1
|
Folahan JT, Barabutis N. NEK kinases in cell cycle regulation, DNA damage response, and cancer progression. Tissue Cell 2025; 94:102811. [PMID: 40037068 PMCID: PMC11912005 DOI: 10.1016/j.tice.2025.102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
The NIMA-related kinase (NEK) family of serine/threonine kinases is essential for the regulation of cell cycle progression, mitotic spindle assembly, and genomic stability. In this review, we explore the structural and functional diversity of NEK kinases, highlighting their roles in both canonical and non-canonical cellular processes. We examine recent preclinical findings on NEK inhibition, showcasing promising results for NEK-targeted therapies, particularly in cancer types characterized by high NEK expression. We discussed the therapeutic potential of targeting NEKs as modulators of cell cycle and DDR pathways, with a focus on identifying strategies to exploit NEK activity for enhanced treatment efficacy. Future research directions are proposed to further elucidate NEK-mediated mechanisms and to develop selective inhibitors that target NEK-related pathways.
Collapse
Affiliation(s)
- Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
2
|
Rifai OM, Waldron FM, Sleibi D, O'Shaughnessy J, Leighton DJ, Gregory JM. Clinicopathological analysis of NEK1 variants in amyotrophic lateral sclerosis. Brain Pathol 2025; 35:e13287. [PMID: 38986433 PMCID: PMC11669413 DOI: 10.1111/bpa.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Many genes have been linked to amyotrophic lateral sclerosis (ALS), including never in mitosis A (NIMA)-related kinase 1 (NEK1), a serine/threonine kinase that plays a key role in several cellular functions, such as DNA damage response and cell cycle regulation. Whole-exome sequencing studies have shown that NEK1 mutations are associated with an increased risk for ALS, where a significant enrichment of NEK1 loss-of-function (LOF) variants were found in individuals with ALS compared to controls. In particular, the p.Arg261His missense variant was associated with significantly increased disease susceptibility. This case series aims to understand the neuropathological phenotypes resulting from NEK1 mutations in ALS. We examined a cohort of three Scottish patients with a mutation in the NEK1 gene and evaluated the distribution and cellular expression of NEK1, as well as the abundance of phosphorylated TDP-43 (pTDP-43) aggregates, in the motor cortex compared to age- and sex-matched control tissue. We show pathological, cytoplasmic TDP-43 aggregates in all three NEK1-ALS cases. NEK1 protein staining revealed no immunoreactivity in two of the NEK1-ALS cases, indicating a LOF and corresponding to a reduction in NEK1 mRNA as detected by in situ hybridisation. However, the p.Arg261His missense mutation resulted in an increase in NEK1 mRNA molecules and abundant NEK1-positive cytoplasmic aggregates, with the same morphologic appearance, and within the same cells as co-occurring TDP-43 aggregates. Here we show the first neuropathological assessment of a series of ALS cases carrying mutations in the NEK1 gene. Specifically, we show that TDP-43 pathology is present in these cases and that potential NEK1 LOF can either be mediated through loss of NEK1 translation or through aggregation of NEK1 protein as in the case with p.Arg261His mutation, a potential novel pathological feature of NEK1-ALS.
Collapse
Affiliation(s)
- Olivia M. Rifai
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- Department of NeurologyCenter for Motor Neuron Biology and Disease, Columbia UniversityNew YorkNew YorkUSA
| | | | - Danah Sleibi
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | | | - Danielle J. Leighton
- Department of ChemistryUniversity of EdinburghEdinburghUK
- Department of NeurologyUniversity of GlasgowGlasgowUK
- School of Psychology & NeuroscienceUniversity of GlasgowGlasgowUK
- Euan MacDonald Centre for Motor Neuron Disease ResearchUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
3
|
Lu YM, Yan S, Ti SC, Zheng C. Editing of endogenous tubulins reveals varying effects of tubulin posttranslational modifications on axonal growth and regeneration. eLife 2024; 13:RP94583. [PMID: 38949652 PMCID: PMC11216746 DOI: 10.7554/elife.94583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of β-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.
Collapse
Affiliation(s)
- Yu-Ming Lu
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SARHong KongChina
| | - Shan Yan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Shih-Chieh Ti
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Chaogu Zheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SARHong KongChina
| |
Collapse
|
4
|
Hsieh MC, Lai CY, Cho WL, Lin LT, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. Phosphate NIMA-Related Kinase 2-Dependent Epigenetic Pathways in Dorsal Root Ganglion Neurons Mediates Paclitaxel-Induced Neuropathic Pain. Anesth Analg 2023; 137:1289-1301. [PMID: 36753440 DOI: 10.1213/ane.0000000000006397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND The microtubule-stabilizing drug paclitaxel (PTX) is an important chemotherapeutic agent for cancer treatment and causes peripheral neuropathy as a common side effect that substantially impacts the functional status and quality of life of patients. The mechanistic role for NIMA-related kinase 2 (NEK2) in the progression of PTX-induced neuropathic pain has not been established. METHODS Adult male Sprague-Dawley rats intraperitoneally received PTX to induce neuropathic pain. The protein expression levels in the dorsal root ganglion (DRG) of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by von Frey tests and hot plate tests. RESULTS PTX increased phosphorylation of the important microtubule dynamics regulator NEK2 in DRG neurons and induced profound neuropathic allodynia. PTX-activated phosphorylated NEK2 (pNEK2) increased jumonji domain-containing 3 (JMJD3) protein, a histone demethylase protein, to specifically catalyze the demethylation of the repressive histone mark H3 lysine 27 trimethylation (H3K27me3) at the Trpv1 gene, thereby enhancing transient receptor potential vanilloid subtype-1 (TRPV1) expression in DRG neurons. Moreover, the pNEK2-dependent PTX response program is regulated by enhancing p90 ribosomal S6 kinase 2 (RSK2) phosphorylation. Conversely, intrathecal injections of kaempferol (a selective RSK2 activation antagonist), NCL 00017509 (a selective NEK2 inhibitor), NEK2-targeted siRNA, GSK-J4 (a selective JMJD3 inhibitor), or capsazepine (an antagonist of TRPV1 receptor) into PTX-treated rats reversed neuropathic allodynia and restored silencing of the Trpv1 gene, suggesting the hierarchy and interaction among phosphorylated RSK2 (pRSK2), pNEK2, JMJD3, H3K27me3, and TRPV1 in the DRG neurons in PTX-induced neuropathic pain. CONCLUSIONS pRSK2/JMJD3/H3K27me3/TRPV1 signaling in the DRG neurons plays as a key regulator for PTX therapeutic approaches.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Wen-Long Cho
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Li-Ting Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Po-Sheng Yang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Departments of Surgery
| | - Jen-Kun Cheng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
5
|
Kirola L, Mukherjee A, Mutsuddi M. Recent Updates on the Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Mol Neurobiol 2022; 59:5673-5694. [PMID: 35768750 DOI: 10.1007/s12035-022-02934-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) primarily affect the motor and frontotemporal areas of the brain, respectively. These disorders share clinical, genetic, and pathological similarities, and approximately 10-15% of ALS-FTD cases are considered to be multisystemic. ALS-FTD overlaps have been linked to families carrying an expansion in the intron of C9orf72 along with inclusions of TDP-43 in the brain. Other overlapping genes (VCP, FUS, SQSTM1, TBK1, CHCHD10) are also involved in similar functions that include RNA processing, autophagy, proteasome response, protein aggregation, and intracellular trafficking. Recent advances in genome sequencing have identified new genes that are involved in these disorders (TBK1, CCNF, GLT8D1, KIF5A, NEK1, C21orf2, TBP, CTSF, MFSD8, DNAJC7). Additional risk factors and modifiers have been also identified in genome-wide association studies and array-based studies. However, the newly identified genes show higher disease frequencies in combination with known genes that are implicated in pathogenesis, thus indicating probable digenetic/polygenic inheritance models, along with epistatic interactions. Studies suggest that these genes play a pleiotropic effect on ALS-FTD and other diseases such as Alzheimer's disease, Ataxia, and Parkinsonism. Besides, there have been numerous improvements in the genotype-phenotype correlations as well as clinical trials on stem cell and gene-based therapies. This review discusses the possible genetic models of ALS and FTD, the latest therapeutics, and signaling pathways involved in ALS-FTD.
Collapse
Affiliation(s)
- Laxmi Kirola
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
6
|
Xie S, Yang J, Huang S, Fan Y, Xu T, He J, Guo J, Ji X, Wang Z, Li P, Chen J, Zhang Y. Disrupted myelination network in the cingulate cortex of Parkinson's disease. IET Syst Biol 2022; 16:98-119. [PMID: 35394697 PMCID: PMC9290774 DOI: 10.1049/syb2.12043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
The cingulate cortex is part of the conserved limbic system, which is considered as a hub of emotional and cognitive control. Accumulating evidence suggested that involvement of the cingulate cortex is significant for cognitive impairment of Parkinson's disease (PD). However, mechanistic studies of the cingulate cortex in PD pathogenesis are limited. Here, transcriptomic and regulatory network analyses were conducted for the cingulate cortex in PD. Enrichment and clustering analyses showed that genes involved in regulation of membrane potential and glutamate receptor signalling pathway were upregulated. Importantly, myelin genes and the oligodendrocyte development pathways were markedly downregulated, indicating disrupted myelination in PD cingulate cortex. Cell‐type‐specific signatures revealed that myelinating oligodendrocytes were the major cell type damaged in the PD cingulate cortex. Furthermore, downregulation of myelination pathways in the cingulate cortex were shared and validated in another independent RNAseq cohort of dementia with Lewy bodies (DLB). In combination with ATACseq data, gene regulatory networks (GRNs) were further constructed for 32 transcription factors (TFs) and 466 target genes among differentially expressed genes (DEGs) using a tree‐based machine learning algorithm. Several transcription factors, including Olig2, Sox8, Sox10, E2F1, and NKX6‐2, were highlighted as key nodes in a sub‐network, which control many overlapping downstream targets associated with myelin formation and gliogenesis. In addition, the authors have validated a subset of DEGs by qPCRs in two PD mouse models. Notably, seven of these genes,TOX3, NECAB2 NOS1, CAPN3, NR4A2, E2F1 and FOXP2, have been implicated previously in PD or neurodegeneration and are worthy of further studies as novel candidate genes. Together, our findings provide new insights into the role of remyelination as a promising new approach to treat PD after demyelination.
Collapse
Affiliation(s)
- Song Xie
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiajun Yang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shenghui Huang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuanlan Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tao Xu
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China
| | - Jiangshuang He
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahao Guo
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Zhibo Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiangfan Chen
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China
| | - Yi Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China.,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
7
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
8
|
Yang M, Guo Y, Guo X, Mao Y, Zhu S, Wang N, Lu D. Analysis of the effect of NEKs on the prognosis of patients with non-small-cell lung carcinoma based on bioinformatics. Sci Rep 2022; 12:1705. [PMID: 35105934 PMCID: PMC8807624 DOI: 10.1038/s41598-022-05728-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
NEKs are proteins that are involved in various cell processes and play important roles in the formation and development of cancer. However, few studies have examined the role of NEKs in the development of non-small-cell lung carcinoma (NSCLC). To address this problem, the Oncomine, UALCAN, and the Human Protein Atlas databases were used to analyze differential NEK expression and its clinicopathological parameters, while the Kaplan-Meier, cBioPortal, GEPIA, and DAVID databases were used to analyze survival, gene mutations, similar genes, and biological enrichments. The rate of NEK family gene mutation was high (> 50%) in patients with NSCLC, in which NEK2/4/6/8/ was overexpressed and significantly correlated with tumor stage and nodal metastasis status. In addition, the high expression of NEK2/3mRNA was significantly associated with poor prognosis in patients with NSCLC, while high expression of NEK1/4/6/7/8/9/10/11mRNA was associated with good prognosis. In summary, these results suggest that NEK2/4/6/8 may be a potential prognostic biomarker for the survival of patients with NSCLC.
Collapse
Affiliation(s)
- Mengxia Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yikun Guo
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiaofei Guo
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yun Mao
- Department of Oncology, The Second Hospital of Hunan University of Chinese Medicine, Changsha, 410005, People's Republic of China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Ningjun Wang
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| | - Dianrong Lu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| |
Collapse
|
9
|
Moin M, Saha A, Bakshi A, Madhav MS, Kirti PB. Constitutive expression of Ribosomal Protein L6 modulates salt tolerance in rice transgenic plants. Gene 2021; 789:145670. [PMID: 33892070 DOI: 10.1016/j.gene.2021.145670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/14/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
We have functionally characterized the RPL6, a Ribosomal Protein Large subunit gene for salt stress tolerance in rice. The overexpression of RPL6 resulted in tolerance to moderate (150 mM) to high (200 mM) levels of salt (NaCl). The transgenic rice plants expressing RPL6 constitutively showed better phenotypic and physiological responses with high quantum efficiency, accumulation of higher chlorophyll and proline contents, and an overall increase in seed yield compared with the wild type in salt stress treatments. An iTRAQ-based comparative proteomic analysis revealed the high expression of about 333 proteins among the 4378 DAPs in a selected overexpression line of RPL6 treated with 200 mM of NaCl. The functional analysis showed that these highly accumulated proteins (HAPs) are involved in photosynthesis, ribosome and chloroplast biogenesis, ion transportation, transcription and translation regulation, phytohormone and secondary metabolite signal transduction. An in silico network analysis of HAPs predicted that RPL6 binds with translation-related proteins and helicases, which coordinately affect the activities of a comprehensive signaling network, thereby inducing tolerance and promoting growth and productivity in response to salt stress. Our overall findings identified a novel candidate, RPL6, whose characterization contributed to the existing knowledge on the complexity of salt tolerance mechanism in plants.
Collapse
Affiliation(s)
- Mazahar Moin
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India.
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Achala Bakshi
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India
| | - M S Madhav
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India; Agri-Biotech Foundation, PJTS Agricultural University, Hyderabad 500030, India
| |
Collapse
|
10
|
Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degenerations: Similarities in Genetic Background. Diagnostics (Basel) 2021; 11:diagnostics11030509. [PMID: 33805659 PMCID: PMC7998502 DOI: 10.3390/diagnostics11030509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal progressive degenerative disorder of motor neurons that overlaps with frontotemporal lobar degeneration (FTLD) clinically, morphologically, and genetically. Although many distinct mutations in various genes are known to cause amyotrophic lateral sclerosis, it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Many of the gene mutations are in proteins that share similar functions. They can be grouped into those associated with cell axon dynamics and those associated with cellular phagocytic machinery, namely protein aggregation and metabolism, apoptosis, and intracellular nucleic acid transport. Analysis of pathways implicated by mutant ALS genes has provided new insights into the pathogenesis of both familial forms of ALS (fALS) and sporadic forms (sALS), although, regrettably, this has not yet yielded definitive treatments. Many genes play an important role, with TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly, C9orf72 being critical genetic players in these neurological disorders. In this mini-review, we will focus on the molecular mechanisms of these two diseases.
Collapse
|
11
|
Rodriguez S, Hug C, Todorov P, Moret N, Boswell SA, Evans K, Zhou G, Johnson NT, Hyman BT, Sorger PK, Albers MW, Sokolov A. Machine learning identifies candidates for drug repurposing in Alzheimer's disease. Nat Commun 2021; 12:1033. [PMID: 33589615 PMCID: PMC7884393 DOI: 10.1038/s41467-021-21330-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/21/2021] [Indexed: 01/31/2023] Open
Abstract
Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a large amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA) for another indication is a more rapid and less expensive option. We present DRIAD (Drug Repurposing In AD), a machine learning framework that quantifies potential associations between the pathology of AD severity (the Braak stage) and molecular mechanisms as encoded in lists of gene names. DRIAD is applied to lists of genes arising from perturbations in differentiated human neural cell cultures by 80 FDA-approved and clinically tested drugs, producing a ranked list of possible repurposing candidates. Top-scoring drugs are inspected for common trends among their targets. We propose that the DRIAD method can be used to nominate drugs that, after additional validation and identification of relevant pharmacodynamic biomarker(s), could be readily evaluated in a clinical trial.
Collapse
Affiliation(s)
- Steve Rodriguez
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Petar Todorov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Nienke Moret
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Kyle Evans
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - George Zhou
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Nathan T Johnson
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Mark W Albers
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Guo W, Vandoorne T, Steyaert J, Staats KA, Van Den Bosch L. The multifaceted role of kinases in amyotrophic lateral sclerosis: genetic, pathological and therapeutic implications. Brain 2021; 143:1651-1673. [PMID: 32206784 PMCID: PMC7296858 DOI: 10.1093/brain/awaa022] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis is the most common degenerative disorder of motor neurons in adults. As there is no cure, thousands of individuals who are alive at present will succumb to the disease. In recent years, numerous causative genes and risk factors for amyotrophic lateral sclerosis have been identified. Several of the recently identified genes encode kinases. In addition, the hypothesis that (de)phosphorylation processes drive the disease process resulting in selective motor neuron degeneration in different disease variants has been postulated. We re-evaluate the evidence for this hypothesis based on recent findings and discuss the multiple roles of kinases in amyotrophic lateral sclerosis pathogenesis. We propose that kinases could represent promising therapeutic targets. Mainly due to the comprehensive regulation of kinases, however, a better understanding of the disturbances in the kinome network in amyotrophic lateral sclerosis is needed to properly target specific kinases in the clinic.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Jolien Steyaert
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Kim A Staats
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, USA
| | - Ludo Van Den Bosch
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
13
|
AVŞAR T, ÇALIŞ Ş, YILMAZ B, DEMİRCİ OTLUOĞLU G, HOLYAVKİN C, KILIÇ T. Genome-wide identification of Chiari malformation type I associated candidate genes and chromosomal variations. Turk J Biol 2020; 44:449-456. [PMID: 33402871 PMCID: PMC7759189 DOI: 10.3906/biy-2009-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 01/12/2023] Open
Abstract
Chiari malformation type I (CMI) is a brain malformation that is characterized by herniation of the cerebellum into the spinal canal. Chiari malformation type I is highly heterogeneous; therefore, an accurate explanation of the pathogenesis of the disease is often not possible. Although some studies showed the role of genetics in CMI, the involvement of genetic variations in CMI pathogenesis has not been thoroughly elucidated. Therefore, in the current study we aim to reveal CMI-associated genomic variations in familial cases.Four CMI patients and 7 unaffected healthy members of two distinct families were analyzed. A microarray analysis of the affected and unaffected individuals from two Turkish families with CMI was conducted. Analyses of single nucleotide variations (SNVs) and copy number variations (CNVs) were performed by calculation of B allele frequency (BAF) and log R ratio (LRR) values from whole genome SNV data. Two missense variations, OLFML2A (rs7874348) and SLC4A9 (rs6860077), and a 5'UTR variation of COL4A1 (rs9521687) were significantly associated with CMI. Moreover, 12 SNVs in the intronic regions of FAM155A, NR3C1, TRPC7, ASTN2, and TRAF1 were determined to be associated with CMI. The CNV analysis showed that the 11p15.4 chromosome region is inherited in one of the families. The use of familial studies to explain the molecular pathogenesis of complex diseases such as CMI is crucial. It has been suggested that variations in OLFML2A, SLC4A9, and COL4A1 play a role in CMI molecular pathogenesis. The CNV analysis of individuals in both families revealed a potential chromosomal region, 11p15.4, and risk regions that are associated with CMI.
Collapse
Affiliation(s)
- Timuçin AVŞAR
- Department of Medical Biology, School of Medicine, Bahçeşehir University, İstanbulTurkey
- Neuroscience Program, Health Sciences Institute, Bahçeşehir University, İstanbulTurkey
- Neuroscience Laboratory, Health Sciences Institute, Bahçeşehir University, İstanbulTurkey
| | - Şeyma ÇALIŞ
- Neuroscience Laboratory, Health Sciences Institute, Bahçeşehir University, İstanbulTurkey
- Molecular Biology, Genetics, and Biotechnology Graduate Program, Graduate School of Science, Engineering, and Technology, İstanbul Technical University, İstanbulTurkey
| | - Baran YILMAZ
- Department of Neurosurgery, School of Medicine, Bahçeşehir University, İstanbulTurkey
| | | | - Can HOLYAVKİN
- Molecular Biology, Genetics, and Biotechnology Graduate Program, Graduate School of Science, Engineering, and Technology, İstanbul Technical University, İstanbulTurkey
| | - Türker KILIÇ
- Neuroscience Program, Health Sciences Institute, Bahçeşehir University, İstanbulTurkey
- Neuroscience Laboratory, Health Sciences Institute, Bahçeşehir University, İstanbulTurkey
- Department of Neurosurgery, School of Medicine, Bahçeşehir University, İstanbulTurkey
| |
Collapse
|
14
|
Höglund A, Henriksen R, Fogelholm J, Churcher AM, Guerrero-Bosagna CM, Martinez-Barrio A, Johnsson M, Jensen P, Wright D. The methylation landscape and its role in domestication and gene regulation in the chicken. Nat Ecol Evol 2020; 4:1713-1724. [PMID: 32958860 PMCID: PMC7616959 DOI: 10.1038/s41559-020-01310-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
Domestication is one of the strongest examples of artificial selection and has produced some of the most extreme within-species phenotypic variation known. In the case of the chicken, it has been hypothesized that DNA methylation may play a mechanistic role in the domestication response. By inter-crossing wild-derived red junglefowl with domestic chickens, we mapped quantitative trait loci for hypothalamic methylation (methQTL), gene expression (eQTL) and behaviour. We find large, stable methylation differences, with 6,179 cis and 2,973 trans methQTL identified. Over 46% of the trans effects were genotypically controlled by five loci, mainly associated with increased methylation in the junglefowl genotype. In a third of eQTL, we find that there is a correlation between gene expression and methylation, while statistical causality analysis reveals multiple instances where methylation is driving gene expression, as well as the reverse. We also show that methylation is correlated with some aspects of behavioural variation in the inter-cross. In conclusion, our data suggest a role for methylation in the regulation of gene expression underlying the domesticated phenotype of the chicken.
Collapse
Affiliation(s)
- Andrey Höglund
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Jesper Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | | | - Carlos M Guerrero-Bosagna
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
- Evolutionary Biology Centrum, Dept of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden.
| |
Collapse
|
15
|
Zhang Y, Chen W, Zeng W, Lu Z, Zhou X. Biallelic loss of function NEK3 mutations deacetylate α-tubulin and downregulate NUP205 that predispose individuals to cilia-related abnormal cardiac left-right patterning. Cell Death Dis 2020; 11:1005. [PMID: 33230144 PMCID: PMC7684299 DOI: 10.1038/s41419-020-03214-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
Defective left–right (LR) organization involving abnormalities in cilia ultrastructure causes laterality disorders including situs inversus (SI) and heterotaxy (Htx) with the prevalence approximately 1/10,000 births. In this study, we describe two unrelated family trios with abnormal cardiac LR patterning. Through whole-exome sequencing (WES), we identified compound heterozygous mutations (c.805-1G >C; p. Ile269GlnfsTer8/c.1117dupA; p.Thr373AsnfsTer19) (c.29T>C; p.Ile10Thr/c.356A>G; p.His119Arg) of NEK3, encoding a NIMA (never in mitosis A)-related kinase, in two affected individuals, respectively. Protein levels of NEK3 were abrogated in Patient-1 with biallelic loss-of function (LoF) NEK3 mutations that causes premature stop codon. Subsequence transcriptome analysis revealed that NNMT (nicotinamide N-methyltransferase) and SIRT2 (sirtuin2) was upregulated by NEK3 knockdown in human retinal pigment epithelial (RPE) cells in vitro, which associates α-tubulin deacetylation by western blot and immunofluorescence. Transmission electron microscopy (TEM) analysis further identified defective ciliary ultrastructure in Patient-1. Furthermore, inner ring components of nuclear pore complex (NPC) including nucleoporin (NUP)205, NUP188, and NUP155 were significantly downregulated in NEK3-silenced cells. In conclusion, we identified biallelic mutations of NEK3 predispose individual to abnormal cardiac left–right patterning via SIRT2-mediated α-tubulin deacetylation and downregulation of inner ring nucleoporins. Our study suggested that NEK3 could be a candidate gene for human ciliopathies.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Weicheng Chen
- Pediatric Cardiovascular Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Weijia Zeng
- School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Zhouping Lu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Xiangyu Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China.
| |
Collapse
|
16
|
Identification of candidate genetic variants and altered protein expression in neural stem and mature neural cells support altered microtubule function to be an essential component in bipolar disorder. Transl Psychiatry 2020; 10:390. [PMID: 33168801 PMCID: PMC7652854 DOI: 10.1038/s41398-020-01056-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/07/2020] [Accepted: 09/29/2020] [Indexed: 01/31/2023] Open
Abstract
Identification of causative genetic variants leading to the development of bipolar disorder (BD) could result in genetic tests that would facilitate diagnosis. A better understanding of affected genes and pathways is also necessary for targeting of genes that may improve treatment strategies. To date several susceptibility genes have been reported from genome-wide association studies (GWAS), but little is known about specific variants that affect disease development. Here, we performed quantitative proteomics and whole-genome sequencing (WGS). Quantitative proteomics revealed NLRP2 as the most significantly up-regulated protein in neural stem cells and mature neural cells obtained from BD-patient cell samples. These results are in concordance with our previously published transcriptome analysis. Furthermore, the levels of FEZ2 and CADM2 proteins were also significantly differentially expressed in BD compared to control derived cells. The levels of FEZ2 were significantly downregulated in neural stem cells (NSC) while CADM2 was significantly up-regulated in mature neuronal cell culture. Promising novel candidate mutations were identified in the ANK3, NEK3, NEK7, TUBB, ANKRD1, and BRD2 genes. A literature search of candidate variants and deregulated proteins revealed that there are several connections to microtubule function for the molecules putatively involved. Microtubule function in neurons is critical for axon structure and axonal transport. A functional dynamic microtubule is also needed for an advocate response to cellular and environmental stress. If microtubule dynamics is compromised by mutations, it could be followed by deregulated expression forming a possible explanation for the inherited vulnerability to stressful life events that have been proposed to trigger mood episodes in BD patients.
Collapse
|
17
|
Power KM, Akella JS, Gu A, Walsh JD, Bellotti S, Morash M, Zhang W, Ramadan YH, Ross N, Golden A, Smith HE, Barr MM, O’Hagan R. Mutation of NEKL-4/NEK10 and TTLL genes suppress neuronal ciliary degeneration caused by loss of CCPP-1 deglutamylase function. PLoS Genet 2020; 16:e1009052. [PMID: 33064774 PMCID: PMC7592914 DOI: 10.1371/journal.pgen.1009052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/28/2020] [Accepted: 08/14/2020] [Indexed: 12/29/2022] Open
Abstract
Ciliary microtubules are subject to post-translational modifications that act as a "Tubulin Code" to regulate motor traffic, binding proteins and stability. In humans, loss of CCP1, a cytosolic carboxypeptidase and tubulin deglutamylating enzyme, causes infantile-onset neurodegeneration. In C. elegans, mutations in ccpp-1, the homolog of CCP1, result in progressive degeneration of neuronal cilia and loss of neuronal function. To identify genes that regulate microtubule glutamylation and ciliary integrity, we performed a forward genetic screen for suppressors of ciliary degeneration in ccpp-1 mutants. We isolated the ttll-5(my38) suppressor, a mutation in a tubulin tyrosine ligase-like glutamylase gene. We show that mutation in the ttll-4, ttll-5, or ttll-11 gene suppressed the hyperglutamylation-induced loss of ciliary dye filling and kinesin-2 mislocalization in ccpp-1 cilia. We also identified the nekl-4(my31) suppressor, an allele affecting the NIMA (Never in Mitosis A)-related kinase NEKL-4/NEK10. In humans, NEK10 mutation causes bronchiectasis, an airway and mucociliary transport disorder caused by defective motile cilia. C. elegans NEKL-4 localizes to the ciliary base but does not localize to cilia, suggesting an indirect role in ciliary processes. This work defines a pathway in which glutamylation, a component of the Tubulin Code, is written by TTLL-4, TTLL-5, and TTLL-11; is erased by CCPP-1; is read by ciliary kinesins; and its downstream effects are modulated by NEKL-4 activity. Identification of regulators of microtubule glutamylation in diverse cellular contexts is important to the development of effective therapies for disorders characterized by changes in microtubule glutamylation. By identifying C. elegans genes important for neuronal and ciliary stability, our work may inform research into the roles of the tubulin code in human ciliopathies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kade M. Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Jyothi S. Akella
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Amanda Gu
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Jonathon D. Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Sebastian Bellotti
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Margaret Morash
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Winnie Zhang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Yasmin H. Ramadan
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Nicole Ross
- Biology Department, Montclair State University, Montclair, NJ, United States of America
| | - Andy Golden
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Harold E. Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Robert O’Hagan
- Biology Department, Montclair State University, Montclair, NJ, United States of America
| |
Collapse
|
18
|
Shen W, Han Q, Sun F, Li Z, Li L. Nek9,a sensitive immunohistochemical marker for Schwannian, melanocytic and myogenic tumours. J Clin Pathol 2020; 74:jclinpath-2020-206864. [PMID: 32792414 DOI: 10.1136/jclinpath-2020-206864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/03/2022]
Abstract
AIMS In our previous study, striking Nek9 staining was observed in peripheral nerves for the first time. Therefore, in the current study, we aimed to detect Nek9 expression in peripheral nerve sheath tumours, melanocytic tumours and their mimics. METHODS The expression of Nek9 was analysed in 234 mesenchymal tumours including schwannoma, neurofibroma, malignant peripheral nerve sheath tumour (MPNST), melanoma and their mimics adopting immunohistochemistry. In addition, S-100 and SOX10 were detected in all tumours. RESULTS The results revealed an intense and diffuse staining of Nek9 in all schwannomas (30/30) and melanomas (20/20). The neurofibromas (86%, 19/22) and MPNSTs (76%, 18/21) showed a high frequency of positive Nek9 staining. Nek9 showed a comparable sensitivity to S-100, and better sensitivity and less specificity than that of SOX10. Among the histological mimics, Nek9 was only strongly and diffusely expressed in rhabdomyosarcomas (RSs) (97%,37/38) while negatively stained in most of the other tumours. It was noted that Nek9 immunoresponse was more diffuse than that of MyoD1 and myogenin in RS. CONCLUSIONS In summary, Nek9 has a good sensitivity in the diagnosis of tumours with Schwannian, melanocytic and skeletal muscle differentiations. The immunohistochemical analysis of Nek9 expression may be helpful in the diagnosis and differential diagnosis of the aforementioned tumours.
Collapse
Affiliation(s)
- Wenping Shen
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Qun Han
- Department of Pathology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Feifei Sun
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Zhishuang Li
- Department of Pathology, Second Hospital of Shandong University, Jinan, China
| | - Li Li
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
19
|
Hennessey KM, Alas GCM, Rogiers I, Li R, Merritt EA, Paredez AR. Nek8445, a protein kinase required for microtubule regulation and cytokinesis in Giardia lamblia. Mol Biol Cell 2020; 31:1611-1622. [PMID: 32459558 PMCID: PMC7521801 DOI: 10.1091/mbc.e19-07-0406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Giardia has 198 Nek kinases whereas humans have only 11. Giardia has a complex microtubule cytoskeleton that includes eight flagella and several unique microtubule arrays that are utilized for parasite attachment and facilitation of rapid mitosis and cytokinesis. The need to regulate these structures may explain the parallel expansion of the number of Nek family kinases. Here we use live and fixed cell imaging to uncover the role of Nek8445 in regulating Giardia cell division. We demonstrate that Nek8445 localization is cell cycle regulated and this kinase has a role in regulating overall microtubule organization. Nek8445 depletion results in short flagella, aberrant ventral disk organization, loss of the funis, defective axoneme exit, and altered cell shape. The axoneme exit defect is specific to the caudal axonemes, which exit from the posterior of the cell, and this defect correlates with rounding of the cell posterior and loss of the funis. Our findings implicate a role for the funis in establishing Giardia's cell shape and guiding axoneme docking. On a broader scale our results support the emerging view that Nek family kinases have a general role in regulating microtubule organization.
Collapse
Affiliation(s)
| | | | - Ilse Rogiers
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Renyu Li
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Ethan A. Merritt
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
20
|
Nekooki-Machida Y, Hagiwara H. Role of tubulin acetylation in cellular functions and diseases. Med Mol Morphol 2020; 53:191-197. [PMID: 32632910 DOI: 10.1007/s00795-020-00260-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
Abstract
Acetylation is a well-studied post-translational modification (PTM) of tubulin. Acetylated tubulin is present in the centrioles, primary cilia, and flagella, which contain long-lived stable microtubules. Tubulin acetylation plays an important role in cellular activities including cell polarity, cell migration, vesicle transport, and cell development. Cryo-electron microscopy reconstructions have revealed conformational changes in acetylated tubulin, revealing a reduction in intermonomer interactions among tubulins and an increase in microtubule elasticity. The kinetics of conformational changes in acetylated tubulin may elucidate microtubule functions in these cellular activities. Abnormal tubulin acetylation has been implicated in neurodegenerative disorders, ciliopathies, and cancers. Thus, it is important to elucidate the mechanisms underlying tubulin acetylation and its effects on cellular activity to understand these diseases and to design potential therapeutic strategies. This review discusses the cellular distribution and dynamics of acetylated tubulin and its role in regulating cellular activities.
Collapse
Affiliation(s)
- Yoko Nekooki-Machida
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
21
|
Trojsi F, D’Alvano G, Bonavita S, Tedeschi G. Genetics and Sex in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS): Is There a Link? Int J Mol Sci 2020; 21:ijms21103647. [PMID: 32455692 PMCID: PMC7279172 DOI: 10.3390/ijms21103647] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no known cure. Approximately 90% of ALS cases are sporadic, although multiple genetic risk factors have been recently revealed also in sporadic ALS (SALS). The pathological expansion of a hexanucleotide repeat in chromosome 9 open reading frame 72 (C9orf72) is the most common genetic mutation identified in familial ALS, detected also in 5–10% of SALS patients. C9orf72-related ALS phenotype appears to be dependent on several modifiers, including demographic factors. Sex has been reported as an independent factor influencing ALS development, with men found to be more susceptible than women. Exposure to both female and male sex hormones have been shown to influence disease risk or progression. Moreover, interplay between genetics and sex has been widely investigated in ALS preclinical models and in large populations of ALS patients carrying C9orf72 repeat expansion. In light of the current need for reclassifying ALS patients into pathologically homogenous subgroups potentially responsive to targeted personalized therapies, we aimed to review the recent literature on the role of genetics and sex as both independent and synergic factors, in the pathophysiology, clinical presentation, and prognosis of ALS. Sex-dependent outcomes may lead to optimizing clinical trials for developing patient-specific therapies for ALS.
Collapse
|
22
|
Peres de Oliveira A, Kazuo Issayama L, Betim Pavan IC, Riback Silva F, Diniz Melo-Hanchuk T, Moreira Simabuco F, Kobarg J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020; 25:molecules25081778. [PMID: 32294979 PMCID: PMC7221840 DOI: 10.3390/molecules25081778] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
| | - Luidy Kazuo Issayama
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Isadora Carolina Betim Pavan
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Fernando Riback Silva
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Talita Diniz Melo-Hanchuk
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Fernando Moreira Simabuco
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Correspondence: ; Tel.: +55-19-3521-8143
| |
Collapse
|
23
|
Ustinova K, Novakova Z, Saito M, Meleshin M, Mikesova J, Kutil Z, Baranova P, Havlinova B, Schutkowski M, Matthias P, Barinka C. The disordered N-terminus of HDAC6 is a microtubule-binding domain critical for efficient tubulin deacetylation. J Biol Chem 2020; 295:2614-2628. [PMID: 31953325 DOI: 10.1074/jbc.ra119.011243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/14/2020] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a multidomain cytosolic enzyme having tubulin deacetylase activity that has been unequivocally assigned to the second of the tandem catalytic domains. However, virtually no information exists on the contribution of other HDAC6 domains on tubulin recognition. Here, using recombinant protein expression, site-directed mutagenesis, fluorimetric and biochemical assays, microscale thermophoresis, and total internal reflection fluorescence microscopy, we identified the N-terminal, disordered region of HDAC6 as a microtubule-binding domain and functionally characterized it to the single-molecule level. We show that the microtubule-binding motif spans two positively charged patches comprising residues Lys-32 to Lys-58. We found that HDAC6-microtubule interactions are entirely independent of the catalytic domains and are mediated by ionic interactions with the negatively charged microtubule surface. Importantly, a crosstalk between the microtubule-binding domain and the deacetylase domain was critical for recognition and efficient deacetylation of free tubulin dimers both in vitro and in vivo Overall, our results reveal that recognition of substrates by HDAC6 is more complex than previously appreciated and that domains outside the tandem catalytic core are essential for proficient substrate deacetylation.
Collapse
Affiliation(s)
- Kseniya Ustinova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - Zora Novakova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Makoto Saito
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Marat Meleshin
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University, Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Jana Mikesova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Zsofia Kutil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petra Baranova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Barbora Havlinova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University, Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
24
|
Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L, Fusi P, Urani C. Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: A toxicogenomics study in a human neuronal cell model. Neurotoxicology 2020; 76:162-173. [DOI: 10.1016/j.neuro.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
|
25
|
Bravo A, de Lucio H, Sánchez-Murcia PA, Jiménez-Ruiz A, Petrone PM, Gago F, Cortés Cabrera A. Identification of NEK3 and MOK as novel targets for lithium. Chem Biol Drug Des 2019; 93:965-969. [PMID: 30667602 DOI: 10.1111/cbdd.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/23/2018] [Accepted: 01/09/2019] [Indexed: 11/28/2022]
Abstract
Lithium ion, commonly used as the carbonate salt in the treatment of bipolar disorders, has been identified as an inhibitor of several kinases, including Glycogen Synthase Kinase-3β, for almost 20 years. However, both the exact mechanism of enzymatic inhibition and its apparent specificity for certain metalloenzymes are still a matter of debate. A data-driven hypothesis is presented that accounts for the specificity profile of kinase inhibition by lithium in terms of the presence of a unique protein environment in the magnesium-binding site. This hypothesis has been validated by the discovery of two novel potential targets for lithium, namely NEK3 and MOK, which are related to neuronal function.
Collapse
Affiliation(s)
- Ana Bravo
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Spain.,Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Pedro A Sánchez-Murcia
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Paula M Petrone
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Alvaro Cortés Cabrera
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Spain.,Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
26
|
Qiu C, Shen H, Fu X, Xu C, Deng H. Meta-Analysis of Genome-Wide Association Studies Identifies Novel Functional CpG-SNPs Associated with Bone Mineral Density at Lumbar Spine. Int J Genomics 2018; 2018:6407257. [PMID: 30159320 PMCID: PMC6109501 DOI: 10.1155/2018/6407257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is a serious public health issue, which is mostly characterized by low bone mineral density (BMD). To search for additional genetic susceptibility loci underlying BMD variation, an effective strategy is to focus on testing of specific variants with high potential of functional effects. Single nucleotide polymorphisms (SNPs) that introduce or disrupt CpG dinucleotides (CpG-SNPs) may alter DNA methylation levels and thus represent strong candidate functional variants. Here, we performed a targeted GWAS for 63,627 potential functional CpG-SNPs that may affect DNA methylation in bone-related cells, in five independent cohorts (n = 5905). By meta-analysis, 9 CpG-SNPs achieved a genome-wide significance level (p < 7.86 × 10-7) for association with lumbar spine BMD and additional 15 CpG-SNPs showed suggestive significant (p < 5.00 × 10-5) association, of which 2 novel SNPs rs7231498 (NFATC1) and rs7455028 (ESR1) also reached a genome-wide significance level in the joint analysis. Several identified CpG-SNPs were mapped to genes that have not been reported for association with BMD in previous GWAS, such as NEK3 and NFATC1 genes, highlighting the enhanced power of targeted association analysis for identification of novel associations that were missed by traditional GWAS. Interestingly, several genomic regions, such as NEK3 and LRP5 regions, contained multiple significant/suggestive CpG-SNPs for lumbar spine BMD, suggesting that multiple neighboring CpG-SNPs may synergistically mediate the DNA methylation level and gene expression pattern of target genes. Furthermore, functional annotation analyses suggested a strong regulatory potential of the identified BMD-associated CpG-SNPs and a significant enrichment in biological processes associated with protein localization and protein signal transduction. Our results provided novel insights into the genetic basis of BMD variation and highlighted the close connections between genetic and epigenetic mechanisms of complex disease.
Collapse
Affiliation(s)
- Chuan Qiu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Hui Shen
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Xiaoying Fu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Chao Xu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Hongwen Deng
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
- School of Basic Medical Science, Central South University, Changsha 410013, China
| |
Collapse
|
27
|
Nguyen HP, Van Broeckhoven C, van der Zee J. ALS Genes in the Genomic Era and their Implications for FTD. Trends Genet 2018; 34:404-423. [PMID: 29605155 DOI: 10.1016/j.tig.2018.03.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/04/2017] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease, characterized genetically by a disproportionately large contribution of rare genetic variation. Driven by advances in massive parallel sequencing and applied on large patient-control cohorts, systematic identification of these rare variants that make up the genetic architecture of ALS became feasible. In this review paper, we present a comprehensive overview of recently proposed ALS genes that were identified based on rare genetic variants (TBK1, CHCHD10, TUBA4A, CCNF, MATR3, NEK1, C21orf2, ANXA11, TIA1) and their potential relevance to frontotemporal dementia genetic etiology. As more causal and risk genes are identified, it has become apparent that affected individuals can carry multiple disease-associated variants. In light of this observation, we discuss the oligogenic architecture of ALS. To end, we highlight emerging key molecular processes and opportunities for therapy.
Collapse
Affiliation(s)
- Hung Phuoc Nguyen
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
28
|
Cao Y, Song J, Chen J, Xiao J, Ni J, Wu C. Overexpression of NEK3 is associated with poor prognosis in patients with gastric cancer. Medicine (Baltimore) 2018; 97:e9630. [PMID: 29504992 PMCID: PMC5779761 DOI: 10.1097/md.0000000000009630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The NIMA-related kinase 3 (NEK3) plays an important role in cell migration, cell proliferation, and cell viability. Recently, NEK3 was reported to enhance the malignancy of breast cancer. However, its role in gastric cancer has not been completely characterized. In this study, we explored the prognostic significance of NEK3 in human gastric cancer. Reverse transcription-polymerase chain reaction and western blot were performed to detect the NEK3 mRNA and protein expression in 6 paired fresh human gastric cancer tissues and surrounding normal tissues. NEK3 levels in gastric cancer and its adjacent normal samples of 168 cases were detected by immunohistochemistry, and the relationships between the NEK3 level and various clinicopathological features were analyzed. NEK3 mRNA and protein were significantly overexpressed in gastric cancer tissues, compared with adjacent normal tissues. Immunohistochemistry staining assay showed the percentage of high NEK3 expression in gastric cancer samples was higher than that in adjacent normal samples. NEK3 overexpression was significantly correlated with pT stage, pathologic TNM stage, lymph node metastasis, and poor prognosis of gastric cancer. Cox multivariate regression analyses suggested that NEK3 was an independent prognostic factor for survival of patients with gastric cancer. The data demonstrate that NEK3 is overexpressed in gastric cancer, which promotes the malignancy of gastric cancer. NEK3 may be as a prognostic biomarker and a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yongfeng Cao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiaye Song
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jia Chen
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinzhang Xiao
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingyi Ni
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou
| |
Collapse
|
29
|
Wells CI, Kapadia NR, Couñago RM, Drewry DH. In depth analysis of kinase cross screening data to identify chemical starting points for inhibition of the Nek family of kinases. MEDCHEMCOMM 2018; 9:44-66. [PMID: 30108900 PMCID: PMC6071746 DOI: 10.1039/c7md00510e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Potent, selective, and cell active small molecule kinase inhibitors are useful tools to help unravel the complexities of kinase signaling. As the biological functions of individual kinases become better understood, they can become targets of drug discovery efforts. The small molecules used to shed light on function can also then serve as chemical starting points in these drug discovery efforts. The Nek family of kinases has received very little attention, as judged by number of citations in PubMed, yet they appear to play many key roles and have been implicated in disease. Here we present our work to identify high quality chemical starting points that have emerged due to the increased incidence of broad kinome screening. We anticipate that this analysis will allow the community to progress towards the generation of chemical probes and eventually drugs that target members of the Nek family.
Collapse
Affiliation(s)
- C I Wells
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| | - N R Kapadia
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| | - R M Couñago
- Structural Genomics Consortium , Universidade Estadual de Campinas - UNICAMP , Campinas , SP , 13083 Brazil
| | - D H Drewry
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| |
Collapse
|
30
|
Fry AM, Bayliss R, Roig J. Mitotic Regulation by NEK Kinase Networks. Front Cell Dev Biol 2017; 5:102. [PMID: 29250521 PMCID: PMC5716973 DOI: 10.3389/fcell.2017.00102] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Genetic studies in yeast and Drosophila led to identification of cyclin-dependent kinases (CDKs), Polo-like kinases (PLKs) and Aurora kinases as essential regulators of mitosis. These enzymes have since been found in the majority of eukaryotes and their cell cycle-related functions characterized in great detail. However, genetic studies in another fungal species, Aspergillus nidulans, identified a distinct family of protein kinases, the NEKs, that are also widely conserved and have key roles in the cell cycle, but which remain less well studied. Nevertheless, it is now clear that multiple NEK family members act in networks to regulate specific events of mitosis, including centrosome separation, spindle assembly and cytokinesis. Here, we describe our current understanding of how the NEK kinases contribute to these processes, particularly through targeted phosphorylation of proteins associated with the microtubule cytoskeleton. We also present the latest findings on molecular events that control the activation state of the NEKs and how these are revealing novel modes of enzymatic regulation relevant not only to other kinases but also to pathological mechanisms of disease.
Collapse
Affiliation(s)
- Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Richard Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Joan Roig
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
31
|
McGuire JL, Depasquale EA, Funk AJ, O'Donnovan SM, Hasselfeld K, Marwaha S, Hammond JH, Hartounian V, Meador-Woodruff JH, Meller J, McCullumsmith RE. Abnormalities of signal transduction networks in chronic schizophrenia. NPJ SCHIZOPHRENIA 2017; 3:30. [PMID: 28900113 PMCID: PMC5595970 DOI: 10.1038/s41537-017-0032-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a serious neuropsychiatric disorder characterized by disruptions of brain cell metabolism, microstructure, and neurotransmission. All of these processes require coordination of multiple kinase-mediated signaling events. We hypothesize that imbalances in kinase activity propagate through an interconnected network of intracellular signaling with potential to simultaneously contribute to many or all of the observed deficits in schizophrenia. We established a workflow distinguishing schizophrenia-altered kinases in anterior cingulate cortex using a previously published kinome array data set. We compared schizophrenia-altered kinases to haloperidol-altered kinases, and identified systems, functions, and regulators predicted using pathway analyses. We used kinase inhibitors with the kinome array to test hypotheses about imbalance in signaling and conducted preliminary studies of kinase proteins, phosphoproteins, and activity for kinases of interest. We investigated schizophrenia-associated single nucleotide polymorphisms in one of these kinases, AKT, for genotype-dependent changes in AKT protein or activity. Kinome analyses identified new kinases as well as some previously implicated in schizophrenia. These results were not explained by chronic antipsychotic treatment. Kinases identified in our analyses aligned with cytoskeletal arrangement and molecular trafficking. Of the kinases we investigated further, AKT and (unexpectedly) JNK, showed the most dysregulation in the anterior cingulate cortex of schizophrenia subjects. Changes in kinase activity did not correspond to protein or phosphoprotein levels. We also show that AKT single nucleotide polymorphism rs1130214, previously associated with schizophrenia, influenced enzyme activity but not protein or phosphoprotein levels. Our data indicate subtle changes in kinase activity and regulation across an interlinked kinase network, suggesting signaling imbalances underlie the core symptoms of schizophrenia. A study by US scientists indicates that changes in the activity of key signaling proteins may underlie core symptoms of schizophrenia. Protein kinases mediate the activation of intracellular signaling events and analyses of the kinome, the complete set of protein kinases encoded in the genome, previously revealed significant changes in phosphorylation patterns in postmortem brain tissue from patients with schizophrenia. Based on these findings, Jennifer McGuire at the University of Cincinnati and colleagues investigated the upstream regulation of these proteins. They identified both established and novel proteins associated with schizophrenia in the anterior cingulate cortex, with JNK and AKT activity being the most disrupted in schizophrenia patients. Their findings highlight how subtle changes in the activity of a small number of signaling proteins can propagate and have major consequences for mental health.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| | - Erica A Depasquale
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam J Funk
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Sinead M O'Donnovan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Kathryn Hasselfeld
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Shruti Marwaha
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - John H Hammond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Vahram Hartounian
- Psychiatry & Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.,James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center (MIRECC), Bronx, NY, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Jarek Meller
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Departments of Environmental Health, Electrical Engineering & Computing Systems and Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
32
|
Weber U, Mlodzik M. APC/C Fzr/Cdh1-Dependent Regulation of Planar Cell Polarity Establishment via Nek2 Kinase Acting on Dishevelled. Dev Cell 2016; 40:53-66. [PMID: 28041906 DOI: 10.1016/j.devcel.2016.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/04/2016] [Accepted: 12/02/2016] [Indexed: 02/04/2023]
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) is an E3 ubiquitin ligase, well known for its role in cell-cycle progression. However, it has been linked to additional functions, mainly in neuronal contexts, when using the co-activator Cdh1/Fzr. Here, our data indicate a post-mitotic requirement for the APC/CFzr/Cdh1 in epithelial cell patterning and planar cell polarity (PCP) in Drosophila. PCP signaling is critical for development by establishing cellular asymmetries and orientation within the plane of an epithelium, via differential localization of distinct complexes of core PCP factors. Loss of APC/C function leads to reduced levels of Dishevelled (Dsh), a core PCP factor. The effect of APC/C on Dsh is mediated by Nek2 kinase, which can phosphorylate Dsh and is a direct APC/CFzr/Cdh1 substrate. We have thus uncovered a pathway of regulation whereby APC/CFzr/Cdh1 negatively regulates Nek2, which negatively regulates Dsh, to ensure its proper stoichiometric requirement and localization during PCP establishment.
Collapse
Affiliation(s)
- Ursula Weber
- Department of Cell, Developmental & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
33
|
Kenna KP, van Doormaal PTC, Dekker AM, Ticozzi N, Kenna BJ, Diekstra FP, van Rheenen W, van Eijk KR, Jones AR, Keagle P, Shatunov A, Sproviero W, Smith BN, van Es MA, Topp SD, Kenna A, Miller JW, Fallini C, Tiloca C, McLaughlin RL, Vance C, Troakes C, Colombrita C, Mora G, Calvo A, Verde F, Al-Sarraj S, King A, Calini D, de Belleroche J, Baas F, van der Kooi AJ, de Visser M, Ten Asbroek ALMA, Sapp PC, McKenna-Yasek D, Polak M, Asress S, Muñoz-Blanco JL, Strom TM, Meitinger T, Morrison KE, Lauria G, Williams KL, Leigh PN, Nicholson GA, Blair IP, Leblond CS, Dion PA, Rouleau GA, Pall H, Shaw PJ, Turner MR, Talbot K, Taroni F, Boylan KB, Van Blitterswijk M, Rademakers R, Esteban-Pérez J, García-Redondo A, Van Damme P, Robberecht W, Chio A, Gellera C, Drepper C, Sendtner M, Ratti A, Glass JD, Mora JS, Basak NA, Hardiman O, Ludolph AC, Andersen PM, Weishaupt JH, Brown RH, Al-Chalabi A, Silani V, Shaw CE, van den Berg LH, Veldink JH, Landers JE. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat Genet 2016; 48:1037-42. [PMID: 27455347 PMCID: PMC5560030 DOI: 10.1038/ng.3626] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology.
Collapse
Affiliation(s)
- Kevin P Kenna
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Perry T C van Doormaal
- Department of Neurology Brain Centre, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Annelot M Dekker
- Department of Neurology Brain Centre, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Nicola Ticozzi
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Brendan J Kenna
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Frank P Diekstra
- Department of Neurology Brain Centre, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Wouter van Rheenen
- Department of Neurology Brain Centre, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Kristel R van Eijk
- Department of Neurology Brain Centre, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ashley R Jones
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Pamela Keagle
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Aleksey Shatunov
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - William Sproviero
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Bradley N Smith
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Michael A van Es
- Department of Neurology Brain Centre, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Simon D Topp
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Aoife Kenna
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jack W Miller
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Claudia Fallini
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Cinzia Tiloca
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Doctoral School in Molecular Medicine, Department of Sciences and Biomedical Technologies, Università degli Studi di Milano, Milan, Italy
| | - Russell L McLaughlin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caroline Vance
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Claire Troakes
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Claudia Colombrita
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Gabriele Mora
- Salvatore Maugeri Foundation, IRCSS, Scientific Institute of Milano, Milan, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
| | - Federico Verde
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Safa Al-Sarraj
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Andrew King
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Daniela Calini
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | | - Frank Baas
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Anneke J van der Kooi
- Department of Neurogenetics and Neurology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Marianne de Visser
- Department of Neurogenetics and Neurology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Anneloor L M A Ten Asbroek
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter C Sapp
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Diane McKenna-Yasek
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Meraida Polak
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Seneshaw Asress
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - José Luis Muñoz-Blanco
- Unidad de ELA, Instituto de Investigación Hospital Gregorio Marañón de Madrid, Madrid, Spain
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | | | - Giuseppe Lauria
- 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Kelly L Williams
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - P Nigel Leigh
- Trafford Centre for Medical Research, Brighton and Sussex Medical School, Falmer, UK
| | - Garth A Nicholson
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
- ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Ian P Blair
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Claire S Leblond
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Patrick A Dion
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Hardev Pall
- Institute of Clinical Studies, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Neurology, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Pamela J Shaw
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Franco Taroni
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Kevin B Boylan
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jesús Esteban-Pérez
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) U-723, Madrid, Spain
| | - Alberto García-Redondo
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) U-723, Madrid, Spain
| | - Phillip Van Damme
- Laboratory of Neurobiology, Department of Neurosciences, KU Leuven and Vesalius Research Centre, VIB, Leuven, Belgium
- Department of Neurology, University Hospitals, Leuven, Belgium
| | - Wim Robberecht
- Laboratory of Neurobiology, Department of Neurosciences, KU Leuven and Vesalius Research Centre, VIB, Leuven, Belgium
- Department of Neurology, University Hospitals, Leuven, Belgium
| | - Adriano Chio
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Carsten Drepper
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Department of Child and Adolescent Psychiatry, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Antonia Ratti
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Jonathan D Glass
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Jesús S Mora
- ALS Unit/Neurology, Hospital San Rafael, Madrid, Spain
| | - Nazli A Basak
- NDAL, Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Vincenzo Silani
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Christopher E Shaw
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Leonard H van den Berg
- Department of Neurology Brain Centre, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology Brain Centre, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
34
|
Harrington KM, Clevenger CV. Identification of NEK3 Kinase Threonine 165 as a Novel Regulatory Phosphorylation Site That Modulates Focal Adhesion Remodeling Necessary for Breast Cancer Cell Migration. J Biol Chem 2016; 291:21388-21406. [PMID: 27489110 PMCID: PMC5076809 DOI: 10.1074/jbc.m116.726190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/27/2016] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence supports a role for prolactin (PRL) in the development and progression of human breast cancer. Although PRL is an established chemoattractant for breast cancer cells, the precise molecular mechanisms of how PRL regulates breast cancer cell motility and invasion are not fully understood. PRL activates the serine/threonine kinase NEK3, which was reported to enhance breast cancer cell migration, invasion, and the actin cytoskeletal reorganization necessary for these processes. However, the specific mechanisms of NEK3 activation in response to PRL signaling have not been defined. In this report, a novel PRL-inducible regulatory phosphorylation site within the activation segment of NEK3, threonine 165 (Thr-165), was identified. Phosphorylation at NEK3 Thr-165 was found to be dependent on activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway using both pharmacological inhibition and siRNA-mediated knockdown approaches. Strikingly, inhibition of phosphorylation at NEK3 Thr-165 by expression of a phospho-deficient mutant (NEK3-T165V) resulted in increased focal adhesion size, formation of zyxin-positive focal adhesions, and reorganization of the actin cytoskeleton into stress fibers. Concordantly, NEK3-T165V cells exhibited migratory defects. Together, these data support a modulatory role for phosphorylation at NEK3 Thr-165 in focal adhesion maturation and/or turnover to promote breast cancer cell migration.
Collapse
Affiliation(s)
- Katherine M Harrington
- From the Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Charles V Clevenger
- the Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
35
|
Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J, Endl E, Hornung V. A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation. J Biol Chem 2015; 291:103-9. [PMID: 26553871 DOI: 10.1074/jbc.c115.700492] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 12/17/2022] Open
Abstract
Inflammasomes are high molecular weight protein complexes that assemble in the cytosol upon pathogen encounter. This results in caspase-1-dependent pro-inflammatory cytokine maturation, as well as a special type of cell death, known as pyroptosis. The Nlrp3 inflammasome plays a pivotal role in pathogen defense, but at the same time, its activity has also been implicated in many common sterile inflammatory conditions. To this effect, several studies have identified Nlrp3 inflammasome engagement in a number of common human diseases such as atherosclerosis, type 2 diabetes, Alzheimer disease, or gout. Although it has been shown that known Nlrp3 stimuli converge on potassium ion efflux upstream of Nlrp3 activation, the exact molecular mechanism of Nlrp3 activation remains elusive. Here, we describe a genome-wide CRISPR/Cas9 screen in immortalized mouse macrophages aiming at the unbiased identification of gene products involved in Nlrp3 inflammasome activation. We employed a FACS-based screen for Nlrp3-dependent cell death, using the ionophoric compound nigericin as a potassium efflux-inducing stimulus. Using a genome-wide guide RNA (gRNA) library, we found that targeting Nek7 rescued macrophages from nigericin-induced lethality. Subsequent studies revealed that murine macrophages deficient in Nek7 displayed a largely blunted Nlrp3 inflammasome response, whereas Aim2-mediated inflammasome activation proved to be fully intact. Although the mechanism of Nek7 functioning upstream of Nlrp3 yet remains elusive, these studies provide a first genetic handle of a component that specifically functions upstream of Nlrp3.
Collapse
Affiliation(s)
| | | | | | | | - Julia Reinhardt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn and
| | - Elmar Endl
- From the Institute of Molecular Medicine and
| | - Veit Hornung
- From the Institute of Molecular Medicine and the Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
36
|
Li L, Yang XJ. Tubulin acetylation: responsible enzymes, biological functions and human diseases. Cell Mol Life Sci 2015; 72:4237-55. [PMID: 26227334 PMCID: PMC11113413 DOI: 10.1007/s00018-015-2000-5] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022]
Abstract
Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function.
Collapse
Affiliation(s)
- Lin Li
- Rosalind and Morris Goodman Cancer Research Center, Montreal, QC, H3A 1A3, Canada
- Department of Medicine, Montreal, QC, H3A 1A3, Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Center, Montreal, QC, H3A 1A3, Canada.
- Department of Medicine, Montreal, QC, H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada.
- McGill University Health Center, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
37
|
Lin S, Nazif K, Smith A, Baas PW, Smith GM. Histone acetylation inhibitors promote axon growth in adult dorsal root ganglia neurons. J Neurosci Res 2015; 93:1215-28. [PMID: 25702820 DOI: 10.1002/jnr.23573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
Intrinsic mechanisms that guide damaged axons to regenerate following spinal cord injury remain poorly understood. Manipulation of posttranslational modifications of key proteins in mature neurons could reinvigorate growth machinery after injury. One such modification is acetylation, a reversible process controlled by two enzyme families, the histone deacetylases (HDACs) and the histone acetyl transferases (HATs), acting in opposition. Whereas acetylated histones in the nucleus are associated with upregulation of growth-promoting genes, deacetylated tubulin in the axoplasm is associated with more labile microtubules, conducive to axon growth. This study investigates the effects of HAT and HDAC inhibitors on cultured adult dorsal root ganglia (DRG) neurons and shows that inhibition of HATs by anacardic acid or CPTH2 improves axon outgrowth, whereas inhibition of HDACs by TSA or tubacin inhibits axon growth. Anacardic acid increased the number of axons able to cross an inhibitory chondroitin sulfate proteoglycan border. Histone acetylation but not tubulin acetylation level was affected by HAT inhibitors, whereas tubulin acetylation levels were increased in the presence of the HDAC inhibitor tubacin. Although the microtubule-stabilizing drug taxol did not have an effect on the lengths of DRG axons, nocodazole decreased axon lengths. Determining the mechanistic basis will require future studies, but this study shows that inhibitors of HAT can augment axon growth in adult DRG neurons, with the potential of aiding axon growth over inhibitory substrates produced by the glial scar.
Collapse
Affiliation(s)
- Shen Lin
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University, Philadelphia, Pennsylvania
| | - Kutaiba Nazif
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University, Philadelphia, Pennsylvania
| | - Alexander Smith
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University, Philadelphia, Pennsylvania
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - George M Smith
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Meirelles GV, Perez AM, de Souza EE, Basei FL, Papa PF, Melo Hanchuk TD, Cardoso VB, Kobarg J. “Stop Ne(c)king around”: How interactomics contributes to functionally characterize Nek family kinases. World J Biol Chem 2014; 5:141-160. [PMID: 24921005 PMCID: PMC4050109 DOI: 10.4331/wjbc.v5.i2.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/07/2014] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A (NIMA)-related kinases (Neks). The founding member of this family is the sole member NIMA of Aspergillus nidulans, which is crucial for the initiation of mitosis in that organism. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals: (1) centrioles/mitosis; (2) primary ciliary function/ciliopathies; and (3) DNA damage response (DDR). Recent findings, especially on Nek 1 and 8, showed however, that several Neks participate in parallel in at least two of these contexts: primary ciliary function and DDR. In the core section of this in-depth review, we report the current detailed functional knowledge on each of the 11 Neks. In the discussion, we return to the cross-connections among Neks and point out how our and other groups’ functional and interactomics studies revealed that most Neks interact with protein partners associated with two if not all three of the functional contexts. We then raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize the cellular events associated with these three core functions. The new and exciting findings on the Nek family open new perspectives and should allow the Neks to finally claim the attention they deserve in the field of kinases and cell cycle biology.
Collapse
|
39
|
Cho Y, Cavalli V. HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol 2014; 27:118-26. [PMID: 24727244 DOI: 10.1016/j.conb.2014.03.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
The development and repair of the nervous system requires the coordinated expression of a large number of specific genes. Epigenetic modifications of histones represent an essential principle by which neurons regulate transcriptional responses and adapt to environmental cues. The post-translational modification of histones by chromatin-modifying enzymes histone acetyltransferases (HATs) and histone deacetylases (HDACs) shapes chromatin to adjust transcriptional profiles during neuronal development. Recent observations also point to a critical role for histone acetylation and deacetylation in the response of neurons to injury. While HDACs are mostly known to attenuate transcription through their deacetylase activity and their interaction with co-repressors, these enzymes are also found in the cytoplasm where they display transcription-independent activities by regulating the function of diverse proteins. Here we discuss recent studies that go beyond the traditional use of HDAC inhibitors and have begun to dissect the roles of individual HDAC isoforms in neuronal development and repair after injury.
Collapse
Affiliation(s)
- Yongcheol Cho
- Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis 63110, MO, USA
| | - Valeria Cavalli
- Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis 63110, MO, USA.
| |
Collapse
|
40
|
Govindaraghavan M, McGuire Anglin SL, Shen KF, Shukla N, De Souza CP, Osmani SA. Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway. PLoS Genet 2014; 10:e1004248. [PMID: 24675878 PMCID: PMC3967960 DOI: 10.1371/journal.pgen.1004248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/03/2014] [Indexed: 12/11/2022] Open
Abstract
The Never in Mitosis A (NIMA) kinase (the founding member of the Nek family of kinases) has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP) which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell cycle progression with polarized cell growth.
Collapse
Affiliation(s)
- Meera Govindaraghavan
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Kuo-Fang Shen
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Nandini Shukla
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Colin P. De Souza
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen A. Osmani
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
41
|
Plattner H. The contractile vacuole complex of protists--new cues to function and biogenesis. Crit Rev Microbiol 2013; 41:218-27. [PMID: 23919298 DOI: 10.3109/1040841x.2013.821650] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The contractile vacuole complex (CVC) of freshwater protists sequesters the excess of water and ions (Ca(2+)) for exocytosis cycles at the pore. Sequestration is based on a chemiosmotic proton gradient produced by a V-type H(+)-ATPase. So far, many pieces of information available have not been combined to a comprehensive view on CVC biogenesis and function. One main function now appears as follows. Ca(2+)-release channels, type inositol 1,4,5-trisphosphate receptors (InsP3R), may serve for fine-tuning of local cytosolic Ca(2+) concentration and mediate numerous membrane-to-membrane interactions within the tubular spongiome meshwork. Such activity is suggested by the occurrence of organelle-specific soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) and Ras-related in brain (Rab) proteins, which may regulate functional requirements. For tubulation, F-Bin-amphiphysin-Rvs (F-BAR) proteins are available. In addition, there is indirect evidence for the occurrence of H(+)/Ca(2+) exchangers (to sequester Ca(2+)) and mechanosensitive Ca(2+)-channels (for signaling the filling sate). The periodic activity of the CVC may be regulated by the mechanosensitive Ca(2+)-channels. Such channels are known to colocalize with and to be functionally supported by stomatins, which were recently detected in the CVC. A Kif18-related kinesin motor protein might control the length of radial arms. Two additional InsP3-related channels and several SNAREs are associated with the pore. De novo organelle biogenesis occurs under epigenetic control during mitotic activity and may involve the assembly of γ-tubulin, centrin, calmodulin and a never in mitosis A-type (NIMA) kinase - components also engaged in mitotic processes.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz , Konstanz , Germany
| |
Collapse
|
42
|
Cathepsin D deficiency induces cytoskeletal changes and affects cell migration pathways in the brain. Neurobiol Dis 2013; 50:107-19. [DOI: 10.1016/j.nbd.2012.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/21/2012] [Accepted: 10/03/2012] [Indexed: 01/04/2023] Open
|
43
|
A novel method for purification of polymerizable tubulin with a high content of the acetylated isotype. Biochem J 2013; 449:643-8. [DOI: 10.1042/bj20121439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tubulin can be acetylated/deacetylated on Lys40 of the α-subunit. Studies of the post-translational acetylation/deacetylation of tubulin using biochemical techniques require tubulin preparations that are enriched in AcTubulin (acetylated tubulin) and (for comparison) preparations lacking AcTubulin. Assembly–disassembly cycling of microtubules gives tubulin preparations that contain little or no AcTubulin. In the present study we demonstrated that this result is owing to the presence of high deacetylating activity in the extracts. This deacetylating activity in rat brain homogenates was inhibited by TSA (Trichostatin A) and tubacin, but not by nicotinamide, indicating that HDAC6 (histone deacetylase 6) is involved. TSA showed no effect on microtubule polymerization or depolymerization. We utilized these properties of TSA to prevent deacetylation during the assembly–disassembly procedure. The effective inhibitory concentration of TSA was 3 μM in the homogenate and 1 μM in the subsequent cycling steps. By comparison with immunopurified AcTubulin, we estimated that ~64% of the tubulin molecules in the three cycled preparations were acetylated. The protein profiles of these tubulin preparations, as assessed by SDS/PAGE and Coomassie Blue staining, were identical to that of a preparation completely lacking AcTubulin obtained by assembly–disassembly cycles in the absence of TSA. The tyrosination state and in vitro assembly–disassembly kinetics were the same regardless of the degree of acetylation.
Collapse
|
44
|
Cohen S, Aizer A, Shav-Tal Y, Yanai A, Motro B. Nek7 kinase accelerates microtubule dynamic instability. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1104-13. [PMID: 23313050 DOI: 10.1016/j.bbamcr.2012.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 12/19/2022]
Abstract
The NIMA-related kinases (NRK or Nek) are emerging as conserved and crucial regulators of mitosis and cilia formation. The microtubule (MT) network has long been suspected as a major target of the Neks. However, the underlying mechanism remains unclear. Using the PlusTipTracker software, recently developed by the Danuser group, we followed the consequences of alterations in Nek7 levels on MT dynamic instability. siRNA-mediated downregulation of Nek7 in HeLa cells resulted in lower speeds of MT growth and catastrophe, reduction of the relative time spent in catastrophe, and considerably lowered the overall MT dynamicity. Co-expression of Nek7 with the siRNA treatment rescued the MT phenotypes, while ectopic overexpression of Nek7 yielded inverse characteristics compared to Nek7 downregulation. MT dynamics in mouse embryonic fibroblasts derived from targeted null mutants for Nek7 recapitulated the siRNA downregulation phenotypes. Precise MT dynamic instability is critical for accurate shaping of the mitotic spindle and for cilium formation, and higher MT dynamicity is associated with tumorigenicity. Thus, our results can supply a mechanistic explanation for Nek involvement in these processes.
Collapse
|
45
|
Contractile Vacuole Complex—Its Expanding Protein Inventory. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:371-416. [DOI: 10.1016/b978-0-12-407694-5.00009-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Fry AM, O'Regan L, Sabir SR, Bayliss R. Cell cycle regulation by the NEK family of protein kinases. J Cell Sci 2012; 125:4423-33. [PMID: 23132929 DOI: 10.1242/jcs.111195] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Genetic screens for cell division cycle mutants in the filamentous fungus Aspergillus nidulans led to the discovery of never-in-mitosis A (NIMA), a serine/threonine kinase that is required for mitotic entry. Since that discovery, NIMA-related kinases, or NEKs, have been identified in most eukaryotes, including humans where eleven genetically distinct proteins named NEK1 to NEK11 are expressed. Although there is no evidence that human NEKs are essential for mitotic entry, it is clear that several NEK family members have important roles in cell cycle control. In particular, NEK2, NEK6, NEK7 and NEK9 contribute to the establishment of the microtubule-based mitotic spindle, whereas NEK1, NEK10 and NEK11 have been implicated in the DNA damage response. Roles for NEKs in other aspects of mitotic progression, such as chromatin condensation, nuclear envelope breakdown, spindle assembly checkpoint signalling and cytokinesis have also been proposed. Interestingly, NEK1 and NEK8 also function within cilia, the microtubule-based structures that are nucleated from basal bodies. This has led to the current hypothesis that NEKs have evolved to coordinate microtubule-dependent processes in both dividing and non-dividing cells. Here, we review the functions of the human NEKs, with particular emphasis on those family members that are involved in cell cycle control, and consider their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
47
|
Soppina V, Herbstman JF, Skiniotis G, Verhey KJ. Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS One 2012; 7:e48204. [PMID: 23110214 PMCID: PMC3482196 DOI: 10.1371/journal.pone.0048204] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/20/2012] [Indexed: 12/31/2022] Open
Abstract
The αβ-tubulin subunits of microtubules can undergo a variety of evolutionarily-conserved post-translational modifications (PTMs) that provide functional specialization to subsets of cellular microtubules. Acetylation of α-tubulin residue Lysine-40 (K40) has been correlated with increased microtubule stability, intracellular transport, and ciliary assembly, yet a mechanistic understanding of how acetylation influences these events is lacking. Using the anti-acetylated tubulin antibody 6-11B-1 and electron cryo-microscopy, we demonstrate that the K40 acetylation site is located inside the microtubule lumen and thus cannot directly influence events on the microtubule surface, including kinesin-1 binding. Surprisingly, the monoclonal 6-11B-1 antibody recognizes both acetylated and deacetylated microtubules. These results suggest that acetylation induces structural changes in the K40-containing loop that could have important functional consequences on microtubule stability, bending, and subunit interactions. This work has important implications for acetylation and deacetylation reaction mechanisms as well as for interpreting experiments based on 6-11B-1 labeling.
Collapse
Affiliation(s)
- Virupakshi Soppina
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jeffrey F. Herbstman
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Georgios Skiniotis
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
48
|
Differential protein expression associated with heat stress in Antarctic microalga. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6310-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
d'Ydewalle C, Bogaert E, Van Den Bosch L. HDAC6 at the Intersection of Neuroprotection and Neurodegeneration. Traffic 2012; 13:771-9. [PMID: 22372633 DOI: 10.1111/j.1600-0854.2012.01347.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 12/14/2022]
Abstract
Histone deacetylase 6 (HDAC6) catalyzes multiple reactions. We summarize the current knowledge on HDAC6, its targets and functions. Among others, HDAC6 recognizes damaged proteins and assures that these proteins are destroyed by autophagy. On the other hand, HDAC6 also modifies the tracks used by the clearance mechanism so that axonal transport becomes less efficient. We hypothesize that a disturbance in the equilibrium between the different functions of HDAC6 could play an important role in neurodegeneration.
Collapse
|
50
|
Zhang B, Chen HW, Mu RL, Zhang WK, Zhao MY, Wei W, Wang F, Yu H, Lei G, Zou HF, Ma B, Chen SY, Zhang JS. NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:830-43. [PMID: 21801253 DOI: 10.1111/j.1365-313x.2011.04733.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The NIMA-related kinases (NEKs) are a family of serine/threonine kinases involved largely in cell cycle control in fungi, mammals and other eukaryotes. In Arabidopsis, NEK6 is involved in the regulation of epidermal cell morphogenesis. However, other roles of NEK6 in plants are less well understood. Here we report functions of NEK6 in plant growth, development and stress responses in Arabidopsis. NEK6 transcripts and proteins are induced by ethylene precursor ACC and salt stress. Expression of other NEK genes except NEK5 is also responsive to the two treatments. Overexpression and mutant analysis disclose that the NEK6 gene increases rosette growth, seed yield and lateral root formation. However, NEK6 appears to play a negative role in the control of seed size. The gene also promotes plant tolerance to salt stress and osmotic stress in its overexpressing plants. The NEK6 gene may achieve its function through suppression of ethylene biosynthesis and activation of CYCB1;1 and CYCA3;1 expression. Our present study reveals new functions of the NEK6 gene in plant growth and stress tolerance, and manipulation of NEK6 may improve important agronomic traits in crop plants.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|