1
|
Zhang Z, Chen L, Wang H, Tang B, Cheng Y, Zhu M, Li X, Qi X, Shao Y, Zhang X. Multi-well plate-based versatile platform for online fabricating alginate hydrogel microspheres and in-situ 3D cell culture. Anal Chim Acta 2025; 1334:343427. [PMID: 39638465 DOI: 10.1016/j.aca.2024.343427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Hydrogel microspheres with monodisperse and homogeneous dimensions have potential application in the field of three-dimensional (3D) cell culture due to its ability to provide a similar microenvironment. Currently, alginate hydrogel microspheres (AHMs) have received much attention due to the favorable properties of alginate such as biocompatibility, inexpensiveness, nontoxicity, and biodegradability. The fabrication methods of AHMs mainly include extrusion, electrostatic dripping and microfluidic chip techniques. These current methods suffer trade-offs between operational complexity, fabrication cost and practical application. RESULTS We proposed a novel and versatile multi-well plate-based platform for online fabricating AHMs and in-situ 3D cell culture. The AHMs could be easily fabricated based on gravity-driven gelation combined with our recently developed bent-capillary-centrifugal-driven (BCCD) system. Ca-EDTA complex was used as Ca2+ source for crosslinking reaction of the alginate chains. The whole preparation process of AHMs included four steps: emulsification, pre-gelation, spontaneous demulsification and further solidification. The gravity-driven hydrogel microsphere gelation could produce the AHMs with good sphericity (Φ = 0.96) and monodispersity (PDI% = 0.94 %). The rapid drug susceptibility testing and single-cell encapsulation in the AHMs were well demonstrated. It also provided a novel in-situ 3D cell culture strategy, which demonstrated more than 85 % cell viability in practice. SIGNIFICANCE The proposed platform avoided the complex and laborious microfabrication. Moreover, cell-encapsulated AHMs could be directly produced in the multi-well plate, which could facilitate the subsequent cultivation and observation. It is expected to be a versatile in-situ 3D cell culture tool in the fields of biomedicine and tissue engineering.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Longyu Chen
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | | | - Bo Tang
- Laoshan Laboratory, Qingdao, 266237, Shandong, China
| | - Yongqiang Cheng
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China; Laoshan Laboratory, Qingdao, 266237, Shandong, China.
| | - Meijia Zhu
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Xiaotong Li
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Xiaoxiao Qi
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Yifan Shao
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Xi Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| |
Collapse
|
2
|
Graham AJ, Khoo MW, Srivastava V, Viragova S, Kim H, Parekh K, Hennick KM, Bird M, Goldhammer N, Yu JZ, Morley CD, Lebel P, Kumar S, Rosenbluth JM, Nowakowski TJ, Klein O, Gómez-Sjöberg R, Gartner ZJ. MAGIC matrices: freeform bioprinting materials to support complex and reproducible organoid morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578324. [PMID: 38370663 PMCID: PMC10871257 DOI: 10.1101/2024.02.01.578324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Organoids are powerful models of tissue physiology, yet their applications remain limited due to their relatively simple morphology and high organoid-to-organoid structural variability. To address these limitations we developed a soft, composite yield-stress extracellular matrix that supports optimal organoid morphogenesis following freeform 3D bioprinting of cell slurries at tissue-like densities. The material is designed with two temperature regimes: at 4 °C it exhibits reversible yield-stress behavior to support long printing times without compromising cell viability. When transferred to cell culture at 37 °C, the material cross-links and exhibits similar viscoelasticity and plasticity to basement membrane extracts such as Matrigel. We first characterize the rheological properties of MAGIC matrices that optimize organoid morphogenesis, including low stiffness and high stress relaxation. Next, we combine this material with a custom piezoelectric printhead that allows more reproducible and robust self-organization from uniform and spatially organized tissue "seeds." We apply MAGIC matrix bioprinting for high-throughput generation of intestinal, mammary, vascular, salivary gland, and brain organoid arrays that are structurally similar to those grown in pure Matrigel, but exhibit dramatically improved homogeneity in organoid size, shape, maturation time, and efficiency of morphogenesis. The flexibility of this method and material enabled fabrication of fully 3D microphysiological systems, including perfusable organoid tubes that experience cyclic 3D strain in response to pressurization. Furthermore, the reproducibility of organoid structure increased the statistical power of a drug response assay by up to 8 orders-of-magnitude for a given number of comparisons. Combined, these advances lay the foundation for the efficient fabrication of complex tissue morphologies by canalizing their self-organization in both space and time.
Collapse
Affiliation(s)
- Austin J. Graham
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub SF, San Francisco, CA
| | | | - Vasudha Srivastava
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Sara Viragova
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA
| | - Honesty Kim
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub SF, San Francisco, CA
| | - Kavita Parekh
- Department of Bioengineering, University of California Berkeley, Berkeley, CA
| | - Kelsey M. Hennick
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Malia Bird
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Nadine Goldhammer
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Jie Zeng Yu
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Cameron D. Morley
- Department of Bioengineering, University of California Berkeley, Berkeley, CA
| | - Paul Lebel
- Chan Zuckerberg Biohub SF, San Francisco, CA
| | - Sanjay Kumar
- Department of Bioengineering, University of California Berkeley, Berkeley, CA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Jennifer M. Rosenbluth
- Chan Zuckerberg Biohub SF, San Francisco, CA
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Tomasz J. Nowakowski
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Ophir Klein
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, Los Angeles, CA
| | | | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub SF, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Center for Cellular Construction, University of California San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Peng X, Liu X, Kim JY, Nguyen A, Leal J, Ghosh D. Brain-Penetrating Peptide Shuttles across the Blood-Brain Barrier and Extracellular-like Space. Bioconjug Chem 2023; 34:2319-2336. [PMID: 38085066 DOI: 10.1021/acs.bioconjchem.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Systemic delivery of therapeutics into the brain is greatly impaired by multiple biological barriers─the blood-brain barrier (BBB) and the extracellular matrix (ECM) of the extracellular space. To address this problem, we developed a combinatorial approach to identify peptides that can shuttle and transport across both barriers. A cysteine-constrained heptapeptide M13 phage display library was iteratively panned against an established BBB model for three rounds to select for peptides that can transport across the barrier. Using next-generation DNA sequencing and in silico analysis, we identified peptides that were selectively enriched from successive rounds of panning for functional validation in vitro and in vivo. Select peptide-presenting phages exhibited efficient shuttling across the in vitro BBB model. Two clones, Pep-3 and Pep-9, exhibited higher specificity and efficiency of transcytosis than controls. We confirmed that peptides Pep-3 and Pep-9 demonstrated better diffusive transport through the extracellular matrix than gold standard nona-arginine and clinically trialed angiopep-2 peptides. In in vivo studies, we demonstrated that systemically administered Pep-3 and Pep-9 peptide-presenting phages penetrate the BBB and distribute into the brain parenchyma. In addition, free peptides Pep-3 and Pep-9 achieved higher accumulation in the brain than free angiopep-2 and may exhibit brain targeting. In summary, these in vitro and in vivo studies highlight that combinatorial phage display with a designed selection strategy can identify peptides as promising carriers, which are able to overcome the multiple biological barriers of the brain and shuttle different-sized molecules from small fluorophores to large macromolecules for improved delivery into the brain.
Collapse
Affiliation(s)
- Xiujuan Peng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xinquan Liu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jae You Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alex Nguyen
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
5
|
Bakhshandeh S, Taïeb HM, Schlüßler R, Kim K, Beck T, Taubenberger A, Guck J, Cipitria A. Optical quantification of intracellular mass density and cell mechanics in 3D mechanical confinement. SOFT MATTER 2021; 17:853-862. [PMID: 33232425 DOI: 10.1039/d0sm01556c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biophysical properties of cells such as intracellular mass density and cell mechanics are known to be involved in a wide range of homeostatic functions and pathological alterations. An optical readout that can be used to quantify such properties is the refractive index (RI) distribution. It has been recently reported that the nucleus, initially presumed to be the organelle with the highest dry mass density (ρ) within the cell, has in fact a lower RI and ρ than its surrounding cytoplasm. These studies have either been conducted in suspended cells, or cells adhered on 2D substrates, neither of which reflects the situation in vivo where cells are surrounded by the extracellular matrix (ECM). To better approximate the 3D situation, we encapsulated cells in 3D covalently-crosslinked alginate hydrogels with varying stiffness, and imaged the 3D RI distribution of cells, using a combined optical diffraction tomography (ODT)-epifluorescence microscope. Unexpectedly, the nuclei of cells in 3D displayed a higher ρ than the cytoplasm, in contrast to 2D cultures. Using a Brillouin-epifluorescence microscope we subsequently showed that in addition to higher ρ, the nuclei also had a higher longitudinal modulus (M) and viscosity (η) compared to the cytoplasm. Furthermore, increasing the stiffness of the hydrogel resulted in higher M for both the nuclei and cytoplasm of cells in stiff 3D alginate compared to cells in compliant 3D alginate. The ability to quantify intracellular biophysical properties with non-invasive techniques will improve our understanding of biological processes such as dormancy, apoptosis, cell growth or stem cell differentiation.
Collapse
Affiliation(s)
- Sadra Bakhshandeh
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Huebsch N. Translational mechanobiology: Designing synthetic hydrogel matrices for improved in vitro models and cell-based therapies. Acta Biomater 2019; 94:97-111. [PMID: 31129361 DOI: 10.1016/j.actbio.2019.05.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022]
Abstract
Synthetic hydrogels have ideal physiochemical properties to serve as reductionist mimics of the extracellular matrix (ECM) for studies on cellular mechanosensing. These studies range from basic observation of correlations between ECM mechanics and cell fate changes to molecular dissection of the underlying mechanisms. Despite intensive work on hydrogels to study mechanobiology, many fundamental questions regarding mechanosensing remain unanswered. In this review, I first discuss historical motivation for studying cellular mechanobiology, and challenges impeding this effort. I next overview recent efforts to engineer hydrogel properties to study cellular mechanosensing. Finally, I focus on in vitro modeling and cell-based therapies as applications of hydrogels that will exploit our ability to create micro-environments with physiologically relevant elasticity and viscoelasticity to control cell biology. These translational applications will not only use our current understanding of mechanobiology but will also bring new tools to study the fundamental problem of how cells sense their mechanical environment. STATEMENT OF SIGNIFICANCE: Hydrogels are an important tool for understanding how our cells can sense their mechanical environment, and to exploit that understanding in regenerative medicine. In the current review, I discuss historical work linking mechanics to cell behavior in vitro, and highlight the role hydrogels played in allowing us to understand how cells monitor mechanical cues. I then highlight potential translational applications of hydrogels with mechanical properties similar to those of the tissues where cells normally reside in our bodies, and discuss how these types of studies can provide clues to help us enhance our understanding of mechanosensing.
Collapse
Affiliation(s)
- Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, United States.
| |
Collapse
|
7
|
Wu RX, Yin Y, He XT, Li X, Chen FM. Engineering a Cell Home for Stem Cell Homing and Accommodation. ACTA ACUST UNITED AC 2017; 1:e1700004. [PMID: 32646164 DOI: 10.1002/adbi.201700004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo-expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the "cell home" cell-friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell-ECM and cell-cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material-guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
8
|
Ravikrishnan A, Ozdemir T, Bah M, Baskerville KA, Shah SI, Rajasekaran AK, Jia X. Regulation of Epithelial-to-Mesenchymal Transition Using Biomimetic Fibrous Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17915-26. [PMID: 27322677 PMCID: PMC5070665 DOI: 10.1021/acsami.6b05646] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a well-studied biological process that takes place during embryogenesis, carcinogenesis, and tissue fibrosis. During EMT, the polarized epithelial cells with a cuboidal architecture adopt an elongated fibroblast-like morphology. This process is accompanied by the expression of many EMT-specific molecular markers. Although the molecular mechanism leading to EMT has been well-established, the effects of matrix topography and microstructure have not been clearly elucidated. Synthetic scaffolds mimicking the meshlike structure of the basement membrane with an average fiber diameter of 0.5 and 5 μm were produced via the electrospinning of poly(ε-caprolactone) (PCL) and were used to test the significance of fiber diameter on EMT. Cell-adhesive peptide motifs were conjugated to the fiber surface to facilitate cell attachment. Madin-Darby Canine Kidney (MDCK) cells grown on these substrates showed distinct phenotypes. On 0.5 μm substrates, cells grew as compact colonies with an epithelial phenotype. On 5 μm scaffolds, cells were more individually dispersed and appeared more fibroblastic. Upon the addition of hepatocyte growth factor (HGF), an EMT inducer, cells grown on the 0.5 μm scaffold underwent pronounced scattering, as evidenced by the alteration of cell morphology, localization of focal adhesion complex, weakening of cell-cell adhesion, and up-regulation of mesenchymal markers. In contrast, HGF did not induce a pronounced scattering of MDCK cells cultured on the 5.0 μm scaffold. Collectively, our results show that the alteration of the fiber diameter of proteins found in the basement membrane may create enough disturbances in epithelial organization and scattering that might have important implications in disease progression.
Collapse
Affiliation(s)
- Anitha Ravikrishnan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Tugba Ozdemir
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Mohamed Bah
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - S. Ismat Shah
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Ayyappan K. Rajasekaran
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
- Therapy Architects, LLC, Helen F Graham Cancer Center, Newark, DE, 19718, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- To whom correspondence should be addressed: Xinqiao Jia, 201 DuPont Hall, Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA. Phone: 302-831-6553, Fax: 302-831-4545,
| |
Collapse
|
9
|
Kurup A, Ravindranath S, Tran T, Keating M, Gascard P, Valdevit L, Tlsty TD, Botvinick EL. Novel insights from 3D models: the pivotal role of physical symmetry in epithelial organization. Sci Rep 2015; 5:15153. [PMID: 26472542 PMCID: PMC4608012 DOI: 10.1038/srep15153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/15/2015] [Indexed: 12/19/2022] Open
Abstract
3D tissue culture models are utilized to study breast cancer and other pathologies because they better capture the complexity of in vivo tissue architecture compared to 2D models. However, to mimic the in vivo environment, the mechanics and geometry of the ECM must also be considered. Here, we studied the mechanical environment created in two 3D models, the overlay protocol (OP) and embedded protocol (EP). Mammary epithelial acini features were compared using OP or EP under conditions known to alter acinus organization, i.e. collagen crosslinking and/or ErbB2 receptor activation. Finite element analysis and active microrheology demonstrated that OP creates a physically asymmetric environment with non-uniform mechanical stresses in radial and circumferential directions. Further contrasting with EP, acini in OP displayed cooperation between ErbB2 signalling and matrix crosslinking. These differences in acini phenotype observed between OP and EP highlight the functional impact of physical symmetry in 3D tissue culture models.
Collapse
Affiliation(s)
- Abhishek Kurup
- University of California Irvine, Department of Biomedical Engineering, Irvine, USA
| | - Shreyas Ravindranath
- University of California Irvine, Department of Biomedical Engineering, Irvine, USA
| | - Tim Tran
- University of California Irvine, Department of Biomedical Engineering, Irvine, USA
| | - Mark Keating
- University of California Irvine, Department of Biomedical Engineering, Irvine, USA
| | - Philippe Gascard
- University of California San Francisco, Department of Pathology, San Francisco, USA
| | - Lorenzo Valdevit
- University of California Irvine, Department of Mechanical and Aerospace Engineering, Irvine, USA
| | - Thea D Tlsty
- University of California San Francisco, Department of Pathology, San Francisco, USA
| | - Elliot L Botvinick
- University of California Irvine, Department of Biomedical Engineering, Irvine, USA.,University of California Irvine, Department of Surgery, Irvine, USA
| |
Collapse
|
10
|
Gao B, Konno T, Ishihara K. Fabrication of a live cell-containing multilayered polymer hydrogel membrane with micrometer-scale thickness to evaluate pharmaceutical activity. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1372-85. [PMID: 26374190 DOI: 10.1080/09205063.2015.1095025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We propose a spinning-assisted layer-by-layer method for simple fabrication of a multilayered polymer hydrogel membrane that contains living cells. Hydrogel formation occurred based on the spontaneous cross-linking reaction between two polymers in aqueous solution. A water-soluble 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups (PMBV) and poly(vinyl alcohol) (PVA) were used as polymers for hydrogel membrane formation. Changing the number of hydrogel membrane layers, polymer concentration, spinning rate, and processing time for diffusion-dependent gelation of PMBV and PVA facilitated the regulation of the multilayered polymer hydrogel membrane thickness and morphology. We concluded that a multilayered polymer hydrogel membrane prepared using 5.0 wt% PMBV and 5.0 wt% PVA at a spinning rate of 2000 rpm was suitable for precise spatial control of cells in single layers. This multilayered polymer hydrogel membrane was used to prepare a single cell-laden layer to minimize barriers to the diffusion of bioactive compounds while preserving the three-dimensional (3-D) context. The pharmaceutical effects of one of the anticancer agents, paclitaxel, on a human cervical cancer line, HeLa cells, were evaluated in vitro, and the usability of this culture model was demonstrated.
Collapse
Affiliation(s)
- Botao Gao
- a Department of Materials Engineering, School of Engineering , The University of Tokyo ,7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Tomohiro Konno
- b Department of Bioengineering, School of Engineering , The University of Tokyo ,7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Kazuhiko Ishihara
- a Department of Materials Engineering, School of Engineering , The University of Tokyo ,7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan.,b Department of Bioengineering, School of Engineering , The University of Tokyo ,7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| |
Collapse
|
11
|
Hao J, Zhang Y, Jing D, Shen Y, Tang G, Huang S, Zhao Z. Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate. Acta Biomater 2015; 20:1-9. [PMID: 25871537 DOI: 10.1016/j.actbio.2015.04.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 02/05/2023]
Abstract
Bone marrow-derived mesenchymal stem and stromal cells (MSCs) are promising candidates for cell-based therapies in diverse conditions including tissue engineering. Advancement of these therapies relies on the ability to direct MSCs toward specific cell phenotypes. Despite identification of applied forces that affect self-maintenance, proliferation, and differentiation of MSCs, mechanisms underlying the integration of mechanically induced signaling cascades and interpretation of mechanical signals by MSCs remain elusive. During the past decade, many researchers have demonstrated that external applied forces can activate osteogenic signaling pathways in MSCs, including Wnt, Ror2, and Runx2. Besides, recent advances have highlighted the critical role of internal forces due to cell-matrix interaction in MSC function. These internal forces can be achieved by the materials that cells reside in through its mechanical properties, such as rigidity, topography, degradability, and substrate patterning. MSCs can generate contractile forces to sense these mechanical properties and thereby perceive mechanical information that directs broad aspects of MSC functions, including lineage commitment. Although many signaling pathways have been elucidated in material-induced lineage specification of MSCs, discovering the mechanisms by which MSCs respond to such cell-generated forces is still challenging because of the highly intricate signaling milieu present in MSC environment. However, bioengineers are bridging this gap by developing platforms to control mechanical cues with improved throughput and precision, thereby enabling further investigation of mechanically induced MSC functions. In this review, we discuss the most recent advances that how applied forces and cell-generated forces may be engineered to determine MSC fate, and overview a subset of the operative signal transduction mechanisms and experimental platforms that have emerged in MSC mechanobiology research. Our main goal is to provide an up-to-date view of MSC mechanobiology that is relevant to both mechanical loading and mechanical properties of the environment, and introduce these emerging platforms for tissue engineering use.
Collapse
|
12
|
Sakamoto R, Rahman MM, Shimomura M, Itoh M, Nakatsura T. Time-lapse imaging assay using the BioStation CT: a sensitive drug-screening method for three-dimensional cell culture. Cancer Sci 2015; 106:757-765. [PMID: 25865675 PMCID: PMC4471796 DOI: 10.1111/cas.12667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) cell culture is beneficial for physiological studies of tumor cells, due to its potential to deliver a high quantity of cell culture information that is representative of the cancer microenvironment and predictive of drug responses in vivo. Currently, gel-associated or matrix-associated 3D cell culture is comprised of intricate procedures that often result in experimental complexity. Therefore, we developed an innovative anti-cancer drug sensitivity screening technique for 3D cell culture on NanoCulture Plates (NCP) by employing the imaging device BioStation CT. Here, we showed that the human breast cancer cell lines BT474 and T47D form multicellular spheroids on NCP plates and compared their sensitivity to the anti-cancer drugs trastuzumab and paclitaxel using the BioStation CT. The anticancer drugs reduced spheroid migration velocity and suppressed spheroid fusion. In addition, primary cells derived from the human breast cancer tissues B58 and B61 grown on NCP plates also exhibited similar drug sensitivity. These results were in good agreement with the conventional assay method using ATP quantification. We confirmed the antitumor effects of the drugs on cells seeded in 96-well plates using the BioStation CT imaging technique. We expect this method to be useful in research for new antitumor agents and for drug sensitivity tests in individually-tailored cancer treatments.
Collapse
Affiliation(s)
| | | | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Manabu Itoh
- SCIVAX Life Sciences, Kawasaki, Kanagawa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| |
Collapse
|
13
|
Ballester-Beltrán J, Lebourg M, Rico P, Salmerón-Sánchez M. Cell migration within confined sandwich-like nanoenvironments. Nanomedicine (Lond) 2015; 10:815-28. [DOI: 10.2217/nnm.14.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aim: We introduced sandwich-like culture as a tool to engineer the cellular nanoenvironment by tuning protein presentation and activation of dorsal and ventral receptors. We aim at studying cell migration under more similar conditions to the 3D physiological one. Materials & methods: We have investigated different nanoenvironments by changing the protein coating and using materials that adsorb proteins in different conformation, seeking to show their specific role in cell migration. Results: Cell migration within sandwich cultures greatly differs from 2D cultures, shares some similarities with migration within 3D environments and is highly dependent on the protein nanoenvironment. Beyond differences in cell morphology and migration, dorsal stimulation promotes cell remodeling of the extracellular matrix over simple ventral receptor activation in traditional 2D cultures. Conclusion: Local(nano) stimulation of dorsal and ventral receptors within sandwich cultures alter cell migration in comparison to standard 2D environments.
Collapse
Affiliation(s)
- José Ballester-Beltrán
- Center for Biomaterials & Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Myriam Lebourg
- Center for Biomaterials & Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales & Nanomedicina, Valencia 46022, Spain
| | - Patricia Rico
- Center for Biomaterials & Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales & Nanomedicina, Valencia 46022, Spain
| | - Manuel Salmerón-Sánchez
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| |
Collapse
|
14
|
Kojima T, Moraes C, Cavnar SP, Luker GD, Takayama S. Surface-templated hydrogel patterns prompt matrix-dependent migration of breast cancer cells towards chemokine-secreting cells. Acta Biomater 2015; 13:68-77. [PMID: 25463502 PMCID: PMC4293228 DOI: 10.1016/j.actbio.2014.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 11/25/2022]
Abstract
This paper describes a novel technique for fabricating spatially defined cell-laden collagen hydrogels, using patterned, non-adhesive polyacrylamide-coated polydimethylsiloxane (PDMS) surfaces as a template. Precisely patterned embedded co-cultures of breast cancer cells and chemokine-producing cells generated with this technique revealed matrix-dependent and chemokine isoform-dependent migration of cancer cells. CXCL12 chemokine-secreting cells induce significantly more chemotaxis of cancer cells when the 3-D extracellular matrix (ECM) includes components that bind the secreted CXCL12 chemokines. Experimental observations using cells that secrete CXCL12 isoforms with different matrix affinities together with computational simulations show that stronger ligand-matrix interactions sharpen chemoattractant gradients, leading to increased chemotaxis of the CXCL12 gradient-sensing CXCR4 receptor-expressing (CXCR4+) cells patterned in the hydrogel. These results extend our recent report on CXCL12 isoform-dependent chemotaxis studies from 2-D to 3-D environments and additionally reveal the important role of ECM composition. The developed technology is simple, versatile and robust; and as chemoattractant-matrix interactions are common, the methods described here should be broadly applicable for study of physiological migration of many different cell types in response to a variety of chemoattractants.
Collapse
Affiliation(s)
- Taisuke Kojima
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Moraes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stephen P Cavnar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Shuichi Takayama
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Leung BM, Moraes C, Cavnar SP, Luker KE, Luker GD, Takayama S. Microscale 3D collagen cell culture assays in conventional flat-bottom 384-well plates. ACTA ACUST UNITED AC 2014; 20:138-45. [PMID: 25510473 DOI: 10.1177/2211068214563793] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three-dimensional (3D) culture systems such as cell-laden hydrogels are superior to standard two-dimensional (2D) monolayer cultures for many drug-screening applications. However, their adoption into high-throughput screening (HTS) has been lagging, in part because of the difficulty of incorporating these culture formats into existing robotic liquid handling and imaging infrastructures. Dispensing cell-laden prepolymer solutions into 2D well plates is a potential solution but typically requires large volumes of reagents to avoid evaporation during polymerization, which (1) increases costs, (2) makes drug penetration variable and (3) complicates imaging. Here we describe a technique to efficiently produce 3D microgels using automated liquid-handling systems and standard, nonpatterned, flat-bottomed, 384-well plates. Sub-millimeter-diameter, cell-laden collagen gels are deposited on the bottom of a ~2.5 mm diameter microwell with no concerns about evaporation or meniscus effects at the edges of wells, using aqueous two-phase system patterning. The microscale cell-laden collagen-gel constructs are readily imaged and readily penetrated by drugs. The cytotoxicity of chemotherapeutics was monitored by bioluminescence and demonstrated that 3D cultures confer chemoresistance as compared with similar 2D cultures. Hence, these data demonstrate the importance of culturing cells in 3D to obtain realistic cellular responses. Overall, this system provides a simple and inexpensive method for integrating 3D culture capability into existing HTS infrastructure.
Collapse
Affiliation(s)
- Brendan M Leung
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Moraes
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA Department of Chemical Engineering, McGill University, Montreal, Canada
| | - Stephen P Cavnar
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gary D Luker
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA Division of Nano-Bio and Chemical Engineering WCU Project, UNIST, Republic of Korea
| |
Collapse
|
16
|
Galgoczy R, Pastor I, Colom A, Giménez A, Mas F, Alcaraz J. A spectrophotometer-based diffusivity assay reveals that diffusion hindrance of small molecules in extracellular matrix gels used in 3D cultures is dominated by viscous effects. Colloids Surf B Biointerfaces 2014; 120:200-7. [DOI: 10.1016/j.colsurfb.2014.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/02/2014] [Accepted: 05/09/2014] [Indexed: 11/29/2022]
|
17
|
Moraes C, Kim BC, Zhu X, Mills KL, Dixon AR, Thouless, Takayama S. Defined topologically-complex protein matrices to manipulate cell shape via three-dimensional fiber-like patterns. LAB ON A CHIP 2014; 14:2191-201. [PMID: 24632936 PMCID: PMC4041804 DOI: 10.1039/c4lc00122b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Culturing cells in three-dimensional (3D) environments has been shown to significantly influence cell function, and may provide a more physiologically relevant environment within which to study the behavior of specific cell types. 3D tissues typically present a topologically complex fibrous adhesive environment, which is technically challenging to replicate in a controlled manner. Micropatterning technologies have provided significant insights into cell-biomaterial interactions, and can be used to create fiber-like adhesive structures, but are typically limited to flat culture systems; the methods are difficult to apply to topologically-complex surfaces. In this work, we utilize crack formation in multilayered microfabricated materials under applied strain to rapidly generate well-controlled and topologically complex 'fiber-like' adhesive protein patterns, capable of supporting cell culture and controlling cell shape on three-dimensional patterns. We first demonstrate that the features of the generated adhesive environments such as width, spacing and topology can be controlled, and that these factors influence cell morphology. The patterning technique is then applied to examine the influence of fiber structure on the nuclear morphology and actin cytoskeletal structure of cells cultured in a nanofibrous biomaterial matrix.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Byoung Choul Kim
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| | - Xiaoyue Zhu
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Kristen L. Mills
- Department of Mechanical Engineering, College of Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
| | - Angela R. Dixon
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Thouless
- Department of Mechanical Engineering, College of Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Carvalho A, Menendez DB, Senthivel VR, Zimmermann T, Diambra L, Isalan M. Genetically encoded sender-receiver system in 3D mammalian cell culture. ACS Synth Biol 2014; 3:264-72. [PMID: 24313393 PMCID: PMC4046804 DOI: 10.1021/sb400053b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engineering spatial patterning in mammalian cells, employing entirely genetically encoded components, requires solving several problems. These include how to code secreted activator or inhibitor molecules and how to send concentration-dependent signals to neighboring cells, to control gene expression. The Madin-Darby Canine Kidney (MDCK) cell line is a potential engineering scaffold as it forms hollow spheres (cysts) in 3D culture and tubulates in response to extracellular hepatocyte growth factor (HGF). We first aimed to graft a synthetic patterning system onto single developing MDCK cysts. We therefore developed a new localized transfection method to engineer distinct sender and receiver regions. A stable reporter line enabled reversible EGFP activation by HGF and modulation by a secreted repressor (a truncated HGF variant, NK4). By expanding the scale to wide fields of cysts, we generated morphogen diffusion gradients, controlling reporter gene expression. Together, these components provide a toolkit for engineering cell-cell communication networks in 3D cell culture.
Collapse
Affiliation(s)
- Andreia Carvalho
- EMBL/CRG
Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Pasqual Maragall Foundation & Barcelonabeta Brain Research Centre, C/Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Diego Barcena Menendez
- EMBL/CRG
Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Vivek Raj Senthivel
- EMBL/CRG
Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Timo Zimmermann
- Advanced
Light Microscopy Unit, Centre for Genomic Regulation (CRG), Dr.
Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Luis Diambra
- EMBL/CRG
Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Centro
Regional de Estudios Genómicos, Universidad Nacional de La Plata, CP:1900 La Plata, Argentina
| | - Mark Isalan
- EMBL/CRG
Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
19
|
Dixon AR, Moraes C, Csete ME, Thouless MD, Philbert MA, Takayama S. One-dimensional patterning of cells in silicone wells via compression-induced fracture. J Biomed Mater Res A 2014; 102:1361-9. [PMID: 23733484 PMCID: PMC3912204 DOI: 10.1002/jbm.a.34814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/04/2013] [Accepted: 05/21/2013] [Indexed: 12/13/2022]
Abstract
We have adapted our existing compression-induced fracture technology to cell culture studies by generating linear patterns on a complex cell culture well structure rather than on simple solid constructs. We present a simple method to create one-dimensional (1D), submicron, and linear patterns of extracellular matrix on a multilayer silicone material. We identified critical design parameters necessary to optimize compression-induced fracture patterning on the wells, and applied stresses using compression Hoffman clamps. Finite-element analyses show that the incorporation of the well improves stress homogeneity (stress variation = 25%), and, thus, crack uniformity over the patterned region. Notably, a shallow well with a thick base (vs. deeper wells with thinner bases) reduces out-of-plane deflections by greater than a sixth in the cell culture region, improving clarity for optical imaging. The comparison of cellular and nuclear shape indices of a neuroblast line cultured on patterned 1D lines and unpatterned 2D surfaces reveals significant differences in cellular morphology, which could impact many cellular functions. Because 1D cell cultures recapitulate many important phenotypical traits of 3D cell cultures, our culture system offers a simple means to further study the relationship between 1D and 3D cell culture environments, without demanding expensive engineering techniques and expertise.
Collapse
Affiliation(s)
- Angela R. Dixon
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor Michigan
| | - Christopher Moraes
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor Michigan
| | - Marie E. Csete
- Departments of Anesthesiology and Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan (Current affiliation: AABB Center for Cellular Therapies, Bethesda, Maryland)
| | - M. D. Thouless
- Departments of Mechanical Engineering and Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Martin A. Philbert
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor Michigan
- Macromolecular Science and Engineering Program, College of Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Biswas A, Saha A, Ghosh D, Jana B, Ghosh S. Co- and distinct existence of Tris-NTA and biotin functionalities on individual and adjacent micropatterned surfaces generated by photo-destruction. SOFT MATTER 2014; 10:2341-2345. [PMID: 24623362 DOI: 10.1039/c3sm53000k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Micropatterned surfaces with Tris-NTA and biotin functionalities both in the same micropattern as well as individually in adjacent micropatterns are generated by UV light illumination through photo-masks. These surfaces are extremely useful for the immobilization of oligohistidine and biotin tagged multiple biomolecules/proteins.
Collapse
Affiliation(s)
- Atanu Biswas
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | |
Collapse
|
21
|
Kim BC, Moraes C, Huang J, Thouless M, Takayama S. Fracture-based micro- and nanofabrication for biological applications. Biomater Sci 2014; 2:288-296. [PMID: 24707353 PMCID: PMC3972810 DOI: 10.1039/c3bm60276a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While fracture is generally considered to be undesirable in various manufacturing processes, delicate control of fracture can be successfully implemented to generate structures at micro/nano length scales. Fracture-based fabrication techniques can serve as a template-free manufacturing method, and enables highly-ordered patterns or fluidic channels to be formed over large areas in a simple and cost-effective manner. Such technologies can be leveraged to address biologically-relevant problems, such as in the analysis of biomolecules or in the design of culture systems that imitate the cellular or molecular environment. This mini review provides an overview of current fracture-guided fabrication techniques and their biological applications. We first survey the mechanical principles of fracture-based approaches. Then we describe biological applications at the cellular and molecular levels. Finally, we discuss unique advantages of the different system for biological studies.
Collapse
Affiliation(s)
- Byoung Choul Kim
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| | - Christopher Moraes
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Jiexi Huang
- Department of Mechanical Engineering, College of Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
| | - M.D. Thouless
- Department of Mechanical Engineering, College of Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Colom A, Galgoczy R, Almendros I, Xaubet A, Farré R, Alcaraz J. Oxygen diffusion and consumption in extracellular matrix gels: implications for designing three-dimensional cultures. J Biomed Mater Res A 2013; 102:2776-84. [PMID: 24027235 DOI: 10.1002/jbm.a.34946] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/26/2013] [Accepted: 09/06/2013] [Indexed: 11/10/2022]
Abstract
Three-dimensional (3D) cultures are increasingly used as tissue surrogates to study many physiopathological processes. However, to what extent current 3D culture protocols provide physiologic oxygen tension conditions remains ill defined. To address this limitation, oxygen tension was measured in a panel of acellular or cellularized extracellular matrix (ECM) gels with A549 cells, and analyzed in terms of oxygen diffusion and consumption. Gels included reconstituted basement membrane, fibrin and collagen. Oxygen diffusivity in acellular gels was up to 40% smaller than that of water, and the lower values were observed in the denser gels. In 3D cultures, physiologic oxygen tension was achieved after 2 days in dense (≥3 mg/mL) but not sparse gels, revealing that the latter gels are not suitable tissue surrogates in terms of oxygen distribution. In dense gels, we observed a dominant effect of ECM composition over density in oxygen consumption. All diffusion and consumption data were used in a simple model to estimate ranges for gel thickness, seeding density and time-window that may support physiologic oxygen tension. Thus, we identified critical variables for oxygen tension in ECM gels, and introduced a model to assess initial values of these variables, which may short-cut the optimization step of 3D culture studies.
Collapse
Affiliation(s)
- Adai Colom
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Moraes C, Simon AB, Putnam AJ, Takayama S. Aqueous two-phase printing of cell-containing contractile collagen microgels. Biomaterials 2013; 34:9623-31. [PMID: 24034500 DOI: 10.1016/j.biomaterials.2013.08.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/17/2013] [Indexed: 01/22/2023]
Abstract
This work describes the use of aqueous two-phase systems to print cell-containing contractile collagen microdroplets. The fully aqueous conditions enable convenient formation of sub-microliter 'microgels' that are much smaller than otherwise possible to fabricate while maintaining high cell viability. The produced microgels contract over several days, mimicking the behavior of macroscale contraction assays, which have been valued as an important biological readout for over three decades. Use of microgels not only reduces reagent consumption and increases throughput of the assay, but also improves transport of molecules into and out of the collagen matrix, thereby enabling efficient and more precise studies of timed stimulation profiles. Utility of the technology is demonstrated by analyzing the effects of TGF-β1 on gel contraction, and we demonstrate that brief 'burst' stimulation profiles in microgels prompt contraction of the matrix, a feature not observed in the conventional macroscale assay. The fully aqueous process also enables the integration of contractile collagen microgels within existing cell culture systems, and we demonstrate proof-of-principle experiments in which a contractile collagen droplet is fabricated in situ on an existing epithelial monolayer. The simplicity, versatility and ability to robustly produce collagen microgels should allow effective translation of this microengineering technology into a variety of research environments.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, USA
| | | | | | | |
Collapse
|
24
|
DelNero P, Song YH, Fischbach C. Microengineered tumor models: insights & opportunities from a physical sciences-oncology perspective. Biomed Microdevices 2013; 15:583-593. [PMID: 23559404 PMCID: PMC3714360 DOI: 10.1007/s10544-013-9763-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prevailing evidence has established the fundamental role of microenvironmental conditions in tumorigenesis. However, the ability to identify, interrupt, and translate the underlying cellular and molecular mechanisms into meaningful therapies remains limited, due in part to a lack of organotypic culture systems that accurately recapitulate tumor physiology. Integration of tissue engineering with microfabrication technologies has the potential to address this challenge and mimic tumor heterogeneity with pathological fidelity. Specifically, this approach allows recapitulating global changes of tissue-level phenomena, while also controlling microscale variability of various conditions including spatiotemporal presentation of soluble signals, biochemical and physical characteristics of the extracellular matrix, and cellular composition. Such platforms have continued to elucidate the role of the microenvironment in cancer pathogenesis and significantly improve drug discovery and screening, particularly for therapies that target tumor-enabling stromal components. This review discusses some of the landmark efforts in the field of micro-tumor engineering with a particular emphasis on deregulated tissue organization and mass transport phenomena in the tumor microenvironment.
Collapse
Affiliation(s)
- Peter DelNero
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Young Hye Song
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA.
- , 157 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
25
|
MacQueen L, Sun Y, Simmons CA. Mesenchymal stem cell mechanobiology and emerging experimental platforms. J R Soc Interface 2013; 10:20130179. [PMID: 23635493 PMCID: PMC3673151 DOI: 10.1098/rsif.2013.0179] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms.
Collapse
Affiliation(s)
- Luke MacQueen
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Pedron S, Harley BAC. Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy. J Biomed Mater Res A 2013; 101:3404-15. [DOI: 10.1002/jbm.a.34637] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 11/06/2022]
Affiliation(s)
- S. Pedron
- Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana IL 61801
| | - B. A. C. Harley
- Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana IL 61801
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; Urbana IL 61801
| |
Collapse
|
27
|
Verbridge SS, Chakrabarti A, DelNero P, Kwee B, Varner JD, Stroock AD, Fischbach C. Physicochemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model. J Biomed Mater Res A 2013; 101:2948-56. [PMID: 23559519 DOI: 10.1002/jbm.a.34587] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 01/07/2023]
Abstract
Both physiological and pathological tissue remodeling (e.g., during wound healing and cancer, respectively) require new blood vessel formation via angiogenesis, but the underlying microenvironmental mechanisms remain poorly defined due in part to the lack of biologically relevant in vitro models. Here, we present a biomaterials-based microfluidic 3D platform for analysis of endothelial sprouting in response to morphogen gradients. This system consists of three lithographically defined channels embedded in type I collagen hydrogels. A central channel is coated with endothelial cells, and two parallel side channels serve as a source and a sink for the steady-state generation of biochemical gradients. Gradients of vascular endothelial growth factor (VEGF) promoted sprouting, whereby endothelial cell responsiveness was markedly dependent on cell density and vessel geometry regardless of treatment conditions. These results point toward mechanical and/or autocrine mechanisms that may overwhelm pro-angiogenic paracrine signaling under certain conditions. To date, neither geometrical effects nor cell density have been considered critical determinants of angiogenesis in health and disease. This biomimetic vessel platform demonstrated utility for delineating hitherto underappreciated contributors of angiogenesis, and future studies may enable important new mechanistic insights that will inform anti-angiogenic cancer therapy.
Collapse
Affiliation(s)
- Scott S Verbridge
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhao R, Boudou T, Wang W, Chen CS, Reich DH. Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1699-705. [PMID: 23355085 PMCID: PMC4037409 DOI: 10.1002/adma.201203585] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/05/2012] [Indexed: 05/19/2023]
Abstract
A novel bio-magnetomechanical microtissue system is described for magnetic actuation of arrays of 3D microtissues using microcantilevers. This system enables both in situ measurements of fundamental mechanical properties of engineered tissue, such as contractility and stiffness, as well as dynamic stimulation of the microtissues. Using this system, cell and extracellular matrix contributions to the tissue mechanical properties are decoupled for the first time under both static and dynamic loading conditions.
Collapse
Affiliation(s)
- Ruogang Zhao
- Department of Physics and Astronomy, The Johns Hopkins University 3400 North Charles Street, Baltimore, MD, USA 21218
| | - Thomas Boudou
- Department of Bioengineering, University of Pennsylvania 510 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA, USA 19104
| | - Weigang Wang
- Department of Physics and Astronomy, The Johns Hopkins University 3400 North Charles Street, Baltimore, MD, USA 21218
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania 510 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA, USA 19104
| | - Daniel H. Reich
- Department of Physics and Astronomy, The Johns Hopkins University 3400 North Charles Street, Baltimore, MD, USA 21218
| |
Collapse
|
29
|
Biswas A, Saha A, Jana B, Kurkute P, Mondal G, Ghosh S. A Biotin Micropatterned Surface Generated by Photodestruction Serves as a Novel Platform for Microtubule Organisation and DNA Hybridisation. Chembiochem 2013; 14:689-94. [DOI: 10.1002/cbic.201300027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Indexed: 12/28/2022]
|
30
|
Feng CH, Cheng YC, Chao PHG. The influence and interactions of substrate thickness, organization and dimensionality on cell morphology and migration. Acta Biomater 2013. [PMID: 23201017 DOI: 10.1016/j.actbio.2012.11.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cells reside in a complex microenvironment in situ, with a number of chemical and physical parameters interacting to modulate cell phenotype and activities. To understand cell behavior in three dimensions recent studies have utilized natural or synthetic hydrogel or fibrous materials. Taking cues from the nucleation and growth characteristics of collagen fibrils in shear flow, we generate cell-laden three-dimensional collagen hydrogels with aligned collagen fibrils using a simple microfluidic device driven by hydrostatic flow. Furthermore, by regulating the collagen hydrogel thickness, the effective surface stiffness can be modulated to change the mechanical environment of the cell. Dimensionality, topography, and substrate thickness/stiffness change cell morphology and migration. Interactions amongst these parameters further influence cell behavior. For instance, while cells responded similarly to the change in substrate thickness/stiffness on two-dimensional random gels, dimensionality and fiber alignment both interacted with substrate thickness/stiffness to change cell morphology and motility. This economical, simple to use, and fully biocompatible platform highlights the importance of well-controlled physical parameters in the cellular microenvironment.
Collapse
Affiliation(s)
- Chia-hsiang Feng
- Institute of Biomedical Engineering, School and Medicine and School of Engineering, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
31
|
Vidane AS, Zomer HD, Oliveira BMM, Guimarães CF, Fernandes CB, Perecin F, Silva LA, Miglino MA, Meirelles FV, Ambrósio CE. Reproductive stem cell differentiation: extracellular matrix, tissue microenvironment, and growth factors direct the mesenchymal stem cell lineage commitment. Reprod Sci 2013; 20:1137-43. [PMID: 23420825 DOI: 10.1177/1933719113477484] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mesenchymal stem cells (MSCs) have awakened interest in regenerative medicine due to its high capability to proliferate and differentiate in multiple specialized lineages under defined conditions. The reproductive system is considered a valuable source of MSCs, which needs further investigations. Many factors have been reported as critical for these cell lineage specification and determination. In this review, we discuss the main effects of extracellular matrix or tissue environment and growth factors in the cell lineage commitment, including the reproductive stem cells. The MSCs responses to culture medium stimuli or to soluble factors probably occur through several intracellular activation pathways. However, the molecular mechanisms in which the cells respond to these mechanical or chemical perturbations remain elusive. Recent findings suggest a synergic effect of microenvironment and soluble cell culture factors affecting cell differentiation. For future applications in cell therapy, protocols of reproductive MSCs differentiation must be established.
Collapse
Affiliation(s)
- Atanásio S Vidane
- Sector of Animal Anatomy, Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture models has brought new insights into the mechanisms underlying the establishment and maintenance of higher-order epithelial tissue architecture, and in the dynamic remodeling of cell polarity that often occurs during development of epithelial organs. Here we discuss some important aspects of mammalian epithelial morphogenesis, from the establishment of cell polarity to epithelial tissue generation.
Collapse
|
33
|
|
34
|
Underhill GH, Peter G, Chen CS, Bhatia SN. Bioengineering Methods for Analysis of Cells In Vitro. Annu Rev Cell Dev Biol 2012; 28:385-410. [DOI: 10.1146/annurev-cellbio-101011-155709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Galie Peter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sangeeta N. Bhatia
- Division of Health Sciences and Technology,
- Department of Electrical Engineering and Computer Science,
- The Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- Division of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
35
|
Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 2012; 125:3015-24. [PMID: 22797912 PMCID: PMC3434846 DOI: 10.1242/jcs.079509] [Citation(s) in RCA: 1115] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Much of our understanding of the biological mechanisms that underlie cellular functions, such as migration, differentiation and force-sensing has been garnered from studying cells cultured on two-dimensional (2D) glass or plastic surfaces. However, more recently the cell biology field has come to appreciate the dissimilarity between these flat surfaces and the topographically complex, three-dimensional (3D) extracellular environments in which cells routinely operate in vivo. This has spurred substantial efforts towards the development of in vitro 3D biomimetic environments and has encouraged much cross-disciplinary work among biologists, material scientists and tissue engineers. As we move towards more-physiological culture systems for studying fundamental cellular processes, it is crucial to define exactly which factors are operative in 3D microenvironments. Thus, the focus of this Commentary will be on identifying and describing the fundamental features of 3D cell culture systems that influence cell structure, adhesion, mechanotransduction and signaling in response to soluble factors, which - in turn - regulate overall cellular function in ways that depart dramatically from traditional 2D culture formats. Additionally, we will describe experimental scenarios in which 3D culture is particularly relevant, highlight recent advances in materials engineering for studying cell biology, and discuss examples where studying cells in a 3D context provided insights that would not have been observed in traditional 2D systems.
Collapse
Affiliation(s)
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Filas BA, Oltean A, Beebe DC, Okamoto RJ, Bayly PV, Taber LA. A potential role for differential contractility in early brain development and evolution. Biomech Model Mechanobiol 2012; 11:1251-62. [PMID: 22466353 DOI: 10.1007/s10237-012-0389-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/08/2012] [Indexed: 12/11/2022]
Abstract
Differences in brain structure between species have long fascinated evolutionary biologists. Understanding how these differences arise requires knowing how they are generated in the embryo. Growing evidence in the field of evolutionary developmental biology (evo-devo) suggests that morphological differences between species result largely from changes in the spatiotemporal regulation of gene expression during development. Corresponding changes in functional cellular behaviors (morphogenetic mechanisms) are only beginning to be explored, however. Here we show that spatiotemporal patterns of tissue contractility are sufficient to explain differences in morphology of the early embryonic brain between disparate species. We found that enhancing cytoskeletal contraction in the embryonic chick brain with calyculin A alters the distribution of contractile proteins on the apical side of the neuroepithelium and changes relatively round cross-sections of the tubular brain into shapes resembling triangles, diamonds, and narrow slits. These perturbed shapes, as well as overall brain morphology, are remarkably similar to those of corresponding sections normally found in species such as zebrafish and Xenopus laevis (frog). Tissue staining revealed relatively strong concentration of F-actin at vertices of hyper-contracted cross-sections, and a finite element model shows that local contraction in these regions can convert circular sections into the observed shapes. Another model suggests that these variations in contractility depend on the initial geometry of the brain tube, as localized contraction may be needed to open the initially closed lumen in normal zebrafish and Xenopus brains, whereas this contractile machinery is not necessary in chick brains, which are already open when first created. We conclude that interspecies differences in cytoskeletal contraction may play a larger role in generating differences in morphology, and at much earlier developmental stages, in the brain than previously appreciated. This study is a step toward uncovering the underlying morphomechanical mechanisms that regulate how neural phenotypic differences arise between species.
Collapse
Affiliation(s)
- Benjamen A Filas
- Department of Biomedical Engineering, Washington University, One Brookings Drive, Campus Box 1097, Saint Louis, MO 63130-4899, USA
| | | | | | | | | | | |
Collapse
|
37
|
Place ES, Rojo L, Gentleman E, Sardinha JP, Stevens MM. Strontium- and Zinc-Alginate Hydrogels for Bone Tissue Engineering. Tissue Eng Part A 2011; 17:2713-22. [DOI: 10.1089/ten.tea.2011.0059] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Elsie S. Place
- Department of Materials, Imperial College London, London, United Kingdom
- Institute for Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Luis Rojo
- Department of Materials, Imperial College London, London, United Kingdom
- Institute for Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Eileen Gentleman
- Department of Materials, Imperial College London, London, United Kingdom
- Institute for Biomedical Engineering, Imperial College London, London, United Kingdom
| | - José P. Sardinha
- Department of Materials, Imperial College London, London, United Kingdom
- Institute for Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, United Kingdom
- Institute for Biomedical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Shin DS, Seo JH, Sutcliffe JL, Revzin A. Photolabile micropatterned surfaces for cell capture and release. Chem Commun (Camb) 2011; 47:11942-4. [PMID: 21970983 DOI: 10.1039/c1cc15046d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for capture and release of cells was developed using a photolabile linker and antibody-attached glass surface with a poly(ethylene glycol) (PEG)-pattern.
Collapse
Affiliation(s)
- Dong-Sik Shin
- Department of Biomedical Engineering, University of California, Davis, 451 East Health Sciences Dr #2619, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
39
|
Tay CY, Irvine SA, Boey FYC, Tan LP, Venkatraman S. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1361-1378. [PMID: 21538867 DOI: 10.1002/smll.201100046] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 03/19/2011] [Indexed: 05/30/2023]
Abstract
The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications.
Collapse
Affiliation(s)
- Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore
| | | | | | | | | |
Collapse
|
40
|
Pan X, Wang P, Hu N, Liu L, Liu X, Xie L, Wang G. A physiologically based pharmacokinetic model characterizing mechanism-based inhibition of CYP1A2 for predicting theophylline/antofloxacin interaction in both rats and humans. Drug Metab Pharmacokinet 2011; 26:387-98. [PMID: 21512260 DOI: 10.2133/dmpk.dmpk-10-rg-126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clinical studies have revealed that some fluoroquinolones may cause severe adverse effects when co-administered with substrates of CYP1A2. Our previous study showed antofloxacin (ATFX) was responsible for mechanism-based inhibition (MBI) of the metabolism of phenacetin in rats. In the clinical setting, ATFX is likely to be administrated with theophylline (TP), which is mainly metabolized by CYP1A2. The aim of the present study was to investigate the possible mechanism of TP/ATFX interaction. In vitro studies showed that the inhibitory effect of ATFX on the formation of three TP metabolites depended on NADPH, the pre-inhibition time, and ATFX concentration, i.e., factors which characterize MBI. In vivo studies demonstrated that single-dose ATFX (20 mg/kg) did not affect the pharmacokinetic behavior of TP, but multidose ATFX (20 mg/kg b.i.d. for 7.5 days) significantly increased the AUC of TP, decreased the amount of three TP metabolites in urine, and suppressed hepatic microsomal activity. A physiologically based pharmacokinetic (PBPK) model characterizing MBI of the three TP metabolites was developed for predicting TP/ATFX interaction in rats; this model was further extrapolated to humans. The predicted results were in good agreement with observed data. All the results indicated that ATFX was responsible for MBI of the metabolism of TP, and the PBPK model characterizing MBI may give good prediction of TP/ATFX interaction.
Collapse
Affiliation(s)
- Xian Pan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
In the body, tissue homeostasis is established and maintained by resident tissue-specific adult stem cells (aSCs). Through preservation of bidirectional communications with the surrounding niche and integration of biophysical and biochemical cues, aSCs actively direct the regeneration of aged, injured and diseased tissues. Currently, the ability to guide the behavior and fate of aSCs in the body or in culture after prospective isolation is hindered by our poor comprehension of niche composition and the regulation it imposes. Two-and three-dimensional biomaterials approaches permit systematic analysis of putative niche elements as well as screening approaches to identify novel regulatory mechanisms governing stem cell fate. The marriage of stem cell biology with creative bioengineering technology has the potential to expand our basic understanding of stem cell regulation imposed by the niche and to develop novel regenerative medicine applications.
Collapse
|
42
|
Choi CK, Breckenridge MT, Chen CS. Engineered materials and the cellular microenvironment: a strengthening interface between cell biology and bioengineering. Trends Cell Biol 2010; 20:705-14. [PMID: 20965727 DOI: 10.1016/j.tcb.2010.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 12/26/2022]
Abstract
Cells constantly probe and respond to a myriad of cues that are present in their local surroundings. The effects of soluble cues are relatively straightforward to manipulate, yet teasing apart how cells transduce signals from the extracellular matrix and neighboring cells has proven to be challenging due to the spatially and mechanically complex adhesive interactions. Over the years, advances in the engineering of biocompatible materials have enabled innovative ways to study adhesion-mediated cell functions, and numerous insights have elucidated the significance of the cellular microenvironment. Here, we highlight some of the major approaches and discuss the potential for future advancement.
Collapse
Affiliation(s)
- Colin K Choi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Raghavan S, Shen CJ, Desai RA, Sniadecki NJ, Nelson CM, Chen CS. Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis. Development 2010. [DOI: 10.1242/dev.057851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|