37:MCB.00030-17. [PMID: 28652267 PMCID: PMC5574048 DOI: 10.1128/mcb.00030-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/17/2017] [Indexed: 01/01/2023] Open
Abstract
Mammalian Ecdysoneless (ECD) is a highly conserved ortholog of the DrosophilaEcd gene product whose mutations impair the synthesis of Ecdysone and produce cell-autonomous survival defects, but the mechanisms by which ECD functions are largely unknown. Here we present evidence that ECD regulates the endoplasmic reticulum (ER) stress response. ER stress induction led to a reduced ECD protein level, but this effect was not seen in PKR-like ER kinase knockout (PERK-KO) or phosphodeficient eukaryotic translation initiation factor 2α (eIF2α) mouse embryonic fibroblasts (MEFs); moreover, ECD mRNA levels were increased, suggesting impaired ECD translation as the mechanism for reduced protein levels. ECD colocalizes and coimmunoprecipitates with PERK and GRP78. ECD depletion increased the levels of both phospho-PERK (p-PERK) and p-eIF2α, and these effects were enhanced upon ER stress induction. Reciprocally, overexpression of ECD led to marked decreases in p-PERK, p-eIF2α, and ATF4 levels but robust increases in GRP78 protein levels. However, GRP78 mRNA levels were unchanged, suggesting a posttranscriptional event. Knockdown of GRP78 reversed the attenuating effect of ECD overexpression on PERK signaling. Significantly, overexpression of ECD provided a survival advantage to cells upon ER stress induction. Taken together, our data demonstrate that ECD promotes survival upon ER stress by increasing GRP78 protein levels to enhance the adaptive folding protein in the ER to attenuate PERK signaling.
Collapse
|