1
|
Villari G, Gioelli N, Gino M, Zhang H, Hodge K, Cordero F, Zanivan S, Zhu J, Serini G. Luminescent sensing of conformational integrin activation in living cells. Cell Rep 2025; 44:115319. [PMID: 39964812 PMCID: PMC11861568 DOI: 10.1016/j.celrep.2025.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Integrins are major receptors for secreted extracellular matrix, playing crucial roles in physiological and pathological contexts, such as angiogenesis and cancer. Regulation of the transition between inactive and active conformation is key for integrins to fulfill their functions, and pharmacological control of those dynamics may have therapeutic applications. We create and validate a prototypic luminescent β1 integrin activation sensor (β1IAS) by introducing a split luciferase into an activation reporting site between the βI and the hybrid domains. As a recombinant protein in both solution and living cells, β1IAS accurately reports β1 integrin activation in response to (bio)chemical and physical stimuli. A short interfering RNA (siRNA) high-throughput screening on live β1IAS knockin endothelial cells unveils hitherto unknown regulators of β1 integrin activation, such as β1 integrin inhibitors E3 ligase Pja2 and vascular endothelial growth factor B (VEGF-B). This split-luciferase-based strategy provides an in situ label-free measurement of integrin activation and may be applicable to other β integrins and receptors.
Collapse
Affiliation(s)
- Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Marta Gino
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Heng Zhang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Kelly Hodge
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow, UK; School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jieqing Zhu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy.
| |
Collapse
|
2
|
Baster Z, Russell L, Rajfur Z. A Review of Talin- and Integrin-Dependent Molecular Mechanisms in Cancer Invasion and Metastasis. Int J Mol Sci 2025; 26:1798. [PMID: 40076426 PMCID: PMC11899650 DOI: 10.3390/ijms26051798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer is the second most common cause of death in the world, representing one of the main economic burdens in health care and research. The effort of research has mainly focused on limiting the growth of a localized tumor, but most recently, there has been more attention focused on restricting the spreading of the cancer via invasion and metastasis. The signaling pathways behind these two processes share many molecules with physiological pathways regulating cell adhesion and migration, and, moreover, adhesion and migration processes themselves underlie tumor potential for invasion. In this work, we reviewed the latest literature about cancer development and invasion and their regulation by cell migration- and adhesion-related proteins, with a specific focus on talins and integrins. We also summarized the most recent developments and approaches to anti-cancer therapies, concentrating on cell migration-related therapies.
Collapse
Affiliation(s)
- Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lindsay Russell
- Undergraduate Program, Barnard College of Columbia University, New York, NY 10027, USA;
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348 Kraków, Poland
| |
Collapse
|
3
|
Desai SA, Patel VP, Bhosle KP, Nagare SD, Thombare KC. The tumor microenvironment: shaping cancer progression and treatment response. J Chemother 2025; 37:15-44. [PMID: 38179655 DOI: 10.1080/1120009x.2023.2300224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and treatment response. It comprises a complex network of stromal cells, immune cells, extracellular matrix, and blood vessels, all of which interact with cancer cells and influence tumor behaviour. This review article provides an in-depth examination of the TME, focusing on stromal cells, blood vessels, signaling molecules, and ECM, along with commonly available therapeutic compounds that target these components. Moreover, we explore the TME as a novel strategy for discovering new anti-tumor drugs. The dynamic and adaptive nature of the TME offers opportunities for targeting specific cellular interactions and signaling pathways. We discuss emerging approaches, such as combination therapies that simultaneously target cancer cells and modulate the TME. Finally, we address the challenges and future prospects in targeting the TME. Overcoming drug resistance, improving drug delivery, and identifying new therapeutic targets within the TME are among the challenges discussed. We also highlight the potential of personalized medicine and the integration of emerging technologies, such as immunotherapy and nanotechnology, in TME-targeted therapies. This comprehensive review provides insights into the TME and its therapeutic implications. Understanding the TME's complexity and targeting its components offer promising avenues for the development of novel anti-tumor therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kunal P Bhosle
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Sandip D Nagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kirti C Thombare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| |
Collapse
|
4
|
Peterson RJ, Reed RC, Zamecnik CR, Sallam MA, Finbloom JA, Martinez FJ, Levy JM, Moonwiriyakit A, Desai TA, Koval M. Apical integrins as a switchable target to regulate the epithelial barrier. J Cell Sci 2024; 137:jcs263580. [PMID: 39552289 PMCID: PMC11795292 DOI: 10.1242/jcs.263580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Tight junctions regulate epithelial barrier function and have been shown to be influenced by multiple classes of proteins. Apical integrins have been identified as potential regulators of epithelial barrier function; however, only indirect approaches have been used to measure integrin regulation of the epithelial barrier. Here, we used polymeric nanowires conjugated with anti-integrin β1 antibodies to specifically target apically localized integrins in either their closed or open conformation. Barrier regulation by apical integrins was found to be conformation specific. Nanowires targeting integrins in the closed conformation increased epithelial permeability and caused zonula occludens-1 (ZO-1, also known as TJP1) to change from a linear to a ruffled morphology. Claudin-2 and claudin-4 colocalized with ZO-1 and were also ruffled; however, claudin-1 and claudin-7 remained linear. Ruffling was dependent on myosin light chain kinases (MLCKs) and Rho kinases (ROCKs). Conversely, targeting integrins in the open conformation decreased epithelial permeability and made junctions more linearized. Anti-integrin β1 nanowires differentially affected actin and talin (analyzed using pan-talin antibodies), depending on whether they contained activating or inhibitory antibodies. Thus, apical integrins can act as a conformation-sensitive switch that regulates epithelial barrier function.
Collapse
Affiliation(s)
- Raven J. Peterson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ryan C. Reed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colin R. Zamecnik
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marwa A. Sallam
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Joel A. Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Francisco J. Martinez
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joshua M. Levy
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 30322, USA
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, 10540, Thailand
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Popescu NI, Kluza J, Reidy MA, Duggan E, Lambris JD, Thompson LF, Coggeshall KM. Monocyte uptake of polymeric peptidoglycan is bimodal and governed by complement C3 and C4 opsonins. JCI Insight 2024; 10:e186346. [PMID: 39656526 PMCID: PMC11790019 DOI: 10.1172/jci.insight.186346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/03/2024] [Indexed: 01/24/2025] Open
Abstract
Peptidoglycans (PGNs) are structural polymers of the bacterial cell wall and a common microbial molecular pattern encountered by the immune system daily. Low levels of PGNs are constitutively present in the systemic circulation in humans and rise during inflammatory pathologies. Since all known PGN sensors are intracellular, PGN internalization is a prerequisite for the initiation of cellular immune responses. Here, we report the mechanisms controlling the recognition and uptake of polymeric PGNs by circulating human mononuclear phagocytes. We found that complement C3 and C4 opsonins govern PGN recognition and internalization, but no single opsonin is indispensable because of multiple uptake redundancies. We observed a bimodal internalization of polymeric PGNs with distinct requirements for complement C4. At low PGN concentrations, C3 mediated PGN recognition by surface receptors while the efficient internalization of PGN polymers critically required C4. Supraphysiologic PGN concentrations triggered a secondary uptake modality that was insensitive to C4 and mediated instead by C3 engagement of complement receptors 1 and 3. To our knowledge, this is the first description of nonoverlapping C3 and C4 opsonophagocytoses working in parallel. Controlling these uptake mechanisms has the potential to modulate PGN clearance or the dysregulated immune responses during bacterial infections.
Collapse
Affiliation(s)
- Narcis I. Popescu
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jędrzej Kluza
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Megan A. Reidy
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Elizabeth Duggan
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Linda F. Thompson
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - K. Mark Coggeshall
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
6
|
Xie B, Xu S, Schecterson L, Gumbiner BM, Sivasankar S. Strengthening E-cadherin adhesion via antibody-mediated binding stabilization. Structure 2024; 32:217-227.e3. [PMID: 38052206 PMCID: PMC10872345 DOI: 10.1016/j.str.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
E-cadherins (Ecads) are a crucial cell-cell adhesion protein with tumor suppression properties. Ecad adhesion can be enhanced by the monoclonal antibody 66E8, which has potential applications in inhibiting cancer metastasis. However, the biophysical mechanisms underlying 66E8-mediated adhesion strengthening are unknown. Here, we use molecular dynamics simulations, site-directed mutagenesis, and single-molecule atomic force microscopy experiments to demonstrate that 66E8 strengthens Ecad binding by stabilizing the primary Ecad adhesive conformation: the strand-swap dimer. By forming electrostatic interactions with Ecad, 66E8 stabilizes the swapped β-strand and its hydrophobic pocket and impedes Ecad conformational changes, which are necessary for rupture of the strand-swap dimer. Our findings identify fundamental mechanistic principles for strengthening of Ecad binding using monoclonal antibodies.
Collapse
Affiliation(s)
- Bin Xie
- Biophysics Graduate Group, University of California, Davis, Davis, CA, USA
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Leslayann Schecterson
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Barry M Gumbiner
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Sanjeevi Sivasankar
- Biophysics Graduate Group, University of California, Davis, Davis, CA, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
8
|
Conway JRW, Isomursu A, Follain G, Härmä V, Jou-Ollé E, Pasquier N, Välimäki EPO, Rantala JK, Ivaska J. Defined extracellular matrix compositions support stiffness-insensitive cell spreading and adhesion signaling. Proc Natl Acad Sci U S A 2023; 120:e2304288120. [PMID: 37844244 PMCID: PMC10614832 DOI: 10.1073/pnas.2304288120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
Integrin-dependent adhesion to the extracellular matrix (ECM) mediates mechanosensing and signaling in response to altered microenvironmental conditions. In order to provide tissue- and organ-specific cues, the ECM is composed of many different proteins that temper the mechanical properties and provide the necessary structural diversity. Despite most human tissues being soft, the prevailing view from predominantly in vitro studies is that increased stiffness triggers effective cell spreading and activation of mechanosensitive signaling pathways. To address the functional coupling of ECM composition and matrix rigidity on compliant substrates, we developed a matrix spot array system to screen cell phenotypes against different ECM mixtures on defined substrate stiffnesses at high resolution. We applied this system to both cancer and normal cells and surprisingly identified ECM mixtures that support stiffness-insensitive cell spreading on soft substrates. Employing the motor-clutch model to simulate cell adhesion on biochemically distinct soft substrates, with varying numbers of available ECM-integrin-cytoskeleton (clutch) connections, we identified conditions in which spreading would be supported on soft matrices. Combining simulations and experiments, we show that cell spreading on soft is supported by increased clutch engagement on specific ECM mixtures and even augmented by the partial inhibition of actomyosin contractility. Thus, "stiff-like" spreading on soft is determined by a balance of a cell's contractile and adhesive machinery. This provides a fundamental perspective for in vitro mechanobiology studies, identifying a mechanism through which cells spread, function, and signal effectively on soft substrates.
Collapse
Affiliation(s)
- James R. W. Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
| | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
| | - Ville Härmä
- Misvik Biology Oy, TurkuFI-20520, Finland
- Department of Oncology and Metabolism, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Eva Jou-Ollé
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
| | - Nicolas Pasquier
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
| | | | - Juha K. Rantala
- Misvik Biology Oy, TurkuFI-20520, Finland
- Department of Oncology and Metabolism, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, TurkuFI-20520, Finland
- Department of Life Technologies, University of Turku, TurkuFI-20520, Finland
- InFLAMES Research Flagship, University of Turku, TurkuFI-20520, Finland
- Western Finnish Cancer Center, University of Turku, TurkuFI-20520, Finland
- Foundation for the Finnish Cancer Institute, HelsinkiFI-00014, Finland
| |
Collapse
|
9
|
van Stalborch AMD, Clark AG, Sonnenberg A, Margadant C. Imaging and quantitative analysis of integrin-dependent cell-matrix adhesions. STAR Protoc 2023; 4:102473. [PMID: 37616164 PMCID: PMC10469561 DOI: 10.1016/j.xpro.2023.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 08/25/2023] Open
Abstract
Integrin-dependent cell-extracellular matrix adhesion is essential for wound healing, embryonic development, immunity, and tissue organization. Here, we present a protocol for the imaging and quantitative analysis of integrin-dependent cell-matrix adhesions. We describe steps for cell culture; virus preparation; lentiviral transduction; imaging with widefield, confocal, and total internal reflection fluorescence microscopy; and using a script for their quantitative analysis. We then detail procedures for analyzing adhesion dynamics by live-cell imaging and fluorescence recovery after photobleaching (FRAP). For complete details on the use and execution of this protocol, please refer to Margadant et al. (2012),1 van der Bijl et al. (2020),2 Amado-Azevedo et al. (2021).3.
Collapse
Affiliation(s)
| | - Andrew G Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany; Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Arnoud Sonnenberg
- The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| | - Coert Margadant
- Institute of Biology, Leiden University, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
10
|
Xie B, Xu S, Schecterson L, Gumbiner BM, Sivasankar S. Strengthening E-cadherin adhesion via antibody mediated binding stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547716. [PMID: 37461464 PMCID: PMC10350017 DOI: 10.1101/2023.07.04.547716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
E-cadherins (Ecads) are a crucial cell-cell adhesion protein with tumor suppression properties. Ecad adhesion can be enhanced by the monoclonal antibody 66E8, which has potential applications in inhibiting cancer metastasis. However, the biophysical mechanisms underlying 66E8 mediated adhesion strengthening are unknown. Here, we use molecular dynamics simulations, site directed mutagenesis and single molecule atomic force microscopy experiments to demonstrate that 66E8 strengthens Ecad binding by stabilizing the primary Ecad adhesive conformation: the strand-swap dimer. By forming electrostatic interactions with Ecad, 66E8 stabilizes the swapped β-strand and its hydrophobic pocket and impedes Ecad conformational changes, which are necessary for rupture of the strand-swap dimer. Our findings identify fundamental mechanistic principles for strengthening of Ecad binding using monoclonal antibodies.
Collapse
|
11
|
Petrosyan A, Villani V, Aguiari P, Thornton ME, Wang Y, Rajewski A, Zhou S, Cravedi P, Grubbs BH, De Filippo RE, Sedrakyan S, Lemley KV, Csete M, Da Sacco S, Perin L. Identification and Characterization of the Wilms Tumor Cancer Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206787. [PMID: 37114795 PMCID: PMC10369255 DOI: 10.1002/advs.202206787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A nephrogenic progenitor cell (NP) with cancer stem cell characteristics driving Wilms tumor (WT) using spatial transcriptomics, bulk and single cell RNA sequencing, and complementary in vitro and transplantation experiments is identified and characterized. NP from WT samples with NP from the developing human kidney is compared. Cells expressing SIX2 and CITED1 fulfill cancer stem cell criteria by reliably recapitulating WT in transplantation studies. It is shown that self-renewal versus differentiation in SIX2+CITED1+ cells is regulated by the interplay between integrins ITGβ1 and ITGβ4. The spatial transcriptomic analysis defines gene expression maps of SIX2+CITED1+ cells in WT samples and identifies the interactive gene networks involved in WT development. These studies define SIX2+CITED1+ cells as the nephrogenic-like cancer stem cells of WT and points to the renal developmental transcriptome changes as a possible driver in regulating WT formation and progression.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Valentina Villani
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
| | - Paola Aguiari
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- David Geffen School of Medicine at UCLA – VA Healthcare SystemLos AngelesCA90095USA
| | - Matthew E. Thornton
- Department of Obstetrics and GynecologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Yizhou Wang
- Genomics CoreDepartment of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Alex Rajewski
- Genomics CoreDepartment of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Shengmei Zhou
- Department of Pathology and Laboratory MedicineChildren's Hospital Los AngelesLos AngelesCA90027USA
| | - Paolo Cravedi
- Department of MedicineDivision of Nephrology and Translational Transplant Research CenterRecanati Miller Transplant InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Brendan H. Grubbs
- Department of Obstetrics and GynecologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Roger E. De Filippo
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Sargis Sedrakyan
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Kevin V. Lemley
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Children's Hospital Los AngelesDivision of NephrologyDepartment of PediatricsUniversity of Southern CaliforniaLos AngelesCA90027USA
| | - Marie Csete
- Department of AnesthesiologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Stefano Da Sacco
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Laura Perin
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| |
Collapse
|
12
|
Feng P, Wang W, Xu W, Cao Q, Zhu W. Application of a Magnetic Platform in α6 Integrin-Positive iPSC-TM Purification. Bioengineering (Basel) 2023; 10:bioengineering10040410. [PMID: 37106597 PMCID: PMC10135729 DOI: 10.3390/bioengineering10040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The emergence of induced pluripotent stem cell (iPSC) technology has provided a new approach to regenerating decellularized trabecular meshwork (TM) in glaucoma. We have previously generated iPSC-derived TM (iPSC-TM) using a medium conditioned by TM cells and verified its function in tissue regeneration. Because of the heterogeneity of iPSCs and the isolated TM cells, iPSC-TM cells appear to be heterogeneous, which impedes our understanding of how the decellularized TM may be regenerated. Herein, we developed a protocol based on a magnetic-activated cell sorting (MACS) system or an immunopanning (IP) method for sorting integrin subunit alpha 6 (ITGA6)-positive iPSC-TM, an example of the iPSC-TM subpopulation. We first analyzed the purification efficiency of these two approaches by flow cytometry. In addition, we also determined cell viability by analyzing the morphologies of the purified cells. To conclude, the MACS-based purification could yield a higher ratio of ITGA6-positive iPSC-TM and maintain a relatively higher cell viability than the IP-based method, allowing for the preparation of any iPSC-TM subpopulation of interest and facilitating a better understanding of the regenerative mechanism of iPSC-based therapy.
Collapse
Affiliation(s)
- Pengchao Feng
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Wenyan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao 266021, China
| | - Qilong Cao
- Qingdao Haier Biotech Co., Ltd., Qingdao 266109, China
- Correspondence: (Q.C.); (W.Z.)
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
- Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing University of Aeronautics and Astronautics-Capital Medical University, Beijing 100083, China
- Correspondence: (Q.C.); (W.Z.)
| |
Collapse
|
13
|
Mana G, Valdembri D, Askari JA, Li Z, Caswell P, Zhu C, Humphries MJ, Ballestrem C, Serini G. The βI domain promotes active β1 integrin clustering into mature adhesion sites. Life Sci Alliance 2023; 6:e202201388. [PMID: 36410791 PMCID: PMC9679427 DOI: 10.26508/lsa.202201388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Modulation of integrin function is required in many physiological and pathological settings, such as angiogenesis and cancer. Integrin allosteric changes, clustering, and trafficking cooperate to regulate cell adhesion and motility on extracellular matrix proteins via mechanisms that are partly defined. By exploiting four monoclonal antibodies recognizing distinct conformational epitopes, we show that in endothelial cells (ECs), the extracellular βI domain, but not the hybrid or I-EGF2 domain of active β1 integrins, promotes their FAK-regulated clustering into tensin 1-containing fibrillar adhesions and impairs their endocytosis. In this regard, the βI domain-dependent clustering of active β1 integrins is necessary to favor fibronectin-elicited directional EC motility, which cannot be effectively promoted by β1 integrin conformational activation alone.
Collapse
Affiliation(s)
- Giulia Mana
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| | - Donatella Valdembri
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| | - Janet A Askari
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zhenhai Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Patrick Caswell
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Christoph Ballestrem
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Guido Serini
- Candiolo Cancer Institute - FPO, IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| |
Collapse
|
14
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 434] [Impact Index Per Article: 217.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
15
|
Stam W, Wachholz GE, de Pereda JM, Kapur R, van der Schoot E, Margadant C. Fetal and neonatal alloimmune thrombocytopenia: Current pathophysiological insights and perspectives for future diagnostics and treatment. Blood Rev 2022; 59:101038. [PMID: 36581513 DOI: 10.1016/j.blre.2022.101038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
FNAIT is a pregnancy-associated condition caused by maternal alloantibodies against paternally-inherited platelet antigens, most frequently HPA-1a on integrin β3. The clinical effects range from no symptoms to fatal intracranial hemorrhage, but underlying pathophysiological determinants are poorly understood. Accumulating evidence suggests that differential antibody-Fc-glycosylation, activation of complement/effector cells, and integrin function-blocking effects contribute to clinical outcome. Furthermore, some antibodies preferentially bind platelet integrin αIIbβ3, but others bind αvβ3 on endothelial cells and trophoblasts. Defects in endothelial cells and angiogenesis may therefore contribute to severe anti-HPA-1a associated FNAIT. Moreover, anti-HPA-1a antibodies may cause placental damage, leading to intrauterine growth restriction. We discuss current insights into diversity and actions of HPA-1a antibodies, gathered from clinical studies, in vitro studies, and mouse models. Assessment of all factors determining severity and progression of anti-HPA-1a-associated FNAIT may importantly improve risk stratification and potentially reveal novel treatment strategies, both for FNAIT and other immunohematological disorders.
Collapse
Affiliation(s)
- Wendy Stam
- Institute of Biology, Leiden University, Leiden, the Netherlands; Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | | | - Jose Maria de Pereda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain.
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ellen van der Schoot
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Coert Margadant
- Institute of Biology, Leiden University, Leiden, the Netherlands; Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Orr BO, Fetter RD, Davis GW. Activation and expansion of presynaptic signaling foci drives presynaptic homeostatic plasticity. Neuron 2022; 110:3743-3759.e6. [PMID: 36087584 PMCID: PMC9671843 DOI: 10.1016/j.neuron.2022.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Presynaptic homeostatic plasticity (PHP) adaptively regulates synaptic transmission in health and disease. Despite identification of numerous genes that are essential for PHP, we lack a dynamic framework to explain how PHP is initiated, potentiated, and limited to achieve precise control of vesicle fusion. Here, utilizing both mice and Drosophila, we demonstrate that PHP progresses through the assembly and physical expansion of presynaptic signaling foci where activated integrins biochemically converge with trans-synaptic Semaphorin2b/PlexinB signaling. Each component of the identified signaling complexes, including alpha/beta-integrin, Semaphorin2b, PlexinB, talin, and focal adhesion kinase (FAK), and their biochemical interactions, are essential for PHP. Complex integrity requires the Sema2b ligand and complex expansion includes a ∼2.5-fold expansion of active-zone associated puncta composed of the actin-binding protein talin. Finally, complex pre-expansion is sufficient to accelerate the rate and extent of PHP. A working model is proposed incorporating signal convergence with dynamic molecular assemblies that instruct PHP.
Collapse
Affiliation(s)
- Brian O Orr
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA.
| |
Collapse
|
17
|
Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do TM, Genêt B, Roudières V, Shi Y, Tchepikoff P, Lesuisse D. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS One 2022; 17:e0274667. [PMID: 36108060 PMCID: PMC9477330 DOI: 10.1371/journal.pone.0274667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Increasing brain exposure of biotherapeutics is key to success in central nervous system disease drug discovery. Accessing the brain parenchyma is especially difficult for large polar molecules such as biotherapeutics and antibodies because of the blood-brain barrier. We investigated a new immunization strategy to identify novel receptors mediating transcytosis across the blood-brain barrier.
Method
We immunized mice with primary non-human primate brain microvascular endothelial cells to obtain antibodies. These antibodies were screened for their capacity to bind and to be internalized by primary non-human primate brain microvascular endothelial cells and Human Cerebral Microvascular Endothelial Cell clone D3. They were further evaluated for their transcytosis capabilities in three in vitro blood-brain barrier models. In parallel, their targets were identified by two different methods and their pattern of binding to human tissue was investigated using immunohistochemistry.
Results
12 antibodies with unique sequence and internalization capacities were selected amongst more than six hundred. Aside from one antibody targeting Activated Leukocyte Cell Adhesion Molecule and one targeting Striatin3, most of the other antibodies recognized β1 integrin and its heterodimers. The antibody with the best transcytosis capabilities in all blood-brain barrier in vitro models and with the best binding capacity was an anti-αnβ1 integrin. In comparison, commercial anti-integrin antibodies performed poorly in transcytosis assays, emphasizing the originality of the antibodies derived here. Immunohistochemistry studies showed specific vascular staining on human and non-human primate tissues.
Conclusions
This transcytotic behavior has not previously been reported for anti-integrin antibodies. Further studies should be undertaken to validate this new mechanism in vivo and to evaluate its potential in brain delivery.
Collapse
Affiliation(s)
- Céline Cegarra
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
- * E-mail:
| | | | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | | | - Tuan-Minh Do
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Bruno Genêt
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | - Valérie Roudières
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Yi Shi
- Histology, Translational Sciences, Sanofi, Vitry-Sur-Seine, France
| | | | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| |
Collapse
|
18
|
Lin FY, Li J, Xie Y, Zhu J, Huong Nguyen TT, Zhang Y, Zhu J, Springer TA. A general chemical principle for creating closure-stabilizing integrin inhibitors. Cell 2022; 185:3533-3550.e27. [PMID: 36113427 PMCID: PMC9494814 DOI: 10.1016/j.cell.2022.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 01/26/2023]
Abstract
Integrins are validated drug targets with six approved therapeutics. However, small-molecule inhibitors to three integrins failed in late-stage clinical trials for chronic indications. Such unfavorable outcomes may in part be caused by partial agonism, i.e., the stabilization of the high-affinity, extended-open integrin conformation. Here, we show that the failed, small-molecule inhibitors of integrins αIIbβ3 and α4β1 stabilize the high-affinity conformation. Furthermore, we discovered a simple chemical feature present in multiple αIIbβ3 antagonists that stabilizes integrins in their bent-closed conformation. Closing inhibitors contain a polar nitrogen atom that stabilizes, via hydrogen bonds, a water molecule that intervenes between a serine residue and the metal in the metal-ion-dependent adhesion site (MIDAS). Expulsion of this water is a requisite for transition to the open conformation. This change in metal coordination is general to integrins, suggesting broad applicability of the drug-design principle to the integrin family, as validated with a distantly related integrin, α4β1.
Collapse
Affiliation(s)
- Fu-Yang Lin
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Li
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yonghua Xie
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PRC
| | - Jianghai Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thi Thu Huong Nguyen
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PRC.
| | - Jieqing Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
20
|
Xie B, Maker A, Priest AV, Dranow DM, Phan JN, Edwards TE, Staker BL, Myler PJ, Gumbiner BM, Sivasankar S. Molecular mechanism for strengthening E-cadherin adhesion using a monoclonal antibody. Proc Natl Acad Sci U S A 2022; 119:e2204473119. [PMID: 35921442 PMCID: PMC9371698 DOI: 10.1073/pnas.2204473119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
E-cadherin (Ecad) is an essential cell-cell adhesion protein with tumor suppression properties. The adhesive state of Ecad can be modified by the monoclonal antibody 19A11, which has potential applications in reducing cancer metastasis. Using X-ray crystallography, we determine the structure of 19A11 Fab bound to Ecad and show that the antibody binds to the first extracellular domain of Ecad near its primary adhesive motif: the strand-swap dimer interface. Molecular dynamics simulations and single-molecule atomic force microscopy demonstrate that 19A11 interacts with Ecad in two distinct modes: one that strengthens the strand-swap dimer and one that does not alter adhesion. We show that adhesion is strengthened by the formation of a salt bridge between 19A11 and Ecad, which in turn stabilizes the swapped β-strand and its complementary binding pocket. Our results identify mechanistic principles for engineering antibodies to enhance Ecad adhesion.
Collapse
Affiliation(s)
- Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA, 95616
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - Allison Maker
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, 98101
- Department of Biochemistry, University of Washington, Seattle, WA, 98195
| | - Andrew V. Priest
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - David M. Dranow
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Jenny N. Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109
- Department of Pediatrics, University of Washington, Seattle, WA, 98195
| | - Barry M. Gumbiner
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, 98101
- Department of Biochemistry, University of Washington, Seattle, WA, 98195
- Department of Pediatrics, University of Washington, Seattle, WA, 98195
| | - Sanjeevi Sivasankar
- Biophysics Graduate Group, University of California, Davis, CA, 95616
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| |
Collapse
|
21
|
Yang YF, Sun YY, Peters DM, Keller KE. The Effects of Mechanical Stretch on Integrins and Filopodial-Associated Proteins in Normal and Glaucomatous Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:886706. [PMID: 35573666 PMCID: PMC9100841 DOI: 10.3389/fcell.2022.886706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 01/29/2023] Open
Abstract
The trabecular meshwork (TM) is the tissue responsible for regulating aqueous humor fluid egress from the anterior eye. If drainage is impaired, intraocular pressure (IOP) becomes elevated, which is a primary risk factor for primary open angle glaucoma. TM cells sense elevated IOP via changes in their biomechanical environment. Filopodia cellular protrusions and integrin transmembrane proteins may play roles in detecting IOP elevation, yet this has not been studied in detail in the TM. Here, we investigate integrins and filopodial proteins, such as myosin-X (Myo10), in response to mechanical stretch, an in vitro technique that produces mechanical alterations mimicking elevated IOP. Pull-down assays showed Myo10 binding to α5 but not the β1 subunit, αvβ3, and αvβ5 integrins. Several of these integrins colocalized in nascent adhesions in the filopodial tip and shaft. Using conformation-specific antibodies, we found that β1 integrin, but not α5 or αvβ3 integrins, were activated following 1-h mechanical stretch. Cadherin -11 (CDH11), a cell adhesion molecule, did not bind to Myo10, but was associated with filopodia. Interestingly, CDH11 was downregulated on the TM cell surface following 1-h mechanical stretch. In glaucoma cells, CDH11 protein levels were increased. Finally, mechanical stretch caused a small, yet significant increase in Myo10 protein levels in glaucoma cells, but did not affect cellular communication of fluorescent vesicles via filopodia-like tunneling nanotubes. Together, these data suggest that TM cell adhesion proteins, β1 integrin and CDH11, have relatively rapid responses to mechanical stretch, which suggests a central role in sensing changes in IOP elevation in situ.
Collapse
Affiliation(s)
- Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Kate E. Keller,
| |
Collapse
|
22
|
Yokosaki Y, Nishimichi N. New Therapeutic Targets for Hepatic Fibrosis in the Integrin Family, α8β1 and α11β1, Induced Specifically on Activated Stellate Cells. Int J Mol Sci 2021; 22:12794. [PMID: 34884600 PMCID: PMC8657911 DOI: 10.3390/ijms222312794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
A huge effort has been devoted to developing drugs targeting integrins over 30 years, because of the primary roles of integrins in the cell-matrix milieu. Five αv-containing integrins, in the 24 family members, have been a central target of fibrosis. Currently, a small molecule against αvβ1 is undergoing a clinical trial for NASH-associated fibrosis as a rare agent aiming at fibrogenesis. Latent TGFβ activation, a distinct talent of αv-integrins, has been intriguing as a therapeutic target. None of the αv-integrin inhibitors, however, has been in the clinical market. αv-integrins commonly recognize an Arg-Gly-Asp (RGD) sequence, and thus the pharmacophore of inhibitors for the 5-integrins is based on the same RGD structure. The RGD preference of the integrins, at the same time, dilutes ligand specificity, as the 5-integrins share ligands containing RGD sequence such as fibronectin. With the inherent little specificity in both drugs and targets, "disease specificity" has become less important for the inhibitors than blocking as many αv-integrins. In fact, an almighty inhibitor for αv-integrins, pan-αv, was in a clinical trial. On the contrary, approved integrin inhibitors are all specific to target integrins, which are expressed in a cell-type specific manner: αIIbβ3 on platelets, α4β1, α4β7 and αLβ2 on leukocytes. Herein, "disease specific" integrins would serve as attractive targets. α8β1 and α11β1 are selectively expressed in hepatic stellate cells (HSCs) and distinctively induced upon culture activation. The exceptional specificity to activated HSCs reflects a rather "pathology specific" nature of these new integrins. The monoclonal antibodies against α8β1 and α11β1 in preclinical examinations may illuminate the road to the first medical agents.
Collapse
Affiliation(s)
- Yasuyuki Yokosaki
- Integrin-Matrix Biomedical Science, Translational Research Center, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan;
| | | |
Collapse
|
23
|
Vickers A, Tewary M, Laddach A, Poletti M, Salameti V, Fraternali F, Danovi D, Watt FM. Plating human iPSC lines on micropatterned substrates reveals role for ITGB1 nsSNV in endoderm formation. Stem Cell Reports 2021; 16:2628-2641. [PMID: 34678211 PMCID: PMC8581167 DOI: 10.1016/j.stemcr.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
Quantitative analysis of human induced pluripotent stem cell (iPSC) lines from healthy donors is a powerful tool for uncovering the relationship between genetic variants and cellular behavior. We previously identified rare, deleterious non-synonymous single nucleotide variants (nsSNVs) in cell adhesion genes that are associated with outlier iPSC phenotypes in the pluripotent state. Here, we generated micropatterned colonies of iPSCs to test whether nsSNVs influence patterning of radially ordered germ layers. Using a custom-built image analysis pipeline, we quantified the differentiation phenotypes of 13 iPSC lines that harbor nsSNVs in genes related to cell adhesion or germ layer development. All iPSC lines differentiated into the three germ layers; however, there was donor-specific variation in germ layer patterning. We identified one line that presented an outlier phenotype of expanded endodermal differentiation, which was associated with a nsSNV in ITGB1. Our study establishes a platform for investigating the impact of nsSNVs on differentiation.
Collapse
Affiliation(s)
- Alice Vickers
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Mukul Tewary
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Anna Laddach
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Great Maze Pond, London SE1 9RT, UK; Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Martina Poletti
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; Quadram Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Vasiliki Salameti
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Great Maze Pond, London SE1 9RT, UK
| | - Davide Danovi
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK; bit.bio, Babraham Research Campus, The Dorothy Hodgkin Building, Cambridge CB22 3FH, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
24
|
Deng S, Zhu Y, Zhao X, Chen J, Tuan RS, Chan HF. Efficient fabrication of monodisperse hepatocyte spheroids and encapsulation in hybrid hydrogel with controllable extracellular matrix effect. Biofabrication 2021; 14. [PMID: 34587587 DOI: 10.1088/1758-5090/ac2b89] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022]
Abstract
Three-dimensional (3D) culture techniques, such as spheroid and organoid cultures, have gained increasing interest in biomedical research. However, the understanding and control of extracellular matrix (ECM) effect in spheroid and organoid culture has been limited. Here, we report a biofabrication approach to efficiently form uniform-sized 3D hepatocyte spheroids and encapsulate them in a hybrid hydrogel composed of alginate and various ECM molecules. Cells were seeded in a microwell platform to form spheroid before being encapsulated directly in a hybrid hydrogel containing various ECM molecules, including collagen type I (COL1), collagen type IV (COL4), fibronectin (FN), and laminin (LM). A systematic analysis of the effect of ECM molecules on the primary mouse hepatocyte phenotype was then performed. Our results showed that hydrogel encapsulation of hepatocyte spheroid promoted hepatic marker expression and secretory functions. In addition, different ECM molecules elicited distinct effects on hepatic functions in 3D encapsulated hepatocyte spheroids, but not in 2D hepatocyte and 3D non-encapsulated spheroids. When encapsulated in hybrid hydrogel containing LM alone or COL1 alone, hepatocyte spheroids exhibited improved hepatic functions overall. Analysis of gene and protein expression showed an upregulation of integrinα1 and integrinα6 when LM was introduced in the hybrid hydrogel, suggesting a possible role of integrin signaling involved in the ECM effect. Finally, a combinatorial screening was performed to demonstrate the potential to screen a multitude of 3D microenvironments of varying ECM combinations that exhibited synergistic influence, indicating a strong positive effect of COL1 and a negative interaction effect of COL1·LM on both albumin and urea secretion. These findings illustrate the broad application potential of this biofabrication approach in identifying optimal ECM composition(s) for engineering 3D tissue, and elucidating defined ECM cues for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Xiaoyu Zhao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education of China, Jinan University, Guangzhou, People's Republic of China.,Aier Eye Institute, Changsha, People's Republic of China.,Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, People's Republic of China.,Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| |
Collapse
|
25
|
Myosin-X and talin modulate integrin activity at filopodia tips. Cell Rep 2021; 36:109716. [PMID: 34525374 PMCID: PMC8456781 DOI: 10.1016/j.celrep.2021.109716] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022] Open
Abstract
Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are uniformly distributed. We identify talin and MYO10 as the principal integrin activators in filopodia. In addition, deletion of MYO10's FERM domain, or mutation of its β1-integrin-binding residues, reveals MYO10 as facilitating integrin activation, but not transport, in filopodia. However, MYO10's isolated FERM domain alone cannot activate integrins, potentially because of binding to both integrin tails. Finally, because a chimera construct generated by swapping MYO10-FERM by talin-FERM enables integrin activation in filopodia, our data indicate that an integrin-binding FERM domain coupled to a myosin motor is a core requirement for integrin activation in filopodia. Therefore, we propose a two-step integrin activation model in filopodia: receptor tethering by MYO10 followed by talin-mediated integrin activation.
Collapse
|
26
|
Peterson RJ, Koval M. Above the Matrix: Functional Roles for Apically Localized Integrins. Front Cell Dev Biol 2021; 9:699407. [PMID: 34485286 PMCID: PMC8414885 DOI: 10.3389/fcell.2021.699407] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Integrins are transmembrane proteins that are most typically thought of as integrating adhesion to the extracellular matrix with intracellular signaling and cell regulation. Traditionally, integrins are found at basolateral and lateral cell surfaces where they facilitate binding to the ECM and intercellular adhesion through cytosolic binding partners that regulate organization of actin microfilaments. However, evidence is accumulating that integrins also are apically localized, either endogenously or due to an exogenous stimulus. Apically localized integrins have been shown to regulate several processes by interacting with proteins such as connexins, tight junction proteins, and polarity complex proteins. Integrins can also act as receptors to mediate endocytosis. Here we review these newly appreciated roles for integrins localized to the apical cell surface.
Collapse
Affiliation(s)
- Raven J Peterson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
27
|
Schumacher S, Dedden D, Nunez RV, Matoba K, Takagi J, Biertümpfel C, Mizuno N. Structural insights into integrin α 5β 1 opening by fibronectin ligand. SCIENCE ADVANCES 2021; 7:7/19/eabe9716. [PMID: 33962943 PMCID: PMC8104898 DOI: 10.1126/sciadv.abe9716] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/19/2021] [Indexed: 05/08/2023]
Abstract
Integrin α5β1 is a major fibronectin receptor critical for cell migration. Upon complex formation, fibronectin and α5β1 undergo conformational changes. While this is key for cell-tissue connections, its mechanism is unknown. Here, we report cryo-electron microscopy structures of native human α5β1 with fibronectin to 3.1-angstrom resolution, and in its resting state to 4.6-angstrom resolution. The α5β1-fibronectin complex revealed simultaneous interactions at the arginine-glycine-aspartate loop, the synergy site, and a newly identified binding site proximal to adjacent to metal ion-dependent adhesion site, inducing the translocation of helix α1 to secure integrin opening. Resting α5β1 adopts an incompletely bent conformation, challenging the model of integrin sharp bending inhibiting ligand binding. Our biochemical and structural analyses showed that affinity of α5β1 for fibronectin is increased with manganese ions (Mn2+) while adopting the half-bent conformation, indicating that ligand-binding affinity does not depend on conformation, and α5β1 opening is induced by ligand-binding.
Collapse
Affiliation(s)
- Stephanie Schumacher
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Dirk Dedden
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Roberto Vazquez Nunez
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
| | - Kyoko Matoba
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA.
| | - Naoko Mizuno
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Kisiela DI, Magala P, Interlandi G, Carlucci LA, Ramos A, Tchesnokova V, Basanta B, Yarov-Yarovoy V, Avagyan H, Hovhannisyan A, Thomas WE, Stenkamp RE, Klevit RE, Sokurenko EV. Toggle switch residues control allosteric transitions in bacterial adhesins by participating in a concerted repacking of the protein core. PLoS Pathog 2021; 17:e1009440. [PMID: 33826682 PMCID: PMC8064603 DOI: 10.1371/journal.ppat.1009440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/23/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
Critical molecular events that control conformational transitions in most allosteric proteins are ill-defined. The mannose-specific FimH protein of Escherichia coli is a prototypic bacterial adhesin that switches from an 'inactive' low-affinity state (LAS) to an 'active' high-affinity state (HAS) conformation allosterically upon mannose binding and mediates shear-dependent catch bond adhesion. Here we identify a novel type of antibody that acts as a kinetic trap and prevents the transition between conformations in both directions. Disruption of the allosteric transitions significantly slows FimH's ability to associate with mannose and blocks bacterial adhesion under dynamic conditions. FimH residues critical for antibody binding form a compact epitope that is located away from the mannose-binding pocket and is structurally conserved in both states. A larger antibody-FimH contact area is identified by NMR and contains residues Leu-34 and Val-35 that move between core-buried and surface-exposed orientations in opposing directions during the transition. Replacement of Leu-34 with a charged glutamic acid stabilizes FimH in the LAS conformation and replacement of Val-35 with glutamic acid traps FimH in the HAS conformation. The antibody is unable to trap the conformations if Leu-34 and Val-35 are replaced with a less bulky alanine. We propose that these residues act as molecular toggle switches and that the bound antibody imposes a steric block to their reorientation in either direction, thereby restricting concerted repacking of side chains that must occur to enable the conformational transition. Residues homologous to the FimH toggle switches are highly conserved across a diverse family of fimbrial adhesins. Replacement of predicted switch residues reveals that another E. coli adhesin, galactose-specific FmlH, is allosteric and can shift from an inactive to an active state. Our study shows that allosteric transitions in bacterial adhesins depend on toggle switch residues and that an antibody that blocks the switch effectively disables adhesive protein function.
Collapse
Affiliation(s)
- Dagmara I. Kisiela
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Pearl Magala
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Gianluca Interlandi
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Laura A. Carlucci
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Angelo Ramos
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Veronika Tchesnokova
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Benjamin Basanta
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, California, United States of America
| | - Hovhannes Avagyan
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Anahit Hovhannisyan
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Wendy E. Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Ronald E. Stenkamp
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Evgeni V. Sokurenko
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
29
|
Siegel PM, Bojti I, Bassler N, Holien J, Flierl U, Wang X, Waggershauser P, Tonnar X, Vedecnik C, Lamprecht C, Stankova I, Li T, Helbing T, Wolf D, Anto-Michel N, Mitre LS, Ehrlich J, Orlean L, Bender I, Przewosnik A, Mauler M, Hollederer L, Moser M, Bode C, Parker MW, Peter K, Diehl P. A DARPin targeting activated Mac-1 is a novel diagnostic tool and potential anti-inflammatory agent in myocarditis, sepsis and myocardial infarction. Basic Res Cardiol 2021; 116:17. [PMID: 33721106 PMCID: PMC7960600 DOI: 10.1007/s00395-021-00849-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
The monocyte β2-integrin Mac-1 is crucial for leukocyte–endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the αM I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry. Homology modelling and docking studies defined distinct interaction sites which were verified by mutagenesis. Intravital microscopy showed reduced leukocyte–endothelium adhesion in mice treated with this DARPin. Using mouse models of sepsis, myocarditis and ischaemia/reperfusion injury, we demonstrate therapeutic anti-inflammatory effects. Finally, the activated Mac-1-specific DARPin is established as a tool to detect monocyte activation in patients receiving extra-corporeal membrane oxygenation, as well as suffering from sepsis and ST-elevation myocardial infarction. The activated Mac-1-specific DARPin F7 binds preferentially to activated monocytes, detects inflammation in critically ill patients, and inhibits monocyte and neutrophil function as an efficient new anti-inflammatory agent.
Collapse
Affiliation(s)
- Patrick M Siegel
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - István Bojti
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicole Bassler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Jessica Holien
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Ulrike Flierl
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Philipp Waggershauser
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xavier Tonnar
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Vedecnik
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constanze Lamprecht
- BIOSS Centre for Biological Signalling Studies/Synthetic Biology of Signalling Processes, University of Freiburg, Freiburg, Germany
| | - Ivana Stankova
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tian Li
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Helbing
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nathaly Anto-Michel
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucia Sol Mitre
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Ehrlich
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Orlean
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ileana Bender
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Przewosnik
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Mauler
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Hollederer
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Moser
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia. .,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia. .,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia. .,Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Philipp Diehl
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
30
|
Shannon MJ, Mace EM. Natural Killer Cell Integrins and Their Functions in Tissue Residency. Front Immunol 2021; 12:647358. [PMID: 33777044 PMCID: PMC7987804 DOI: 10.3389/fimmu.2021.647358] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane receptors associated with adhesion and migration and are often highly differentially expressed receptors amongst natural killer cell subsets in microenvironments. Tissue resident natural killer cells are frequently defined by their differential integrin expression compared to other NK cell subsets, and integrins can further localize tissue resident NK cells to tissue microenvironments. As such, integrins play important roles in both the phenotypic and functional identity of NK cell subsets. Here we review the expression of integrin subtypes on NK cells and NK cell subsets with the goal of better understanding how integrin selection can dictate tissue residency and mediate function from the nanoscale to the tissue environment.
Collapse
Affiliation(s)
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
31
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
32
|
Zhang J, Wang T, Saigal A, Johnson J, Morrisson J, Tabrizifard S, Hollingsworth SA, Eddins MJ, Mao W, O'Neill K, Garcia-Calvo M, Carballo-Jane E, Liu D, Ham T, Zhou Q, Dong W, Meng HW, Hicks J, Cai TQ, Akiyama T, Pinto S, Cheng AC, Greshock T, Marquis JC, Ren Z, Talukdar S, Shaheen HH, Handa M. Discovery of a new class of integrin antibodies for fibrosis. Sci Rep 2021; 11:2118. [PMID: 33483531 PMCID: PMC7822819 DOI: 10.1038/s41598-021-81253-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Lung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model. In the present study, we further demonstrated that MK-0429 significantly inhibits fibrosis progression in a bleomycin-induced lung injury model. In search of newer integrin inhibitors for fibrosis, we characterized monoclonal antibodies discovered using Adimab's yeast display platform. We identified several potent neutralizing integrin antibodies with unique human and mouse cross-reactivity. Among these, Ab-31 blocked the binding of multiple αv integrins to their ligands with IC50s comparable to those of MK-0429. Furthermore, both MK-0429 and Ab-31 suppressed integrin-mediated cell adhesion and latent TGFβ activation. In IPF patient lung fibroblasts, TGFβ treatment induced profound αSMA expression in phenotypic imaging assays and Ab-31 demonstrated potent in vitro activity at inhibiting αSMA expression, suggesting that the integrin antibody is able to modulate TGFβ action though mechanisms beyond the inhibition of latent TGFβ activation. Together, our results highlight the potential to develop newer integrin therapeutics for the treatment of fibrotic lung diseases.
Collapse
Affiliation(s)
- Ji Zhang
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Tao Wang
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Ashmita Saigal
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Josephine Johnson
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Jennifer Morrisson
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Sahba Tabrizifard
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Scott A Hollingsworth
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Michael J Eddins
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Wenxian Mao
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Kim O'Neill
- In Vitro Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Margarita Garcia-Calvo
- In Vitro Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Ester Carballo-Jane
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - DingGang Liu
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Taewon Ham
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Qiong Zhou
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Weifeng Dong
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Hsien-Wei Meng
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Jacqueline Hicks
- Discovery Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Tian-Quan Cai
- In Vivo Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Taro Akiyama
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Shirly Pinto
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Alan C Cheng
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Thomas Greshock
- Discovery Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - John C Marquis
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Zhao Ren
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Saswata Talukdar
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Hussam Hisham Shaheen
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Masahisa Handa
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| |
Collapse
|
33
|
Yuan Z, Wei W. RAB5A promotes the formation of filopodia in pancreatic cancer cells via the activation of cdc42 and β1-integrin. Biochem Biophys Res Commun 2021; 535:54-59. [PMID: 33341673 DOI: 10.1016/j.bbrc.2020.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Abstract
Filopodia are slender actin-rich plasma membrane protrusions that function to drive cell migration and invasion. Despite the observation of defective filopodia formation in many malignant tumors, the regulation mechanism remained unknown to date. In the present study, for the first time, we demonstrate that RAB5A, a Rab GTPase family protein, is a potent regulator of filopodia formation in pancreatic cancer cells. High expression of RAB5A was associated with filopodia formation and migration in pancreatic cancer cells. Overexpression of RAB5A promoted filopodia formation and migration in CF Pac-1 cells. In contrast, down-regulation of RAB5A expression in SW1990 cells with a high endogenous RAB5A expression level impeded the formation of filopodia. Further analysis indicated that RAB5A was required for cdc42 activation in CF Pac-1 and SW1990 cells. Moreover, to investigate the underlying mechanism by which the activation of cdc42 mediates RAB5A-induced filopodia formation, the active state of β1-integrin was examined in cells with different expression levels of RAB5A. We observed that RAB5A regulated the accumulation of the active β1-integrin. We demonstrated that down-regulation of the expression of β1-integrin strongly suppressed filopodia formation and cdc42 activation mediated by RAB5A. These results indicate the important role of RAB5A in the regulation of filopodia formation in pancreatic cancer cells, which is dependent on the activation of cdc42 and β1-integrin.
Collapse
Affiliation(s)
- Ziyan Yuan
- Experimental Animal Center, Naval Medical University, Shanghai, People's Republic of China
| | - Wei Wei
- Clinical Research Center, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
34
|
Bibli SI, Hu J, Looso M, Weigert A, Ratiu C, Wittig J, Drekolia MK, Tombor L, Randriamboavonjy V, Leisegang MS, Goymann P, Delgado Lagos F, Fisslthaler B, Zukunft S, Kyselova A, Justo AFO, Heidler J, Tsilimigras D, Brandes RP, Dimmeler S, Papapetropoulos A, Knapp S, Offermanns S, Wittig I, Nishimura SL, Sigala F, Fleming I. Mapping the Endothelial Cell S-Sulfhydrome Highlights the Crucial Role of Integrin Sulfhydration in Vascular Function. Circulation 2020; 143:935-948. [PMID: 33307764 DOI: 10.1161/circulationaha.120.051877] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and β3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on β3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the β leg. β3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between β3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect β3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Jiong Hu
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Mario Looso
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Germany (A.W.)
| | - Corina Ratiu
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Janina Wittig
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Maria Kyriaki Drekolia
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany
| | - Lukas Tombor
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Matthias S Leisegang
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Philipp Goymann
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fredy Delgado Lagos
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Beate Fisslthaler
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Sven Zukunft
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Anastasia Kyselova
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Alberto Fernando Oliveira Justo
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Juliana Heidler
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Diamantis Tsilimigras
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ralf P Brandes
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy (A.P.), National and Kapodistrian University of Athens Medical School, Greece.,Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece (A.P.)
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (S.K.), Goethe University, Frankfurt am Main, Germany
| | - Stefan Offermanns
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Department of Pharmacology (S.O.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ilka Wittig
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany
| | | | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ingrid Fleming
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| |
Collapse
|
35
|
Sani S, Messe M, Fuchs Q, Pierrevelcin M, Laquerriere P, Entz-Werle N, Reita D, Etienne-Selloum N, Bruban V, Choulier L, Martin S, Dontenwill M. Biological Relevance of RGD-Integrin Subtype-Specific Ligands in Cancer. Chembiochem 2020; 22:1151-1160. [PMID: 33140906 DOI: 10.1002/cbic.202000626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Integrins are heterodimeric transmembrane proteins able to connect cells with the micro-environment. They represent a family of receptors involved in almost all the hallmarks of cancer. Integrins recognizing the Arg-Gly-Asp (RGD) peptide in their natural extracellular matrix ligands have been particularly investigated as tumoral therapeutic targets. In the last 30 years, intense research has been dedicated to designing specific RGD-like ligands able to discriminate selectively the different RGD-recognizing integrins. Chemists' efforts have led to the proposition of modified peptide or peptidomimetic libraries to be used for tumor targeting and/or tumor imaging. Here we review, from the biological point of view, the rationale underlying the need to clearly delineate each RGD-integrin subtype by selective tools. We describe the complex roles of RGD-integrins (mainly the most studied αvβ3 and α5β1 integrins) in tumors, the steps towards selective ligands and the current usefulness of such ligands. Although the impact of integrins in cancer is well acknowledged, the biological characteristics of each integrin subtype in a specific tumor are far from being completely resolved. Selective ligands might help us to reconsider integrins as therapeutic targets in specific clinical settings.
Collapse
Affiliation(s)
- Saidu Sani
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Cancer and Diabetic Research Group, Department of Biochemistry and Molecular Biology, Faculty of Science, Federal University Ndufu-Alike Ikwo, P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Mélissa Messe
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Quentin Fuchs
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Marina Pierrevelcin
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Patrice Laquerriere
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Natacha Entz-Werle
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Pediatric Onco-Hematology Department, Pediatrics, University Hospital of Strasbourg, 1 avenue Molière, 67098, Strasbourg, France
| | - Damien Reita
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Department of Oncobiology, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, France
| | - Nelly Etienne-Selloum
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Institut du Cancer Strasbourg Europe (ICANS), Service de Pharmacie, 17 rue Albert Calmette, 67200 Strasbourg, France
| | - Véronique Bruban
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Laurence Choulier
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Sophie Martin
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Monique Dontenwill
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| |
Collapse
|
36
|
Measurement of Integrin Activation and Conformational Changes on the Cell Surface by Soluble Ligand and Antibody Binding Assays. Methods Mol Biol 2020. [PMID: 33215372 DOI: 10.1007/978-1-0716-0962-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Soluble ligand and conformation-dependent antibody binding assay of integrins on the cell surface is an effective approach to evaluate the activation status of integrins in live cells. The ligands or antibodies are usually labeled with biotin or a fluorescent dye and incubated with integrin-expressing cells in suspension. The cell-bound ligands and antibodies are then detected by flow cytometry. Here we describe the detailed protocols of soluble ligand or antibody binding assay for αIIbβ3, αVβ3, α5β1, and αLβ2 integrins that are transiently or stably expressed in the model cell lines such as HEK293 or CHO-k1 cells.
Collapse
|
37
|
Lorenzen I, Eble JA, Hanschmann EM. Thiol switches in membrane proteins - Extracellular redox regulation in cell biology. Biol Chem 2020; 402:253-269. [PMID: 33108336 DOI: 10.1515/hsz-2020-0266] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Redox-mediated signal transduction depends on the enzymatic production of second messengers such as hydrogen peroxide, nitric oxide and hydrogen sulfite, as well as specific, reversible redox modifications of cysteine-residues in proteins. So-called thiol switches induce for instance conformational changes in specific proteins that regulate cellular pathways e.g., cell metabolism, proliferation, migration, gene expression and inflammation. Reduction, oxidation and disulfide isomerization are controlled by oxidoreductases of the thioredoxin family, including thioredoxins, glutaredoxins, peroxiredoxins and protein dsisulfide isomerases. These proteins are located in different cellular compartments, interact with substrates and catalyze specific reactions. Interestingly, some of these proteins are released by cells. Their extracellular functions and generally extracellular redox control have been widely underestimated. Here, we give an insight into extracellular redox signaling, extracellular thiol switches and their regulation by secreted oxidoreductases and thiol-isomerases, a topic whose importance has been scarcely studied so far, likely due to methodological limitations. We focus on the secreted redox proteins and characterized thiol switches in the ectodomains of membrane proteins, such as integrins and the metalloprotease ADAM17, which are among the best-characterized proteins and discuss their underlying mechanisms and biological implications.
Collapse
Affiliation(s)
- Inken Lorenzen
- Centre of Biochemistry and Molecular Biology, Structural Biology, Christian-Albrecht University of Kiel, Am Botanischen Garten 1-9, D-24118Kiel, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, D-48149Münster, Germany
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Life Science Center, Merowingerplatz 1a, D-40225Düsseldorf, Germany
| |
Collapse
|
38
|
Dabelsteen S, Pallesen EMH, Marinova IN, Nielsen MI, Adamopoulou M, Rømer TB, Levann A, Andersen MM, Ye Z, Thein D, Bennett EP, Büll C, Moons SJ, Boltje T, Clausen H, Vakhrushev SY, Bagdonaite I, Wandall HH. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell 2020; 54:669-684.e7. [PMID: 32710848 PMCID: PMC7497784 DOI: 10.1016/j.devcel.2020.06.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022]
Abstract
The glycome undergoes characteristic changes during histogenesis and organogenesis, but our understanding of the importance of select glycan structures for tissue formation and homeostasis is incomplete. Here, we present a human organotypic platform that allows genetic dissection of cellular glycosylation capacities and systematic interrogation of the roles of distinct glycan types in tissue formation. We used CRISPR-Cas9 gene targeting to generate a library of 3D organotypic skin tissues that selectively differ in their capacity to produce glycan structures on the main types of N- and O-linked glycoproteins and glycolipids. This tissue library revealed distinct changes in skin formation associated with a loss of features for all tested glycoconjugates. The organotypic skin model provides phenotypic cues for the distinct functions of glycoconjugates and serves as a unique resource for further genetic dissection and identification of the specific structural features involved. The strategy is also applicable to other organotypic tissue models.
Collapse
Affiliation(s)
- Sally Dabelsteen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Oral Pathology, School of Dentistry, University of Copenhagen, Denmark
| | - Emil M H Pallesen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irina N Marinova
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias I Nielsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria Adamopoulou
- Department of Oral Pathology, School of Dentistry, University of Copenhagen, Denmark
| | - Troels B Rømer
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Asha Levann
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel M Andersen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David Thein
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Büll
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sam J Moons
- Institute for Molecules and Materials, Nijmegen 6525 AJ, the Netherlands
| | - Thomas Boltje
- Institute for Molecules and Materials, Nijmegen 6525 AJ, the Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
39
|
Sato T, Ishihara S, Marui R, Takagi J, Katagiri K. Dissection of α 4β 7 integrin regulation by Rap1 using novel conformation-specific monoclonal anti-β 7 antibodies. Sci Rep 2020; 10:13221. [PMID: 32764635 PMCID: PMC7413538 DOI: 10.1038/s41598-020-70111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/20/2020] [Indexed: 11/24/2022] Open
Abstract
Integrin activation is associated with conformational regulation. In this study, we developed a system to evaluate conformational changes in α4β7 integrin. We first inserted the PA tag into the plexin-semaphorin-integrin (PSI) domain of β7 chain, which reacted with an anti-PA tag antibody (NZ-1) in an Mn2+-dependent manner. The small GTPase Rap1 deficiency, as well as chemokine stimulation and the introduction of the active form of Rap1, Rap1V12, enhanced the binding of NZ-1 to the PA-tagged mutant integrin, and increased the binding affinity to mucosal addressing cell adhesion molecule-1 (MAdCAM-1). Furthermore, we generated two kinds of hybridomas producing monoclonal antibodies (mAbs) that recognized Mn2+-dependent epitopes of β7. Both epitopes were exposed to bind to mAbs on the cells by the introduction of Rap1V12. Although one epitope in the PSI domain of β7 was exposed on Rap1-deficienct cells, the other epitope in the hybrid domain of β7 was not. These data indicate that the conversion of Rap1-GDP to GTP exerts two distinct effects stepwise on the conformation of α4β7. The induction of colitis by Rap1-deficient CD4+ effector/memory T cells suggests that the removal of constraining effect by Rap1-GDP on α4β7 is sufficient for homing of these pathogenic T cells into colon lamina propria (LP).
Collapse
Affiliation(s)
- Tsuyoshi Sato
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Sayaka Ishihara
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ryoya Marui
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
40
|
Lakoduk AM, Kadlecova Z, Schmid SL. A functionally neutral single chain antibody to measure beta-1 integrin uptake and recycling. Traffic 2020; 21:590-602. [PMID: 32613646 PMCID: PMC7442622 DOI: 10.1111/tra.12754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Integrin‐mediated cell adhesion and signaling are critical for many physiological processes. The dynamic turnover of integrins and their associated adhesion complexes through endocytic and recycling pathways has emerged as an important mechanism for controlling cell migration and invasion in cancer. Thus, the regulation of integrin trafficking and how this may be altered by disease‐specific molecular mechanisms has generated considerable interest. However, current tools available to study integrin trafficking may cause artifacts and/or do not provide adequate kinetic information. Here, we report the generation of a functionally neutral and monovalent single chain antibody to quantitatively and qualitatively measure β1 integrin trafficking in cells. Our novel probe can be used in a variety of assays and allows for the biochemical characterization of rapid recycling of endogenous integrins. We also demonstrate its potential utility in live cell imaging, providing proof of principle to guide future integrin probe design. The dynamic turnover of integrins through endocytic trafficking pathways has emerged as a key mechanism for cell migration and invasion. Lakoduk et al. report the generation of a functionally neutral and monovalent antibody‐based probe to track and measure endogenous beta‐1 integrin uptake and fast recycling in multiple cell types. Their tool, scFvK20, serves as proof of principle inspiration for future integrin probe design.
Collapse
Affiliation(s)
- Ashley M Lakoduk
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zuzana Kadlecova
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sandra L Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
41
|
Cell matrix adhesion in cell migration. Essays Biochem 2020; 63:535-551. [PMID: 31444228 DOI: 10.1042/ebc20190012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance and wound healing. In order for cells to migrate, they must interact with their environment using adhesion receptors, such as integrins, and form specialized adhesion complexes that mediate responses to different extracellular cues. In this review, we discuss the role of integrin adhesion complexes (IACs) in cell migration, highlighting the layers of regulation that are involved, including intracellular signalling cascades, mechanosensing and reciprocal feedback to the extracellular environment. We also discuss the role of IACs in extracellular matrix remodeling and how they impact upon cell migration.
Collapse
|
42
|
Wojdyla K, Collier AJ, Fabian C, Nisi PS, Biggins L, Oxley D, Rugg-Gunn PJ. Cell-Surface Proteomics Identifies Differences in Signaling and Adhesion Protein Expression between Naive and Primed Human Pluripotent Stem Cells. Stem Cell Reports 2020; 14:972-988. [PMID: 32302559 PMCID: PMC7220956 DOI: 10.1016/j.stemcr.2020.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Naive and primed human pluripotent stem cells (hPSC) provide valuable models to study cellular and molecular developmental processes. The lack of detailed information about cell-surface protein expression in these two pluripotent cell types prevents an understanding of how the cells communicate and interact with their microenvironments. Here, we used plasma membrane profiling to directly measure cell-surface protein expression in naive and primed hPSC. This unbiased approach quantified over 1,700 plasma membrane proteins, including those involved in cell adhesion, signaling, and cell interactions. Notably, multiple cytokine receptors upstream of JAK-STAT signaling were more abundant in naive hPSC. In addition, functional experiments showed that FOLR1 and SUSD2 proteins are highly expressed at the cell surface in naive hPSC but are not required to establish human naive pluripotency. This study provides a comprehensive stem cell proteomic resource that uncovers differences in signaling pathway activity and has identified new markers to define human pluripotent states.
Collapse
Affiliation(s)
- Katarzyna Wojdyla
- Epigenetics Programme, The Babraham Institute, Cambridge, UK; Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | | | - Charlene Fabian
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Paola S Nisi
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Laura Biggins
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
43
|
Conformationally active integrin endocytosis and traffic: why, where, when and how? Biochem Soc Trans 2020; 48:83-93. [PMID: 32065228 PMCID: PMC7054750 DOI: 10.1042/bst20190309] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
Abstract
Spatiotemporal control of integrin-mediated cell adhesion to the extracellular matrix (ECM) is critical for physiological and pathological events in multicellular organisms, such as embryonic development, angiogenesis, platelet aggregation, leukocytes extravasation, and cancer cell metastatic dissemination. Regulation of integrin adhesive function and signaling relies on the modulation of both conformation and traffic. Indeed, integrins exist in a dynamic equilibrium between a bent/closed (inactive) and an extended/open (active) conformation, respectively endowed with low and high affinity for ECM ligands. Increasing evidence proves that, differently to what hypothesized in the past, detachment from the ECM and conformational inactivation are not mandatory for integrin to get endocytosed and trafficked. Specific transmembrane and cytosolic proteins involved in the control of ECM proteolytic fragment-bound active integrin internalization and recycling exist. In the complex masterplan that governs cell behavior, active integrin traffic is key to the turnover of ECM polymers and adhesion sites, the polarized secretion of endogenous ECM proteins and modifying enzymes, the propagation of motility and survival endosomal signals, and the control of cell metabolism.
Collapse
|
44
|
Anastasiou O, Hadjisavva R, Skourides PA. Mitotic cell responses to substrate topological cues are independent of the molecular nature of adhesion. Sci Signal 2020; 13:13/620/eaax9940. [PMID: 32098802 DOI: 10.1126/scisignal.aax9940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Correct selection of the cell division axis is important for cell differentiation, tissue and organ morphogenesis, and homeostasis. Both integrins, which mediate interactions with extracellular matrix (ECM) components such as fibronectin, and cadherins, which mediate interactions between cells, are implicated in the determination of spindle orientation. We found that both cadherin- and integrin-based adhesion resulted in cell divisions parallel to the attachment plane and elicited identical spindle responses to spatial adhesive cues. This suggests that adhesion topology provides purely mechanical spatial cues that are independent of the molecular nature of the interaction or signaling from adhesion complexes. We also demonstrated that cortical integrin activation was indispensable for correct spindle orientation on both cadherin and fibronectin substrates. These data suggest that spindle orientation responses to adhesion topology are primarily a result of force anisotropy on the cell cortex and show that integrins play a central role in this process that is distinct from their role in cell-ECM interactions.
Collapse
Affiliation(s)
- Ouranio Anastasiou
- Department of Biological Sciences, University of Cyprus, University Avenue 1, New Campus, Nicosia 2109, Cyprus
| | - Rania Hadjisavva
- Department of Biological Sciences, University of Cyprus, University Avenue 1, New Campus, Nicosia 2109, Cyprus
| | - Paris A Skourides
- Department of Biological Sciences, University of Cyprus, University Avenue 1, New Campus, Nicosia 2109, Cyprus.
| |
Collapse
|
45
|
Zheng Y, Leftheris K. Insights into Protein–Ligand Interactions in Integrin Complexes: Advances in Structure Determinations. J Med Chem 2020; 63:5675-5696. [DOI: 10.1021/acs.jmedchem.9b01869] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yajun Zheng
- Pliant Therapeutics, South San Francisco, California 94080, United States
| | - Katerina Leftheris
- Pliant Therapeutics, South San Francisco, California 94080, United States
| |
Collapse
|
46
|
Gallo E, Kelil A, Bayliss PE, Jeganathan A, Egorova O, Ploder L, Adams JJ, Giblin P, Sidhu SS. In situ antibody phage display yields optimal inhibitors of integrin α11/β1. MAbs 2020; 12:1717265. [PMID: 31980006 PMCID: PMC6999838 DOI: 10.1080/19420862.2020.1717265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023] Open
Abstract
Integrins are transmembrane multi-conformation receptors that mediate interactions with the extracellular matrix. In cancer, integrins influence metastasis, proliferation, and survival. Collagen-binding integrin-α11/β1, a marker of aggressive tumors that is involved in stroma-tumor crosstalk, may be an attractive target for anti-cancer therapeutic antibodies. We performed selections with phage-displayed synthetic antibody libraries for binding to either purified integrin-α11/β1 or in situ on live cells. The in-situ strategy yielded many diverse antibodies, and strikingly, most of these antibodies did not recognize purified integrin-α11/β1. Conversely, none of the antibodies selected for binding to purified integrin-α11/β1 were able to efficiently recognize native cell-surface antigen. Most importantly, only the in-situ selection yielded functional antibodies that were able to compete with collagen-I for binding to cell-surface integrin-α11/β1, and thus inhibited cell adhesion. In-depth characterization of a subset of in situ-derived clones as full-length immunoglobulins revealed high affinity cellular binding and inhibitory activities in the single-digit nanomolar range. Moreover, the antibodies showed high selectivity for integrin-α11/β1 with minimal cross-reactivity for close homologs. Taken together, our findings highlight the advantages of in-situ selections for generation of anti-integrin antibodies optimized for recognition and inhibition of native cell-surface proteins, and our work establishes general methods that could be extended to many other membrane proteins.
Collapse
Affiliation(s)
- Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Abdellali Kelil
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Peter E. Bayliss
- Northern Biologics, Inc., Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Ajitha Jeganathan
- Northern Biologics, Inc., Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Olga Egorova
- Northern Biologics, Inc., Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Lynda Ploder
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Jarret J. Adams
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Patricia Giblin
- Northern Biologics, Inc., Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Sachdev S. Sidhu
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| |
Collapse
|
47
|
A Novel α IIbβ 3 Antagonist from Snake Venom Prevents Thrombosis without Causing Bleeding. Toxins (Basel) 2019; 12:toxins12010011. [PMID: 31877725 PMCID: PMC7020592 DOI: 10.3390/toxins12010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/29/2022] Open
Abstract
Life-threatening thrombocytopenia and bleeding, common side effects of clinically available αIIbβ3 antagonists, are associated with the induction of ligand-induced integrin conformational changes and exposure of ligand-induced binding sites (LIBSs). To address this issue, we examined intrinsic mechanisms and structure–activity relationships of purified disintegrins, from Protobothrops flavoviridis venom (i.e., Trimeresurus flavoviridis), TFV-1 and TFV-3 with distinctly different pro-hemorrhagic tendencies. TFV-1 with a different αIIbβ3 binding epitope from that of TFV-3 and chimeric 7E3 Fab, i.e., Abciximab, decelerates αIIbβ3 ligation without causing a conformational change in αIIbβ3, as determined with the LIBS antibody, AP5, and the mimetic, drug-dependent antibody (DDAb), AP2, an inhibitory monoclonal antibody raised against αIIbβ3. Consistent with their different binding epitopes, a combination of TFV-1 and AP2 did not induce FcγRIIa-mediated activation of the ITAM–Syk–PLCγ2 pathway and platelet aggregation, in contrast to the clinical antithrombotics, abciximab, eptifibatide, and disintegrin TFV-3. Furthermore, TFV-1 selectively inhibits Gα13-mediated platelet aggregation without affecting talin-driven clot firmness, which is responsible for physiological hemostatic processes. At equally efficacious antithrombotic dosages, TFV-1 caused neither severe thrombocytopenia nor bleeding in FcγRIIa-transgenic mice. Likewise, it did not induce hypocoagulation in human whole blood in the rotational thromboelastometry (ROTEM) assay used in perioperative situations. In contrast, TFV-3 and eptifibatide exhibited all of these hemostatic effects. Thus, the αIIbβ3 antagonist, TFV-1, efficaciously prevents arterial thrombosis without adversely affecting hemostasis.
Collapse
|
48
|
Abstract
Pluripotent stem cells can help recreate a variety of different tissues. Stem cells are already in use in a variety of ways in the medical field but plastic surgeons have particular interest because of the constant need to produce additional tissue or mold existing tissue. More and more commercial products are being marketed with far-reaching goals and some with proven and promising results. In this article, the authors discuss the basic science behind stem cells and the theories on how they work. They then discuss some active uses of stem cells that should be understood by all plastic surgeons. The reader should then have an understanding and basis to evaluate new technologies and commercial products as they develop.
Collapse
Affiliation(s)
- Nikhil A Agrawal
- Division of Plastic Surgery, Baylor College of Medicine, Houston, Texas
| | - Dmitry Zavlin
- Institute for Reconstructive Surgery, Houston Methodist Hospital, Weill Cornell Medicine, Houston, Texas
| | - Matthew R Louis
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Edward M Reece
- Division of Plastic Surgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
49
|
Ge Y, Gao J, Jordan R, Naumann CA. Changes in Cholesterol Level Alter Integrin Sequestration in Raft-Mimicking Lipid Mixtures. Biophys J 2019; 114:158-167. [PMID: 29320683 DOI: 10.1016/j.bpj.2017.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022] Open
Abstract
The influence of cholesterol (CHOL) level on integrin sequestration in raft-mimicking lipid mixtures forming coexisting liquid-ordered (lo) and liquid-disordered (ld) lipid domains is investigated using complementary, single-molecule-sensitive, confocal detection methods. Systematic analysis of membrane protein distribution in such a model membrane environment demonstrates that variation of CHOL level has a profound influence on lo-ld sequestration of integrins, thereby exhibiting overall ld preference in the absence of ligands and lo affinity upon vitronectin addition. Accompanying photon-counting histogram analysis of integrins in the different model membrane mixtures shows that the observed changes of integrin sequestration in response to variations of membrane CHOL level are not associated with altering integrin oligomerization states. Instead, our experiments suggest that the strong CHOL dependence of integrin sequestration can be attributed to CHOL-mediated changes of lipid packing and bilayer thickness in coexisting lo and ld domains, highlighting the significance of a biophysical mechanism of CHOL-mediated regulation of integrin sequestration. We envision that this model membrane study may help clarify the influence of CHOL in integrin functionality in plasma membranes, thus providing further insight into the role of lipid heterogeneities in membrane protein distribution and function in a cellular membrane environment.
Collapse
Affiliation(s)
- Yifan Ge
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jiayun Gao
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Rainer Jordan
- Makromolekulare Chemie, TU Dresden, Dresden, Germany
| | - Christoph A Naumann
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|
50
|
Xanthis I, Souilhol C, Serbanovic-Canic J, Roddie H, Kalli AC, Fragiadaki M, Wong R, Shah DR, Askari JA, Canham L, Akhtar N, Feng S, Ridger V, Waltho J, Pinteaux E, Humphries MJ, Bryan MT, Evans PC. β1 integrin is a sensor of blood flow direction. J Cell Sci 2019; 132:jcs.229542. [PMID: 31076511 PMCID: PMC6589088 DOI: 10.1242/jcs.229542] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/13/2019] [Indexed: 12/26/2022] Open
Abstract
Endothelial cell (EC) sensing of fluid shear stress direction is a critical determinant of vascular health and disease. Unidirectional flow induces EC alignment and vascular homeostasis, whereas bidirectional flow has pathophysiological effects. ECs express several mechanoreceptors that respond to flow, but the mechanism for sensing shear stress direction is poorly understood. We determined, by using in vitro flow systems and magnetic tweezers, that β1 integrin is a key sensor of force direction because it is activated by unidirectional, but not bidirectional, shearing forces. β1 integrin activation by unidirectional force was amplified in ECs that were pre-sheared in the same direction, indicating that alignment and β1 integrin activity has a feedforward interaction, which is a hallmark of system stability. En face staining and EC-specific genetic deletion studies in the murine aorta revealed that β1 integrin is activated and is essential for EC alignment at sites of unidirectional flow but is not activated at sites of bidirectional flow. In summary, β1 integrin sensing of unidirectional force is a key mechanism for decoding blood flow mechanics to promote vascular homeostasis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ioannis Xanthis
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Hannah Roddie
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Antreas C Kalli
- Leeds Institute of Medical Research at St James's and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Raymond Wong
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, UK
| | - Dhruv R Shah
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, UK
| | - Lindsay Canham
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Nasreen Akhtar
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2TN, UK
| | - Shuang Feng
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Jonathan Waltho
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, UK
| | - Matthew T Bryan
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|