1
|
Piano V. Multitasking Proteins: Exploring Noncanonical Functions of Proteins during Mitosis. Biochemistry 2025; 64:2123-2137. [PMID: 40315343 DOI: 10.1021/acs.biochem.5c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
This review provides a comprehensive overview of how mitotic cells drive the repurposing of proteins to fulfill mitosis-specific functions. To ensure the successful completion of cell division, the cell strategically reallocates its "workforce" by assigning additional functions to available proteins. Protein repurposing occurs at multiple levels of cellular organization and involves diverse mechanisms. At the protein level, proteins may gain mitosis-specific functions through post-translational modifications. At the structural level, proteins that typically maintain cellular architecture in interphase are co-opted to participate in mitotic spindle formation, chromosome condensation, and kinetochore assembly. Furthermore, the dynamic reorganization of the nuclear envelope and other organelles relies on the temporary reassignment of enzymes, structural proteins, and motor proteins to facilitate these changes. These adaptive mechanisms underscore the remarkable versatility of the cellular proteome in responding to the stringent requirements of mitosis. By leveraging the existing proteome for dual or multiple specialized roles, cells optimize resource usage while maintaining the precision needed to preserve genomic integrity and ensure the survival of the next generation of cells.
Collapse
Affiliation(s)
- Valentina Piano
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
2
|
Abe T, Yoshimoto Y, Matsuno S, Yoshimura A, Hirota K, Seki M. TIPIN is essential for chromosome stability and cell viability in BRCA1-deficient cells. Biochem Biophys Res Commun 2025; 752:151467. [PMID: 39955949 DOI: 10.1016/j.bbrc.2025.151467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
The mutations of breast cancer type 1 susceptibility gene (BRCA1) cause hereditary breast cancer. One of the medical revolutions of cancer therapy for BRCA1-mutated breast cancer is the drug approval of Poly (ADP-ribose) polymerase (PARP) inhibitors because of the synthetic lethal interaction between BRCA1 mutation and PARP inhibition. Here, we report another synthetic lethal interaction between BRCA1 and TIMELESS interacting protein (TIPIN), the latter of which encodes a protein involved in DNA replication, DNA damage checkpoint and sister chromatid cohesion. Cells deficient for both BRCA1 and TIPIN die due to elevated chromosomal aberrations including chromosomal breaks and radial chromosomes. The synthetic lethality of TIPIN/BRCA1-deficient cells is restored by the depletion of Tumor protein p53 binding protein 1 (53BP1), which prevents homologous recombination (HR) by its restricting DNA processing. Thus, spontaneous DNA lesions in TIPIN deficient cells could be preferentially repaired by BRCA1-mediated HR pathway. The viability of TIPIN/53BP1/BRCA1 triple mutant is lost by the depletion of Ring finger protein 8 (RNF8) E3-ubiquitin ligase, implicating that RNF8-mediated sub-HR pathway may work in a complementary manner of BRCA1 and 53BP1 pathway.
Collapse
Affiliation(s)
- Takuya Abe
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Yui Yoshimoto
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Seiya Matsuno
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Akari Yoshimura
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Masayuki Seki
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
3
|
Ummarino S, Poluben L, Ebralidze AK, Autiero I, Zhang Y, Paniza T, Deshpande M, Rinaldi L, Lee JD, Bassal MA, Trinh BQ, Balk SP, Flaumenhaft R, Gerhardt J, Mirkin SM, Tenen DG, Di Ruscio A. RNAs anchoring replication complex control initiation and firing of DNA replication. RESEARCH SQUARE 2025:rs.3.rs-5723221. [PMID: 39975922 PMCID: PMC11838740 DOI: 10.21203/rs.3.rs-5723221/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Coordinated initiation of DNA replication is essential to ensure efficient and timely DNA synthesis. Yet, molecular mechanism describing how replication initiation is coordinated in eukaryotic cells is not completely understood. Herein, we present data demonstrating a novel feature of RNAs transcribed in the proximity of actively replicating gene loci. We show that RNAs aNChoring ORC1 (ANCORs) to the histone variant H2A.Z are licensors of the DNA replication process. This ANCOR-H2A.Z interaction is essential for cells to initiate duplication of their genetic material. Widespread and locus-specific perturbations of these transcripts correlate with anomalous replication patterns and a notable loss of the H2A.Z replicative marker at the origin site. Collectively, we present a previously undescribed RNA-mediated mechanism that is associated with the generation of active replication origins in eukaryotic cells. Our findings delineate a strategy to modulate the origins of replication in human cells at a local and global level, with potentially broad biomedical implications.
Collapse
Affiliation(s)
- Simone Ummarino
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
| | - Larysa Poluben
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- These two authors equally contributed to the work
| | - Alex K. Ebralidze
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
- These two authors equally contributed to the work
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, Naples, 80100, Italy
| | - Yanzhou Zhang
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
| | - Theodore Paniza
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Madhura Deshpande
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lucrezia Rinaldi
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
| | - Johnathan D. Lee
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
| | - Mahmoud A. Bassal
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
- Cancer Science Institute of Singapore, National University of Singapore, 117456, Singapore
| | | | - Steven P. Balk
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert Flaumenhaft
- Beth Israel Deaconess Medical Center, Division of Hemostasis and Thrombosis, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeannine Gerhardt
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Daniel G. Tenen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- These two authors equally contributed to the work
| | - Annalisa Di Ruscio
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
- University of Eastern Piedmont, Department of Translational Medicine, Novara, 28100, Italy
- These two authors equally contributed to the work
| |
Collapse
|
4
|
Branzei D, Bene S, Gangwani L, Szakal B. The multifaceted roles of the Ctf4 replisome hub in the maintenance of genome integrity. DNA Repair (Amst) 2024; 142:103742. [PMID: 39137555 PMCID: PMC11425796 DOI: 10.1016/j.dnarep.2024.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
At the core of cellular life lies a carefully orchestrated interplay of DNA replication, recombination, chromatin assembly, sister-chromatid cohesion and transcription. These fundamental processes, while seemingly discrete, are inextricably linked during genome replication. A set of replisome factors integrate various DNA transactions and contribute to the transient formation of sister chromatid junctions involving either the cohesin complex or DNA four-way junctions. The latter structures serve DNA damage bypass and may have additional roles in replication fork stabilization or in marking regions of replication fork blockage. Here, we will discuss these concepts based on the ability of one replisome component, Ctf4, to act as a hub and functionally link these processes during DNA replication to ensure genome maintenance.
Collapse
Affiliation(s)
- Dana Branzei
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy.
| | - Szabolcs Bene
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy
| | - Laxman Gangwani
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Barnabas Szakal
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy
| |
Collapse
|
5
|
Westhorpe R, Roske JJ, Yeeles JTP. Mechanisms controlling replication fork stalling and collapse at topoisomerase 1 cleavage complexes. Mol Cell 2024; 84:3469-3481.e7. [PMID: 39236719 PMCID: PMC7617106 DOI: 10.1016/j.molcel.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Topoisomerase 1 cleavage complexes (Top1-ccs) comprise a DNA-protein crosslink and a single-stranded DNA break that can significantly impact the DNA replication machinery (replisome). Consequently, inhibitors that trap Top1-ccs are used extensively in research and clinical settings to generate DNA replication stress, yet how the replisome responds upon collision with a Top1-cc remains obscure. By reconstituting collisions between budding yeast replisomes, assembled from purified proteins, and site-specific Top1-ccs, we have uncovered mechanisms underlying replication fork stalling and collapse. We find that stalled replication forks are surprisingly stable and that their stability is influenced by the template strand that Top1 is crosslinked to, the fork protection complex proteins Tof1-Csm3 (human TIMELESS-TIPIN), and the convergence of replication forks. Moreover, nascent-strand mapping and cryoelectron microscopy (cryo-EM) of stalled forks establishes replisome remodeling as a key factor in the initial response to Top1-ccs. These findings have important implications for the use of Top1 inhibitors in research and in the clinic.
Collapse
Affiliation(s)
- Rose Westhorpe
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Johann J Roske
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Joseph T P Yeeles
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
6
|
Coulson-Gilmer C, Littler S, Barnes B, Brady R, Anagho H, Pillay N, Dey M, Macmorland W, Bronder D, Nelson L, Tighe A, Lin WH, Morgan R, Unwin R, Nielsen M, McGrail J, Taylor S. Intrinsic PARG inhibitor sensitivity is mimicked by TIMELESS haploinsufficiency and rescued by nucleoside supplementation. NAR Cancer 2024; 6:zcae030. [PMID: 39015544 PMCID: PMC11249981 DOI: 10.1093/narcan/zcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
A subset of cancer cells are intrinsically sensitive to inhibitors targeting PARG, the poly(ADP-ribose) glycohydrolase that degrades PAR chains. Sensitivity is accompanied by persistent DNA replication stress, and can be induced by inhibition of TIMELESS, a replisome accelerator. However, the nature of the vulnerability responsible for intrinsic sensitivity remains undetermined. To understand PARG activity dependency, we analysed Timeless model systems and intrinsically sensitive ovarian cancer cells. We show that nucleoside supplementation rescues all phenotypes associated with PARG inhibitor sensitivity, including replisome speed and fork stalling, S-phase completion and mitotic entry, proliferation dynamics and clonogenic potential. Importantly nucleoside supplementation restores PARG inhibitor resistance despite the continued presence of PAR chains, indicating that sensitivity does not correlate with PAR levels. In addition, we show that inhibition of thymidylate synthase, an enzyme required for dNTP homeostasis, induces PARG-dependency. Together, these observations suggest that PARG inhibitor sensitivity reflects an inability to control replisome speed and/or maintain helicase-polymerase coupling in response to nucleotide imbalances.
Collapse
Affiliation(s)
- Camilla Coulson-Gilmer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Samantha Littler
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Rosie M Brady
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Holda A Anagho
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nisha Pillay
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Malini Dey
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - William Macmorland
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Daniel Bronder
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Wei-Hsiang Lin
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Robert D Morgan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester M20 4BX, UK
| | - Richard D Unwin
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Michael L Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanne C McGrail
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
7
|
Lovell CD, Jiwrajka N, Amerman HK, Cancro MP, Anguera MC. Xist Deletion in B Cells Results in Systemic Lupus Erythematosus Phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594175. [PMID: 38798403 PMCID: PMC11118349 DOI: 10.1101/2024.05.15.594175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease preferentially observed in females. X-linked gene expression in XX females is normalized to that of XY males by X-Chromosome Inactivation (XCI). However, B cells from female SLE patients and mouse models of SLE exhibit mislocalization of Xist RNA, a critical regulator of XCI, and aberrant expression of X-linked genes, suggesting that impairment of XCI may contribute to disease. Here, we find that a subset of female mice harboring a conditional deletion of Xis t in B cells ("Xist cKO") spontaneously develop SLE phenotypes, including expanded activated B cell subsets, disease-specific autoantibodies, and glomerulonephritis. Moreover, pristane-induced SLE-like disease is more severe in Xist cKO mice. Activated B cells from Xist cKO mice with SLE phenotypes have increased expression of proinflammatory X-linked genes implicated in SLE. Together, this work indicates that impaired XCI maintenance in B cells directly contributes to the female-bias of SLE.
Collapse
|
8
|
Rankin BD, Rankin S. The MCM2-7 Complex: Roles beyond DNA Unwinding. BIOLOGY 2024; 13:258. [PMID: 38666870 PMCID: PMC11048021 DOI: 10.3390/biology13040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The MCM2-7 complex is a hexameric protein complex that serves as a DNA helicase. It unwinds the DNA double helix during DNA replication, thereby providing the single-stranded replication template. In recent years, it has become clear that the MCM2-7 complex has additional functions that extend well beyond its role in DNA replication. Through physical and functional interactions with different pathways, it impacts other nuclear events and activities, including folding of the genome, histone inheritance, chromosome segregation, DNA damage sensing and repair, and gene transcription. Collectively, the diverse roles of the MCM2-7 complex suggest it plays a critical role in maintaining genome integrity by integrating the regulation of DNA replication with other pathways in the nucleus.
Collapse
Affiliation(s)
- Brooke D. Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susannah Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Vipat S, Moiseeva TN. The TIMELESS Roles in Genome Stability and Beyond. J Mol Biol 2024; 436:168206. [PMID: 37481157 DOI: 10.1016/j.jmb.2023.168206] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
TIMELESS protein (TIM) protects replication forks from stalling at difficult-to-replicate regions and plays an important role in DNA damage response, including checkpoint signaling, protection of stalled replication forks and DNA repair. Loss of TIM causes severe replication stress, while its overexpression is common in various types of cancer, providing protection from DNA damage and resistance to chemotherapy. Although TIM has mostly been studied for its part in replication stress response, its additional roles in supporting genome stability and a wide variety of other cellular pathways are gradually coming to light. This review discusses the diverse functions of TIM and its orthologs in healthy and cancer cells, open questions, and potential future directions.
Collapse
Affiliation(s)
- Sameera Vipat
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Tatiana N Moiseeva
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia.
| |
Collapse
|
10
|
Pellegrini L. The CMG DNA helicase and the core replisome. Curr Opin Struct Biol 2023; 81:102612. [PMID: 37244171 DOI: 10.1016/j.sbi.2023.102612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/29/2023]
Abstract
Eukaryotic DNA replication is performed by the replisome, a large and dynamic multi-protein machine endowed with the required enzymatic components for the synthesis of new DNA. Recent cryo-electron microscopy (cryoEM) analyses have revealed the conserved architecture of the core eukaryotic replisome, comprising the CMG (Cdc45-MCM-GINS) DNA helicase, the leading-strand DNA polymerase epsilon, the Timeless-Tipin heterodimer, the hub protein AND-1 and the checkpoint protein Claspin. These results bid well for arriving soon at an integrated understanding of the structural basis of semi-discontinuous DNA replication. They further set the scene for the characterisation of the mechanisms that interface DNA synthesis with concurrent processes such as DNA repair, propagation of chromatin structure and establishment of sister chromatid cohesion.
Collapse
|
11
|
Tokunaga M, Imamura T. Emerging concepts involving inhibitory and activating RNA functionalization towards the understanding of microcephaly phenotypes and brain diseases in humans. Front Cell Dev Biol 2023; 11:1168072. [PMID: 37408531 PMCID: PMC10318543 DOI: 10.3389/fcell.2023.1168072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Microcephaly is characterized as a small head circumference, and is often accompanied by developmental disorders. Several candidate risk genes for this disease have been described, and mutations in non-coding regions are occasionally found in patients with microcephaly. Various non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), SINEUPs, telomerase RNA component (TERC), and promoter-associated lncRNAs (pancRNAs) are now being characterized. These ncRNAs regulate gene expression, enzyme activity, telomere length, and chromatin structure through RNA binding proteins (RBPs)-RNA interaction. Elucidating the potential roles of ncRNA-protein coordination in microcephaly pathogenesis might contribute to its prevention or recovery. Here, we introduce several syndromes whose clinical features include microcephaly. In particular, we focus on syndromes for which ncRNAs or genes that interact with ncRNAs may play roles. We discuss the possibility that the huge ncRNA field will provide possible new therapeutic approaches for microcephaly and also reveal clues about the factors enabling the evolutionary acquisition of the human-specific "large brain."
Collapse
|
12
|
Shrestha S, Minamino M, Chen ZA, Bouchoux C, Rappsilber J, Uhlmann F. Replisome-cohesin interactions provided by the Tof1-Csm3 and Mrc1 cohesion establishment factors. Chromosoma 2023; 132:117-135. [PMID: 37166686 PMCID: PMC10247859 DOI: 10.1007/s00412-023-00797-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
The chromosomal cohesin complex establishes sister chromatid cohesion during S phase, which forms the basis for faithful segregation of DNA replication products during cell divisions. Cohesion establishment is defective in the absence of either of three non-essential Saccharomyces cerevisiae replication fork components Tof1-Csm3 and Mrc1. Here, we investigate how these conserved factors contribute to cohesion establishment. Tof1-Csm3 and Mrc1 serve known roles during DNA replication, including replication checkpoint signaling, securing replication fork speed, as well as recruiting topoisomerase I and the histone chaperone FACT. By modulating each of these functions independently, we rule out that one of these known replication roles explains the contribution of Tof1-Csm3 and Mrc1 to cohesion establishment. Instead, using purified components, we reveal direct and multipronged protein interactions of Tof1-Csm3 and Mrc1 with the cohesin complex. Our findings open the possibility that a series of physical interactions between replication fork components and cohesin facilitate successful establishment of sister chromatid cohesion during DNA replication.
Collapse
Affiliation(s)
- Sudikchya Shrestha
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Masashi Minamino
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Zhuo A Chen
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
13
|
Carney SV, Banerjee K, Mujeeb A, Zhu B, Haase S, Varela ML, Kadiyala P, Tronrud CE, Zhu Z, Mukherji D, Gorla P, Sun Y, Tagett R, Núñez FJ, Luo M, Luo W, Ljungman M, Liu Y, Xia Z, Schwendeman A, Qin T, Sartor MA, Costello JF, Cahill DP, Lowenstein PR, Castro MG. Zinc Finger MYND-Type Containing 8 (ZMYND8) Is Epigenetically Regulated in Mutant Isocitrate Dehydrogenase 1 (IDH1) Glioma to Promote Radioresistance. Clin Cancer Res 2023; 29:1763-1782. [PMID: 36692427 PMCID: PMC10159884 DOI: 10.1158/1078-0432.ccr-22-1896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/27/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Mutant isocitrate dehydrogenase 1 (mIDH1) alters the epigenetic regulation of chromatin, leading to a hypermethylation phenotype in adult glioma. This work focuses on identifying gene targets epigenetically dysregulated by mIDH1 to confer therapeutic resistance to ionizing radiation (IR). EXPERIMENTAL DESIGN We evaluated changes in the transcriptome and epigenome in a radioresistant mIDH1 patient-derived glioma cell culture (GCC) following treatment with an mIDH1-specific inhibitor, AGI-5198. We identified Zinc Finger MYND-Type Containing 8 (ZMYND8) as a potential target of mIDH1 reprogramming. We suppressed ZMYND8 expression by shRNA knockdown and genetic knockout (KO) in mIDH1 glioma cells and then assessed cellular viability to IR. We assessed the sensitivity of mIDH1 GCCS to pharmacologic inhibition of ZMYND8-interacting partners: HDAC, BRD4, and PARP. RESULTS Inhibition of mIDH1 leads to an upregulation of gene networks involved in replication stress. We found that the expression of ZMYND8, a regulator of DNA damage response, was decreased in three patient-derived mIDH1 GCCs after treatment with AGI-5198. Knockdown of ZMYND8 expression sensitized mIDH1 GCCs to radiotherapy marked by decreased cellular viability. Following IR, mIDH1 glioma cells with ZMYND8 KO exhibit significant phosphorylation of ATM and sustained γH2AX activation. ZMYND8 KO mIDH1 GCCs were further responsive to IR when treated with either BRD4 or HDAC inhibitors. PARP inhibition further enhanced the efficacy of radiotherapy in ZMYND8 KO mIDH1 glioma cells. CONCLUSIONS These findings indicate the impact of ZMYND8 in the maintenance of genomic integrity and repair of IR-induced DNA damage in mIDH1 glioma. See related commentary by Sachdev et al., p. 1648.
Collapse
Affiliation(s)
- Stephen V Carney
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anzar Mujeeb
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Brandon Zhu
- Graduate Program in Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria L Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Padma Kadiyala
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Claire E Tronrud
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Devarshi Mukherji
- Neuroscience, University of Michigan College of Literature, Science, and the Arts (LSA), Ann Arbor, Michigan
| | - Preethi Gorla
- Neuroscience, University of Michigan College of Literature, Science, and the Arts (LSA), Ann Arbor, Michigan
| | - Yilun Sun
- Department of Radiation Oncology, University Hospitals/Case Western Reserve University, Cleveland, Ohio
| | - Rebecca Tagett
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Felipe J Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maowu Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Environmental Health Science, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Yayuan Liu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
| | - Ziyun Xia
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
| | - Anna Schwendeman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Pedro R Lowenstein
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
- Biosciences Initiative in Brain Cancer, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
- Biosciences Initiative in Brain Cancer, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
14
|
Patel JA, Kim H. The TIMELESS effort for timely DNA replication and protection. Cell Mol Life Sci 2023; 80:84. [PMID: 36892674 PMCID: PMC9998586 DOI: 10.1007/s00018-023-04738-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023]
Abstract
Accurate replication of the genome is fundamental to cellular survival and tumor prevention. The DNA replication fork is vulnerable to DNA lesions and damages that impair replisome progression, and improper control over DNA replication stress inevitably causes fork stalling and collapse, a major source of genome instability that fuels tumorigenesis. The integrity of the DNA replication fork is maintained by the fork protection complex (FPC), in which TIMELESS (TIM) constitutes a key scaffold that couples the CMG helicase and replicative polymerase activities, in conjunction with its interaction with other proteins associated with the replication machinery. Loss of TIM or the FPC in general results in impaired fork progression, elevated fork stalling and breakage, and a defect in replication checkpoint activation, thus underscoring its pivotal role in protecting the integrity of both active and stalled replication forks. TIM is upregulated in multiple cancers, which may represent a replication vulnerability of cancer cells that could be exploited for new therapies. Here, we discuss recent advances on our understanding of the multifaceted roles of TIM in DNA replication and stalled fork protection, and how its complex functions are engaged in collaboration with other genome surveillance and maintenance factors.
Collapse
Affiliation(s)
- Jinal A Patel
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.
- Stony Brook Cancer Center and Renaissance School of Medicine, Stony Brook University, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.
| |
Collapse
|
15
|
Clyne CD, Kusnadi KP, Cowcher A, Morgan J, Yang J, Fuller PJ, Young MJ. Regulation of mineralocorticoid receptor activation by circadian protein TIMELESS. J Mol Endocrinol 2023; 70:JME-21-0279. [PMID: 36099062 DOI: 10.1530/jme-21-0279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023]
Abstract
The mineralocorticoid receptor (MR) is a ligand-activated transcription factor that regulates cardiorenal physiology and disease. Ligand-dependent MR transactivation involves a conformational change in the MR and recruitment of coregulatory proteins to form a unique DNA-binding complex at the hormone response element in target gene promoters. Differences in the recruitment of coregulatory proteins can promote tissue-, ligand- or gene-specific transcriptional outputs. The goal of this study was to evaluate the circadian protein TIMELESS as a selective regulator of MR transactivation. TIMELESS has an established role in cell cycle regulation and DNA repair. TIMELESS may not be central to mammalian clock function and does not bind DNA; however, RNA and protein levels oscillate over 24 h. Co-expression of TIMELESS down-regulated MR transactivation of an MR-responsive reporter in HEK293 cells, yet enhanced transactivation mediated by other steroid receptors. TIMELESS markedly inhibited MR transactivation of synthetic and native gene promoters and expression of MR target genes in H9c2 cardiac myoblasts. Immunofluorescence showed aldosterone induces colocalisation of TIMELESS and MR, although a direct interaction was not confirmed by coimmunoprecipitation. Potential regulation of circadian clock targets cryptochrome 1 and 2 by TIMELESS was not detected. However, our data suggest that these effects may involve TIMELESS coactivation of oestrogen receptor alpha (ERα). Taken together, these data suggest that TIMELESS may contribute to MR transcriptional outputs via enhancing ERα inhibitory actions on MR transactivation. Given the variable expression of TIMELESS in different cell types, these data offer new opportunities for the development of MR modulators with selective actions.
Collapse
Affiliation(s)
- Colin D Clyne
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - Kevin P Kusnadi
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Alexander Cowcher
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - James Morgan
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- University of Melbourne and Baker HDI Department of Cardiometabolic Health and Disease, Melbourne, Australia
| |
Collapse
|
16
|
Zhang Y, Yang L, Fang K, Li Q, Xu H, Ren Y, Zi J, Chen CD, Liu S. Dynamic Responses of Chromosome-Binding Protein Complexes to Meiotic Prophase I of Mouse Spermatocyte. J Proteome Res 2022; 21:2715-2726. [PMID: 36223561 DOI: 10.1021/acs.jproteome.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Meiotic prophase I (MPI) is the most important event in mammalian meiosis. The status of the chromosome-binding proteins (CBPs) and the corresponding complexes and their functions in MPI have not yet been well scrutinized. Quantitative proteomics focused on MPI-related CBPs was accomplished, in which mouse primary spermatocytes in four different subphases of MPI were collected, and chromosome-enriched proteins were extracted and quantitatively identified. According to a stringent criterion, 1136 CBPs in the MPI subphases were quantified. Looking at the dynamic patterns of CBP abundance in response to MPI progression, the patterns were broadly divided into two groups: high abundance in leptotene and zygotene or that in pachytene and diplotene. Furthermore, 152 such CBPs were regarded as 26 CBP complexes with strict filtration, in which some of these complexes were perceived to be MPI-dependent for the first time. These complexes basically belonged to four functional categories, while their dynamic abundance changes following MPI appeared; the functions of DNA replication decreased; and transcription and synapsis were activated in zygotene, pachytene, and diplotene; in contrast to the traditional prediction, condensin activity weakened in pachytene and diplotene. Profiling of protein complexes thus offered convincing evidence of the importance of CBP complexes in MPI.
Collapse
Affiliation(s)
- Yuxing Zhang
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences & Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| | | | - Kailun Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031 China
| | - Qidan Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Hongkai Xu
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Ren
- BGI-Shenzhen, Shenzhen 518083, China.,Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin Zi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
17
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
18
|
Extended DNA binding interfaces beyond the canonical SAP domain contribute to the function of replication stress regulator SDE2 at DNA replication forks. J Biol Chem 2022; 298:102268. [PMID: 35850305 PMCID: PMC9399289 DOI: 10.1016/j.jbc.2022.102268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Elevated DNA replication stress causes instability of the DNA replication fork and increased DNA mutations, which underlies tumorigenesis. The DNA replication stress regulator silencing-defective 2 (SDE2) is known to bind to TIMELESS (TIM), a protein of the fork protection complex, and enhances its stability, thereby supporting replisome activity at DNA replication forks. However, the DNA-binding activity of SDE2 is not well defined. Here, we structurally and functionally characterize a new conserved DNA-binding motif related to the SAP (SAF-A/B, Acinus, PIAS) domain in human SDE2 and establish its preference for ssDNA. Our NMR solution structure of the SDE2SAP domain reveals a helix-extended loop-helix core with the helices aligned parallel to each other, consistent with known canonical SAP folds. Notably, we have shown that the DNA interaction of this SAP domain extends beyond the core SAP domain and is augmented by two lysine residues in the C-terminal tail, which is uniquely positioned adjacent to the SAP motif and conserved in the pre-mRNA splicing factor SF3A3. Furthermore, we found that mutation in the SAP domain and extended C terminus not only disrupts ssDNA binding but also impairs TIM localization at replication forks, thus inhibiting efficient fork progression. Taken together, our results establish SDE2SAP as an essential element for SDE2 to exert its role in preserving replication fork integrity via fork protection complex regulation and highlight the structural diversity of the DNA–protein interactions achieved by a specialized DNA-binding motif.
Collapse
|
19
|
Zuilkoski CM, Skibbens RV. Integrating Sister Chromatid Cohesion Establishment to DNA Replication. Genes (Basel) 2022; 13:genes13040625. [PMID: 35456431 PMCID: PMC9032331 DOI: 10.3390/genes13040625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The intersection through which two fundamental processes meet provides a unique vantage point from which to view cellular regulation. On the one hand, DNA replication is at the heart of cell division, generating duplicate chromosomes that allow each daughter cell to inherit a complete copy of the parental genome. Among other factors, the PCNA (proliferating cell nuclear antigen) sliding clamp ensures processive DNA replication during S phase and is essential for cell viability. On the other hand, the process of chromosome segregation during M phase—an act that occurs long after DNA replication—is equally fundamental to a successful cell division. Eco1/Ctf7 ensures that chromosomes faithfully segregate during mitosis, but functions during DNA replication to activate cohesins and thereby establish cohesion between sister chromatids. To achieve this, Eco1 binds PCNA and numerous other DNA replication fork factors that include MCM helicase, Chl1 helicase, and the Rtt101-Mms1-Mms22 E3 ubiquitin ligase. Here, we review the multi-faceted coordination between cohesion establishment and DNA replication. SUMMARY STATEMENT: New findings provide important insights into the mechanisms through which DNA replication and the establishment of sister chromatid cohesion are coupled.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA;
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47401, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA;
- Correspondence: ; Tel.: +610-758-6162
| |
Collapse
|
20
|
Xian H, Li Y, Zou B, Chen Y, Yin H, Li X, Pan Y. Identification of TIMELESS and RORA as key clock molecules of non-small cell lung cancer and the comprehensive analysis. BMC Cancer 2022; 22:107. [PMID: 35078435 PMCID: PMC8788117 DOI: 10.1186/s12885-022-09203-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
Background The incidence rate of non-small cell lung cancer (NSCLC) has been increasing worldwide, and the correlation of circadian rhythm disruption with a raised risk of cancer and worse prognosis has been shown by accumulating evidences recently. On the other hand, drug resistance and the impact of tumor heterogeneity have been inevitable in NSCLC therapy. These both lead to an urgent need to identify more useful prognostic and predictive markers for NSCLC diagnosis and treatment, especially on the aspect of circadian clock genes. Methods The expression of the main clock genes in cancer was probed with TIMER and Oncomine databases. The prognostic value of key clock genes was probed systematically with the Kaplan–Meier estimate and Cox regression on samples from TCGA database. RT-qPCR was performed on patient tissue samples to further validate the results from databases. The functional enrichment analysis was performed using the “ClusterProfiler” R package, and the correlation of key clock genes with tumor mutation burden, immune checkpoint, and immune infiltration levels were also assessed using multiple algorithms including TIDE, TIMER2.0, and XCELL. Results TIMELESS was significantly upregulated in lung tissue of clinical lung cancer patients as well as TCGA and Oncomine databases, while RORA was downregulated. Multivariate Cox regression analysis indicated that TIMELESS (P = 0.004, HR = 1.21 [1.06, 1.38]) and RORA (P = 0.047, HR = 0.868 [0.755, 0.998]) has a significant correlation with overall survival in NSCLC. Genes related to TIMELESS were enriched in the cell cycle and immune system, and the function of RORA was mainly focused on oncogenic signaling pathways or glycosylation and protein activation. Also, TIMELESS was positively correlated with tumor mutation burden while RORA was negatively correlated with it. TIMELESS and RORA were also significantly correlated with immune checkpoint and immune infiltration levels in NSCLC. Additionally, TIMELESS showed a significant positive relationship with lipid metabolism. Conclusions TIMELESS and RORA were identified as key clock genes in NSCLC, and were independent prognostic factors for overall survival in NSCLC. The function of them were assessed in many aspects, indicating the strong potential of the two genes to serve as biomarkers for NSCLC progression and prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09203-1.
Collapse
|
21
|
Colangelo T, Carbone A, Mazzarelli F, Cuttano R, Dama E, Nittoli T, Albanesi J, Barisciano G, Forte N, Palumbo O, Graziano P, di Masi A, Colantuoni V, Sabatino L, Bianchi F, Mazzoccoli G. Loss of circadian gene Timeless induces EMT and tumor progression in colorectal cancer via Zeb1-dependent mechanism. Cell Death Differ 2022; 29:1552-1568. [PMID: 35034102 PMCID: PMC9345857 DOI: 10.1038/s41418-022-00935-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
The circadian gene Timeless (TIM) provides a molecular bridge between circadian and cell cycle/DNA replication regulatory systems and has been recently involved in human cancer development and progression. However, its functional role in colorectal cancer (CRC), the third leading cause of cancer-related deaths worldwide, has not been fully clarified yet. Here, the analysis of two independent CRC patient cohorts (total 1159 samples) reveals that loss of TIM expression is an unfavorable prognostic factor significantly correlated with advanced tumor stage, metastatic spreading, and microsatellite stability status. Genome-wide expression profiling, in vitro and in vivo experiments, revealed that TIM knockdown induces the activation of the epithelial-to-mesenchymal transition (EMT) program. Accordingly, the analysis of a large set of human samples showed that TIM expression inversely correlated with a previously established gene signature of canonical EMT markers (EMT score), and its ectopic silencing promotes migration, invasion, and acquisition of stem-like phenotype in CRC cells. Mechanistically, we found that loss of TIM expression unleashes ZEB1 expression that in turn drives the EMT program and enhances the aggressive behavior of CRC cells. Besides, the deranged TIM-ZEB1 axis sets off the accumulation of DNA damage and delays DNA damage recovery. Furthermore, we show that the aggressive and genetically unstable 'CMS4 colorectal cancer molecular subtype' is characterized by a lower expression of TIM and that patients with the combination of low-TIM/high-ZEB1 expression have a poorer outcome. In conclusion, our results as a whole suggest the engagement of an unedited TIM-ZEB1 axis in key pathological processes driving malignant phenotype acquisition in colorectal carcinogenesis. Thus, TIM-ZEB1 expression profiling could provide a robust prognostic biomarker in CRC patients, supporting targeted therapeutic strategies with better treatment selection and patients' outcomes.
Collapse
Affiliation(s)
- Tommaso Colangelo
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Annalucia Carbone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Viale Cappuccini snc, 71013, San Giovanni Rotondo, (FG), Italy
| | - Francesco Mazzarelli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Roberto Cuttano
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Elisa Dama
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Teresa Nittoli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Jacopo Albanesi
- Department of Sciences, Roma Tre University, Viale G. Marconi, 446, 00154, Rome, (RM), Italy
| | - Giovannina Barisciano
- Department of Sciences and Technologies, University of Sannio, Via Traiano, 3, 82100, Benevento, (BN), Italy
| | - Nicola Forte
- UOC- Patologia Clinica-Settore Anatomia Patologica, Ospedale Fatebenefratelli, Viale Principe di Napoli, 14/A, 82100, Benevento, (BN), Italy
| | - Orazio Palumbo
- Fondazione IRCCS Casa Sollievo della Sofferenza, Division of Medical Genetics, Viale Padre Pio, 7d, 71013, San Giovanni Rotondo, (FG), Italy
| | - Paolo Graziano
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, (FG), Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale G. Marconi, 446, 00154, Rome, (RM), Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Via Traiano, 3, 82100, Benevento, (BN), Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via Traiano, 3, 82100, Benevento, (BN), Italy
| | - Fabrizio Bianchi
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy.
| | - Gianluigi Mazzoccoli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Viale Cappuccini snc, 71013, San Giovanni Rotondo, (FG), Italy.
| |
Collapse
|
22
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
23
|
Jones ML, Baris Y, Taylor MRG, Yeeles JTP. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J 2021; 40:e108819. [PMID: 34694004 PMCID: PMC8634136 DOI: 10.15252/embj.2021108819] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
The human replisome is an elaborate arrangement of molecular machines responsible for accurate chromosome replication. At its heart is the CDC45-MCM-GINS (CMG) helicase, which, in addition to unwinding the parental DNA duplex, arranges many proteins including the leading-strand polymerase Pol ε, together with TIMELESS-TIPIN, CLASPIN and AND-1 that have key and varied roles in maintaining smooth replisome progression. How these proteins are coordinated in the human replisome is poorly understood. We have determined a 3.2 Å cryo-EM structure of a human replisome comprising CMG, Pol ε, TIMELESS-TIPIN, CLASPIN and AND-1 bound to replication fork DNA. The structure permits a detailed understanding of how AND-1, TIMELESS-TIPIN and Pol ε engage CMG, reveals how CLASPIN binds to multiple replisome components and identifies the position of the Pol ε catalytic domain. Furthermore, the intricate network of contacts contributed by MCM subunits and TIMELESS-TIPIN with replication fork DNA suggests a mechanism for strand separation.
Collapse
|
24
|
Liu X, Liu S, Piao C, Zhang Z, Zhang X, Jiang Y, Kong C. Non-metabolic function of MTHFD2 activates CDK2 in bladder cancer. Cancer Sci 2021; 112:4909-4919. [PMID: 34632667 PMCID: PMC8645701 DOI: 10.1111/cas.15159] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/30/2021] [Accepted: 10/03/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer is a common tumor with a high recurrence rate and high fatality rate, and its mechanism of occurrence and development remains unclear. Many proteins and metabolites reprogram at different stages of tumor development to support tumor cell growth. The moonlighting effect happens when a protein performs multiple functions simultaneously in a cell. In this study, we identified a metabolic protein, MTHFD2, which participates in the cell cycle by binding to CDK2 in bladder cancer. MTHFD2 has been shown to affect bladder cancer cell growth, which is independent of its metabolic function. We found that MTHFD2 was involved in cell cycle regulation and could encourage cell cycle progression by activating CDK2 and sequentially affecting E2F1 activation. In addition, moonlighting MTHFD2 might be regulated by the dynamics of the mitochondria. In conclusion, MTHFD2 localizes in the nucleus to perform a distinct function of catalyzing metabolic reactions. Moreover, the nuclear MTHFD2 activates CDK2 and promotes bladder cancer cell growth by modulating the cell cycle.
Collapse
Affiliation(s)
- Xi Liu
- Department of UrologyThe First Hospital of China Medical UniversityShenyangChina
| | - Shuangjie Liu
- Department of UrologyThe First Hospital of China Medical UniversityShenyangChina
| | - Chiyuan Piao
- Department of UrologyThe First Hospital of China Medical UniversityShenyangChina
| | - Zhe Zhang
- Department of UrologyThe First Hospital of China Medical UniversityShenyangChina
| | - Xiaotong Zhang
- Department of UrologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yuanjun Jiang
- Department of UrologyThe First Hospital of China Medical UniversityShenyangChina
| | - Chuize Kong
- Department of UrologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
25
|
Peake JD, Noguchi C, Lin B, Theriault A, O'Connor M, Sheth S, Tanaka K, Nakagawa H, Noguchi E. FANCD2 limits acetaldehyde-induced genomic instability during DNA replication in esophageal keratinocytes. Mol Oncol 2021; 15:3109-3124. [PMID: 34328261 PMCID: PMC8564632 DOI: 10.1002/1878-0261.13072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Individuals with Fanconi anemia (FA), a rare genetic bone marrow failure syndrome, have an increased risk of young-onset head and neck squamous cell carcinomas (SCCs) and esophageal SCC. The FA DNA repair pathway is activated upon DNA damage induced by acetaldehyde, a chief alcohol metabolite and one of the major carcinogens in humans. However, the molecular basis of acetaldehyde-induced genomic instability in SCCs of the head and neck and of the esophagus in FA remains elusive. Here, we report the effects of acetaldehyde on replication stress response in esophageal epithelial cells (keratinocytes). Acetaldehyde-exposed esophageal keratinocytes displayed accumulation of DNA damage foci consisting of 53BP1 and BRCA1. At physiologically relevant concentrations, acetaldehyde activated the ATR-Chk1 pathway, leading to S- and G2/M-phase delay with accumulation of the FA complementation group D2 protein (FANCD2) at the sites of DNA synthesis, suggesting that acetaldehyde impedes replication fork progression. Consistently, depletion of the replication fork protection protein Timeless led to elevated DNA damage upon acetaldehyde exposure. Furthermore, FANCD2 depletion exacerbated replication abnormalities, elevated DNA damage, and led to apoptotic cell death, indicating that FANCD2 prevents acetaldehyde-induced genomic instability in esophageal keratinocytes. These observations contribute to our understanding of the mechanisms that drive genomic instability in FA patients and alcohol-related carcinogenesis, thereby providing a translational implication in the development of more effective therapies for SCCs.
Collapse
Affiliation(s)
- Jasmine D. Peake
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Baicheng Lin
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Amber Theriault
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Margaret O'Connor
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Shivani Sheth
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Koji Tanaka
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Present address:
Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hiroshi Nakagawa
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Division of Digestive and Liver DiseasesDepartment of MedicineColumbia University Herbert Irving Comprehensive Cancer CenterNew YorkNYUSA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| |
Collapse
|
26
|
Kawasumi R, Abe T, Psakhye I, Miyata K, Hirota K, Branzei D. Vertebrate CTF18 and DDX11 essential function in cohesion is bypassed by preventing WAPL-mediated cohesin release. Genes Dev 2021; 35:1368-1382. [PMID: 34503989 PMCID: PMC8494208 DOI: 10.1101/gad.348581.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 01/26/2023]
Abstract
The alternative PCNA loader containing CTF18-DCC1-CTF8 facilitates sister chromatid cohesion (SCC) by poorly defined mechanisms. Here we found that in DT40 cells, CTF18 acts complementarily with the Warsaw breakage syndrome DDX11 helicase in mediating SCC and proliferation. We uncover that the lethality and cohesion defects of ctf18 ddx11 mutants are associated with reduced levels of chromatin-bound cohesin and rescued by depletion of WAPL, a cohesin-removal factor. On the contrary, high levels of ESCO1/2 acetyltransferases that acetylate cohesin to establish SCC do not rescue ctf18 ddx11 phenotypes. Notably, the tight proximity of sister centromeres and increased anaphase bridges characteristic of WAPL-depleted cells are abrogated by loss of both CTF18 and DDX11 The results reveal that vertebrate CTF18 and DDX11 collaborate to provide sufficient amounts of chromatin-loaded cohesin available for SCC generation in the presence of WAPL-mediated cohesin-unloading activity. This process modulates chromosome structure and is essential for cellular proliferation in vertebrates.
Collapse
Affiliation(s)
- Ryotaro Kawasumi
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Takuya Abe
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ivan Psakhye
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Keiji Miyata
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Dana Branzei
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| |
Collapse
|
27
|
Schuck PL, Ball LE, Stewart JA. The DNA-binding protein CST associates with the cohesin complex and promotes chromosome cohesion. J Biol Chem 2021; 297:101026. [PMID: 34339741 PMCID: PMC8390553 DOI: 10.1016/j.jbc.2021.101026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/26/2023] Open
Abstract
Sister chromatid cohesion (SCC), the pairing of sister chromatids after DNA replication until mitosis, is established by loading of the cohesin complex on newly replicated chromatids. Cohesin must then be maintained until mitosis to prevent segregation defects and aneuploidy. However, how SCC is established and maintained until mitosis remains incompletely understood, and emerging evidence suggests that replication stress may lead to premature SCC loss. Here, we report that the ssDNA-binding protein CTC1-STN1-TEN1 (CST) aids in SCC. CST primarily functions in telomere length regulation but also has known roles in replication restart and DNA repair. After depletion of CST subunits, we observed an increase in the complete loss of SCC. In addition, we determined that CST associates with the cohesin complex. Unexpectedly, we did not find evidence of altered cohesin loading or mitotic progression in the absence of CST; however, we did find that treatment with various replication inhibitors increased the association between CST and cohesin. Because replication stress was recently shown to induce SCC loss, we hypothesized that CST may be required to maintain or remodel SCC after DNA replication fork stalling. In agreement with this idea, SCC loss was greatly increased in CST-depleted cells after exogenous replication stress. Based on our findings, we propose that CST aids in the maintenance of SCC at stalled replication forks to prevent premature cohesion loss.
Collapse
Affiliation(s)
- P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
28
|
Fan Y, Köberlin MS, Ratnayeke N, Liu C, Deshpande M, Gerhardt J, Meyer T. LRR1-mediated replisome disassembly promotes DNA replication by recycling replisome components. J Cell Biol 2021; 220:212186. [PMID: 34037657 PMCID: PMC8160578 DOI: 10.1083/jcb.202009147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
After two converging DNA replication forks meet, active replisomes are disassembled and unloaded from chromatin. A key process in replisome disassembly is the unloading of CMG helicases (CDC45–MCM–GINS), which is initiated in Caenorhabditis elegans and Xenopus laevis by the E3 ubiquitin ligase CRL2LRR1. Here, we show that human cells lacking LRR1 fail to unload CMG helicases and accumulate increasing amounts of chromatin-bound replisome components as cells progress through S phase. Markedly, we demonstrate that the failure to disassemble replisomes reduces the rate of DNA replication increasingly throughout S phase by sequestering rate-limiting replisome components on chromatin and blocking their recycling. Continued binding of CMG helicases to chromatin during G2 phase blocks mitosis by activating an ATR-mediated G2/M checkpoint. Finally, we provide evidence that LRR1 is an essential gene for human cell division, suggesting that CRL2LRR1 enzyme activity is required for the proliferation of cancer cells and is thus a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yilin Fan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY
| | - Marielle S Köberlin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Nalin Ratnayeke
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY
| | - Chad Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Madhura Deshpande
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY
| | - Jeannine Gerhardt
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
29
|
Park JS, Lee ME, Jang WS, Rha KH, Lee SH, Lee J, Ham WS. The DEAD/DEAH Box Helicase, DDX11, Is Essential for the Survival of Advanced Clear Cell Renal Cell Carcinoma and Is a Determinant of PARP Inhibitor Sensitivity. Cancers (Basel) 2021; 13:cancers13112574. [PMID: 34073906 PMCID: PMC8197413 DOI: 10.3390/cancers13112574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary DDX11, a helicase involved in sister chromatid cohesion, was identified as a significant biomarker of aggressive renal cell carcinoma (RCC) in our previous studies. In this study, we evaluated the molecular pathways through which DDX11 is involved in RCC cell survival. Furthermore, we assessed the sensitivity of poly (ADP-ribose) polymerase (PARP) inhibitors, which have not been used in RCC treatment, in association with DDX11 expression. DDX11-deficient RCC inhibited RCC proliferation, caused defects in segregation, and increased apoptosis. DDX11-deficient RCC was associated with increased sensitivity to PARP inhibition. DDX11 could be a novel therapeutic and prognostic biomarker for RCC patients, and this study is the first to suggest the use of PARP inhibitors in DDX11-deficient RCC patients. Abstract Genes associated with the DEAD-box helicase DDX11 are significant biomarkers of aggressive renal cell carcinoma (RCC), but their molecular function is poorly understood. We analyzed the molecular pathways through which DDX11 is involved in RCC cell survival and poly (ADP-ribose) polymerase (PARP) inhibitor sensitivity. Immunohistochemistry and immunoblotting determined DDX11 expression in normal kidney tissues, benign renal tumors, and RCC tissues and cell lines. Quantitative polymerase chain reaction validated the downregulation of DDX11 in response to transfection with DDX11-specific small interfering RNA. Proliferation analysis and apoptosis assays were performed to determine the impact of DDX11 knockdown on RCC cells, and the relevant effects of sunitinib, olaparib, and sunitinib plus olaparib were evaluated. DDX11 was upregulated in high-grade, advanced RCC compared to low-grade, localized RCC, and DDX11 was not expressed in normal kidney tissues or benign renal tumors. DDX11 knockdown resulted in the inhibition of RCC cell proliferation, segregation defects, and rapid apoptosis. DDX11-deficient RCC cells exhibited significantly increased sensitivity to olaparib compared to sunitinib alone or sunitinib plus olaparib combination treatments. Moreover, DDX11 could determine PARP inhibitor sensitivity in RCC. DDX11 could serve as a novel therapeutic biomarker for RCC patients who are refractory to conventional targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Jee Soo Park
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (K.H.R.); (S.H.L.); (J.L.)
- Department of Urology, Sorokdo National Hospital, Goheung 59562, Korea
| | - Myung Eun Lee
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (K.H.R.); (S.H.L.); (J.L.)
| | - Won Sik Jang
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (K.H.R.); (S.H.L.); (J.L.)
| | - Koon Ho Rha
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (K.H.R.); (S.H.L.); (J.L.)
| | - Seung Hwan Lee
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (K.H.R.); (S.H.L.); (J.L.)
| | - Jongsoo Lee
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (K.H.R.); (S.H.L.); (J.L.)
| | - Won Sik Ham
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (K.H.R.); (S.H.L.); (J.L.)
- Correspondence: ; Tel.: +82-10-6242-7938; Fax: +82-2-312-2538
| |
Collapse
|
30
|
Cao M, Wang Y, Xiao Y, Zheng D, Zhi C, Xia X, Yuan X. Activation of the clock gene TIMELESS by H3k27 acetylation promotes colorectal cancer tumorigenesis by binding to Myosin-9. J Exp Clin Cancer Res 2021; 40:162. [PMID: 33971927 PMCID: PMC8108341 DOI: 10.1186/s13046-021-01936-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/03/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common tumor characterized by its high mortality. However, the underlying molecular mechanisms that drive CRC tumorigenesis are unclear. Clock genes have important roles in tumor development. In the present study, the expression and functions of clock gene TIMELESS (encoding the Timeless protein) in CRC were investigated. METHODS Immunohistochemistry, cell proliferation, migration, invasion, EMT and xenograft tumor experiments were used to prove the function of Timeless in the tumorigenesis of CRC. Immunoprecipitation, mass spectrometry, Immunofluorescence and Chromatin immunoprecipitation (ChIP) were utilized to clarify the mechanism of Timeless in regulating CRC tumorigenesis. RESULTS We found that Timeless was upregulated in CRC tissues compared with corresponding normal tissues and its expression was closely associated with the TNM stages and overall survival of CRC patients. Functional studies demonstrated that Timeless promoted the proliferation, invasion, and EMT of CRC cells in vitro and in vivo. Mechanistic investigations showed that Timeless activated the β-catenin signal pathway by binding to Myosin-9, which binds to β-catenin to induce its nuclear translocation. The upregulation of Timeless was attributed to CREB-binding protein (CBP)/p300-mediated H3K27 acetylation of the promoter region of Timeless. CONCLUSION Timeless regulates the tumorigenesis of CRC by binding to and regulating myosin-9, suggesting Timeless might be a potential prognostic biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Meng Cao
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yi Wang
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Xuehai Building, Rm D509, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Yijing Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Dandan Zheng
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Xuehai Building, Rm D509, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Chunchun Zhi
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Xin Xia
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Xuehai Building, Rm D509, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Xiaoqin Yuan
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Xuehai Building, Rm D509, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
31
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
32
|
Boavida A, Santos D, Mahtab M, Pisani FM. Functional Coupling between DNA Replication and Sister Chromatid Cohesion Establishment. Int J Mol Sci 2021; 22:2810. [PMID: 33802105 PMCID: PMC8001024 DOI: 10.3390/ijms22062810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022] Open
Abstract
Several lines of evidence suggest the existence in the eukaryotic cells of a tight, yet largely unexplored, connection between DNA replication and sister chromatid cohesion. Tethering of newly duplicated chromatids is mediated by cohesin, an evolutionarily conserved hetero-tetrameric protein complex that has a ring-like structure and is believed to encircle DNA. Cohesin is loaded onto chromatin in telophase/G1 and converted into a cohesive state during the subsequent S phase, a process known as cohesion establishment. Many studies have revealed that down-regulation of a number of DNA replication factors gives rise to chromosomal cohesion defects, suggesting that they play critical roles in cohesion establishment. Conversely, loss of cohesin subunits (and/or regulators) has been found to alter DNA replication fork dynamics. A critical step of the cohesion establishment process consists in cohesin acetylation, a modification accomplished by dedicated acetyltransferases that operate at the replication forks. Defects in cohesion establishment give rise to chromosome mis-segregation and aneuploidy, phenotypes frequently observed in pre-cancerous and cancerous cells. Herein, we will review our present knowledge of the molecular mechanisms underlying the functional link between DNA replication and cohesion establishment, a phenomenon that is unique to the eukaryotic organisms.
Collapse
Affiliation(s)
- Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (A.B.); (D.S.); (M.M.)
| | - Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (A.B.); (D.S.); (M.M.)
| | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (A.B.); (D.S.); (M.M.)
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Francesca M. Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (A.B.); (D.S.); (M.M.)
| |
Collapse
|
33
|
Bottega R, Ravera S, Napolitano LMR, Chiappetta V, Zini N, Crescenzi B, Arniani S, Faleschini M, Cortone G, Faletra F, Medagli B, Sirchia F, Moretti M, de Lange J, Cappelli E, Mecucci C, Onesti S, Pisani FM, Savoia A. Genomic integrity and mitochondrial metabolism defects in Warsaw syndrome cells: a comparison with Fanconi anemia. J Cell Physiol 2021; 236:5664-5675. [PMID: 33432587 DOI: 10.1002/jcp.30265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
Warsaw breakage syndrome (WABS), is caused by biallelic mutations of DDX11, a gene coding a DNA helicase. We have recently reported two affected sisters, compound heterozygous for a missense (p.Leu836Pro) and a frameshift (p.Lys303Glufs*22) variant. By investigating the pathogenic mechanism, we demonstrate the inability of the DDX11 p.Leu836Pro mutant to unwind forked DNA substrates, while retaining DNA binding activity. We observed the accumulation of patient-derived cells at the G2/M phase and increased chromosomal fragmentation after mitomycin C treatment. The phenotype partially overlaps with features of the Fanconi anemia cells, which shows not only genomic instability but also defective mitochondria. This prompted us to examine mitochondrial functionality in WABS cells and revealed an altered aerobic metabolism. This opens the door to the further elucidation of the molecular and cellular basis of an impaired mitochondrial phenotype and sheds light on this fundamental process in cell physiology and the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Roberta Bottega
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Viviana Chiappetta
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Nicoletta Zini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Barbara Crescenzi
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Silvia Arniani
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Cortone
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy.,International School for Advanced Studies (SISSA), Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Barbara Medagli
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Fabio Sirchia
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Martina Moretti
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Job de Lange
- Amsterdam UMC, Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Enrico Cappelli
- UO Ematologia, IRCCS Istituto Giannina Gaslini, Genova, Italy, Genova, Italy
| | - Cristina Mecucci
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Anna Savoia
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
34
|
Rageul J, Park JJ, Zeng PP, Lee EA, Yang J, Hwang S, Lo N, Weinheimer AS, Schärer OD, Yeo JE, Kim H. SDE2 integrates into the TIMELESS-TIPIN complex to protect stalled replication forks. Nat Commun 2020; 11:5495. [PMID: 33127907 PMCID: PMC7603486 DOI: 10.1038/s41467-020-19162-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023] Open
Abstract
Protecting replication fork integrity during DNA replication is essential for maintaining genome stability. Here, we report that SDE2, a PCNA-associated protein, plays a key role in maintaining active replication and counteracting replication stress by regulating the replication fork protection complex (FPC). SDE2 directly interacts with the FPC component TIMELESS (TIM) and enhances its stability, thereby aiding TIM localization to replication forks and the coordination of replisome progression. Like TIM deficiency, knockdown of SDE2 leads to impaired fork progression and stalled fork recovery, along with a failure to activate CHK1 phosphorylation. Moreover, loss of SDE2 or TIM results in an excessive MRE11-dependent degradation of reversed forks. Together, our study uncovers an essential role for SDE2 in maintaining genomic integrity by stabilizing the FPC and describes a new role for TIM in protecting stalled replication forks. We propose that TIM-mediated fork protection may represent a way to cooperate with BRCA-dependent fork stabilization. The fork protection complex (FPC), including the proteins TIMELESS and TIPIN, stabilizes the replisome to ensure unperturbed fork progression during DNA replication. Here the authors reveal that that SDE2, a PCNA-associated protein, plays an important role in maintaining active replication and protecting stalled forks by regulating the replication fork protection complex (FPC).
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Jennifer J Park
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Ping Ping Zeng
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Eun-A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Jihyeon Yang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Natalie Lo
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Alexandra S Weinheimer
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA. .,Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, 11794, USA.
| |
Collapse
|
35
|
Lerner LK, Holzer S, Kilkenny ML, Šviković S, Murat P, Schiavone D, Eldridge CB, Bittleston A, Maman JD, Branzei D, Stott K, Pellegrini L, Sale JE. Timeless couples G-quadruplex detection with processing by DDX11 helicase during DNA replication. EMBO J 2020; 39:e104185. [PMID: 32705708 PMCID: PMC7506991 DOI: 10.15252/embj.2019104185] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Regions of the genome with the potential to form secondary DNA structures pose a frequent and significant impediment to DNA replication and must be actively managed in order to preserve genetic and epigenetic integrity. How the replisome detects and responds to secondary structures is poorly understood. Here, we show that a core component of the fork protection complex in the eukaryotic replisome, Timeless, harbours in its C-terminal region a previously unappreciated DNA-binding domain that exhibits specific binding to G-quadruplex (G4) DNA structures. We show that this domain contributes to maintaining processive replication through G4-forming sequences, and exhibits partial redundancy with an adjacent PARP-binding domain. Further, this function of Timeless requires interaction with and activity of the helicase DDX11. Loss of both Timeless and DDX11 causes epigenetic instability at G4-forming sequences and DNA damage. Our findings indicate that Timeless contributes to the ability of the replisome to sense replication-hindering G4 formation and ensures the prompt resolution of these structures by DDX11 to maintain processive DNA synthesis.
Collapse
Affiliation(s)
- Leticia K Lerner
- MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
Centre de Recherche des CordeliersCell Death and Drug Resistance in Hematological Disorders TeamINSERM UMRS 1138Sorbonne UniversitéParisFrance
| | - Sandro Holzer
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | | | | | | | | | | | - Joseph D Maman
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Dana Branzei
- IFOMFondazione Italiana per la Ricerca sul CancroInstitute of Molecular OncologyMilanItaly
| | - Katherine Stott
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Luca Pellegrini
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
36
|
van Schie JJM, Faramarz A, Balk JA, Stewart GS, Cantelli E, Oostra AB, Rooimans MA, Parish JL, de Almeida Estéves C, Dumic K, Barisic I, Diderich KEM, van Slegtenhorst MA, Mahtab M, Pisani FM, Te Riele H, Ameziane N, Wolthuis RMF, de Lange J. Warsaw Breakage Syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion. Nat Commun 2020; 11:4287. [PMID: 32855419 PMCID: PMC7452896 DOI: 10.1038/s41467-020-18066-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/30/2020] [Indexed: 02/01/2023] Open
Abstract
Warsaw Breakage Syndrome (WABS) is a rare disorder related to cohesinopathies and Fanconi anemia, caused by bi-allelic mutations in DDX11. Here, we report multiple compound heterozygous WABS cases, each displaying destabilized DDX11 protein and residual DDX11 function at the cellular level. Patient-derived cell lines exhibit sensitivity to topoisomerase and PARP inhibitors, defective sister chromatid cohesion and reduced DNA replication fork speed. Deleting DDX11 in RPE1-TERT cells inhibits proliferation and survival in a TP53-dependent manner and causes chromosome breaks and cohesion defects, independent of the expressed pseudogene DDX12p. Importantly, G-quadruplex (G4) stabilizing compounds induce chromosome breaks and cohesion defects which are strongly aggravated by inactivation of DDX11 but not FANCJ. The DNA helicase domain of DDX11 is essential for sister chromatid cohesion and resistance to G4 stabilizers. We propose that DDX11 is a DNA helicase protecting against G4 induced double-stranded breaks and concomitant loss of cohesion, possibly at DNA replication forks.
Collapse
Affiliation(s)
- Janne J M van Schie
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Atiq Faramarz
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Jesper A Balk
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Erika Cantelli
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, The Netherlands
| | - Anneke B Oostra
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Martin A Rooimans
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Joanna L Parish
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Katja Dumic
- Department of Pediatric Endocrinology and Diabetes, University Hospital Centre Zagreb, University of Zagreb Medical School, Zagreb, Croatia
| | - Ingeborg Barisic
- Children's Hospital Zagreb, Center of Excellence for Reproductive and Regenerative Medicine, Medical School University of Zagreb, Zagreb, Croatia
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Hein Te Riele
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, The Netherlands
| | - Najim Ameziane
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
- Centogene, Am Strande 7, 18055, Rostock, Germany
| | - Rob M F Wolthuis
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands.
| | - Job de Lange
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands.
| |
Collapse
|
37
|
Abstract
Circadian clocks are cell-autonomous self-sustaining oscillators that allow organisms to anticipate environmental changes throughout the solar day and persist in nearly every cell examined. Environmental or genetic disruption of circadian rhythms increases the risk of several types of cancer, but the underlying mechanisms are not well understood. Here, we discuss evidence connecting circadian rhythms-with emphasis on the cryptochrome proteins (CRY1/2)-to cancer through in vivo models, mechanisms involving known tumor suppressors and oncogenes, chemotherapeutic efficacy, and human cancer risk.
Collapse
Affiliation(s)
- Alanna B Chan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Katja A Lamia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
38
|
A Genome-Wide Screen for Genes Affecting Spontaneous Direct-Repeat Recombination in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:1853-1867. [PMID: 32265288 PMCID: PMC7263696 DOI: 10.1534/g3.120.401137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homologous recombination is an important mechanism for genome integrity maintenance, and several homologous recombination genes are mutated in various cancers and cancer-prone syndromes. However, since in some cases homologous recombination can lead to mutagenic outcomes, this pathway must be tightly regulated, and mitotic hyper-recombination is a hallmark of genomic instability. We performed two screens in Saccharomyces cerevisiae for genes that, when deleted, cause hyper-recombination between direct repeats. One was performed with the classical patch and replica-plating method. The other was performed with a high-throughput replica-pinning technique that was designed to detect low-frequency events. This approach allowed us to validate the high-throughput replica-pinning methodology independently of the replicative aging context in which it was developed. Furthermore, by combining the two approaches, we were able to identify and validate 35 genes whose deletion causes elevated spontaneous direct-repeat recombination. Among these are mismatch repair genes, the Sgs1-Top3-Rmi1 complex, the RNase H2 complex, genes involved in the oxidative stress response, and a number of other DNA replication, repair and recombination genes. Since several of our hits are evolutionarily conserved, and repeated elements constitute a significant fraction of mammalian genomes, our work might be relevant for understanding genome integrity maintenance in humans.
Collapse
|
39
|
G2G: A web-server for the prediction of human synthetic lethal interactions. Comput Struct Biotechnol J 2020; 18:1028-1031. [PMID: 32419903 PMCID: PMC7215103 DOI: 10.1016/j.csbj.2020.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/04/2022] Open
Abstract
Genetic interactions (GIs) are fundamental to our understanding of biological processes in the cell. While GIs have been systematically mapped in yeast, there is scarce information about them in humans. Recently, we have suggested a state-of-the-art hierarchical method that leverages gene ontology information for predicting GIs in yeast. Here, we adapt this method and apply it for the first time to predict GIs in human. We introduce a web service called G2G for this task that is available at http://bnet.cs.tau.ac.il/g2g/.
Collapse
|
40
|
Chakraborty A, Aziz F, Roh E, Le LTM, Dey R, Zhang T, Rathore MG, Biswas AS, Bode AM, Dong Z. Knock-down of the TIM/TIPIN complex promotes apoptosis in melanoma cells. Oncotarget 2020; 11:1846-1861. [PMID: 32499870 PMCID: PMC7244016 DOI: 10.18632/oncotarget.27572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/10/2020] [Indexed: 11/25/2022] Open
Abstract
The Timeless (TIM) and it's interacting partner TIPIN protein complex is well known for its role in replication checkpoints and normal DNA replication processes. Recent studies revealed the involvement of TIM and TIPIN in human malignancies; however, no evidence is available regarding the expression of the TIM/TIPIN protein complex or its potential role in melanoma. Therefore, we investigated the role of this complex in melanoma. To assess the role of the TIM/TIPIN complex in melanoma, we analyzed TIM/TIPIN expression data from the publicly accessible TCGA online database, Western blot analysis, and RT-qPCR in a panel of melanoma cell lines. Lentivirus-mediated TIM/TIPIN knockdown in A375 melanoma cells was used to examine proliferation, colony formation, and apoptosis. A xenograft tumor formation assay was also performed. The TIM/TIPIN complex is frequently overexpressed in melanoma cells compared to normal melanocytes. We also discovered that the overexpression of TIM and TIPIN was significantly associated with poorer prognosis of melanoma patients. Furthermore, we observed that shRNA-mediated knockdown of TIM and TIPIN reduced cell viability and proliferation due to the induction of apoptosis and increased levels of γH2AX, a marker of DNA damage. In a xenograft tumor nude mouse model, shRNA-knockdown of TIM/TIPIN significantly reduced tumor growth. Our results suggest that the TIM/TIPIN complex plays an important role in tumorigenesis of melanoma, which might reveal novel approaches for the development of new melanoma therapies. Our studies also provide a beginning structural basis for understanding the assembly of the TIM/TIPIN complex. Further mechanistic investigations are needed to determine the complex’s potential as a biomarker of melanoma susceptibility. Targeting TIM/TIPIN might be a potential therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Abhijit Chakraborty
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,Immunology, Allergy and Rheumatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Faisal Aziz
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Eunmiri Roh
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Le Thi My Le
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Raja Dey
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Moeez G Rathore
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Aalekhya Sharma Biswas
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,Pediatric Gastroenterology and Liver Center, Baylor College of Medicine, Houston, Texas, Houston, TX 77030, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,College of Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| |
Collapse
|
41
|
Loss of ISWI ATPase SMARCA5 (SNF2H) in Acute Myeloid Leukemia Cells Inhibits Proliferation and Chromatid Cohesion. Int J Mol Sci 2020; 21:ijms21062073. [PMID: 32197313 PMCID: PMC7139293 DOI: 10.3390/ijms21062073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 01/27/2023] Open
Abstract
ISWI chromatin remodeling ATPase SMARCA5 (SNF2H) is a well-known factor for its role in regulation of DNA access via nucleosome sliding and assembly. SMARCA5 transcriptionally inhibits the myeloid master regulator PU.1. Upregulation of SMARCA5 was previously observed in CD34+ hematopoietic progenitors of acute myeloid leukemia (AML) patients. Since high levels of SMARCA5 are necessary for intensive cell proliferation and cell cycle progression of developing hematopoietic stem and progenitor cells in mice, we reasoned that removal of SMARCA5 enzymatic activity could affect the cycling or undifferentiated state of leukemic progenitor-like clones. Indeed, we observed that CRISPR/cas9-mediated SMARCA5 knockout in AML cell lines (S5KO) inhibited the cell cycle progression. We also observed that the SMARCA5 deletion induced karyorrhexis and nuclear budding as well as increased the ploidy, indicating its role in mitotic division of AML cells. The cytogenetic analysis of S5KO cells revealed the premature chromatid separation. We conclude that deleting SMARCA5 in AML blocks leukemic proliferation and chromatid cohesion.
Collapse
|
42
|
Simon AK, Kummer S, Wild S, Lezaja A, Teloni F, Jozwiakowski SK, Altmeyer M, Gari K. The iron-sulfur helicase DDX11 promotes the generation of single-stranded DNA for CHK1 activation. Life Sci Alliance 2020; 3:3/3/e201900547. [PMID: 32071282 PMCID: PMC7032568 DOI: 10.26508/lsa.201900547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
The iron–sulfur cluster helicase DDX11 promotes the generation of ssDNA and the phosphorylation of CHK1 at serine-345, possibly by unwinding replication-dependent DNA secondary structures. The iron–sulfur (FeS) cluster helicase DDX11 is associated with a human disorder termed Warsaw Breakage Syndrome. Interestingly, one disease-associated mutation affects the highly conserved arginine-263 in the FeS cluster-binding motif. Here, we demonstrate that the FeS cluster in DDX11 is required for DNA binding, ATP hydrolysis, and DNA helicase activity, and that arginine-263 affects FeS cluster binding, most likely because of its positive charge. We further show that DDX11 interacts with the replication factors DNA polymerase delta and WDHD1. In vitro, DDX11 can remove DNA obstacles ahead of Pol δ in an ATPase- and FeS domain-dependent manner, and hence generate single-stranded DNA. Accordingly, depletion of DDX11 causes reduced levels of single-stranded DNA, a reduction of chromatin-bound replication protein A, and impaired CHK1 phosphorylation at serine-345. Taken together, we propose that DDX11 plays a role in dismantling secondary structures during DNA replication, thereby promoting CHK1 activation.
Collapse
Affiliation(s)
- Anna K Simon
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Sandra Kummer
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Sebastian Wild
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kerstin Gari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Physiological and Pathological Roles of RAD52 at DNA Replication Forks. Cancers (Basel) 2020; 12:cancers12020402. [PMID: 32050645 PMCID: PMC7072239 DOI: 10.3390/cancers12020402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding basic molecular mechanisms underlying the biology of cancer cells is of outmost importance for identification of novel therapeutic targets and biomarkers for patient stratification and better therapy selection. One of these mechanisms, the response to replication stress, fuels cancer genomic instability. It is also an Achille’s heel of cancer. Thus, identification of pathways used by the cancer cells to respond to replication-stress may assist in the identification of new biomarkers and discovery of new therapeutic targets. Alternative mechanisms that act at perturbed DNA replication forks and involve fork degradation by nucleases emerged as crucial for sensitivity of cancer cells to chemotherapeutics agents inducing replication stress. Despite its important role in homologous recombination and recombinational repair of DNA double strand breaks in lower eukaryotes, RAD52 protein has been considered dispensable in human cells and the full range of its cellular functions remained unclear. Very recently, however, human RAD52 emerged as an important player in multiple aspects of replication fork metabolism under physiological and pathological conditions. In this review, we describe recent advances on RAD52’s key functions at stalled or collapsed DNA replication forks, in particular, the unexpected role of RAD52 as a gatekeeper, which prevents unscheduled processing of DNA. Last, we will discuss how these functions can be exploited using specific inhibitors in targeted therapy or for an informed therapy selection.
Collapse
|
44
|
Neilsen BK, Frodyma DE, McCall JL, Fisher KW, Lewis RE. ERK-mediated TIMELESS expression suppresses G2/M arrest in colon cancer cells. PLoS One 2019; 14:e0209224. [PMID: 30629587 PMCID: PMC6328106 DOI: 10.1371/journal.pone.0209224] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
The cell cycle is under circadian regulation. Oncogenes can dysregulate circadian-regulated genes to disrupt the cell cycle, promoting tumor cell proliferation. As a regulator of G2/M arrest in response to DNA damage, the circadian gene Timeless Circadian Clock (TIMELESS) coordinates this connection and is a potential locus for oncogenic manipulation. TIMELESS expression was evaluated using RNASeq data from TCGA and by RT-qPCR and western blot analysis in a panel of colon cancer cell lines. TIMELESS expression following ERK inhibition was examined via western blot. Cell metabolic capacity, propidium iodide, and CFSE staining were used to evaluate the effect of TIMELESS depletion on colon cancer cell survival and proliferation. Cell metabolic capacity following TIMELESS depletion in combination with Wee1 or CHK1 inhibition was assessed. TIMELESS is overexpressed in cancer and required for increased cancer cell proliferation. ERK activation promotes TIMELESS expression. TIMELESS depletion increases γH2AX, a marker of DNA damage, and triggers G2/M arrest via increased CHK1 and CDK1 phosphorylation. TIMELESS depletion in combination with Wee1 or CHK1 inhibition causes an additive decrease in cancer cell metabolic capacity with limited effects in non-transformed human colon epithelial cells. The data show that ERK activation contributes to the overexpression of TIMELESS in cancer. Depletion of TIMELESS increases γH2AX and causes G2/M arrest, limiting cell proliferation. These results demonstrate a role for TIMELESS in cancer and encourage further examination of the link between circadian rhythm dysregulation and cancer cell proliferation.
Collapse
Affiliation(s)
- Beth K. Neilsen
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Danielle E. Frodyma
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jamie L. McCall
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kurt W. Fisher
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert E. Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
45
|
Pisani FM, Napolitano E, Napolitano LMR, Onesti S. Molecular and Cellular Functions of the Warsaw Breakage Syndrome DNA Helicase DDX11. Genes (Basel) 2018; 9:genes9110564. [PMID: 30469382 PMCID: PMC6266566 DOI: 10.3390/genes9110564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022] Open
Abstract
DDX11/ChlR1 (Chl1 in yeast) is a DNA helicase involved in sister chromatid cohesion and in DNA repair pathways. The protein belongs to the family of the iron–sulphur cluster containing DNA helicases, whose deficiencies have been linked to a number of diseases affecting genome stability. Mutations of human DDX11 are indeed associated with the rare genetic disorder named Warsaw breakage syndrome, showing both chromosomal breakages and chromatid cohesion defects. Moreover, growing evidence of a potential role in oncogenesis further emphasizes the clinical relevance of DDX11. Here, we illustrate the biochemical and structural features of DDX11 and how it cooperates with multiple protein partners in the cell, acting at the interface of DNA replication/repair/recombination and sister chromatid cohesion to preserve genome stability.
Collapse
Affiliation(s)
- Francesca M Pisani
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Ettore Napolitano
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Luisa M R Napolitano
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| | - Silvia Onesti
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
46
|
Cortone G, Zheng G, Pensieri P, Chiappetta V, Tatè R, Malacaria E, Pichierri P, Yu H, Pisani FM. Interaction of the Warsaw breakage syndrome DNA helicase DDX11 with the replication fork-protection factor Timeless promotes sister chromatid cohesion. PLoS Genet 2018; 14:e1007622. [PMID: 30303954 PMCID: PMC6179184 DOI: 10.1371/journal.pgen.1007622] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
Establishment of sister chromatid cohesion is coupled to DNA replication, but the underlying molecular mechanisms are incompletely understood. DDX11 (also named ChlR1) is a super-family 2 Fe-S cluster-containing DNA helicase implicated in Warsaw breakage syndrome (WABS). Herein, we examined the role of DDX11 in cohesion establishment in human cells. We demonstrated that DDX11 interacts with Timeless, a component of the replication fork-protection complex, through a conserved peptide motif. The DDX11-Timeless interaction is critical for sister chromatid cohesion in interphase and mitosis. Immunofluorescence studies further revealed that cohesin association with chromatin requires DDX11. Finally, we demonstrated that DDX11 localises at nascent DNA by SIRF analysis. Moreover, we found that DDX11 promotes cohesin binding to the DNA replication forks in concert with Timeless and that recombinant purified cohesin interacts with DDX11 in vitro. Collectively, our results establish a critical role for the DDX11-Timeless interaction in coordinating DNA replication with sister chromatid cohesion, and have important implications for understanding the molecular basis of WABS.
Collapse
Affiliation(s)
- Giuseppe Cortone
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
| | - Ge Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Pasquale Pensieri
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
| | - Viviana Chiappetta
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
| | - Rosarita Tatè
- Istituto di Genetica e Biofisica "Adriano Buzzati Traverso", Consiglio Nazionale Ricerche, Naples, Italy
| | - Eva Malacaria
- Istituto Superiore di Sanità, Dipartimento Ambiente e Salute, Rome, Italy
| | - Pietro Pichierri
- Istituto Superiore di Sanità, Dipartimento Ambiente e Salute, Rome, Italy
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail: (HY); (FMP)
| | - Francesca M. Pisani
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
- * E-mail: (HY); (FMP)
| |
Collapse
|
47
|
Moiseeva TN, Bakkenist CJ. Regulation of the initiation of DNA replication in human cells. DNA Repair (Amst) 2018; 72:99-106. [PMID: 30266203 DOI: 10.1016/j.dnarep.2018.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
The origin of species would not have been possible without high fidelity DNA replication and complex genomes evolved with mechanisms that control the initiation of DNA replication at multiple origins on multiple chromosomes such that the genome is duplicated once and only once. The mechanisms that control the assembly and activation of the replicative helicase and the initiation of DNA replication in yeast and Xenopus egg extract systems have been identified and reviewed [1,2]. The goal of this review is to organize currently available data on the mechanisms that control the initiation of DNA replication in human cells.
Collapse
Affiliation(s)
- Tatiana N Moiseeva
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Christopher J Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Shen X, Li M, Mao Z, Yu W. Loss of circadian protein TIMELESS accelerates the progression of cellular senescence. Biochem Biophys Res Commun 2018; 503:2784-2791. [DOI: 10.1016/j.bbrc.2018.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 12/22/2022]
|
49
|
Ivanov MP, Ladurner R, Poser I, Beveridge R, Rampler E, Hudecz O, Novatchkova M, Hériché JK, Wutz G, van der Lelij P, Kreidl E, Hutchins JR, Axelsson-Ekker H, Ellenberg J, Hyman AA, Mechtler K, Peters JM. The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. EMBO J 2018; 37:e97150. [PMID: 29930102 PMCID: PMC6068434 DOI: 10.15252/embj.201797150] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2-7 subcomplex of the replicative Cdc45-MCM-GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively.
Collapse
Affiliation(s)
| | - Rene Ladurner
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Evelyn Rampler
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Otto Hudecz
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | | | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | - Jan Ellenberg
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna, Austria
- Institute of Molecular Biotechnology, Vienna, Austria
| | | |
Collapse
|
50
|
Zheng G, Kanchwala M, Xing C, Yu H. MCM2-7-dependent cohesin loading during S phase promotes sister-chromatid cohesion. eLife 2018; 7:e33920. [PMID: 29611806 PMCID: PMC5897099 DOI: 10.7554/elife.33920] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/31/2018] [Indexed: 01/13/2023] Open
Abstract
DNA replication transforms cohesin rings dynamically associated with chromatin into the cohesive form to establish sister-chromatid cohesion. Here, we show that, in human cells, cohesin loading onto chromosomes during early S phase requires the replicative helicase MCM2-7 and the kinase DDK. Cohesin and its loader SCC2/4 (NIPBL/MAU2 in humans) associate with DDK and phosphorylated MCM2-7. This binding does not require MCM2-7 activation by CDC45 and GINS, but its persistence on activated MCM2-7 requires fork-stabilizing replisome components. Inactivation of these replisome components impairs cohesin loading and causes interphase cohesion defects. Interfering with Okazaki fragment processing or nucleosome assembly does not impact cohesion. Therefore, MCM2-7-coupled cohesin loading promotes cohesion establishment, which occurs without Okazaki fragment maturation. We propose that the cohesin-loader complex bound to MCM2-7 is mobilized upon helicase activation, transiently held by the replisome, and deposited behind the replication fork to encircle sister chromatids and establish cohesion.
Collapse
Affiliation(s)
- Ge Zheng
- Howard Hughes Medical Institute, Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Mohammed Kanchwala
- Bioinformatics Lab, Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Chao Xing
- Bioinformatics Lab, Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasUnited States
- Department of Clinical SciencesUniversity of Texas Southwestern Medical CenterDallasUnited States
- Department of BioinformaticsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|