1
|
Sevilla A, Grichnik J. Therapeutic modulation of KIT ligand in melanocytic disorders with implications for mast cell diseases. Exp Dermatol 2024; 33:e15091. [PMID: 38711220 DOI: 10.1111/exd.15091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.
Collapse
Affiliation(s)
- Alec Sevilla
- Department of Dermatology, New York Medical College, New York, New York, USA
- Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James Grichnik
- Department of Dermatology and Cutaneous Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
2
|
Navasatli SA, Vahdati SN, Arjmand TF, Mohammadi far M, Behboudi H. New insight into the role of the ADAM protease family in breast carcinoma progression. Heliyon 2024; 10:e24805. [PMID: 38317965 PMCID: PMC10839977 DOI: 10.1016/j.heliyon.2024.e24805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Protease and adhesion molecules play a very emphasized role in the occurrence or progression of metastasis in many types of cancers. In this context, a molecule that contains both protease and adhesion functions play a crucial role in metastasis. ADAMs (a disintegrin and metalloprotease) are molecules with this special characteristic. Recently, a lot of attention has been attracted to various ADAM molecules and researchers have tried to elucidate the role of ADAMs in breast cancer occurrence and progression. Disrupting ADAMs protease and adhesion capabilities can lead to the discovery of worthy therapeutic targets in breast cancer treatment. In this review, we intend to discuss the mechanism of action of various ADAM molecules, their relation to pathogenic processes of breast cancer, and their potential as possible targets for breast cancer treatment.
Collapse
Affiliation(s)
- Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Tahura Fayeghi Arjmand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Mohammadi far
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Gruba N, Piwkowska A, Lesner A. Initial study of the detection of ADAM 10 in the urine of type-2 diabetic patients. Bioorg Chem 2023; 140:106826. [PMID: 37666108 DOI: 10.1016/j.bioorg.2023.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Diabetes mellitus (DM) is a disease of civilization. If left untreated, it can cause serious complications and significantly shortens the life time. DM is one of the leading causes of end-stage renal disease (uremia) worldwide. Early diagnosis is a prerequisite for successful treatment, preferably before the first symptoms appear. In this paper, we describe the optimization and synthesis of the internally quenched fluorescent substrate disintegrin and metalloproteinase 10 (ADAM10). Using combinatorial chemistry methods with iterative deconvolution, the substrate specificity of the enzyme in non-primed and primed positions was determined. We used the ABZ-Lys-Ile-Ile-Asn-Leu-Lys-Arg-Tyr(3-NO2)-NH2 peptide to study ADAM10 activity in urine samples collected from patients diagnosed with type 2 diabetes, compared to urine samples from healthy volunteers. The proteolytically active enzyme was present in diabetes samples, while in the case of healthy people we did not observe any activity. In conclusion, our study provides a possible basis for further research into the potential role of ADAM10 in the diagnosis of type 2 diabetes.
Collapse
Affiliation(s)
- Natalia Gruba
- Department of Environmental Technology, Faculty of Chemistry University of Gdansk, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry University of Gdansk, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| |
Collapse
|
4
|
Maas SL, Donners MMPC, van der Vorst EPC. ADAM10 and ADAM17, Major Regulators of Chronic Kidney Disease Induced Atherosclerosis? Int J Mol Sci 2023; 24:ijms24087309. [PMID: 37108478 PMCID: PMC10139114 DOI: 10.3390/ijms24087309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major health problem, affecting millions of people worldwide, in particular hypertensive and diabetic patients. CKD patients suffer from significantly increased cardiovascular disease (CVD) morbidity and mortality, mainly due to accelerated atherosclerosis development. Indeed, CKD not only affects the kidneys, in which injury and maladaptive repair processes lead to local inflammation and fibrosis, but also causes systemic inflammation and altered mineral bone metabolism leading to vascular dysfunction, calcification, and thus, accelerated atherosclerosis. Although CKD and CVD individually have been extensively studied, relatively little research has studied the link between both diseases. This narrative review focuses on the role of a disintegrin and metalloproteases (ADAM) 10 and ADAM17 in CKD and CVD and will for the first time shed light on their role in CKD-induced CVD. By cleaving cell surface molecules, these enzymes regulate not only cellular sensitivity to their micro-environment (in case of receptor cleavage), but also release soluble ectodomains that can exert agonistic or antagonistic functions, both locally and systemically. Although the cell-specific roles of ADAM10 and ADAM17 in CVD, and to a lesser extent in CKD, have been explored, their impact on CKD-induced CVD is likely, yet remains to be elucidated.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
5
|
Wang Y, Zhang J, Liang J, Jia L, Niu S, Cheng K, Yang C, Lu Z, Mu L, Yang X, Zhang Y, Zhang H. In vivo promotion of primordial follicle activation by stem cell factor treatment in mice with premature ovarian insufficiency and advanced age. Mol Hum Reprod 2022; 29:6881085. [PMID: 36477300 DOI: 10.1093/molehr/gaac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Dormant primordial follicles (PFs) are the most abundant reproductive resource in mammalian ovaries. With advances in the mechanism of study of the regulation of PF activation, PFs have been used to improve fertility in clinical practice. As a central controlling element of follicle activation signaling, the pre-granulosa cell-secreted stem cell factor (SCF; also known as KIT ligand, KITL), which initiates the growth of dormant oocytes, is an ideal natural activator that stimulates follicle activation. However, no systematic study has been conducted to identify the activating effect of SCF in vivo and in vitro. In this study, by combining an in vitro whole ovary culture system and several mouse models, we provide a series of experimental evidence that SCF is an efficient activator for improving PF activation in mouse ovaries. Our in vitro study showed that SCF increased phosphatidylinositol 3-kinase (PI3K) signaling and PF activation ratio in neonatal ovaries. In vivo ovarian non-invasive topical administrations of SCF to the ovaries efficiently improved follicle activation and development, oocyte retrieval ratio and fertility in inducible premature ovarian insufficiency mouse models and aged mice. Our study suggests that SCF is an efficient growth factor that can be applied to improve PF activation.
Collapse
Affiliation(s)
- Yibo Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiawei Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Beijing, China
| | - Jing Liang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Longzhong Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kaixin Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chen Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zining Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lu Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuebing Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Wang K, Xuan Z, Liu X, Zheng M, Yang C, Wang H. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front Immunol 2022; 13:1059376. [PMID: 36466812 PMCID: PMC9715963 DOI: 10.3389/fimmu.2022.1059376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 12/25/2023] Open
Abstract
ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family of transmembrane proteases involved in the shedding of some cell membrane proteins and regulating various signaling pathways. More than 90 substrates are regulated by ADAM17, some of which are closely relevant to tumor formation and development. Besides, ADAM17 is also responsible for immune regulation and its substrate-mediated signal transduction. Recently, ADAM17 has been considered as a major target for the treatment of tumors and yet its immunomodulatory roles and mechanisms remain unclear. In this paper, we summarized the recent understanding of structure and several regulatory roles of ADAM17. Importantly, we highlighted the immunomodulatory roles of ADAM17 in tumor development, as well as small molecule inhibitors and monoclonal antibodies targeting ADAM17.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Zhao Y, Dávila EM, Li X, Tang B, Rabinowitsch AI, Perez-Aguilar JM, Blobel CP. Identification of Molecular Determinants in iRhoms1 and 2 That Contribute to the Substrate Selectivity of Stimulated ADAM17. Int J Mol Sci 2022; 23:12796. [PMID: 36361585 PMCID: PMC9654401 DOI: 10.3390/ijms232112796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
The metalloprotease ADAM17 is a key regulator of the TNFα, IL-6R and EGFR signaling pathways. The maturation and function of ADAM17 is controlled by the seven-membrane-spanning proteins iRhoms1 and 2. The functional properties of the ADAM17/iRhom1 and ADAM17/iRhom2 complexes differ, in that stimulated shedding of most ADAM17 substrates tested to date can be supported by iRhom2, whereas iRhom1 can only support stimulated shedding of very few ADAM17 substrates, such as TGFα. The first transmembrane domain (TMD1) of iRhom2 and the sole TMD of ADAM17 are important for the stimulated shedding of ADAM17 substrates by iRhom2. However, little is currently known about how the iRhoms interact with different substrates to control their stimulated shedding by ADAM17. To provide new insights into this topic, we tested how various chimeras between iRhom1 and iRhom2 affect the stimulated processing of the EGFR-ligands TGFα (iRhom1- or 2-dependent) and EREG (iRhom2-selective) by ADAM17. This uncovered an important role for the TMD7 of the iRhoms in determining their substrate selectivity. Computational methods utilized to characterize the iRhom1/2/substrate interactions suggest that the substrate selectivity is determined, at least in part, by a distinct accessibility of the substrate cleavage site to stimulated ADAM17. These studies not only provide new insights into why the substrate selectivity of stimulated iRhom2/ADAM17 differs from that of iRhom1/ADAM17, but also suggest new approaches for targeting the release of specific ADAM17 substrates.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eliud Morales Dávila
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Xue Li
- Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Beiyu Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ariana I. Rabinowitsch
- Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Carl P. Blobel
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10021, USA
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
8
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Dixit G, Schanz W, Pappas BA, Maretzky T. Members of the Fibroblast Growth Factor Receptor Superfamily Are Proteolytically Cleaved by Two Differently Activated Metalloproteases. Int J Mol Sci 2021; 22:ijms22063165. [PMID: 33804608 PMCID: PMC8003738 DOI: 10.3390/ijms22063165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that have been associated not only with various cellular processes, such as embryonic development and adult wound healing but also enhanced tumor survival, angiogenesis, and metastatic spread. Proteolytic cleavage of these single-pass transmembrane receptors has been suggested to regulate biological activities of their ligands during growth and development, yet little is known about the proteases responsible for this process. In this study, we monitored the release of membrane-anchored FGFRs 1, 2, 3, and 4 in cell-based assays. We demonstrate here that metalloprotease-dependent metalloprotease family, ADAM10 and ADAM17. Loss- and gain-of-function studies in murine embryonic fibroblasts showed that constitutive shedding as well as phorbol-ester-induced processing of FGFRs 1, 3, and 4 is mediated by ADAM17. In contrast, treatment with the calcium ionophore ionomycin stimulated ADAM10-mediated FGFR2 shedding. Cell migration assays with keratinocytes in the presence or absence of soluble FGFRs suggest that ectodomain shedding can modulate the function of ligand-induced FGFR signaling during cell movement. Our data identify ADAM10 and ADAM17 as differentially regulated FGFR membrane sheddases and may therefore provide new insight into the regulation of FGFR functions.
Collapse
Affiliation(s)
- Garima Dixit
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (W.S.); (B.A.P.)
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Willow Schanz
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (W.S.); (B.A.P.)
| | - Benjamin A. Pappas
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (W.S.); (B.A.P.)
| | - Thorsten Maretzky
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (W.S.); (B.A.P.)
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Immunology Graduate Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
10
|
Yumoto T, Kimura M, Nagatomo R, Sato T, Utsunomiya S, Aoki N, Kitaura M, Takahashi K, Takemoto H, Watanabe H, Okano H, Yoshida F, Nao Y, Tomita T. Autism-associated variants of neuroligin 4X impair synaptogenic activity by various molecular mechanisms. Mol Autism 2020; 11:68. [PMID: 32873342 PMCID: PMC7465329 DOI: 10.1186/s13229-020-00373-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several genetic alterations, including point mutations and copy number variations in NLGN genes, have been associated with psychiatric disorders, such as autism spectrum disorder (ASD) and X-linked mental retardation (XLMR). NLGN genes encode neuroligin (NL) proteins, which are adhesion molecules that are important for proper synaptic formation and maturation. Previously, we and others found that the expression level of murine NL1 is regulated by proteolytic processing in a synaptic activity-dependent manner. METHODS In this study, we analyzed the effects of missense variants associated with ASD and XLMR on the metabolism and function of NL4X, a protein which is encoded by the NLGN4X gene and is expressed only in humans, using cultured cells, primary neurons from rodents, and human induced pluripotent stem cell-derived neurons. RESULTS NL4X was found to undergo proteolytic processing in human neuronal cells. Almost all NL4X variants caused a substantial decrease in the levels of mature NL4X and its synaptogenic activity in a heterologous culture system. Intriguingly, the L593F variant of NL4X accelerated the proteolysis of mature NL4X proteins located on the cell surface. In contrast, other variants decreased the cell-surface trafficking of NL4X. Notably, protease inhibitors as well as chemical chaperones rescued the expression of mature NL4X. LIMITATIONS Our study did not reveal whether these dysfunctional phenotypes occurred in individuals carrying NLGN4X variant. Moreover, though these pathological mechanisms could be exploited as potential drug targets for ASD, it remains unclear whether these compounds would have beneficial effects on ASD model animals and patients. CONCLUSIONS These data suggest that reduced amounts of the functional NL4X protein on the cell surface is a common mechanism by which point mutants of the NL4X protein cause psychiatric disorders, although different molecular mechanisms are thought to be involved. Furthermore, these results highlight that the precision medicine approach based on genetic and cell biological analyses is important for the development of therapeutics for psychiatric disorders.
Collapse
Affiliation(s)
- Takafumi Yumoto
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Misaki Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryota Nagatomo
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shun Utsunomiya
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Natsue Aoki
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Motoji Kitaura
- Research Administration SPRC, R&D General Administration Unit, General Administration Division, Shionogi Administration Service, Osaka, Japan
| | - Koji Takahashi
- Drug Discovery Technology 3, Laboratory for Innovative Therapy Research, Shionogi, Osaka, Japan
| | - Hiroshi Takemoto
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Fumiaki Yoshida
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yosuke Nao
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
11
|
Tang B, Li X, Maretzky T, Perez-Aguilar JM, McIlwain D, Xie Y, Zheng Y, Mak TW, Weinstein H, Blobel CP. Substrate-selective protein ectodomain shedding by ADAM17 and iRhom2 depends on their juxtamembrane and transmembrane domains. FASEB J 2020; 34:4956-4969. [PMID: 32103528 DOI: 10.1096/fj.201902649r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
The metalloprotease ADAM17 (a disintegrin and metalloprotease 17) regulates EGF-receptor and TNFα signaling, thereby not only protecting the skin and intestinal barrier, but also contributing to autoimmunity. ADAM17 can be rapidly activated by many stimuli through its transmembrane domain (TMD), with the seven membrane-spanning inactive Rhomboids (iRhom) 1 and 2 implicated as candidate regulatory partners. However, several alternative models of ADAM17 regulation exist that do not involve the iRhoms, such as regulation through disulfide bond exchange or through interaction with charged phospholipids. Here, we report that a non-activatable mutant of ADAM17 with the TMD of betacellulin (BTC) can be rescued by restoring residues from the ADAM17 TMD, but only in Adam17-/- cells, which contain iRhoms, not in iRhom1/2-/- cells. We also provide the first evidence that the extracellular juxtamembrane domains (JMDs) of ADAM17 and iRhom2 regulate the stimulation and substrate selectivity of ADAM17. Interestingly, a point mutation in the ADAM17 JMD identified in a patient with Tetralogy of Fallot, a serious heart valve defect, affects the substrate selectivity of ADAM17 toward Heparin-binding epidermal growth factor like growth factor (HB-EGF), a crucial regulator of heart valve development in mice. These findings provide new insights into the regulation of ADAM17 through an essential interaction with the TMD1 and JMD1 of iRhom2.
Collapse
Affiliation(s)
- Beiyu Tang
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, USA.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Xue Li
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, USA.,Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY, USA
| | - Thorsten Maretzky
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jose Manuel Perez-Aguilar
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.,School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), Puebla, Mexico
| | - David McIlwain
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.,Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Yifang Xie
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Harel Weinstein
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, USA.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.,Institute for Advanced Study, Technical University Munich, Garching, Germany
| |
Collapse
|
12
|
Camodeca C, Cuffaro D, Nuti E, Rossello A. ADAM Metalloproteinases as Potential Drug Targets. Curr Med Chem 2019; 26:2661-2689. [PMID: 29589526 DOI: 10.2174/0929867325666180326164104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/01/2023]
Abstract
The ADAMs, together with ADAMTSs and snake venom metalloproteases (SVMPs), are members of the Adamalysin family. Differences in structural organization, functions and localization are known and their domains, catalytic or non-catalytic, show key roles in the substrate recognition and protease activity. Some ADAMs, as membrane-bound enzymes, show sheddase activity. Sheddases are key to modulation of functional proteins such as the tumor necrosis factor, growth factors, cytokines and their receptors, adhesion proteins, signaling molecules and stress molecules involved in immunity. These activities take part in the regulation of several physiological and pathological processes including inflammation, tumor growth, metastatic progression and infectious diseases. On these bases, some ADAMs are currently investigated as drug targets to develop new alternative therapies in many fields of medicine. This review will be focused on these aspects.
Collapse
Affiliation(s)
- Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| |
Collapse
|
13
|
Lange SS, Bhetawal S, Reh S, Powell KL, Kusewitt DF, Wood RD. DNA polymerase ζ deficiency causes impaired wound healing and stress-induced skin pigmentation. Life Sci Alliance 2018; 1. [PMID: 30046772 PMCID: PMC6055517 DOI: 10.26508/lsa.201800048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mice harboring DNA polymerase ζ–defective keratinocytes are shown to have a defect in wound healing and a striking p53-dependent migration of melanocytes to the skin following UV radiation or wounding. DNA polymerase ζ (pol ζ) is well established as a specialized enzyme important for DNA damage tolerance, facilitating DNA synthesis past lesions caused by radiation or chemical damage. We report that disruption of Rev3l (encoding the catalytic subunit of pol ζ) in mouse epidermis leads to a defect in proliferation that impairs cutaneous wound healing. A striking increase in epidermal skin pigmentation accompanied both wound healing and UV irradiation in these mice. This was a consequence of stress-induced migration of Rev3l-proficient melanocytes to the Rev3l-defective epidermis. We found that this pigmentation corresponded with p53 activation in keratinocytes and was absent in p53-negative areas of the epidermis. Expression of the kit ligand (Kitl) gene, a p53-controlled mediator of keratinocyte to melanocyte signaling, was enhanced during wound healing or following UV irradiation. This study extends the function of pol ζ to the process of proliferation during wound healing. Rev3l-deficient epidermis may be a useful mouse model system for examining communication between damaged keratinocytes and melanocytes, including signaling relevant to human disease.
Collapse
Affiliation(s)
- Sabine S Lange
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| | - Sarita Bhetawal
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| | - Shelley Reh
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| | - Katherine Leslie Powell
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| | - Donna F Kusewitt
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, and the Graduate School of Biomedical Sciences at Houston, Smithville, Texas, P.O. Box 389, Smithville, TX, 78957, USA
| |
Collapse
|
14
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
15
|
Conrad N, Schwager SL, Carmona AK, Sturrock ED. The effect of structural motifs on the ectodomain shedding of human angiotensin-converting enzyme. Biochem Biophys Res Commun 2016; 481:111-116. [DOI: 10.1016/j.bbrc.2016.10.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/16/2016] [Indexed: 01/29/2023]
|
16
|
Lima PF, Ormond CM, Caixeta ES, Barros RG, Price CA, Buratini J. Effect of kit ligand on natriuretic peptide precursor C and oocyte maturation in cattle. Reproduction 2016; 152:481-9. [DOI: 10.1530/rep-16-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/04/2016] [Indexed: 01/03/2023]
Abstract
In vitro maturation (IVM) of oocytes in cattle is inefficient, and there is great interest in the development of approaches to improve maturation and fertilization rates. Intraovarian signalling molecules are being explored as potential additives to IVM media. One such factor is kit ligand (KITL), which stimulates the growth of oocytes. We determined if KITL enhances oocyte maturation in cattle. The two main isoforms of KITL (KITL1 and KITL2) were expressed in bovine cumulus–oocyte complexes (COC), and levels of mRNA increased during FSH-stimulated IVM. The addition of KITL to the culture medium increased the percentage of oocytes that reached meiosis II but did not affect cumulus expansion after 22 h of IVM. Addition of KITL reduced the levels of mRNA encoding natriuretic peptide precursor C (NPPC), a protein that holds oocytes in meiotic arrest, and increased the levels of mRNA encoding YBX2, an oocyte-specific factor involved in meiosis. Removal of the oocyte from the COC resulted in increased KITL mRNA levels and decreased NPPC mRNA levels in cumulus cells, and addition of denuded oocytes reversed these effects. Taken together, our results suggest that KITL enhances bovine oocyte nuclear maturation through a mechanism that involves NPPC, and that the oocyte regulates cumulus expression of KITL mRNA.
Collapse
|
17
|
Iglesias JM, Cairney CJ, Ferrier RK, McDonald L, Soady K, Kendrick H, Pringle MA, Morgan RO, Martin F, Smalley MJ, Blyth K, Stein T. Annexin A8 identifies a subpopulation of transiently quiescent c-kit positive luminal progenitor cells of the ductal mammary epithelium. PLoS One 2015; 10:e0119718. [PMID: 25803307 PMCID: PMC4372349 DOI: 10.1371/journal.pone.0119718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
We have previously shown that Annexin A8 (ANXA8) is strongly associated with the basal-like subgroup of breast cancers, including BRCA1-associated breast cancers, and poor prognosis; while in the mouse mammary gland AnxA8 mRNA is expressed in low-proliferative isolated pubertal mouse mammary ductal epithelium and after enforced involution, but not in isolated highly proliferative terminal end buds (TEB) or during pregnancy. To better understand ANXA8's association with this breast cancer subgroup we established ANXA8's cellular distribution in the mammary gland and ANXA8's effect on cell proliferation. We show that ANXA8 expression in the mouse mammary gland was strong during pre-puberty before the expansion of the rudimentary ductal network and was limited to a distinct subpopulation of ductal luminal epithelial cells but was not detected in TEB or in alveoli during pregnancy. Similarly, during late involution its expression was found in the surviving ductal epithelium, but not in the apoptotic alveoli. Double-immunofluorescence (IF) showed that ANXA8 positive (+ve) cells were ER-alpha negative (-ve) and mostly quiescent, as defined by lack of Ki67 expression during puberty and mid-pregnancy, but not terminally differentiated with ∼15% of ANXA8 +ve cells re-entering the cell cycle at the start of pregnancy (day 4.5). RT-PCR on RNA from FACS-sorted cells and double-IF showed that ANXA8+ve cells were a subpopulation of c-kit +ve luminal progenitor cells, which have recently been identified as the cells of origin of basal-like breast cancers. Over expression of ANXA8 in the mammary epithelial cell line Kim-2 led to a G0/G1 arrest and suppressed Ki67 expression, indicating cell cycle exit. Our data therefore identify ANXA8 as a potential mediator of quiescence in the normal mouse mammary ductal epithelium, while its expression in basal-like breast cancers may be linked to ANXA8's association with their specific cells of origin.
Collapse
Affiliation(s)
- Juan Manuel Iglesias
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Synpromics Limited, Edinburgh, United Kingdom
| | - Claire J. Cairney
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Roderick K. Ferrier
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Kelly Soady
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marie-Anne Pringle
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Reginald O. Morgan
- Department of Biochemistry and Molecular Biology and the Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Finian Martin
- Conway Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Karen Blyth
- CRUK Beatson Institute, Glasgow, United Kingdom
| | - Torsten Stein
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
18
|
Faber TW, Pullen NA, Fernando JFA, Kolawole EM, McLeod JJA, Taruselli M, Williams KL, Rivera KO, Barnstein BO, Conrad DH, Ryan JJ. ADAM10 is required for SCF-induced mast cell migration. Cell Immunol 2014; 290:80-8. [PMID: 24950026 DOI: 10.1016/j.cellimm.2014.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/28/2014] [Accepted: 05/07/2014] [Indexed: 11/29/2022]
Abstract
A Disintegrin and Metalloproteinase (ADAM)-10 plays critical roles in neuronal migration and distribution. Recently, ADAM10 deletion was shown to disrupt myelopoiesis. We found that inducible deletion of ADAM10 using Mx1-driven Cre recombinase for a period of three weeks resulted in mast cell hyperplasia in the skin, intestine and spleen. Mast cells express surface ADAM10 in vitro and in vivo, at high levels compared to other immune cells tested. ADAM10 is important for mast cell migration, since ADAM10-deficiency reduced c-Kit-mediated migration. As with some mast cell proteases, ADAM10 expression could be altered by the cytokine microenvironment, being inhibited by IL-10 or TGFβ1, but not by several other T cell-derived cytokines. Collectively these data show that the ADAM10 protease is an important factor in mast cell migration and tissue distribution, and can be manipulated by environmental cues.
Collapse
Affiliation(s)
- Travis W Faber
- Department of Biology, Virginia Commonwealth University (VCU), Richmond, VA 23284-2012, United States
| | - Nicholas A Pullen
- Department of Biology, Virginia Commonwealth University (VCU), Richmond, VA 23284-2012, United States
| | - Josephine F A Fernando
- Department of Biology, Virginia Commonwealth University (VCU), Richmond, VA 23284-2012, United States
| | | | - Jamie J A McLeod
- Department of Biology, Virginia Commonwealth University (VCU), Richmond, VA 23284-2012, United States
| | - Marcela Taruselli
- Department of Biology, Virginia Commonwealth University (VCU), Richmond, VA 23284-2012, United States
| | - Kathryn L Williams
- Department of Biology, Virginia Commonwealth University (VCU), Richmond, VA 23284-2012, United States
| | - Kevin O Rivera
- Department of Biology, Virginia Commonwealth University (VCU), Richmond, VA 23284-2012, United States
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University (VCU), Richmond, VA 23284-2012, United States
| | - Daniel H Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU), Richmond, VA 23284-2012, United States
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University (VCU), Richmond, VA 23284-2012, United States.
| |
Collapse
|
19
|
Adrain C, Freeman M. Regulation of receptor tyrosine kinase ligand processing. Cold Spring Harb Perspect Biol 2014; 6:6/1/a008995. [PMID: 24384567 DOI: 10.1101/cshperspect.a008995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary mode of regulating receptor tyrosine kinase (RTK) signaling is to control access of ligand to its receptor. Many RTK ligands are synthesized as transmembrane proteins. Frequently, the active ligand must be released from the membrane by proteolysis before signaling can occur. Here, we discuss RTK ligand shedding and describe the proteases that catalyze it in flies and mammals. We focus principally on the control of EGF receptor ligand shedding, but also refer to ligands of other RTKs. Two prominent themes emerge. First, control by regulated trafficking and cellular compartmentalization of the proteases and their ligand substrates plays a key role in shedding. Second, many external signals converge on the shedding proteases and their control machinery. Proteases therefore act as regulatory hubs that integrate information that the cell receives and translate it into precise outgoing signals. The activation of signaling by proteases is therefore an essential element of the cellular communication machinery.
Collapse
Affiliation(s)
- Colin Adrain
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
20
|
Heldin CH, Lennartsson J. Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Cold Spring Harb Perspect Biol 2013; 5:a009100. [PMID: 23906712 DOI: 10.1101/cshperspect.a009100] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The receptors for platelet-derived growth factor (PDGF) and stem cell factor (SCF) are members of the type III class of PTK receptors, which are characterized by five Ig-like domains extracellularly and a split kinase domain intracellularly. The receptors are activated by ligand-induced dimerization, leading to autophosphorylation on specific tyrosine residues. Thereby the kinase activities of the receptors are activated and docking sites for downstream SH2 domain signal transduction molecules are created; activation of these pathways promotes cell growth, survival, and migration. These receptors mediate important signals during the embryonal development, and control tissue homeostasis in the adult. Their overactivity is seen in malignancies and other diseases involving excessive cell proliferation, such as atherosclerosis and fibrotic diseases. In cancer, mutations of PDGF and SCF receptors-including gene fusions, point mutations, and amplifications-drive subpopulations of certain malignancies, such as gastrointestinal stromal tumors, chronic myelomonocytic leukemia, hypereosinophilic syndrome, glioblastoma, acute myeloid leukemia, mastocytosis, and melanoma.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | |
Collapse
|
21
|
ADAM12 is expressed in the tumour vasculature and mediates ectodomain shedding of several membrane-anchored endothelial proteins. Biochem J 2013; 452:97-109. [PMID: 23458101 DOI: 10.1042/bj20121558] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ADAM (a disintegrin and metalloproteinase) 12 is a metalloprotease implicated in cancer progression. ADAM12 can activate membrane-anchored proteins, such as sonic hedgehog, Delta-like 1 and certain epidermal growth factor receptor ligands, through a process called ectodomain shedding. We screened several membrane-anchored proteins to further dissect the substrate profile of ADAM12-mediated ectodomain shedding, and found shedding of five previously unreported substrates [Kitl1, VE-cadherin (vascular endothelial cadherin), Flk-1 (fetal liver kinase 1), Tie-2, and VCAM-1 (vascular cell adhesion molecule 1)], of which the latter four are specifically expressed by endothelial cells. We also observed that ADAM12 expression was increased in the tumour vasculature of infiltrating ductal carcinoma of the human breast as compared with little to no expression in normal breast tissue vasculature, suggesting a role for ADAM12 in tumour vessels. These results prompted us to further evaluate ADAM12-mediated shedding of two endothelial cell proteins, VE-cadherin and Tie-2. Endogenous ADAM12 expression was very low in cultured endothelial cells, but was significantly increased by cytokine stimulation. In parallel, the shed form of VE-cadherin was elevated in such cytokine-stimulated endothelial cells, and ADAM12 siRNA (small interfering RNA) knockdown reduced cytokine-induced shedding of VE-cadherin. In conclusion, the results of the present study demonstrate a role for ADAM12 in ectodomain shedding of several membrane-anchored endothelial proteins. We speculate that this process may have importance in tumour neovascularization or/and tumour cell extravasation.
Collapse
|
22
|
iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proc Natl Acad Sci U S A 2013; 110:11433-8. [PMID: 23801765 DOI: 10.1073/pnas.1302553110] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein ectodomain shedding by ADAM17 (a disintegrin and metalloprotease 17), a principal regulator of EGF-receptor signaling and TNFα release, is rapidly and posttranslationally activated by a variety of signaling pathways, and yet little is known about the underlying mechanism. Here, we report that inactive rhomboid protein 2 (iRhom2), recently identified as essential for the maturation of ADAM17 in hematopoietic cells, is crucial for the rapid activation of the shedding of some, but not all substrates of ADAM17. Mature ADAM17 is present in mouse embryonic fibroblasts (mEFs) lacking iRhom2, and yet ADAM17 is unable to support stimulated shedding of several of its substrates, including heparin-binding EGF and Kit ligand 2 in this context. Stimulated shedding of other ADAM17 substrates, such as TGFα, is not affected in iRhom2(-/-) mEFs but can be strongly reduced by treating iRhom2(-/-) mEFs with siRNA against iRhom1. Activation of heparin-binding EGF or Kit ligand 2 shedding by ADAM17 in iRhom2(-/-) mEFs can be rescued by wild-type iRhom2 but not by iRhom2 lacking its N-terminal cytoplasmic domain. The requirement for the cytoplasmic domain of iRhom2 for stimulated shedding by ADAM17 may help explain why the cytoplasmic domain of ADAM17 is not required for stimulated shedding. The functional relevance of iRhom2 in regulating shedding of EGF receptor (EGFR) ligands is established by a lack of lysophasphatidic acid/ADAM17/EGFR-dependent crosstalk with ERK1/2 in iRhom2(-/-) mEFs, and a significant reduction of FGF7/ADAM17/EGFR-stimulated migration of iRhom2(-/-) keratinocytes. Taken together, these findings uncover functions for iRhom2 in the regulation of EGFR signaling and in controlling the activation and substrate selectivity of ADAM17-dependent shedding events.
Collapse
|
23
|
Molecular Profiling of ADAM12 and ADAM17 Genes in Human Malignant Melanoma. Pathol Oncol Res 2013; 19:755-62. [DOI: 10.1007/s12253-013-9639-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/05/2013] [Indexed: 11/30/2022]
|
24
|
Saito K, Horiuchi K, Kimura T, Mizuno S, Yoda M, Morioka H, Akiyama H, Threadgill D, Okada Y, Toyama Y, Sato K. Conditional inactivation of TNFα-converting enzyme in chondrocytes results in an elongated growth plate and shorter long bones. PLoS One 2013; 8:e54853. [PMID: 23349978 PMCID: PMC3548805 DOI: 10.1371/journal.pone.0054853] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/17/2012] [Indexed: 12/03/2022] Open
Abstract
TNFα-converting enzyme (TACE) is a membrane-bound proteolytic enzyme with essential roles in the functional regulation of TNFα and epidermal growth factor receptor (EGFR) ligands. Previous studies have demonstrated critical roles for TACE in vivo, including epidermal development, immune response, and pathological neoangiogenesis, among others. However, the potential contribution of TACE to skeletal development is still unclear. In the present study, we generated a Tace mutant mouse in which Tace is conditionally disrupted in chondrocytes under the control of the Col2a1 promoter. These mutant mice were fertile and viable but all exhibited long bones that were approximately 10% shorter compared to those of wild-type animals. Histological analyses revealed that Tace mutant mice exhibited a longer hypertrophic zone in the growth plate, and there were fewer osteoclasts at the chondro-osseous junction in the Tace mutant mice than in their wild-type littermates. Of note, we found an increase in osteoprotegerin transcripts and a reduction in Rankl and Mmp-13 transcripts in the TACE-deficient cartilage, indicating that dysregulation of these genes is causally related to the skeletal defects in the Tace mutant mice. Furthermore, we also found that phosphorylation of EGFR was significantly reduced in the cartilage tissue lacking TACE, and that suppression of EGFR signaling increases osteoprotegerin transcripts and reduces Rankl and Mmp-13 transcripts in primary chondrocytes. In accordance, chondrocyte-specific abrogation of Egfr in vivo resulted in skeletal defects nearly identical to those observed in the Tace mutant mice. Taken together, these data suggest that TACE-EGFR signaling in chondrocytes is involved in the turnover of the growth plate during postnatal development via the transcriptional regulation of osteoprotegerin, Rankl, and Mmp-13.
Collapse
Affiliation(s)
- Kenta Saito
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
- Department of Anti-Aging Orthopedic Research, School of Medicine, Keio University, Tokyo, Japan
- * E-mail:
| | - Tokuhiro Kimura
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Sakiko Mizuno
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Masaki Yoda
- Department of Anti-Aging Orthopedic Research, School of Medicine, Keio University, Tokyo, Japan
| | - Hideo Morioka
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | - David Threadgill
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Yasunori Okada
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuki Sato
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
25
|
Abstract
Neuroligin (NLG), a postsynaptic adhesion molecule, is involved in the formation of synapses by binding to a cognate presynaptic ligand, neurexin. Here we report that neuroligin-1 (NLG1) undergoes ectodomain shedding at the juxtamembrane stalk region to generate a secreted form of NLG1 and a membrane-tethered C-terminal fragment (CTF) in adult rat brains in vivo as well as in neuronal cultures. Pharmacological and genetic studies identified ADAM10 as the major protease responsible for NLG1 shedding, the latter being augmented by synaptic NMDA receptor activation or interaction with soluble neurexin ligands. NLG1-CTF was subsequently cleaved by presenilin/γ-secretase. Secretion of soluble NLG1 was significantly upregulated under a prolonged epileptic seizure condition, and inhibition of NLG1 shedding led to an increase in numbers of dendritic spines in neuronal cultures. Collectively, neuronal activity-dependent proteolytic processing of NLG1 may negatively regulate the remodeling of spines at excitatory synapses.
Collapse
|
26
|
Narita D, Seclaman E, Ursoniu S, Anghel A. Increased expression of ADAM12 and ADAM17 genes in laser-capture microdissected breast cancers and correlations with clinical and pathological characteristics. Acta Histochem 2012; 114:131-9. [PMID: 21501859 DOI: 10.1016/j.acthis.2011.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 01/22/2023]
Abstract
ADAMs (a desintegrin and metalloprotease) are transmembrane glycoproteins involved in cell growth, differentiation, motility, and respectively, tumor growth and progression. Our aim was to evaluate ADAM12 spliced variants (ADAM12L - long membrane-bound and ADAM12S - secreted-short variant) and ADAM17 genes expression in breast cancers and to correlate their level of expression with clinical and pathological characteristics. Expression of ADAMs was analyzed using quantitative reverse-transcription polymerase chain reaction in laser-capture microdissected specimens of breast cancers and corresponding non-neoplastic breast tissues from 92 patients. The proteins' expression was confirmed by immunohistochemistry. Significantly elevated amounts of ADAM12L, ADAM12S and ADAM17 transcripts were found in malignant breast cells compared with normal breast tissue and both ADAMs proteins showed moderate to strong immunoexpression in tumor cells and peritumoral fibroblasts. ADAM12L and ADAM12S expressions were correlated with age, younger patients having higher expression of ADAM12L and ADAM12S; ductal cancers had higher expression of ADAM12L compared with lobular types, whereas ADAM12S was higher expressed in lobular cancers; higher expressions were found for both ADAM12 and ADAM17 in HER2/neu positive and highly proliferative cancers. High-grade cancers showed significantly increased expression of ADAM17. Our study on laser-capture microdissected specimens confers motivation for future work on development of ADAM-selective inhibitors for treatment of breast cancers.
Collapse
Affiliation(s)
- Diana Narita
- Department of Biochemistry, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania.
| | | | | | | |
Collapse
|
27
|
The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol 2011; 91:472-85. [PMID: 22138087 DOI: 10.1016/j.ejcb.2011.09.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/08/2011] [Accepted: 09/08/2011] [Indexed: 01/14/2023] Open
Abstract
Within the vasculature the disintegrins and metalloproteinases (ADAMs) 8, 9, 10, 12, 15, 17, 19, 28 and 33 are expressed on endothelial cells, smooth muscle cells and on leukocytes. As surface-expressed proteases they mediate cleavage of vascular surface molecules at an extracellular site close to the membrane. This process is termed shedding and leads to the release of a soluble substrate ectodomain thereby critically modulating the biological function of the substrate. In the vasculature several surface molecules undergo ADAM-mediated shedding including tumour necrosis factor (TNF) α, interleukin (IL) 6 receptor α, L-selectin, vascular endothelial (VE)-cadherin, the transmembrane CX3C-chemokine ligand (CX3CL) 1, Notch, transforming growth factor (TGF) and heparin-binding epidermal growth factor (HB-EGF). These substrates play distinct roles in vascular biology by promoting inflammation, permeability changes, leukocyte recruitment, resolution of inflammation, regeneration and/or neovascularisation. Especially ADAM17 and ADAM10 are capable of cleaving many substrates with diverse function within the vasculature, whereas other ADAMs have a more restricted substrate range. Therefore, targeting ADAM17 or ADAM10 by pharmacologic inhibition or gene knockout not only attenuates the inflammatory response in animal models but also affects tissue regeneration and neovascularisation. Recent discoveries indicate that other ADAMs (e.g. ADAM8 and 9) also play important roles in vascular biology but appear to have more selective effects on vascular responses (e.g. on neovascularisation only). Although, targeting of ADAM17 and ADAM10 in inflammatory diseases is still a promising approach, temporal and spatial as well as substrate-specific inhibition approaches are required to minimise undesired side effects on vascular cells.
Collapse
|
28
|
Merkwitz C, Lochhead P, Tsikolia N, Koch D, Sygnecka K, Sakurai M, Spanel-Borowski K, Ricken AM. Expression of KIT in the ovary, and the role of somatic precursor cells. ACTA ACUST UNITED AC 2011; 46:131-84. [DOI: 10.1016/j.proghi.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Yan X, Lin J, Markus A, Rolfs A, Luo J. Regional expression of ADAM19 during chicken embryonic development. Dev Growth Differ 2011; 53:333-46. [PMID: 21492148 DOI: 10.1111/j.1440-169x.2010.01238.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
ADAM19 (also named meltrin β) is a member of the ADAM (a disintegrin and metalloprotease) family of metalloproteases and is involved in morphogenesis and tissue formation during embryonic development. In the present study, chicken ADAM19 is cloned by reverse transcription-polymerase chain reaction and identified by sequencing. Its expression patterns in different parts of the developing chicken embryo are investigated by Western blot analysis and immunohistochemistry. Results show that ADAM19 protein is widely expressed in chicken embryos. It is detectable in the central nervous system, including the brain, spinal cord, cochlea, and retina. Furthermore, ADAM19 protein is also found in other tissues and organs such as digestive organs, the thymus, the lung bud, the dorsal aorta, the kidney, the gonad, muscles, and in the feather buds. All these data suggest that ADAM19 plays an important role in the embryonic development of chicken.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, D-18147 Rostock, Germany
| | | | | | | | | |
Collapse
|
30
|
Kawaguchi M, Hearing VJ. The Roles of ADAMs Family Proteinases in Skin Diseases. Enzyme Res 2011; 2011:482498. [PMID: 21423681 PMCID: PMC3057028 DOI: 10.4061/2011/482498] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/12/2011] [Indexed: 11/20/2022] Open
Abstract
A disintegrin and metalloproteinases (ADAMs) are members of a new gene family of transmembrane and secreted proteins, which belong to the zinc proteinase superfamily. These molecules are involved in various biological events such as cell adhesion, cell fusion, cell migration, membrane protein shedding, and proteolysis. Growing evidence now attests to the potential involvement of ADAMs proteinases in diverse processes such as skin wound healing, inflammation, pigmentation, tumor development, cell proliferation, and metastasis. This paper focuses on the roles of ADAMs proteinases in a wide variety of skin diseases.
Collapse
Affiliation(s)
- Masakazu Kawaguchi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | | |
Collapse
|
31
|
Narita D, Seclaman E, Ilina R, Cireap N, Ursoniu S, Anghel A. ADAM12 and ADAM17 Gene Expression in Laser-capture Microdissected and Non-microdissected Breast Tumors. Pathol Oncol Res 2011; 17:375-85. [DOI: 10.1007/s12253-010-9336-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/04/2010] [Indexed: 01/18/2023]
|
32
|
Kränkel N, Spinetti G, Amadesi S, Madeddu P. Targeting stem cell niches and trafficking for cardiovascular therapy. Pharmacol Ther 2011; 129:62-81. [PMID: 20965213 PMCID: PMC3017934 DOI: 10.1016/j.pharmthera.2010.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022]
Abstract
Regenerative cardiovascular medicine is the frontline of 21st-century health care. Cell therapy trials using bone marrow progenitor cells documented that the approach is feasible, safe and potentially beneficial in patients with ischemic disease. However, cardiovascular prevention and rehabilitation strategies should aim to conserve the pristine healing capacity of a healthy organism as well as reactivate it under disease conditions. This requires an increased understanding of stem cell microenvironment and trafficking mechanisms. Engagement and disengagement of stem cells of the osteoblastic niche is a dynamic process, finely tuned to allow low amounts of cells move out of the bone marrow and into the circulation on a regular basis. The balance is altered under stress situations, like tissue injury or ischemia, leading to remarkably increased cell egression. Individual populations of circulating progenitor cells could give rise to mature tissue cells (e.g. endothelial cells or cardiomyocytes), while the majority may differentiate to leukocytes, affecting the environment of homing sites in a paracrine way, e.g. promoting endothelial survival, proliferation and function, as well as attenuating or enhancing inflammation. This review focuses on the dynamics of the stem cell niche in healthy and disease conditions and on therapeutic means to direct stem cell/progenitor cell mobilization and recruitment into improved tissue repair.
Collapse
Affiliation(s)
- Nicolle Kränkel
- Institute of Physiology/Cardiovascular Research, University of Zürich, and Cardiovascular Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | | | - Silvia Amadesi
- Experimental Cardiovascular Medicine, University of Bristol, Bristol, UK
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
33
|
Saftig P, Reiss K. The "A Disintegrin And Metalloproteases" ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol 2010; 90:527-35. [PMID: 21194787 DOI: 10.1016/j.ejcb.2010.11.005] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 02/04/2023] Open
Abstract
Proteolytic ectodomain release, a process known as "shedding", has been recognised as a key mechanism for regulating the function of a diversity of cell surface proteins. A Disintegrin And Metalloproteinases (ADAMs) have emerged as the major proteinase family that mediates ectodomain shedding. Dysregulation of ectodomain shedding is associated with autoimmune and cardiovascular diseases, neurodegeneration, infection, inflammation and cancer. Therefore, ADAMs are increasingly regarded as attractive targets for novel therapies. ADAM10 and its close relative ADAM17 (TNF-alpha converting enzyme (TACE)) have been studied in particular in the context of ectodomain shedding and have been demonstrated as key molecules in most of the shedding events characterised to date. Whereas the level of expression of ADAM10 may be of importance in cancer and neurodegenerative disorders, ADAM17 mainly coordinates pro- and anti-inflammatory activities during immune response. Despite the high therapeutical potential of ADAM inhibition, all clinical trials using broad-spectrum metalloprotease inhibitors have failed so far. This review will cover the emerging roles of both ADAM10 and ADAM17 in the regulation of major physiological and developmental pathways and will discuss the suitability of specifically modulating the activities of both proteases as a feasible way to inhibit inflammatory states, cancer and neurodegeneration.
Collapse
Affiliation(s)
- Paul Saftig
- Biochemical Institute, Christian-Albrechts-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
| | | |
Collapse
|
34
|
Gravano DM, McLelland BT, Horiuchi K, Manilay JO. ADAM17 deletion in thymic epithelial cells alters aire expression without affecting T cell developmental progression. PLoS One 2010; 5:e13528. [PMID: 20976004 PMCID: PMC2958126 DOI: 10.1371/journal.pone.0013528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/20/2010] [Indexed: 12/18/2022] Open
Abstract
Background Cellular interactions between thymocytes and thymic stromal cells are critical for normal T cell development. Thymic epithelial cells (TECs) are important stromal niche cells that provide essential growth factors, cytokines, and present self-antigens to developing thymocytes. The identification of genes that mediate cellular crosstalk in the thymus is ongoing. One candidate gene, Adam17, encodes a metalloprotease that functions by cleaving the ectodomain of several transmembrane proteins and regulates various developmental processes. In conventional Adam17 knockout mice, a non-cell autonomous role for ADAM17 in adult T cell development was reported, which strongly suggested that expression of ADAM17 in TECs was required for normal T cell development. However, knockdown of Adam17 results in multisystem developmental defects and perinatal lethality, which has made study of the role of Adam17 in specific cell types difficult. Here, we examined T cell and thymic epithelial cell development using a conditional knockout approach. Methodology/Principal Findings We generated an Adam17 conditional knockout mouse in which floxed Adam17 is deleted specifically in TECs by Cre recombinase under the control of the Foxn1 promoter. Normal T cell lineage choice and development through the canonical αβ T cell stages was observed. Interestingly, Adam17 deficiency in TECs resulted in reduced expression of the transcription factor Aire. However, no alterations in the patterns of TEC phenotypic marker expression and thymus morphology were noted. Conclusions/Significance In contrast to expectation, our data clearly shows that absence of Adam17 in TECs is dispensable for normal T cell development. Differentiation of TECs is also unaffected by loss of Adam17 based on phenotypic markers. Surprisingly, we have uncovered a novel genetic link between Adam17and Aire expression in vivo. The cell type in which ADAM17 mediates its non-cell autonomous impact and the mechanisms by which it regulates intrathymic T cell development remain to be identified.
Collapse
Affiliation(s)
- David M. Gravano
- School of Natural Sciences, University of California at Merced, Merced, California, United States of America
| | - Bryce T. McLelland
- School of Natural Sciences, University of California at Merced, Merced, California, United States of America
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery and Department of Anti-aging Orthopedic Research, School of Medicine, Keio University, Tokyo, Japan
| | - Jennifer O. Manilay
- School of Natural Sciences, University of California at Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Wang CR, Hou DY, Feng HG, Yang BS, Xu CS, Lin JT. Induction of new adam related protein from treated human Chang-liver cells. Mol Biol 2010. [DOI: 10.1134/s0026893310050109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
ADAM8 is a negative regulator of retinal neovascularization and of the growth of heterotopically injected tumor cells in mice. J Mol Med (Berl) 2010; 88:497-505. [PMID: 20119708 DOI: 10.1007/s00109-010-0591-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 12/11/2009] [Accepted: 12/25/2009] [Indexed: 01/20/2023]
Abstract
ADAM8 is a member of the "a disintegrin and metalloproteinase" (ADAM) family of membrane-anchored metalloproteinases. ADAM8-deficient mice have no evident spontaneous developmental or pathological defects, and little is currently known about the role of ADAM8 in disease. Here, we investigated the contribution of ADAM8 to pathological neovascularization in mice using an oxygen-induced retinopathy (OIR) model and heterotopical injection of tumor cells. We found an increase in retinal re-vascularization but fewer neovascular tufts in the OIR model and increased growth of heterotopically injected tumor cells in Adam8-/- mice compared with wild-type controls. These results suggest that ADAM8 functions to limit both of these processes in wild-type mice. In cell-based assays, overexpression of ADAM8 increased the ectodomain shedding of several co-expressed membrane proteins with roles in angiogenesis (CD31, Tie-2, Flk-1, Flt-1, EphrinB2, EphB4, VE-cadherin, KL-1, E-selectin, and neuregulin-1beta2). Thus, dysregulated expression of ADAM8 in endothelial cells in vivo could potentially increase the processing of these and other substrate proteins. Taken together, our findings suggest that inhibiting ADAM8 could be useful for promoting re-vascularization and thereby preventing formation of neovascular tufts in proliferative retinopathies. On the other hand, blocking ADAM8 could be detrimental in the context of rapidly growing tumors.
Collapse
|
37
|
Sisto M, Lisi S, Lofrumento DD, Frassanito MA, Cucci L, D'Amore S, Mitolo V, D'Amore M. Induction of TNF-alpha-converting enzyme-ectodomain shedding by pathogenic autoantibodies. Int Immunol 2009; 21:1341-1349. [DOI: 10.1093/intimm/dxp103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
38
|
Dynamic change of Adamalysin 19 (ADAM19) in human placentas and its effects on cell invasion and adhesion in human trophoblastic cells. ACTA ACUST UNITED AC 2009; 52:710-8. [PMID: 19727588 DOI: 10.1007/s11427-009-0102-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/04/2009] [Indexed: 12/11/2022]
Abstract
Human ADAM19 is a recently identified member of the ADAM family. It is highly expressed in human placentas, but its dynamic change and function at the human feto-maternal interface during placentation remain to be elucidated. In this present study, the spatial and temporal expression and cellular localization of ADAM19 in normal human placentas were first demonstrated, and the effects of ADAM19 on trophoblast cell adhesion and invasion were further investigated by using a human choriocarcinoma cell line (JEG-3) as an in vitro model. The data demonstrated that ADAM19 was widely distributed in villous cytotrophoblast cells, syncytiotrophoblast cells, column trophoblasts, and villous capillary endothelial cells during early pregnancy. The mRNA and protein level of ADAM19 in placentas was high at gestational weeks 8-9, but diminished significantly at mid- and term pregnancy. In JEG-3 cells, the overexpression of ADAM19 led to diminished cell invasion, as well as increases in cell adhesiveness and the expression of E-cadherin, with no changes in beta-catenin expression observed. These data indicate that ADAM19 may participate in the coordinated regulation of human trophoblast cell behaviors during the process of placentation.
Collapse
|
39
|
Franzke CW, Bruckner-Tuderman L, Blobel CP. Shedding of collagen XVII/BP180 in skin depends on both ADAM10 and ADAM9. J Biol Chem 2009; 284:23386-96. [PMID: 19574220 PMCID: PMC2749112 DOI: 10.1074/jbc.m109.034090] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Indexed: 11/06/2022] Open
Abstract
Collagen XVII is a transmembrane collagen and the major autoantigen of the autoimmune skin blistering disease bullous pemphigoid. Collagen XVII is proteolytically released from the membrane, and the pathogenic epitope harbors the cleavage site for its ectodomain shedding, suggesting that proteolysis has an important role in regulating the function of collagen XVII in skin homeostasis. Previous studies identified ADAMs 9, 10, and 17 as candidate collagen XVII sheddases and suggested that ADAM17 is a major sheddase. Here we show that ADAM17 only indirectly affects collagen XVII shedding and that ADAMs 9 and 10 are the most prominent collagen XVII sheddases in primary keratinocytes because (a) collagen XVII shedding was not stimulated by phorbol esters, known activators of ADAM17, (b) constitutive and calcium influx-stimulated shedding was sensitive to the ADAM10-selective inhibitor GI254023X and was strongly reduced in Adam10(-/-) cells, (c) there was a 55% decrease in constitutive collagen XVII ectodomain shedding from Adam9(-/-) keratinocytes, and (d) H(2)O(2) enhanced ADAM9 expression and stimulated collagen XVII shedding in skin and keratinocytes of wild type mice but not of Adam9(-/-) mice. We conclude that ADAM9 and ADAM10 can both contribute to collagen XVII shedding in skin with an enhanced relative contribution of ADAM9 in the presence of reactive oxygen species. These results provide critical new insights into the identity and regulation of the major sheddases for collagen XVII in keratinocytes and skin and have implications for the treatment of blistering diseases of the skin.
Collapse
Affiliation(s)
- Claus-Werner Franzke
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York 10021
- the Department of Dermatology, University of Freiburg, 79104 Freiburg, Germany, and
| | - Leena Bruckner-Tuderman
- the Department of Dermatology, University of Freiburg, 79104 Freiburg, Germany, and
- the Freiburg Institute of Advanced Studies, School of Life Sciences, D-79085 Freiburg, Germany
| | - Carl P. Blobel
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York 10021
| |
Collapse
|
40
|
Horiuchi K, Morioka H, Takaishi H, Akiyama H, Blobel CP, Toyama Y. Ectodomain shedding of FLT3 ligand is mediated by TNF-alpha converting enzyme. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:7408-14. [PMID: 19494263 PMCID: PMC2921975 DOI: 10.4049/jimmunol.0801931] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FLT3 ligand (FLT3L) has diverse roles in the hematopoietic system, which include stimulating proliferation of hematopoietic precursors and development of NK cells and dendritic cells. FLT3L is initially synthesized as a membrane-bound protein, which must be cleaved to become a soluble growth factor. However, little is known about the enzyme involved in the proteolytic release of FLT3L. In the current study, we show that shedding of FLT3L is metalloprotease-dependent, and that this proteolytic activity was abolished in fibroblasts lacking TNF-alpha converting enzyme (TACE) and could be rescued by reintroducing wild-type TACE in these cells. Moreover, we found that cells derived from the thymus of conditional TACE-deficient mice produce less FLT3L, and that serum FLT3L levels in these TACE mutant mice are significantly lower, both after LPS treatment and in the absence of such a challenge, further corroborating the relevance of TACE as FLT3L sheddase in vivo. Considering the involvements of FLT3 and FLT3L in hematopoietic malignancies and stem cell mobilization, the identification of the enzyme involved in FLT3L shedding may have important clinical implications.
Collapse
Affiliation(s)
- Keisuke Horiuchi
- Department of Anti-aging Orthopedic Research, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Characterization of the catalytic activity of the membrane-anchored metalloproteinase ADAM15 in cell-based assays. Biochem J 2009; 420:105-13. [PMID: 19207106 DOI: 10.1042/bj20082127] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ADAM15 (a disintegrin and metalloproteinase 15) is a membrane-anchored metalloproteinase, which is overexpressed in several human cancers and has been implicated in pathological neovascularization and prostate cancer metastasis. Yet, little is known about the catalytic properties of ADAM15. Here, we purified soluble recombinant ADAM15 to test for its ability to cleave a library of peptide substrates. However, we found no processing of any of the peptide substrates tested here, and therefore turned to cell-based assays to characterize the catalytic properties of ADAM15. Overexpression of full-length membrane-anchored ADAM15 or the catalytically inactive ADAM15E-->A together with various membrane proteins resulted in increased release of the extracellular domain of the fibroblast growth factor receptor 2iiib (FGFR2iiib) by ADAM15, but not ADAM15E-->A. This provided a robust assay for a characterization of the catalytic properties of ADAM15 in intact cells. We found that increased expression of ADAM15 resulted in increased FGFR2iiib shedding, but that ADAM15 was not stimulated by phorbol esters or calcium ionophores, two commonly used activators of ectodomain shedding. Moreover, ADAM15-dependent processing of FGFR2iiib was inhibited by the hydroxamate-based metalloproteinase inhibitors marimastat, TAPI-2 and GM6001, and by 50 nM TIMP-3 (tissue inhibitor of metalloproteinases 3), but not by 100 nM TIMP-1, and only weakly by 100 nM TIMP-2. These results define key catalytic properties of ADAM15 in cells and its response to stimulators and inhibitors of ectodomain shedding. A cell-based assay for the catalytic activity of ADAM15 could aid in identifying compounds, which could be used to block the function of ADAM15 in pathological neovascularization and cancer.
Collapse
|
42
|
Murphy G. Regulation of the proteolytic disintegrin metalloproteinases, the ‘Sheddases’. Semin Cell Dev Biol 2009; 20:138-45. [DOI: 10.1016/j.semcdb.2008.09.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
43
|
Alfandari D, McCusker C, Cousin H. ADAM function in embryogenesis. Semin Cell Dev Biol 2009; 20:153-63. [PMID: 18935966 PMCID: PMC2693894 DOI: 10.1016/j.semcdb.2008.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/22/2008] [Accepted: 09/24/2008] [Indexed: 12/22/2022]
Abstract
Cleavage of proteins inserted into the plasma membrane (shedding) is an essential process controlling many biological functions including cell signaling, cell adhesion and migration as well as proliferation and differentiation. ADAM surface metalloproteases have been shown to play an essential role in these processes. Gene inactivation during embryonic development have provided evidence of the central role of ADAM proteins in nematodes, flies, frogs, birds and mammals. The relative contribution of four subfamilies of ADAM proteins to developmental processes is the focus of this review.
Collapse
Affiliation(s)
- Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Paige lab. Rm. 203, 161 Holdsworth Way, Amherst, MA 01003, United States.
| | | | | |
Collapse
|
44
|
Neuner R, Cousin H, McCusker C, Coyne M, Alfandari D. Xenopus ADAM19 is involved in neural, neural crest and muscle development. Mech Dev 2009; 126:240-55. [PMID: 19027850 PMCID: PMC2754070 DOI: 10.1016/j.mod.2008.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022]
Abstract
ADAM19 is a member of the meltrin subfamily of ADAM metalloproteases. In Xenopus, ADAM19 is present as a maternal transcript. Zygotic expression starts during gastrulation and is apparent in the dorsal blastopore lip. ADAM19 expression through neurulation and tailbud formation becomes enriched in dorsal structures such as the neural tube, the notochord and the somites. Using morpholino knock-down, we show that a reduction of ADAM19 protein in gastrula stage embryos results in a decrease of Brachyury expression in the notochord concomitant with an increase in the dorsal markers, Goosecoid and Chordin. These changes in gene expression are accompanied by a decrease in phosphorylated AKT, a downstream target of the EGF signaling pathway, and occur while the blastopore closes at the same rate as the control embryos. During neurulation and tailbud formation, ADAM19 knock-down induces a reduction of the neural markers N-tubulin and NRP1 but not Sox2. In the somitic mesoderm, the expression of MLC is also decreased while MyoD is not. ADAM19 knockdown also reduces neural crest markers prior to cell migration. Neural crest induction is also decreased in embryos treated with an EGF receptor inhibitor suggesting that this pathway is necessary for neural crest cell induction. Using targeted knock-down of ADAM19 we show that the reduction of neural and neural crest markers is cell autonomous and that the migration if the cranial neural crest is perturbed. We further show that ADAM19 protein reduction affects somite organization, reduces 12-101 expression and perturbs fibronectin localization at the intersomitic boundary.
Collapse
Affiliation(s)
| | | | - Catherine McCusker
- Department of Veterinary and Animal Sciences, University of Massachusetts, Paige Laboratory, Room 203, 161 Holdsworth Way, Amherst 01003, USA
| | - Michael Coyne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Paige Laboratory, Room 203, 161 Holdsworth Way, Amherst 01003, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Paige Laboratory, Room 203, 161 Holdsworth Way, Amherst 01003, USA
| |
Collapse
|
45
|
Le Gall SM, Bobé P, Reiss K, Horiuchi K, Niu XD, Lundell D, Gibb DR, Conrad D, Saftig P, Blobel CP. ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor alpha, L-selectin, and tumor necrosis factor alpha. Mol Biol Cell 2009; 20:1785-94. [PMID: 19158376 PMCID: PMC2655247 DOI: 10.1091/mbc.e08-11-1135] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/02/2009] [Accepted: 01/09/2009] [Indexed: 11/11/2022] Open
Abstract
Protein ectodomain shedding is a critical regulator of many membrane proteins, including epidermal growth factor receptor-ligands and tumor necrosis factor (TNF)-alpha, providing a strong incentive to define the responsible sheddases. Previous studies identified ADAM17 as principal sheddase for transforming growth factor (TGF)-alpha and heparin-binding epidermal growth factor, but Ca++ influx activated an additional sheddase for these epidermal growth factor receptor ligands in Adam17-/- cells. Here, we show that Ca++ influx and stimulation of the P2X7R signaling pathway activate ADAM10 as sheddase of many ADAM17 substrates in Adam17-/- fibroblasts and primary B cells. Importantly, although ADAM10 can shed all substrates of ADAM17 tested here in Adam17-/- cells, acute treatment of wild-type cells with a highly selective ADAM17 inhibitor (SP26) showed that ADAM17 is nevertheless the principal sheddase when both ADAMs 10 and 17 are present. However, chronic treatment of wild-type cells with SP26 promoted processing of ADAM17 substrates by ADAM10, thus generating conditions such as in Adam17-/- cells. These results have general implications for understanding the substrate selectivity of two major cellular sheddases, ADAMs 10 and 17.
Collapse
Affiliation(s)
- Sylvain M. Le Gall
- *Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021
| | - Pierre Bobé
- Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 2937, Laboratoire d'Oncologie virale, 94801 Villejuif, France
- Université Paris-Sud XI, 91405 Orsay, France
| | - Karina Reiss
- Biochemical Institute, Christian-Albrechts-University, 24098 Kiel, Germany
| | - Keisuke Horiuchi
- Department of Anti-aging Orthopedic Research and Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Xiao-Da Niu
- Department of Inflammation, Schering Plough Research Institute, Kenilworth, NJ 07033-0539
| | - Daniel Lundell
- Department of Inflammation, Schering Plough Research Institute, Kenilworth, NJ 07033-0539
| | - David R. Gibb
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298; and
| | - Daniel Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298; and
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University, 24098 Kiel, Germany
| | - Carl P. Blobel
- *Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021
- Departments of Medicine, and of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021
| |
Collapse
|
46
|
Horiuchi K, Kimura T, Miyamoto T, Miyamoto K, Akiyama H, Takaishi H, Morioka H, Nakamura T, Okada Y, Blobel CP, Toyama Y. Conditional inactivation of TACE by a Sox9 promoter leads to osteoporosis and increased granulopoiesis via dysregulation of IL-17 and G-CSF. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2093-101. [PMID: 19201862 PMCID: PMC2924677 DOI: 10.4049/jimmunol.0802491] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The TNF-alpha converting enzyme (TACE/ADAM17) is involved in the proteolytic release of the ectodomain of diverse cell surface proteins with critical roles in development, immunity, and hematopoiesis. As the perinatal lethality of TACE-deficient mice has prevented an analysis of the roles of TACE in adult animals, we generated mice in which floxed Tace alleles were deleted by Cre recombinase driven by a Sox9 promoter. These mutant mice survived up to 9-10 mo, but exhibited severe growth retardation as well as skin defects and infertility. The analysis of the skeletal system revealed shorter long bones and prominent bone loss, characterized by an increase in osteoclast and osteoblast activity. In addition, these mice exhibited hypercellularity in the bone marrow and extramedullary hematopoiesis in the spleen and liver. Flow cytometric analysis of the bone marrow cells showed a sharp increase in granulopoiesis and in the population of c-Kit-1(+) Sca-1(+) lineage(-) cells, and a decrease in lymphopoiesis. Moreover, we found that serum levels of IL-17 and G-CSF were significantly elevated compared with control littermates. These findings indicate that TACE is associated with a regulation of IL-17 and G-CSF expression in vivo, and that the dysregulation in G-CSF production is causally related to both the osteoporosis-like phenotype and the defects in the hematopoietic system.
Collapse
Affiliation(s)
- Keisuke Horiuchi
- Department of Anti-Aging Orthopedic Research, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
C-kit and its ligand stem cell factor: potential contribution to prostate cancer bone metastasis. Neoplasia 2009; 10:996-1003. [PMID: 18714401 DOI: 10.1593/neo.08618] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 11/18/2022] Open
Abstract
The tyrosine kinase receptor c-kit and its ligand stem cell factor (SCF) have not been explored in prostate cancer (PC) bone metastasis. Herein, we found that three human PC cell lines and bone marrow stromal cells express a membrane-bound SCF isoform and release a soluble SCF. Bone marrow stromal cells revealed strong expression of c-kit, whereas PC cells showed very low levels of the receptor or did not express it all. Using an experimental model of PC bone metastasis, we found that intraosseous bone tumors formed by otherwise c-kit-negative PC3 cells strongly expressed c-kit, as demonstrated using immunohistochemical and Western blot analyses. Subcutaneous PC3 tumors were, however, c-kit-negative. Both bone and subcutaneous PC3 tumors were positive for SCF. Immunohistochemical analysis of human specimens revealed that the expression frequency of c-kit in epithelial cells was of 5% in benign prostatic hyperplasia, 14% in primary PC, and 40% in PC bone metastases, suggesting an overall trend of increased c-kit expression in clinical PC progression. Stem cell factor expression frequency was more than 80% in all the cases. Our data suggest that the bone microenvironment up-regulates c-kit expression on PC cells, favoring their intraosseous expansion.
Collapse
|
48
|
Reiss K, Saftig P. The "a disintegrin and metalloprotease" (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 2008; 20:126-37. [PMID: 19049889 DOI: 10.1016/j.semcdb.2008.11.002] [Citation(s) in RCA: 312] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/29/2008] [Accepted: 11/06/2008] [Indexed: 01/06/2023]
Abstract
There is an exciting increase of evidence that members of the disintegrin and metalloprotease (ADAM) family critically regulate cell adhesion, migration, development and signalling. ADAMs are involved in "ectodomain shedding" of various cell surface proteins such as growth factors, receptors and their ligands, cytokines, and cell adhesion molecules. The regulation of these proteases is complex and still poorly understood. Studies in ADAM knockout mice revealed their partially redundant roles in angiogenesis, neurogenesis, tissue development and cancer. ADAMs usually trigger the first step in regulated intramembrane proteolysis leading to activation of intracellular signalling pathways and the release of functional soluble ectodomains.
Collapse
Affiliation(s)
- Karina Reiss
- Biochemical Institute, Christian-Albrecht-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
| | | |
Collapse
|
49
|
Abstract
The ADAMs (a disintegrin and metalloproteinase) are a fascinating family of transmembrane and secreted proteins with important roles in regulating cell phenotype via their effects on cell adhesion, migration, proteolysis and signalling. Though all ADAMs contain metalloproteinase domains, in humans only 13 of the 21 genes in the family encode functional proteases, indicating that at least for the other eight members, protein-protein interactions are critical aspects of their biological functions. The functional ADAM metalloproteinases are involved in "ectodomain shedding" of diverse growth factors, cytokines, receptors and adhesion molecules. The archetypal activity is shown by ADAM-17 (tumour necrosis factor-alpha convertase, TACE), which is the principal protease involved in the activation of pro-TNF-alpha, but whose sheddase functions cover a broad range of cell surface molecules. In particular, ADAM-17 is required for generation of the active forms of Epidermal Growth Factor Receptor (EGFR) ligands, and its function is essential for the development of epithelial tissues. Several other ADAMs have important sheddase functions in particular tissue contexts. Another major family member, ADAM-10, is a principal player in signalling via the Notch and Eph/ephrin pathways. For a growing number of substrates, foremost among them being Notch, cleavage by ADAM sheddases is essential for their subsequent "regulated intramembrane proteolysis" (RIP), which generates cleaved intracellular domains that translocate to the nucleus and regulate gene transcription. Several ADAMs play roles in spermatogenesis and sperm function, potentially by effecting maturation of sperm and their adhesion and migration in the uterus. Other non-catalytic ADAMs function in the CNS via effects on guidance mechanisms. The ADAM family are thus fundamental to many control processes in development and homeostasis, and unsurprisingly they are also linked to pathological states when their functions are dysregulated, including cancer, cardiovascular disease, asthma, Alzheimer's disease. This review will provide an overview of current knowledge of the human ADAMs, discussing their structure, function, regulation and disease involvement.
Collapse
Affiliation(s)
- Dylan R Edwards
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|
50
|
Abstract
Soluble cytokine receptors play key roles in regulating cytokine-mediated biological events by binding and modulating the activity of target ligands in either an antagonistic or agonistic fashion. This Minireview will provide an overview of the molecular mechanisms mediating the generation of soluble cytokine receptors, which include sheddase-mediated proteolytic cleavage of cell-surface receptors, generation of soluble receptors by alternative gene splicing, transcription and translation of cytokine-binding genes, and extracellular release of membrane-bound receptors within vesicles such as exosomes.
Collapse
Affiliation(s)
- Stewart J Levine
- Pulmonary and Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892-1590, USA.
| |
Collapse
|