1
|
Wass SY, Sun H, Tchou G, Liu N, Van Wagoner DR, Chung MK, Barnard J, Smith JD. Transcriptomic Insights into the Atrial Fibrillation Susceptibility Locus near the MYOZ1 and SYNPO2L Genes. Int J Mol Sci 2024; 25:10309. [PMID: 39408638 PMCID: PMC11477451 DOI: 10.3390/ijms251910309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Genome-wide association studies have identified a locus on chromosome 10q22, where many co-inherited single nucleotide polymorphisms (SNPs) are associated with atrial fibrillation (AF). This study seeks to identify the impact of this locus on gene expression at the transcript isoform level in human left atria and to gain insight into potential causal variants. Bulk RNA sequencing was analyzed to identify myozenin 1 (MYOZ1) and synaptopodin 2-like (SYNPO2L) transcript isoforms and the association of common SNPs in this region with transcript isoform expression levels. Chromatin marks were used to suggest candidate regulatory SNPs in this region. Protein amino acid changes were examined for predicted functional consequences. Transfection of MYOZ1 and two SYNPO2L isoforms were performed to localize their encoded proteins in cardiomyocytes derived from stem cells. We identified one MYOZ1 transcript isoform and four SYNPO2L transcript isoforms, two of which encode proteins, while the other two encode long noncoding RNAs (lncRNAs). The risk allele of the strongest AF susceptibility SNP on chromosome 10q22 is associated with decreased MYOZ1 expression and increased expression of the two SNYPO2L lncRNA isoforms. There are many SNPs co-inherited with the top AF-associated SNP due to linkage disequilibrium (LD), including rs11000728, which we propose as the MYOZ1 regulatory SNP, confirmed by reporter gene transfection. In addition, this LD block includes three missense SNPs in the SYNPO2L gene, with the minor protective haplotype predicted to be detrimental to protein function. MYOZ1 and both protein isoforms of SYNPO2L were localized to the sarcomere. This is a complex locus with the potential for several SNPs in a haplotype to alter AF susceptibility by opposing effects on MYOZ1 and SYNPO2L lncRNA expression, along with effects on SYNPO2L protein function.
Collapse
Affiliation(s)
- Sojin Y. Wass
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Han Sun
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gregory Tchou
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nana Liu
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David R. Van Wagoner
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mina K. Chung
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jonathan D. Smith
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Zaragoza MV, Bui TA, Widyastuti HP, Mehrabi M, Cang Z, Sha Y, Grosberg A, Nie Q. LMNA-Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-Derived iPSC Differentiation Support Cell Type and Lineage-Specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency. Cells 2024; 13:1479. [PMID: 39273049 PMCID: PMC11394257 DOI: 10.3390/cells13171479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data integration and comparative analyses of Patient and Control cells found cell type and lineage-specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation. Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN, PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs, as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.
Collapse
Affiliation(s)
- Michael V. Zaragoza
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Thuy-Anh Bui
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
| | - Halida P. Widyastuti
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
| | - Mehrsa Mehrabi
- Biomedical Engineering and Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Zixuan Cang
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Yutong Sha
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Anna Grosberg
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
- Biomedical Engineering and Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Yamada H, Osaka H, Tatsumi N, Araki M, Abe T, Kaihara K, Takahashi K, Takashima E, Uchihashi T, Naruse K, Takei K. Direct Binding of Synaptopodin 2-Like Protein to Alpha-Actinin Contributes to Actin Bundle Formation in Cardiomyocytes. Cells 2024; 13:1373. [PMID: 39195263 PMCID: PMC11352367 DOI: 10.3390/cells13161373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Synaptopodin 2-like protein (SYNPO2L) is localized in the sarcomere of cardiomyocytes and is involved in heart morphogenesis. However, the molecular function of SYNPO2L in the heart is not fully understood. We investigated the interaction of SYNPO2L with sarcomeric α-actinin and actin filaments in cultured mouse cardiomyocytes. Immunofluorescence studies showed that SYNPO2L colocalized with α-actinin and actin filaments at the Z-discs of the sarcomere. Recombinant SYNPO2La or SYNPO2Lb caused a bundling of the actin filaments in the absence of α-actinin and enhanced the α-actinin-dependent formation of actin bundles. In addition, high-speed atomic force microscopy revealed that SYNPO2La directly bound to α-actinin via its globular ends. The interaction between α-actinin and SYNPO2La fixed the movements of the two proteins on the actin filaments. These results strongly suggest that SYNPO2L cooperates with α-actinin during actin bundle formation to facilitate sarcomere formation and maintenance.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (T.A.); (K.T.)
| | - Hirona Osaka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan (T.U.)
| | - Nanami Tatsumi
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (T.A.); (K.T.)
| | - Miu Araki
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (T.A.); (K.T.)
| | - Tadashi Abe
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (T.A.); (K.T.)
| | - Keiko Kaihara
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (K.T.); (K.N.)
| | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (K.T.); (K.N.)
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan;
| | - Takayuki Uchihashi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan (T.U.)
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (K.T.); (K.N.)
| | - Kohji Takei
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (T.A.); (K.T.)
| |
Collapse
|
4
|
Zaragoza MV, Bui TA, Widyastuti HP, Mehrabi M, Cang Z, Sha Y, Grosberg A, Nie Q. LMNA -Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-derived iPSC Differentiation Support Cell type and Lineage-specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598335. [PMID: 38915555 PMCID: PMC11195187 DOI: 10.1101/2024.06.12.598335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
LMNA -Related Dilated Cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C ( LMNA ) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. Molecular mechanisms of disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA -Related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (4 Patient and 8 Control) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for Cardiac Progenitors to Cardiomyocytes (CM) and Epicardium-Derived Cells (EPDC). Data integration and comparative analyses of Patient and Control cells found cell type and lineage differentially expressed genes (DEG) with enrichment to support pathway dysregulation. Top DEG and enriched pathways included: 10 ZNF genes and RNA polymerase II transcription in Pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CM; LMNA and epigenetic regulation and DDIT4 and mTORC1 signaling in EPDC. Top DEG also included: XIST and other X-linked genes, six imprinted genes: SNRPN , PWAR6 , NDN , PEG10 , MEG3 , MEG8 , and enriched gene sets in metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.
Collapse
|
5
|
Li RG, Li X, Morikawa Y, Grisanti-Canozo FJ, Meng F, Tsai CR, Zhao Y, Liu L, Kim J, Xie B, Klysik E, Liu S, Samee MAH, Martin JF. YAP induces a neonatal-like pro-renewal niche in the adult heart. NATURE CARDIOVASCULAR RESEARCH 2024; 3:283-300. [PMID: 38510108 PMCID: PMC10954255 DOI: 10.1038/s44161-024-00428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/12/2024] [Indexed: 03/22/2024]
Abstract
After myocardial infarction (MI), mammalian hearts do not regenerate, and the microenvironment is disrupted. Hippo signaling loss of function with activation of transcriptional co-factor YAP induces heart renewal and rebuilds the post-MI microenvironment. In this study, we investigated adult renewal-competent mouse hearts expressing an active version of YAP, called YAP5SA, in cardiomyocytes (CMs). Spatial transcriptomics and single-cell RNA sequencing revealed a conserved, renewal-competent CM cell state called adult (a)CM2 with high YAP activity. aCM2 co-localized with cardiac fibroblasts (CFs) expressing complement pathway component C3 and macrophages (MPs) expressing C3ar1 receptor to form a cellular triad in YAP5SA hearts and renewal-competent neonatal hearts. Although aCM2 was detected in adult mouse and human hearts, the cellular triad failed to co-localize in these non-renewing hearts. C3 and C3ar1 loss-of-function experiments indicated that C3a signaling between MPs and CFs was required to assemble the pro-renewal aCM2, C3+ CF and C3ar1+ MP cellular triad.
Collapse
Affiliation(s)
- Rich Gang Li
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
- These authors contributed equally: Rich Gang Li, Xiao Li
| | - Xiao Li
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
- These authors contributed equally: Rich Gang Li, Xiao Li
| | - Yuka Morikawa
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Francisco J. Grisanti-Canozo
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Fansen Meng
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Chang-Ru Tsai
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Yi Zhao
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Lin Liu
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Jong Kim
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Bing Xie
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Elzbieta Klysik
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - James F. Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Hao L, Khajouei F, Rodriguez J, Kim S, Lee EJA. Unlocking the Promise of Decellularized Pancreatic Tissue: A Novel Approach to Support Angiogenesis in Engineered Tissue. Bioengineering (Basel) 2024; 11:183. [PMID: 38391669 PMCID: PMC10886056 DOI: 10.3390/bioengineering11020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Advancements in regenerative medicine have highlighted the potential of decellularized extracellular matrix (ECM) as a scaffold for organ bioengineering. Although the potential of ECM in major organ systems is well-recognized, studies focusing on the angiogenic effects of pancreatic ECM are limited. This study investigates the capabilities of pancreatic ECM, particularly its role in promoting angiogenesis. Using a Triton-X-100 solution, porcine pancreas was successfully decellularized, resulting in a significant reduction in DNA content (97.1% removal) while preserving key pancreatic ECM components. A three-dimensional ECM hydrogel was then created from this decellularized tissue and used for cell culture. Biocompatibility tests demonstrated enhanced adhesion and proliferation of mouse embryonic stem cell-derived endothelial cells (mES-ECs) and human umbilical vein endothelial cells (HUVECs) in this hydrogel compared to conventional scaffolds. The angiogenic potential was evaluated through tube formation assays, wherein the cells showed superior tube formation capabilities in ECM hydrogel compared to rat tail collagen. The RT-PCR analysis further confirmed the upregulation of pro-angiogenic genes in HUVECs cultured within the ECM hydrogel. Specifically, HUVECs cultured in the ECM hydrogel exhibited a significant upregulation in the expression of MMP2, VEGF and PAR-1, compared to those cultured in collagen hydrogel or in a monolayer condition. The identification of ECM proteins, specifically PRSS2 and Decorin, further supports the efficacy of pancreatic ECM hydrogel as an angiogenic scaffold. These findings highlight the therapeutic promise of pancreatic ECM hydrogel as a candidate for vascularized tissue engineering application.
Collapse
Affiliation(s)
- Lei Hao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Fariba Khajouei
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Jaselin Rodriguez
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Soojin Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Eun Jung A Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
7
|
Patel KK, Venkatesan C, Abdelhalim H, Zeeshan S, Arima Y, Linna-Kuosmanen S, Ahmed Z. Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure susceptibility. Hum Genomics 2023; 17:47. [PMID: 37270590 DOI: 10.1186/s40246-023-00498-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) contribute to about 45% of all cardiovascular disease (CVD) deaths in the USA and around the globe. Due to the complex nature, progression, inherent genetic makeup, and heterogeneity of CVDs, personalized treatments are believed to be critical. To improve the deciphering of CVD mechanisms, we need to deeply investigate well-known and identify novel genes that are responsible for CVD development. With the advancements in sequencing technologies, genomic data have been generated at an unprecedented pace to foster translational research. Correct application of bioinformatics using genomic data holds the potential to reveal the genetic underpinnings of various health conditions. It can help in the identification of causal variants for AF, HF, and other CVDs by moving beyond the one-gene one-disease model through the integration of common and rare variant association, the expressed genome, and characterization of comorbidities and phenotypic traits derived from the clinical information. In this study, we examined and discussed variable genomic approaches investigating genes associated with AF, HF, and other CVDs. We collected, reviewed, and compared high-quality scientific literature published between 2009 and 2022 and accessible through PubMed/NCBI. While selecting relevant literature, we mainly focused on identifying genomic approaches involving the integration of genomic data; analysis of common and rare genetic variants; metadata and phenotypic details; and multi-ethnic studies including individuals from ethnic minorities, and European, Asian, and American ancestries. We found 190 genes associated with AF and 26 genes linked to HF. Seven genes had implications in both AF and HF, which are SYNPO2L, TTN, MTSS1, SCN5A, PITX2, KLHL3, and AGAP5. We listed our conclusion, which include detailed information about genes and SNPs associated with AF and HF.
Collapse
Affiliation(s)
- Kush Ketan Patel
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Cynthia Venkatesan
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Yuichiro Arima
- Developmental Cardiology Laboratory, International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Kumamoto City, Kumamoto, Japan
| | - Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Zeeshan Ahmed
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Ave, Farmington, CT, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
8
|
Coppola A, Lombari P, Mazzella E, Capolongo G, Simeoni M, Perna AF, Ingrosso D, Borriello M. Zebrafish as a Model of Cardiac Pathology and Toxicity: Spotlight on Uremic Toxins. Int J Mol Sci 2023; 24:ijms24065656. [PMID: 36982730 PMCID: PMC10052014 DOI: 10.3390/ijms24065656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing health care problem. About 10% of the general population is affected by CKD, representing the sixth cause of death in the world. Cardiovascular events are the main mortality cause in CKD, with a cardiovascular risk 10 times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes with a negative effect on every organ, especially on the cardiovascular system. Mammalian models, sharing structural and functional similarities with humans, have been widely used to study cardiovascular disease mechanisms and test new therapies, but many of them are rather expensive and difficult to manipulate. Over the last few decades, zebrafish has become a powerful non-mammalian model to study alterations associated with human disease. The high conservation of gene function, low cost, small size, rapid growth, and easiness of genetic manipulation are just some of the features of this experimental model. More specifically, embryonic cardiac development and physiological responses to exposure to numerous toxin substances are similar to those observed in mammals, making zebrafish an ideal model to study cardiac development, toxicity, and cardiovascular disease.
Collapse
Affiliation(s)
- Annapaola Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|
9
|
Fricke AL, Mühlhäuser WWD, Reimann L, Zimmermann JP, Reichenbach C, Knapp B, Peikert CD, Heberle AM, Faessler E, Schäuble S, Hahn U, Thedieck K, Radziwill G, Warscheid B. Phosphoproteomics Profiling Defines a Target Landscape of the Basophilic Protein Kinases AKT, S6K, and RSK in Skeletal Myotubes. J Proteome Res 2023; 22:768-789. [PMID: 36763541 DOI: 10.1021/acs.jproteome.2c00505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Phosphorylation-dependent signal transduction plays an important role in regulating the functions and fate of skeletal muscle cells. Central players in the phospho-signaling network are the protein kinases AKT, S6K, and RSK as part of the PI3K-AKT-mTOR-S6K and RAF-MEK-ERK-RSK pathways. However, despite their functional importance, knowledge about their specific targets is incomplete because these kinases share the same basophilic substrate motif RxRxxp[ST]. To address this, we performed a multifaceted quantitative phosphoproteomics study of skeletal myotubes following kinase inhibition. Our data corroborate a cross talk between AKT and RAF, a negative feedback loop of RSK on ERK, and a putative connection between RSK and PI3K signaling. Altogether, we report a kinase target landscape containing 49 so far unknown target sites. AKT, S6K, and RSK phosphorylate numerous proteins involved in muscle development, integrity, and functions, and signaling converges on factors that are central for the skeletal muscle cytoskeleton. Whereas AKT controls insulin signaling and impinges on GTPase signaling, nuclear signaling is characteristic for RSK. Our data further support a role of RSK in glucose metabolism. Shared targets have functions in RNA maturation, stability, and translation, which suggests that these basophilic kinases establish an intricate signaling network to orchestrate and regulate processes involved in translation.
Collapse
Affiliation(s)
- Anna L Fricke
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Wignand W D Mühlhäuser
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Reimann
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Johannes P Zimmermann
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christa Reichenbach
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Knapp
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian D Peikert
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander M Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Erik Faessler
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sascha Schäuble
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany.,Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology─Leibniz-HKI, 07745 Jena, Germany
| | - Udo Hahn
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.,Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands.,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Gerald Radziwill
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Levin MG, Tsao NL, Singhal P, Liu C, Vy HMT, Paranjpe I, Backman JD, Bellomo TR, Bone WP, Biddinger KJ, Hui Q, Dikilitas O, Satterfield BA, Yang Y, Morley MP, Bradford Y, Burke M, Reza N, Charest B, Judy RL, Puckelwartz MJ, Hakonarson H, Khan A, Kottyan LC, Kullo I, Luo Y, McNally EM, Rasmussen-Torvik LJ, Day SM, Do R, Phillips LS, Ellinor PT, Nadkarni GN, Ritchie MD, Arany Z, Cappola TP, Margulies KB, Aragam KG, Haggerty CM, Joseph J, Sun YV, Voight BF, Damrauer SM. Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure. Nat Commun 2022; 13:6914. [PMID: 36376295 PMCID: PMC9663424 DOI: 10.1038/s41467-022-34216-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is a leading cause of cardiovascular morbidity and mortality. However, the contribution of common genetic variation to heart failure risk has not been fully elucidated, particularly in comparison to other common cardiometabolic traits. We report a multi-ancestry genome-wide association study meta-analysis of all-cause heart failure including up to 115,150 cases and 1,550,331 controls of diverse genetic ancestry, identifying 47 risk loci. We also perform multivariate genome-wide association studies that integrate heart failure with related cardiac magnetic resonance imaging endophenotypes, identifying 61 risk loci. Gene-prioritization analyses including colocalization and transcriptome-wide association studies identify known and previously unreported candidate cardiomyopathy genes and cellular processes, which we validate in gene-expression profiling of failing and healthy human hearts. Colocalization, gene expression profiling, and Mendelian randomization provide convergent evidence for the roles of BCKDHA and circulating branch-chain amino acids in heart failure and cardiac structure. Finally, proteome-wide Mendelian randomization identifies 9 circulating proteins associated with heart failure or quantitative imaging traits. These analyses highlight similarities and differences among heart failure and associated cardiovascular imaging endophenotypes, implicate common genetic variation in the pathogenesis of heart failure, and identify circulating proteins that may represent cardiomyopathy treatment targets.
Collapse
Affiliation(s)
- Michael G Levin
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pankhuri Singhal
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chang Liu
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ha My T Vy
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ishan Paranjpe
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tiffany R Bellomo
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William P Bone
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiran J Biddinger
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Qin Hui
- Emory University School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Ozan Dikilitas
- Departments of Internal Medicine and Cardiovascular Medicine, and Mayo Clinician-Investigator Training Program, Mayo Clinic, Rochester, MN, USA
| | | | - Yifan Yang
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Morley
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Bradford
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Megan Burke
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nosheen Reza
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Charest
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, USA
| | - Renae L Judy
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Megan J Puckelwartz
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Leah C Kottyan
- Department of Pediatrics, Division of Human Genetics and Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Iftikhar Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sharlene M Day
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, BioMe Phenomics Center, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lawrence S Phillips
- Atlanta VA Health Care System, Decatur, GA, USA
- Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - Patrick T Ellinor
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Girish N Nadkarni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zoltan Arany
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas P Cappola
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krishna G Aragam
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher M Haggerty
- Department of Translational Data Science and Informatics and Heart Institute, Geisinger, Danville, PA, USA
| | - Jacob Joseph
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan V Sun
- Emory University School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Benjamin F Voight
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
12
|
Manoharan A, Sambandam R, Ballambattu VB. Genetics of atrial fibrillation-an update of recent findings. Mol Biol Rep 2022; 49:8121-8129. [PMID: 35587846 DOI: 10.1007/s11033-022-07420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia and a major risk factor for stroke, heart failure, and premature death. AF has a strong genetic predisposition. This review highlights the recent findings on the genetics of AF from genome-wide association studies (GWAS) and high-throughput sequencing studies. The consensus from GWAS implies that AF is both polygenic and pleiotropic in nature. With the advent of whole-genome sequencing and whole-exome sequencing, rare variants associated with AF pathogenesis have been identified. The recent studies have contributed towards better understanding of AF pathogenesis.
Collapse
Affiliation(s)
- Aarthi Manoharan
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India
| | - Ravikumar Sambandam
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India.
| | - Vishnu Bhat Ballambattu
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India
| |
Collapse
|
13
|
Gao J, Nakamura F. Actin-Associated Proteins and Small Molecules Targeting the Actin Cytoskeleton. Int J Mol Sci 2022; 23:2118. [PMID: 35216237 PMCID: PMC8880164 DOI: 10.3390/ijms23042118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Actin-associated proteins (AAPs) act on monomeric globular actin (G-actin) and polymerized filamentous actin (F-actin) to regulate their dynamics and architectures which ultimately control cell movement, shape change, division; organelle localization and trafficking. Actin-binding proteins (ABPs) are a subset of AAPs. Since actin was discovered as a myosin-activating protein (hence named actin) in 1942, the protein has also been found to be expressed in non-muscle cells, and numerous AAPs continue to be discovered. This review article lists all of the AAPs discovered so far while also allowing readers to sort the list based on the names, sizes, functions, related human diseases, and the dates of discovery. The list also contains links to the UniProt and Protein Atlas databases for accessing further, related details such as protein structures, associated proteins, subcellular localization, the expression levels in cells and tissues, mutations, and pathology. Because the actin cytoskeleton is involved in many pathological processes such as tumorigenesis, invasion, and developmental diseases, small molecules that target actin and AAPs which hold potential to treat these diseases are also listed.
Collapse
Affiliation(s)
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
14
|
Gauvrit S, Bossaer J, Lee J, Collins MM. Modeling Human Cardiac Arrhythmias: Insights from Zebrafish. J Cardiovasc Dev Dis 2022; 9:jcdd9010013. [PMID: 35050223 PMCID: PMC8779270 DOI: 10.3390/jcdd9010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac arrhythmia, or irregular heart rhythm, is associated with morbidity and mortality and is described as one of the most important future public health challenges. Therefore, developing new models of cardiac arrhythmia is critical for understanding disease mechanisms, determining genetic underpinnings, and developing new therapeutic strategies. In the last few decades, the zebrafish has emerged as an attractive model to reproduce in vivo human cardiac pathologies, including arrhythmias. Here, we highlight the contribution of zebrafish to the field and discuss the available cardiac arrhythmia models. Further, we outline techniques to assess potential heart rhythm defects in larval and adult zebrafish. As genetic tools in zebrafish continue to bloom, this model will be crucial for functional genomics studies and to develop personalized anti-arrhythmic therapies.
Collapse
|
15
|
Ladha FA, Thakar K, Pettinato AM, Legere N, Ghahremani S, Cohn R, Romano R, Meredith E, Chen YS, Hinson JT. Actinin BioID reveals sarcomere crosstalk with oxidative metabolism through interactions with IGF2BP2. Cell Rep 2021; 36:109512. [PMID: 34380038 PMCID: PMC8447243 DOI: 10.1016/j.celrep.2021.109512] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/16/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023] Open
Abstract
Actinins are strain-sensing actin cross-linkers that are ubiquitously expressed and harbor mutations in human diseases. We utilize CRISPR, pluripotent stem cells, and BioID to study actinin interactomes in human cardiomyocytes. We identify 324 actinin proximity partners, including those that are dependent on sarcomere assembly. We confirm 19 known interactors and identify a network of RNA-binding proteins, including those with RNA localization functions. In vivo and biochemical interaction studies support that IGF2BP2 localizes electron transport chain transcripts to actinin neighborhoods through interactions between its K homology (KH) domain and actinin’s rod domain. We combine alanine scanning mutagenesis and metabolic assays to disrupt and functionally interrogate actinin-IGF2BP2 interactions, which reveal an essential role in metabolic responses to pathological sarcomere activation using a hypertrophic cardiomyopathy model. This study expands our functional knowledge of actinin, uncovers sarcomere interaction partners, and reveals sarcomere crosstalk with IGF2BP2 for metabolic adaptation relevant to human disease. Ladha et al. combine BioID, human cardiomyocytes, and CRISPR-Cas9 to interrogate the actinin interactome. This reveals 324 actinin proximity partners, including RNA-binding proteins that bind transcripts encoding ETC functional components. Among these RNA-binding proteins, IGF2BP2 directly binds actinin, and actinin-IGF2BP2 interactions regulate ETC transcript localization and metabolic adaptation to sarcomere function.
Collapse
Affiliation(s)
- Feria A Ladha
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Rachel Cohn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Robert Romano
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Emily Meredith
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yu-Sheng Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - J Travis Hinson
- University of Connecticut Health Center, Farmington, CT 06030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Cardiology Center, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
16
|
Pohl J, Golovko O, Carlsson G, Örn S, Schmitz M, Ahi EP. Gene co-expression network analysis reveals mechanisms underlying ozone-induced carbamazepine toxicity in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2021; 276:130282. [PMID: 34088109 DOI: 10.1016/j.chemosphere.2021.130282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Sewage effluent ozonation can reduce concentrations of chemical pollutants including pharmaceutical residues. However, the formation of potentially toxic ozonation byproducts (OBPs) is a matter of concern. This study sought to elucidate toxicity mechanisms of ozonated carbamazepine (CBZ), an anti-epileptic drug frequently detected in sewage effluents and surface water, in zebrafish embryos (Danio rerio). Embryos were exposed to ozonated and non-ozonated CBZ from 3 h post-fertilization (hpf) until 144 hpf. Embryotoxicity endpoints (proportion of dead and malformed embryos) were assessed at 24, 48, and 144 hpf. Heart rate was recorded at 48 hpf. Exposure to ozonated CBZ gave rise to cardiovascular-related malformations and reduced heart rate. Moreover, embryo-larvae exposed to ozonated CBZ displayed a lack of swim bladder inflation. Hence, the expression patterns of CBZ target genes involved in cardiovascular and embryonal development were investigated through a stepwise gene co-expression analysis approach. Two co-expression networks and their upstream transcription regulators were identified, offering mechanistic explanations for the observed toxicity phenotypes. The study presents a novel application of gene co-expression analysis elucidating potential toxicity mechanisms of an ozonated pharmaceutical with environmental relevance. The resulting data was used to establish a putative adverse outcome pathway (AOP).
Collapse
Affiliation(s)
- Johannes Pohl
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 75007, Uppsala, Sweden.
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 75007, Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 75007, Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology Section, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden
| | - Ehsan Pashay Ahi
- Department of Organismal Biology, Comparative Physiology Section, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden; Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| |
Collapse
|
17
|
Clausen AG, Vad OB, Andersen JH, Olesen MS. Loss-of-Function Variants in the SYNPO2L Gene Are Associated With Atrial Fibrillation. Front Cardiovasc Med 2021; 8:650667. [PMID: 33768119 PMCID: PMC7985167 DOI: 10.3389/fcvm.2021.650667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Multiple genome-wide association studies (GWAS) have identified numerous loci associated with atrial fibrillation (AF). However, the genes driving these associations and how they contribute to the AF pathogenesis remains poorly understood. To identify genes likely to be driving the observed association, we searched the FinnGen study consisting of 12,859 AF cases and 73,341 controls for rare genetic variants predicted to cause loss-of-function. A specific splice site variant was found in the SYNPO2L gene, located in an AF associated locus on chromosome 10. This variant was associated with an increased risk of AF with a relatively high odds ratio of 3.5 (p = 9.9 × 10-8). SYNPO2L is an important gene involved in the structural development and function of the cardiac myocyte and our findings thus support the recent suggestions that AF can present as atrial cardiomyopathy.
Collapse
Affiliation(s)
- Alexander Guldmann Clausen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Bundgaard Vad
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Husted Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Ezeani M, Prabhu S. Pathophysiology and therapeutic relevance of PI3K(p110α) protein in atrial fibrillation: A non-interventional molecular therapy strategy. Pharmacol Res 2021; 165:105415. [PMID: 33412279 DOI: 10.1016/j.phrs.2020.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Genetically modified animal studies have revealed specific expression patterns and unequivocal roles of class I PI3K isoenzymes. PI3K(p110α), a catalytic subunit of class I PI3Ks is ubiquitously expressed and is well characterised in the cardiovascular system. Given that genetic inhibition of PI3K(p110α) causes lethal phenotype embryonically, the catalytic subunit is critically important in housekeeping and biological processes. A growing number of studies underpin crucial roles of PI3K(p110α) in cell survival, proliferation, hypertrophy and arrhythmogenesis. While the studies provide great insights, the precise mechanisms involved in PI3K(p110α) hypofunction and atrial fibrillation (AF) are not fully known. AF is a well recognised clinical problem with significant management limitations. In this translational review, we attempted a narration of PI3K(p110α) hypofunction in the molecular basis of AF pathophysiology. We sought to cautiously highlight the relevance of this molecule in the therapeutic approaches for AF management per se (i.e without conditions associate with cell proliferation, like cancer), and in mitigating effects of clinical risk factors in atrial substrate formation leading to AF progression. We also considered PI3K(p110α) in AF gene association, with the aim of identifying mechanistic links between the ever increasingly well-defined genetic loci (regions and genes) and AF. Such mechanisms will aid in identifying new drug targets for arrhythmogenic substrate and AF.
Collapse
Affiliation(s)
- Martin Ezeani
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia.
| | - Sandeep Prabhu
- The Alfred, and Baker Heart and Diabetes Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Czajkowski ER, Cisneros M, Garcia BS, Shen J, Cripps RM. The Drosophila CG1674 gene encodes a synaptopodin 2-like related protein that localizes to the Z-disc and is required for normal flight muscle development and function. Dev Dyn 2021; 250:99-110. [PMID: 32893414 PMCID: PMC7902442 DOI: 10.1002/dvdy.250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND To identify novel myofibrillar components of the Drosophila flight muscles, we carried out a proteomic analysis of chemically demembranated flight muscle myofibrils, and characterized the knockdown phenotype of a novel gene identified in the screen, CG1674. RESULTS The CG1674 protein has some similarity to vertebrate synaptopodin 2-like, and when expressed as a FLAG-tagged fusion protein, it was localized during development to the Z-disc and cytoplasm. Knockdown of CG1674 expression affected the function of multiple muscle types, and defective flight in adults was accompanied by large actin-rich structures in the flight muscles that resembled overgrown Z-discs. Localization of CG1674 to the Z-disc depended predominantly upon presence of the Z-disc component alpha-actinin, but also depended upon other Z-disc components, including Mask, Zasp52, and Sals. We also observed re-localization of FLAG-CG1674 to the nucleus in Alpha-actinin and sals knockdown animals. CONCLUSIONS These studies identify and characterize a previously unreported myofibrillar component of Drosophila muscle that is necessary for proper myofibril assembly during development.
Collapse
Affiliation(s)
| | - Marilyn Cisneros
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bianca S. Garcia
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jim Shen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Richard M. Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
20
|
Ameling S, Bischof J, Dörr M, Könemann S, Empen K, Weitmann K, Klingel K, Beug D, Dhople VM, Völker U, Hammer E, Felix SB. Analysis of DCM associated protein alterations of human right and left ventricles. J Proteomics 2020; 231:104018. [PMID: 33075551 DOI: 10.1016/j.jprot.2020.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Dilated cardiomyopathy (DCM) is characterized by ventricular chamber enlargement and impaired myocardial function. Endomyocardial biopsies (EMB) enable immunohistochemical and molecular characterization of this disease. However, knowledge about specific molecular patterns and their relation to cardiac function in both ventricles is rare. Therefore, we performed a mass spectrometric analysis of 28 paired EMBs of left (LV) and right ventricles (RV) of patients with DCM or suspected myocarditis allowing quantitative profiling of 743 proteins. We analysed associations between protein abundance of LV and RV as well as the echocardiographic parameters LVEF, TAPSE, LVEDDI, and RVEDDI by linear regression models. Overall, more LV than RV proteins were associated with LV parameters or with RVEDDI. Most LV and RV proteins increasing in level with impairing of LVEF were annotated to structural components of cardiac tissue. Additionally, a high proportion of LV proteins with metabolic functions decreased in level with decreasing LVEF. Results were validated with LV heart sections of a genetic murine heart failure model. The study shows, that remodelling and systolic dysfunction in DCM is mirrored by distinct alterations in protein composition of both ventricles. Loss of LV systolic function is reflected predominantly by alterations in proteins assigned to metabolic functions in the LV whereas structural remodelling was more obvious in the RV. Alterations related to intermediate filaments were seen in both ventricles and highlight such proteins as early indicators of LV loss of function. SIGNIFICANCE: The present study report protein sets in the RV and the LV being associated with ventricular function and remodelling in DCM. Protein abundances in the LV and the RV emphasize and expand current knowledge on pathophysiological changes in heart failure and DCM. While RV and LV EMBs do not differ concerning diagnostic assessment of inflammatory status and virus persistence, additional information reflecting disease severity associated protein alterations can be gained by EMB protein profiling. RV and LV protein data provided complementary information. The protein pattern of the LV reflects metabolic changes and an impaired energy production, which is associated with the degree of LV systolic dysfunction and remodelling and may yield important information about the disease status in DCM. On the other hand, at this disease stage of DCM with still preserved RV function, RV alterations in structural proteins may reflect myocardial compensatory protective mechanisms for maintenance of structure and cellular function. The study highlight particular proteins being of interest as heart failure biomarkers in both ventricles which seem to reflect the severity of the disease. Further comparative studies between different HF aetiologies have to evaluate those proteins as markers specific for DCM.
Collapse
Affiliation(s)
- Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Straße 8, D-17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Julia Bischof
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Straße 8, D-17475 Greifswald, Germany
| | - Marcus Dörr
- Department for Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., D-17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stephanie Könemann
- Department for Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., D-17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Klaus Empen
- Department for Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., D-17475 Greifswald, Germany
| | - Kerstin Weitmann
- Institute for Community Medicine, University Medicine Greifswald, Ellernholzstr. 1, D-17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Molecular Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstr. 8, D-72076 Tübingen, Germany
| | - Daniel Beug
- Department for Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., D-17475 Greifswald, Germany
| | - Vishnu Mukund Dhople
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Straße 8, D-17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Straße 8, D-17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Straße 8, D-17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.
| | - Stephan B Felix
- Department for Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., D-17475 Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.
| |
Collapse
|
21
|
Early-onset atrial fibrillation patients show reduced left ventricular ejection fraction and increased atrial fibrosis. Sci Rep 2020; 10:10039. [PMID: 32572052 PMCID: PMC7308347 DOI: 10.1038/s41598-020-66671-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022] Open
Abstract
Atrial fibrillation (AF) has traditionally been considered an electrical heart disease. However, genetic studies have revealed that the structural architecture of the heart also play a significant role. We evaluated the functional and structural consequences of harboring a titin-truncating variant (TTNtv) in AF patients, using cardiac magnetic resonance (CMR). Seventeen early-onset AF cases carrying a TTNtv, were matched 1:1 with non-AF controls and a replication cohort of early-onset AF cases without TTNtv, and underwent CMR. Cardiac volumes and left atrial late gadolinium enhancement (LA LGE), as a fibrosis proxy, were measured by a blinded operator. Results: AF cases with TTNtv had significantly reduced left ventricular ejection fraction (LVEF) compared with controls (57 ± 4 vs 64 ± 5%, P < 0.001). We obtained similar findings in early-onset AF patients without TTNtv compared with controls (61 ± 4 vs 64 ± 5%, P = 0.02). We furthermore found a statistically significant increase in LA LGE when comparing early-onset AF TTNtv cases with controls. Using state-of-the-art CMR, we found that early-onset AF patients, irrespective of TTNtv carrier status, had reduced LVEF, indicating that early-onset AF might not be as benign as previously thought.
Collapse
|
22
|
Chen B, You W, Wang Y, Shan T. The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration. Cell Mol Life Sci 2020; 77:1551-1569. [PMID: 31642939 PMCID: PMC11105057 DOI: 10.1007/s00018-019-03341-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays essential roles in motor function, energy, and glucose metabolism. Skeletal muscle formation occurs through a process called myogenesis, in which a crucial step is the fusion of mononucleated myoblasts to form multinucleated myofibers. The myoblast/myocyte fusion is triggered and coordinated in a muscle-specific way that is essential for muscle development and post-natal muscle regeneration. Many molecules and proteins have been found and demonstrated to have the capacity to regulate the fusion of myoblast/myocytes. Interestingly, two newly discovered muscle-specific membrane proteins, Myomaker and Myomixer (also called Myomerger and Minion), have been identified as fusogenic regulators in vertebrates. Both Myomaker and Myomixer-Myomerger-Minion have the capacity to directly control the myogenic fusion process. Here, we review and discuss the latest studies related to these two proteins, including the discovery, structure, expression pattern, functions, and regulation of Myomaker and Myomixer-Myomerger-Minion. We also emphasize and discuss the interaction between Myomaker and Myomixer-Myomerger-Minion, as well as their cooperative regulatory roles in cell-cell fusion. Moreover, we highlight the areas for exploration of Myomaker and Myomixer-Myomerger-Minion in future studies and consider their potential application to control cell fusion for cell-therapy purposes.
Collapse
Affiliation(s)
- Bide Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China.
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
23
|
Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, Hedman ÅK, Wilk JB, Morley MP, Chaffin MD, Helgadottir A, Verweij N, Dehghan A, Almgren P, Andersson C, Aragam KG, Ärnlöv J, Backman JD, Biggs ML, Bloom HL, Brandimarto J, Brown MR, Buckbinder L, Carey DJ, Chasman DI, Chen X, Chen X, Chung J, Chutkow W, Cook JP, Delgado GE, Denaxas S, Doney AS, Dörr M, Dudley SC, Dunn ME, Engström G, Esko T, Felix SB, Finan C, Ford I, Ghanbari M, Ghasemi S, Giedraitis V, Giulianini F, Gottdiener JS, Gross S, Guðbjartsson DF, Gutmann R, Haggerty CM, van der Harst P, Hyde CL, Ingelsson E, Jukema JW, Kavousi M, Khaw KT, Kleber ME, Køber L, Koekemoer A, Langenberg C, Lind L, Lindgren CM, London B, Lotta LA, Lovering RC, Luan J, Magnusson P, Mahajan A, Margulies KB, März W, Melander O, Mordi IR, Morgan T, Morris AD, Morris AP, Morrison AC, Nagle MW, Nelson CP, Niessner A, Niiranen T, O'Donoghue ML, Owens AT, Palmer CNA, Parry HM, Perola M, Portilla-Fernandez E, Psaty BM, Rice KM, Ridker PM, Romaine SPR, Rotter JI, Salo P, Salomaa V, van Setten J, Shalaby AA, Smelser DT, Smith NL, Stender S, Stott DJ, Svensson P, et alShah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, Hedman ÅK, Wilk JB, Morley MP, Chaffin MD, Helgadottir A, Verweij N, Dehghan A, Almgren P, Andersson C, Aragam KG, Ärnlöv J, Backman JD, Biggs ML, Bloom HL, Brandimarto J, Brown MR, Buckbinder L, Carey DJ, Chasman DI, Chen X, Chen X, Chung J, Chutkow W, Cook JP, Delgado GE, Denaxas S, Doney AS, Dörr M, Dudley SC, Dunn ME, Engström G, Esko T, Felix SB, Finan C, Ford I, Ghanbari M, Ghasemi S, Giedraitis V, Giulianini F, Gottdiener JS, Gross S, Guðbjartsson DF, Gutmann R, Haggerty CM, van der Harst P, Hyde CL, Ingelsson E, Jukema JW, Kavousi M, Khaw KT, Kleber ME, Køber L, Koekemoer A, Langenberg C, Lind L, Lindgren CM, London B, Lotta LA, Lovering RC, Luan J, Magnusson P, Mahajan A, Margulies KB, März W, Melander O, Mordi IR, Morgan T, Morris AD, Morris AP, Morrison AC, Nagle MW, Nelson CP, Niessner A, Niiranen T, O'Donoghue ML, Owens AT, Palmer CNA, Parry HM, Perola M, Portilla-Fernandez E, Psaty BM, Rice KM, Ridker PM, Romaine SPR, Rotter JI, Salo P, Salomaa V, van Setten J, Shalaby AA, Smelser DT, Smith NL, Stender S, Stott DJ, Svensson P, Tammesoo ML, Taylor KD, Teder-Laving M, Teumer A, Thorgeirsson G, Thorsteinsdottir U, Torp-Pedersen C, Trompet S, Tyl B, Uitterlinden AG, Veluchamy A, Völker U, Voors AA, Wang X, Wareham NJ, Waterworth D, Weeke PE, Weiss R, Wiggins KL, Xing H, Yerges-Armstrong LM, Yu B, Zannad F, Zhao JH, Hemingway H, Samani NJ, McMurray JJV, Yang J, Visscher PM, Newton-Cheh C, Malarstig A, Holm H, Lubitz SA, Sattar N, Holmes MV, Cappola TP, Asselbergs FW, Hingorani AD, Kuchenbaecker K, Ellinor PT, Lang CC, Stefansson K, Smith JG, Vasan RS, Swerdlow DI, Lumbers RT. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun 2020; 11:163. [PMID: 31919418 PMCID: PMC6952380 DOI: 10.1038/s41467-019-13690-5] [Show More Authors] [Citation(s) in RCA: 521] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
Collapse
Affiliation(s)
- Sonia Shah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Institute of Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Albert Henry
- Institute of Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Carolina Roselli
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | | | - Ghazaleh Fatemifar
- British Heart Foundation Research Accelerator, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK London, University College London, London, UK
| | - Åsa K Hedman
- Cardiovascular Medicine unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Jemma B Wilk
- Pfizer Worldwide Research & Development, 1 Portland St, Cambridge, MA, USA
| | - Michael P Morley
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark D Chaffin
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna Helgadottir
- deCODE genetics/Amgen Inc., Sturlugata 8, 101, Reykjavik, Iceland
| | - Niek Verweij
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Peter Almgren
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Charlotte Andersson
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Department of Cardiology, Herlev Gentofte Hospital, Herlev Ringvej 57, 2650, Herlev, Denmark
| | - Krishna G Aragam
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Johan Ärnlöv
- Department of Neurobiology, Care Sciences and Society/ Section of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden
- School of Health and Social Sciences, Dalarna University, Falun, Sweden
| | - Joshua D Backman
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Mary L Biggs
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Heather L Bloom
- Division of Cardiology, Department of Medicine, Emory University Medical Center, Atlanta, GA, USA
| | - Jeffrey Brandimarto
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael R Brown
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas School of Public Health, Houston, Texas, USA
| | - Leonard Buckbinder
- Pfizer Worldwide Research & Development, 1 Portland St, Cambridge, MA, USA
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Xing Chen
- Pfizer Worldwide Research & Development, 1 Portland St, Cambridge, MA, USA
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Chung
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - William Chutkow
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Spiros Denaxas
- British Heart Foundation Research Accelerator, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK London, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
- The Alan Turing Institute, London, United Kingdom
| | - Alexander S Doney
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Samuel C Dudley
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Michael E Dunn
- Regeneron Pharmaceuticals, Cardiovascular Research, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Tõnu Esko
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sahar Ghasemi
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, 75185, Sweden
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - John S Gottdiener
- Department of Medicine, Division of Cardiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stefan Gross
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Daníel F Guðbjartsson
- deCODE genetics/Amgen Inc., Sturlugata 8, 101, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, 101, Reykjavik, Iceland
| | - Rebecca Gutmann
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | - Craig L Hyde
- Pfizer Worldwide Research & Development, 1 Portland St, Cambridge, MA, USA
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Lars Køber
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Andrea Koekemoer
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Barry London
- Division of Cardiovascular Medicine and Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| | - Luca A Lotta
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Ruth C Lovering
- Institute of Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Patrik Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Winfried März
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Olle Melander
- Department of Internal Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Ify R Mordi
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Thomas Morgan
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas School of Public Health, Houston, Texas, USA
| | - Michael W Nagle
- Pfizer Worldwide Research & Development, 1 Portland St, Cambridge, MA, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alexander Niessner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Teemu Niiranen
- National Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Michelle L O'Donoghue
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Anjali T Owens
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin N A Palmer
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Helen M Parry
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
| | - Eliana Portilla-Fernandez
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bruce M Psaty
- Department of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Simon P R Romaine
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Perttu Salo
- National Institute for Health and Welfare, Helsinki, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Jessica van Setten
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Alaa A Shalaby
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center and VA Pittsburgh HCS, Pittsburgh, PA, USA
| | - Diane T Smelser
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Nicholas L Smith
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research & Development, Seattle, WA, USA
| | - Steen Stender
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte, København, Denmark
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Per Svensson
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | - Mari-Liis Tammesoo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, LABiomed and Departments of Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Alexander Teumer
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Guðmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Sturlugata 8, 101, Reykjavik, Iceland
- Division of Cardiology, Department of Internal Medicine, Landspitali, National University Hospital of Iceland, Hringbraut, 101, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Medicine, Department of Medicine, University of Iceland, Saemundargata 2, 101, Reykjavik, Iceland
| | - Christian Torp-Pedersen
- Department of Epidemiology and Biostatistics, Aalborg University Hospital, Aalborg, Denmark
- Department of Health, Science and Technology, Aalborg University Hospital, Aalborg, Denmark
- Departments of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Benoit Tyl
- Translational and Clinical Research, Servier Cardiovascular Center for Therapeutic Innovation, 50 rue Carnot, 92284, Suresnes, France
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Abirami Veluchamy
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Adriaan A Voors
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Xiaosong Wang
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | | | - Peter E Weeke
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Raul Weiss
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Heming Xing
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas School of Public Health, Houston, Texas, USA
| | - Faiez Zannad
- Université de Lorraine, CHU de Nancy, Inserm and INI-CRCT (F-CRIN), Institut Lorrain du Coeur et des Vaisseaux, 54500, Vandoeuvre Lès, Nancy, France
| | - Jing Hua Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Harry Hemingway
- British Heart Foundation Research Accelerator, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK London, University College London, London, UK
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - John J V McMurray
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Anders Malarstig
- Cardiovascular Medicine unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
- Pfizer Worldwide Research & Development, 1 Portland St, Cambridge, MA, USA
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Sturlugata 8, 101, Reykjavik, Iceland
| | - Steven A Lubitz
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Naveed Sattar
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, UK
| | - Thomas P Cappola
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Folkert W Asselbergs
- Institute of Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Karoline Kuchenbaecker
- Division of Psychiatry, University College of London, London, W1T 7NF, UK
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Chim C Lang
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Medicine, Department of Medicine, University of Iceland, Saemundargata 2, 101, Reykjavik, Iceland
| | - J Gustav Smith
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Sections of Cardiology, Preventive Medicine and Epidemiology, Department of Medicine, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Daniel I Swerdlow
- Institute of Cardiovascular Science, University College London, London, UK
| | - R Thomas Lumbers
- British Heart Foundation Research Accelerator, University College London, London, UK.
- Institute of Health Informatics, University College London, London, UK.
- Health Data Research UK London, University College London, London, UK.
- Bart's Heart Centre, St. Bartholomew's Hospital, London, UK.
| |
Collapse
|
24
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
25
|
Vileigas DF, Harman VM, Freire PP, Marciano CLC, Sant'Ana PG, de Souza SLB, Mota GAF, da Silva VL, Campos DHS, Padovani CR, Okoshi K, Beynon RJ, Santos LD, Cicogna AC. Landscape of heart proteome changes in a diet-induced obesity model. Sci Rep 2019; 9:18050. [PMID: 31792287 PMCID: PMC6888820 DOI: 10.1038/s41598-019-54522-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is a pandemic associated with a high incidence of cardiovascular disease; however, the mechanisms are not fully elucidated. Proteomics may provide a more in-depth understanding of the pathophysiological mechanisms and contribute to the identification of potential therapeutic targets. Thus, our study evaluated myocardial protein expression in healthy and obese rats, employing two proteomic approaches. Male Wistar rats were established in two groups (n = 13/group): control diet and Western diet fed for 41 weeks. Obesity was determined by the adipose index, and cardiac function was evaluated in vivo by echocardiogram and in vitro by isolated papillary muscle analysis. Proteomics was based on two-dimensional gel electrophoresis (2-DE) along with mass spectrometry identification, and shotgun proteomics with label-free quantification. The Western diet was efficient in triggering obesity and impaired contractile function in vitro; however, no cardiac dysfunction was observed in vivo. The combination of two proteomic approaches was able to increase the cardiac proteomic map and to identify 82 differentially expressed proteins involved in different biological processes, mainly metabolism. Furthermore, the data also indicated a cardiac alteration in fatty acids transport, antioxidant defence, cytoskeleton, and proteasome complex, which have not previously been associated with obesity. Thus, we define a robust alteration in the myocardial proteome of diet-induced obese rats, even before functional impairment could be detected in vivo by echocardiogram.
Collapse
Affiliation(s)
- Danielle F Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil.
| | - Victoria M Harman
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, L69 7ZB, United Kingdom
| | - Paula P Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, 18618970, Brazil
| | - Cecília L C Marciano
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Paula G Sant'Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Sérgio L B de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Gustavo A F Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Vitor L da Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Dijon H S Campos
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Carlos R Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, 18618970, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, L69 7ZB, United Kingdom
| | - Lucilene D Santos
- Center for the Study of Venoms and Venomous Animals (CEVAP)/Graduate Program in Tropical Diseases (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, 18610307, Brazil
| | - Antonio C Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil.
| |
Collapse
|
26
|
Abstract
Background Atrial fibrillation (AF) is a common arrhythmia seen in clinical practice. Occasionally, no common risk factors are present in patients with this arrhythmia. This suggests the potential underlying role of genetic factors associated with predisposition to developing AF. Methods and Results We conducted a comprehensive review of the literature through large online libraries, including PubMed. Many different potassium and sodium channel mutations have been discussed in their relation to AF. There have also been non–ion channel mutations that have been linked to AF. Genome‐wide association studies have helped in identifying potential links between single‐nucleotide polymorphisms and AF. Ancestry studies have also highlighted a role of genetics in AF. Blacks with a higher percentage of European ancestry are at higher risk of developing AF. The emerging field of ablatogenomics involves the use of genetic profiles in their relation to recurrence of AF after catheter ablation. Conclusions The evidence for the underlying role of genetics in AF continues to expand. Ultimately, the role of genetics in risk stratification of AF and its recurrence is of significant interest. No established risk scores that are useful in clinical practice are present to date.
Collapse
Affiliation(s)
- Julien Feghaly
- 1 Department of Internal Medicine St Louis University Hospital St Louis MO
| | - Patrick Zakka
- 2 Department of Internal Medicine Emory University Hospital Atlanta GA
| | - Barry London
- 3 Department of Cardiovascular Medicine University of Iowa Carver College of Medicine Iowa City IA
| | - Calum A MacRae
- 4 Department of Cardiovascular Medicine Brigham and Women's Hospital Boston MA
| | - Marwan M Refaat
- 5 Department of Cardiovascular Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
27
|
Ahlberg G, Refsgaard L, Lundegaard PR, Andreasen L, Ranthe MF, Linscheid N, Nielsen JB, Melbye M, Haunsø S, Sajadieh A, Camp L, Olesen SP, Rasmussen S, Lundby A, Ellinor PT, Holst AG, Svendsen JH, Olesen MS. Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation. Nat Commun 2018; 9:4316. [PMID: 30333491 PMCID: PMC6193003 DOI: 10.1038/s41467-018-06618-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
A family history of atrial fibrillation constitutes a substantial risk of developing the disease, however, the pathogenesis of this complex disease is poorly understood. We perform whole-exome sequencing on 24 families with at least three family members diagnosed with atrial fibrillation (AF) and find that titin-truncating variants (TTNtv) are significantly enriched in these patients (P = 1.76 × 10−6). This finding is replicated in an independent cohort of early-onset lone AF patients (n = 399; odds ratio = 36.8; P = 4.13 × 10−6). A CRISPR/Cas9 modified zebrafish carrying a truncating variant of titin is used to investigate TTNtv effect in atrial development. We observe compromised assembly of the sarcomere in both atria and ventricle, longer PR interval, and heterozygous adult zebrafish have a higher degree of fibrosis in the atria, indicating that TTNtv are important risk factors for AF. This aligns with the early onset of the disease and adds an important dimension to the understanding of the molecular predisposition for AF. Common genetic variants in structural proteins contribute to risk of atrial fibrillation (AF). Here, using whole-exome sequencing, the authors identify rare truncating variants in TTN that associate with familial and early-onset AF and show defects in cardiac sarcomere assembly in ttn.2-mutant zebrafish.
Collapse
Affiliation(s)
- Gustav Ahlberg
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Lena Refsgaard
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Pia R Lundegaard
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Laura Andreasen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Mattis F Ranthe
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, 2300 S, Denmark
| | - Nora Linscheid
- Cardiac Proteomics Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Jonas B Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, 2300 S, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.,Department of Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Stig Haunsø
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark
| | - Ahmad Sajadieh
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Copenhagen, 2400, Denmark
| | - Lu Camp
- The Lundbeck Foundation Centre for Applied Medical Genomics in Personalized Disease Prediction, Prevention and Care, Copenhagen, 2200 N, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Simon Rasmussen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Alicia Lundby
- Cardiac Proteomics Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Patrick T Ellinor
- Cardiovascular Research Centre, Massachusetts General Hospital, Boston, 02114, MA, USA.,Program in Population and Medical Genetics, The Broad Institute of Harvard and MIT, Cambridge, 02114, MA, USA
| | - Anders G Holst
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark
| | - Jesper H Svendsen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Morten S Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark. .,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.
| |
Collapse
|
28
|
Hsu J, Gore-Panter S, Tchou G, Castel L, Lovano B, Moravec CS, Pettersson GB, Roselli EE, Gillinov AM, McCurry KR, Smedira NG, Barnard J, Van Wagoner DR, Chung MK, Smith JD. Genetic Control of Left Atrial Gene Expression Yields Insights into the Genetic Susceptibility for Atrial Fibrillation. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e002107. [PMID: 29545482 PMCID: PMC5858469 DOI: 10.1161/circgen.118.002107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/23/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Genome-wide association studies have identified 23 loci for atrial fibrillation (AF), but the mechanisms responsible for these associations, as well as the causal genes and genetic variants, remain undefined. METHODS To identify the effect of common genetic variants on gene expression that might explain the mechanisms linking genome-wide association loci with AF risk, we performed RNA sequencing of left atrial appendages from a biracial cohort of 265 subjects. RESULTS Combining gene expression data with genome-wide single nucleotide polymorphism data, we found that approximately two-thirds of the expressed genes were regulated in cis by common genetic variants at a false discovery rate of <0.05, defined as cis-expression quantitative trait loci. Twelve of 23 reported AF genome-wide association loci displayed genome-wide significant cis-expression quantitative trait loci, at PRRX1 (chromosome 1q24), SNRNP27 (1q24), CEP68 (2p14), FKBP7 (2q31), KCNN2 (5q22), FAM13B (5q31), CAV1 (7q31), ASAH1 (8p22), MYOZ1 (10q22), C11ORF45 (11q24), TBX5 (12q24), and SYNE2 (14q23), suggesting that altered expression of these genes plays a role in AF susceptibility. Allelic expression imbalance was used as an independent method to characterize the cis-control of gene expression. One thousand two hundred forty-eight of 5153 queried genes had cis-single nucleotide polymorphisms that significantly regulated allelic expression at a false discovery rate of <0.05. CONCLUSIONS We provide a genome-wide catalog of the genetic control of gene expression in human left atrial appendage. These data can be used to confirm the relevance of genome-wide association loci and to direct future functional studies to identify the genes and genetic variants responsible for complex diseases such as AF.
Collapse
Affiliation(s)
- Jeffrey Hsu
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - Shamone Gore-Panter
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - Gregory Tchou
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - Laurie Castel
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - Beth Lovano
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - Christine S Moravec
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - Gosta B Pettersson
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - Eric E Roselli
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - A Marc Gillinov
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - Kenneth R McCurry
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - Nicholas G Smedira
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - John Barnard
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - David R Van Wagoner
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - Mina K Chung
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH
| | - Jonathan D Smith
- From the Departments of Cellular and Molecular Medicine (J.H., G.T., J.D.S.), Quantitative Health Sciences (J.B.), Molecular Cardiology (S.G.-P., L.C., B.L., C.S.M., D.R.V.W., M.K.C.), Cardiovascular Medicine (C.S.M., D.R.V.W., M.K.C., J.D.S.), and Cardiothoracic Surgery (G.B.P., E.E.R., A.M.G., K.R.M., N.G.S.), Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
29
|
van Eldik W, den Adel B, Monshouwer-Kloots J, Salvatori D, Maas S, van der Made I, Creemers EE, Frank D, Frey N, Boontje N, van der Velden J, Steendijk P, Mummery C, Passier R, Beqqali A. Z-disc protein CHAPb induces cardiomyopathy and contractile dysfunction in the postnatal heart. PLoS One 2017; 12:e0189139. [PMID: 29206857 PMCID: PMC5716575 DOI: 10.1371/journal.pone.0189139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
Aims The Z-disc is a crucial structure of the sarcomere and is implicated in mechanosensation/transduction. Dysregulation of Z-disc proteins often result in cardiomyopathy. We have previously shown that the Z-disc protein Cytoskeletal Heart-enriched Actin-associated Protein (CHAP) is essential for cardiac and skeletal muscle development. Furthermore, the CHAP gene has been associated with atrial fibrillation in humans. Here, we studied the misregulated expression of CHAP isoforms in heart disease. Methods and results Mice that underwent transverse aortic constriction and calcineurin transgenic (Tg) mice, both models of experimental heart failure, displayed a significant increase in cardiac expression of fetal isoform CHAPb. To investigate whether increased expression of CHAPb postnatally is sufficient to induce cardiomyopathy, we generated CHAPb Tg mice under the control of the cardiac-specific αMHC promoter. CHAPb Tg mice displayed cardiac hypertrophy, interstitial fibrosis and enlargement of the left atrium at three months, which was more pronounced at the age of six months. Hypertrophy and fibrosis were confirmed by evidence of activation of the hypertrophic gene program (Nppa, Nppb, Myh7) and increased collagen expression, respectively. Connexin40 and 43 were downregulated in the left atrium, which was associated with delayed atrioventricular conduction. Tg hearts displayed both systolic and diastolic dysfunction partly caused by impaired sarcomere function evident from a reduced force generating capacity of single cardiomyocytes. This co-incided with activation of the actin signalling pathway leading to the formation of stress fibers. Conclusion This study demonstrated that the fetal isoform CHAPb initiates progression towards cardiac hypertrophy, which is accompanied by delayed atrioventricular conduction and diastolic dysfunction. Moreover, CHAP may be a novel therapeutic target or candidate gene for screening in cardiomyopathies and atrial fibrillation.
Collapse
Affiliation(s)
- Willemijn van Eldik
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - Brigit den Adel
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Daniela Salvatori
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Central Laboratory Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia Maas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Central Laboratory Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther E. Creemers
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Derk Frank
- Department of Cardiology and Angiology, Universitätsklinikum Schleswig-Holstein (UKSH), University of Kiel, Kiel, Germany
| | - Norbert Frey
- Department of Cardiology and Angiology, Universitätsklinikum Schleswig-Holstein (UKSH), University of Kiel, Kiel, Germany
| | - Nicky Boontje
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Steendijk
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abdelaziz Beqqali
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Liao KA, González-Morales N, Schöck F. Zasp52, a Core Z-disc Protein in Drosophila Indirect Flight Muscles, Interacts with α-Actinin via an Extended PDZ Domain. PLoS Genet 2016; 12:e1006400. [PMID: 27783625 PMCID: PMC5081203 DOI: 10.1371/journal.pgen.1006400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/04/2016] [Indexed: 11/18/2022] Open
Abstract
Z-discs are organizing centers that establish and maintain myofibril structure and function. Important Z-disc proteins are α-actinin, which cross-links actin thin filaments at the Z-disc and Zasp PDZ domain proteins, which directly interact with α-actinin. Here we investigate the biochemical and genetic nature of this interaction in more detail. Zasp52 is the major Drosophila Zasp PDZ domain protein, and is required for myofibril assembly and maintenance. We show by in vitro biochemistry that the PDZ domain plus a C-terminal extension is the only area of Zasp52 involved in the interaction with α-actinin. In addition, site-directed mutagenesis of 5 amino acid residues in the N-terminal part of the PDZ domain, within the PWGFRL motif, abolish binding to α-actinin, demonstrating the importance of this motif for α-actinin binding. Rescue assays of a novel Zasp52 allele demonstrate the crucial importance of the PDZ domain for Zasp52 function. Flight assays also show that a Zasp52 mutant suppresses the α-actinin mutant phenotype, indicating that both proteins are core structural Z-disc proteins required for optimal Z-disc function. Although Zasp PDZ domain proteins are known to bind α-actinin and play a role in muscle assembly and maintenance, the details and importance of this interaction have not been assessed. Here we demonstrate that a conserved motif in the N-terminal part of the Zasp52 PDZ domain is responsible for α-actinin binding and that a C-terminal extension of the PDZ domain is required for optimal α-actinin binding. We show using transgenic animals that in the absence of the PDZ domain no aspect of myofibril assembly can be rescued. Intriguingly, α-actinin/+ heterozygous animals show irregularities in wing beat frequency, which can be suppressed by removing one copy of Zasp52. This suggests that both proteins are required at fixed levels at the Z-disc to support optimal functionality.
Collapse
Affiliation(s)
- Kuo An Liao
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, CANADA
| | | | - Frieder Schöck
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, CANADA
- * E-mail:
| |
Collapse
|
31
|
The Role of Pharmacogenetics in Atrial Fibrillation Therapeutics: Is Personalized Therapy in Sight? J Cardiovasc Pharmacol 2016; 67:9-18. [PMID: 25970841 DOI: 10.1097/fjc.0000000000000280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia worldwide requiring therapy. Despite recent advances in catheter-based and surgical therapy, antiarrhythmic drugs (AADs) remain the mainstay of treatment for symptomatic AF. However, response in individual patients is highly variable with over half the patients treated with rhythm control therapy experiencing recurrence of AF within a year. Contemporary AADs used to suppress AF are incompletely and unpredictably effective and associated with significant risks of proarrhythmia and noncardiac toxicities. Furthermore, this "one-size" fits all strategy for selecting antiarrhythmics is based largely on minimizing risk of adverse effects rather than on the likelihood of suppressing AF. The limited success of rhythm control therapy is in part due to heterogeneity of the underlying substrate, interindividual differences in disease mechanisms, and our inability to predict response to AADs in individual patients. Genetic studies of AF over the past decade have revealed that susceptibility to and response to therapy for AF is modulated by the underlying genetic substrate. However, the bedside application of these new discoveries to the management of AF patients has thus far been disappointing. This may in part be related to our limited understanding about genetic predictors of drug response in general, the challenges associated with determining efficacy of response to AADs, and lack of randomized genotype-directed clinical trials. Nonetheless, recent studies have shown that common AF susceptibility risk alleles at the chromosome 4q25 locus modulated response to AADs, electrical cardioversion, and ablation therapy. This monograph discusses how genetic approaches to AF have not only provided important insights into underlying mechanisms but also identified AF subtypes that can be better targeted with more mechanism-based "personalized" therapy.
Collapse
|
32
|
Prunotto A, Stevenson BJ, Berthonneche C, Schüpfer F, Beckmann JS, Maurer F, Bergmann S. RNAseq analysis of heart tissue from mice treated with atenolol and isoproterenol reveals a reciprocal transcriptional response. BMC Genomics 2016; 17:717. [PMID: 27604219 PMCID: PMC5015234 DOI: 10.1186/s12864-016-3059-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 09/01/2016] [Indexed: 01/17/2023] Open
Abstract
Background The transcriptional response to many widely used drugs and its modulation by genetic variability is poorly understood. Here we present an analysis of RNAseq profiles from heart tissue of 18 inbred mouse strains treated with the β-blocker atenolol (ATE) and the β-agonist isoproterenol (ISO). Results Differential expression analyses revealed a large set of genes responding to ISO (n = 1770 at FDR = 0.0001) and a comparatively small one responding to ATE (n = 23 at FDR = 0.0001). At a less stringent definition of differential expression, the transcriptional responses to these two antagonistic drugs are reciprocal for many genes, with an overall anti-correlation of r = −0.3. This trend is also observed at the level of most individual strains even though the power to detect differential expression is significantly reduced. The inversely expressed gene sets are enriched with genes annotated for heart-related functions. Modular analysis revealed gene sets that exhibit coherent transcription profiles across some strains and/or treatments. Correlations between these modules and a broad spectrum of cardiovascular traits are stronger than expected by chance. This provides evidence for the overall importance of transcriptional regulation for these organismal responses and explicits links between co-expressed genes and the traits they are associated with. Gene set enrichment analysis of differentially expressed groups of genes pointed to pathways related to heart development and functionality. Conclusions Our study provides new insights into the transcriptional response of the heart to perturbations of the β-adrenergic system, implicating several new genes that had not been associated to this system previously. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3059-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Prunotto
- Department of Medical Genetics, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Corinne Berthonneche
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland
| | - Fanny Schüpfer
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland
| | - Jacques S Beckmann
- Department of Medical Genetics, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland
| | - Fabienne Maurer
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland.
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland. .,Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
33
|
Abstract
INTRODUCTION Over the last decade, tremendous progress has been made in defining the genetic architecture of atrial fibrillation (AF). This has in part been driven by poor understanding of the pathophysiology of AF, limitations of current therapies and failure to target therapies to the underlying mechanisms. AREAS COVERED Genetic approaches to AF have identified mutations encoding cardiac ion channels, and signaling proteins linked with AF and genome-wide association studies have uncovered common genetic variants modulating AF risk. These studies have provided important insights into the underlying mechanisms of AF and defined responses to therapies. Common AF-risk alleles at the chromosome 4q25 locus modulate response to antiarrhythmic drugs, electrical cardioversion and catheter ablation. While the translation of these discoveries to the bedside care of individual patients has been limited, emerging evidence supports the hypothesis that genotype-directed approaches that target the underlying mechanisms of AF may not only improve therapeutic efficacy but also minimize adverse effects. Expert commentary: There is an urgent need for randomized controlled trials that are genotype-based for the treatment of AF. Nonetheless, emerging data suggest that selecting therapies for AF that are genotype-directed may soon be upon us.
Collapse
Affiliation(s)
- Henry Huang
- a Division of Cardiology, Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| | - Dawood Darbar
- a Division of Cardiology, Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
34
|
In-Utero Low-Dose Irradiation Leads to Persistent Alterations in the Mouse Heart Proteome. PLoS One 2016; 11:e0156952. [PMID: 27276052 PMCID: PMC4898684 DOI: 10.1371/journal.pone.0156952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023] Open
Abstract
Prenatal exposure to stress such as increased level of reactive oxygen species or antiviral therapy are known factors leading to adult heart defects. The risks following a radiation exposure during fetal period are unknown, as are the mechanisms of any potential cardiac damage. The aim of this study was to gather evidence for possible damage by investigating long-term changes in the mouse heart proteome after prenatal exposure to low and moderate radiation doses. Pregnant C57Bl/6J mice received on embryonic day 11 (E11) a single total body dose of ionizing radiation that ranged from 0.02 Gy to 1.0 Gy. The offspring were sacrificed at the age of 6 months or 2 years. Quantitative proteomic analysis of heart tissue was performed using Isotope Coded Protein Label technology and tandem mass spectrometry. The proteomics data were analyzed by bioinformatics and key changes were validated by immunoblotting. Persistent changes were observed in the expression of proteins representing mitochondrial respiratory complexes, redox and heat shock response, and the cytoskeleton, even at the low dose of 0.1 Gy. The level of total and active form of the kinase MAP4K4 that is essential for the embryonic development of mouse heart was persistently decreased at the radiation dose of 1.0 Gy. This study provides the first insight into the molecular mechanisms of cardiac impairment induced by ionizing radiation exposure during the prenatal period.
Collapse
|
35
|
El Amrani K, Stachelscheid H, Lekschas F, Kurtz A, Andrade-Navarro MA. MGFM: a novel tool for detection of tissue and cell specific marker genes from microarray gene expression data. BMC Genomics 2015; 16:645. [PMID: 26314578 PMCID: PMC4552366 DOI: 10.1186/s12864-015-1785-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/18/2015] [Indexed: 11/10/2022] Open
Abstract
Background Identification of marker genes associated with a specific tissue/cell type is a fundamental challenge in genetic and cell research. Marker genes are of great importance for determining cell identity, and for understanding tissue specific gene function and the molecular mechanisms underlying complex diseases. Results We have developed a new bioinformatics tool called MGFM (Marker Gene Finder in Microarray data) to predict marker genes from microarray gene expression data. Marker genes are identified through the grouping of samples of the same type with similar marker gene expression levels. We verified our approach using two microarray data sets from the NCBI’s Gene Expression Omnibus public repository encompassing samples for similar sets of five human tissues (brain, heart, kidney, liver, and lung). Comparison with another tool for tissue-specific gene identification and validation with literature-derived established tissue markers established functionality, accuracy and simplicity of our tool. Furthermore, top ranked marker genes were experimentally validated by reverse transcriptase-polymerase chain reaction (RT-PCR). The sets of predicted marker genes associated with the five selected tissues comprised well-known genes of particular importance in these tissues. The tool is freely available from the Bioconductor web site, and it is also provided as an online application integrated into the CellFinder platform (http://cellfinder.org/analysis/marker). Conclusions MGFM is a useful tool to predict tissue/cell type marker genes using microarray gene expression data. The implementation of the tool as an R-package as well as an application within CellFinder facilitates its use. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1785-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khadija El Amrani
- Charité - Universitätsmedizin Berlin, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Berlin, 13353, Germany.
| | - Harald Stachelscheid
- Charité - Universitätsmedizin Berlin, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Berlin, 13353, Germany. .,Berlin Institute of Health, Berlin, 10117, Germany.
| | - Fritz Lekschas
- Charité - Universitätsmedizin Berlin, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Berlin, 13353, Germany.
| | - Andreas Kurtz
- Charité - Universitätsmedizin Berlin, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Berlin, 13353, Germany. .,Seoul National University, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul, 151-742, Republic of Korea.
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University of Mainz, Mainz, Germany. .,Institute of Molecular Biology, Mainz, Germany.
| |
Collapse
|
36
|
Yang J, Shih YH, Xu X. Understanding cardiac sarcomere assembly with zebrafish genetics. Anat Rec (Hoboken) 2015; 297:1681-93. [PMID: 25125181 DOI: 10.1002/ar.22975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
Abstract
Mutations in sarcomere genes have been found in many inheritable human diseases, including hypertrophic cardiomyopathy. Elucidating the molecular mechanisms of sarcomere assembly shall facilitate understanding of the pathogenesis of sarcomere-based cardiac disease. Recently, biochemical and genomic studies have identified many new genes encoding proteins that localize to the sarcomere. However, their precise functions in sarcomere assembly and sarcomere-based cardiac disease are unknown. Here, we review zebrafish as an emerging vertebrate model for these studies. We summarize the techniques offered by this animal model to manipulate genes of interest, annotate gene expression, and describe the resulting phenotypes. We survey the sarcomere genes that have been investigated in zebrafish and discuss the potential of applying this in vivo model for larger-scale genetic studies.
Collapse
Affiliation(s)
- Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | |
Collapse
|
37
|
Peñagaricano F, Wang X, Rosa GJ, Radunz AE, Khatib H. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep. BMC Genomics 2014; 15:1034. [PMID: 25429728 PMCID: PMC4301459 DOI: 10.1186/1471-2164-15-1034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/19/2014] [Indexed: 01/15/2023] Open
Abstract
Background Maternal nutrition during different stages of pregnancy can induce significant changes in the structure, physiology, and metabolism of the offspring. These changes could have important implications on food animal production especially if these perturbations impact muscle and adipose tissue development. Here, we evaluated the impact of different maternal isoenergetic diets, alfalfa haylage (HY; fiber), corn (CN; starch), and dried corn distillers grains (DG; fiber plus protein plus fat), on the transcriptome of fetal muscle and adipose tissues in sheep. Results Prepartum diets were associated with notable gene expression changes in fetal tissues. In longissimus dorsi muscle, a total of 224 and 823 genes showed differential expression (FDR ≤0.05) in fetuses derived from DG vs. CN and HY vs. CN maternal diets, respectively. Several of these significant genes affected myogenesis and muscle differentiation. In subcutaneous and perirenal adipose tissues, 745 and 208 genes were differentially expressed (FDR ≤0.05), respectively, between CN and DG diets. Many of these genes are involved in adipogenesis, lipogenesis, and adipose tissue development. Pathway analysis revealed that several GO terms and KEGG pathways were enriched (FDR ≤0.05) with differentially expressed genes associated with tissue and organ development, chromatin biology, and different metabolic processes. Conclusions These findings provide evidence that maternal nutrition during pregnancy can alter the programming of fetal muscle and fat tissues in sheep. The ramifications of the observed gene expression changes, in terms of postnatal growth, body composition, and meat quality of the offspring, warrant future investigation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1034) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisco Peñagaricano
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
38
|
Mahida S. Genetic Discoveries in Atrial Fibrillation and Implications for Clinical Practice. Arrhythm Electrophysiol Rev 2014; 3:69-75. [PMID: 26835069 DOI: 10.15420/aer.2014.3.2.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/04/2014] [Indexed: 11/04/2022] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia with a genetic basis. Over the past decade, rapid advances in genotyping technology have revolutionised research regarding the genetic basis of AF. While AF genetics research was previously largely restricted to familial forms of AF, recent studies have begun to characterise the genetic architecture underlying the form of AF encountered in everyday clinical practice. These discoveries could have a significant impact on the management of AF. However, much work remains before genetic findings can be translated to clinical practice. This review summarises results of studies in AF genetics to date and discusses the potential implications of these findings in clinical practice.
Collapse
|
39
|
Olesen MS, Nielsen MW, Haunsø S, Svendsen JH. Atrial fibrillation: the role of common and rare genetic variants. Eur J Hum Genet 2014; 22:297-306. [PMID: 23838598 PMCID: PMC3925267 DOI: 10.1038/ejhg.2013.139] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/28/2013] [Accepted: 05/27/2013] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting 1-2% of the general population. A number of studies have demonstrated that AF, and in particular lone AF, has a substantial genetic component. Monogenic mutations in lone and familial AF, although rare, have been recognized for many years. Presently, mutations in 25 genes have been associated with AF. However, the complexity of monogenic AF is illustrated by the recent finding that both gain- and loss-of-function mutations in the same gene can cause AF. Genome-wide association studies (GWAS) have indicated that common single-nucleotide polymorphisms (SNPs) have a role in the development of AF. Following the first GWAS discovering the association between PITX2 and AF, several new GWAS reports have identified SNPs associated with susceptibility of AF. To date, nine SNPs have been associated with AF. The exact biological pathways involving these SNPs and the development of AF are now starting to be elucidated. Since the first GWAS, the number of papers concerning the genetic basis of AF has increased drastically and the majority of these papers are for the first time included in a review. In this review, we discuss the genetic basis of AF and the role of both common and rare genetic variants in the susceptibility of developing AF. Furthermore, all rare variants reported to be associated with AF were systematically searched for in the Exome Sequencing Project Exome Variant Server.
Collapse
Affiliation(s)
- Morten S Olesen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Copenhagen, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten W Nielsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Copenhagen, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stig Haunsø
- The Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Copenhagen, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Surgery and Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper H Svendsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Copenhagen, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Surgery and Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Balouch MA, Kolek MJ, Darbar D. Improved understanding of the pathophysiology of atrial fibrillation through the lens of discrete pathological pathways. Glob Cardiol Sci Pract 2014; 2014:24-36. [PMID: 25054116 PMCID: PMC4104374 DOI: 10.5339/gcsp.2014.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is a common disorder with a complex and incompletely understood pathophysiology. Genetic approaches to understanding the pathophysiology of AF have led to the identification of several biological pathways important in the pathogenesis of the arrhythmia. These include pathways important for cardiac development, generation and propagation of atrial electrical impulses, and atrial remodeling and fibrosis. While common and rare genetic variants in these pathways are associated with increased susceptibility to AF, they differ substantially among patients with lone versus typical AF. Furthermore, how these pathways converge to a final common clinical phenotype of AF is unclear and might also vary among different patient populations. Here, we review the contemporary knowledge of AF pathogenesis and discuss how derangement in cardiac development, ion channel dysfunction, and promotion of atrial fibrosis may contribute to this common and important clinical disorder.
Collapse
Affiliation(s)
- Muhammad A Balouch
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew J Kolek
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dawood Darbar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
41
|
Poon KL, Brand T. The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Glob Cardiol Sci Pract 2013; 2013:9-28. [PMID: 24688998 PMCID: PMC3963735 DOI: 10.5339/gcsp.2013.4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/29/2013] [Indexed: 12/26/2022] Open
Affiliation(s)
- Kar Lai Poon
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Thomas Brand
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, Middlesex, UB9 6JH, United Kingdom
| |
Collapse
|
42
|
Kai F, Duncan R. Prostate cancer cell migration induced by myopodin isoforms is associated with formation of morphologically and biochemically distinct actin networks. FASEB J 2013; 27:5046-58. [PMID: 24005909 DOI: 10.1096/fj.13-231571] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Myopodin is an actin-binding protein that promotes cancer cell migration in response to serum stimulation and is associated with invasive tumor development. To determine whether enhanced migration reflects changes in actin cytoskeleton remodeling, fluorescence confocal microscopy was used to examine the composition and morphology of filamentous actin structures in mock-transduced cells vs. stably transduced PC3 cells expressing human myopodin isoforms, and the chemokinetic response of cells was quantified using transwell assays. The same approaches were used to analyze the effects of external migration stimuli, actin polymerization inhibitors or deletion of the isoform-specific amino- and/or carboxy termini on cell migration and actin bundle formation. Results indicate that the termini of the myopodin isoforms differentially alter the formation of morphologically distinct F-actin networks that also differ in their myosin and myopodin staining patterns. Furthermore, enhanced cell migration was reduced by >50% when actin bundle formation was impaired by myopodin-truncation, low concentrations of an actin polymerization inhibitor, or in the absence of an external migration stimulus. Human myopodin isoforms are therefore potent regulators of stress fiber formation, inducing the formation of biochemically and morphologically distinct F-actin networks in the cell body whose presence directly correlates with increased cell migration.
Collapse
Affiliation(s)
- FuiBoon Kai
- 1Department of Microbiology and Immunology, Tupper Medical Bldg., 5850 College St., PO Box 15000, Dalhousie University, Halifax, NS, Canada, B3H 4R2.
| | | |
Collapse
|
43
|
Abstract
Sarcomeres are the smallest contractile units of heart and skeletal muscles and are essential for generation and propagation of mechanical force in these striated muscles. During the last decades it has become increasingly clear that components of sarcomeres also play a fundamental role in signal transduction in physiological and pathophysiological conditions. Mutations or misexpression of both sarcomeric contractile and non-contractile proteins have been associated with a variety of cardiac diseases. Moreover, re-expression of foetal sarcomeric proteins or isoforms during cardiac disease can be observed, emphasising the importance of understanding signalling in sarcomeres in both development and disease. The prospective of pharmacological intervention at the level of the sarcomere is now emerging and may lead to novel therapeutic strategies for the treatment of cardiac and skeletal muscle diseases. These aspects will be discussed in this brief review and recent findings, which led to novel insights into the role of the sarcomeric cytoskeleton in muscle development and disease, will be highlighted.
Collapse
|
44
|
Sloboda DD, Claflin DR, Dowling JJ, Brooks SV. Force measurement during contraction to assess muscle function in zebrafish larvae. J Vis Exp 2013. [PMID: 23912162 PMCID: PMC3846141 DOI: 10.3791/50539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Zebrafish larvae provide models of muscle development, muscle disease and muscle-related chemical toxicity, but related studies often lack functional measures of muscle health. In this video article, we demonstrate a method to measure force generation during contraction of zebrafish larval trunk muscle. Force measurements are accomplished by placing an anesthetized larva into a chamber filled with a salt solution. The anterior end of the larva is tied to a force transducer and the posterior end of the larva is tied to a length controller. An isometric twitch contraction is elicited by electric field stimulation and the force response is recorded for analysis. Force generation during contraction provides a measure of overall muscle health and specifically provides a measure of muscle function. Although we describe this technique for use with wild-type larvae, this method can be used with genetically modified larvae or with larvae treated with drugs or toxicants, to characterize muscle disease models and evaluate treatments, or to study muscle development, injury, or chemical toxicity.
Collapse
Affiliation(s)
- Darcée D Sloboda
- Department of Biomedical Engineering, University of Michigan, Michigan, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Atrial fibrillation (AF) is the most-common sustained arrhythmia observed in clinical practice, but response to therapy is highly variable between patients. Current drug therapies to suppress AF are incompletely and unpredictably effective and carry substantial risk of proarrhythmia and noncardiac toxicities. The limited success of therapy for AF is partially the result of heterogeneity of the underlying substrate, interindividual differences in disease mechanisms, and our inability to predict response to therapies in individual patients. In this Review, we discuss the evidence that variability in response to drug therapy is also conditioned by the underlying genetic substrate for AF. Increased susceptibility to AF is mediated through diverse genetic mechanisms, including modulation of the atrial action-potential duration, conduction slowing, and impaired cell-to-cell communication, as well as novel mechanisms, such as regulation of signalling proteins important in the pathogenesis of AF. However, the translation of genetic data to the care of the patients with AF has been limited because of poor understanding of the underlying mechanisms associated with common AF-susceptibility loci, a dearth of prospective, adequately powered studies, and the challenges associated with determining efficacy of antiarrhythmic drugs. What is apparent, however, is the need for appropriately designed, genotype-directed clinical trials.
Collapse
Affiliation(s)
- Dawood Darbar
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, 2215B Garland Avenue, Nashville, TN 37323-6602, USA.
| | | |
Collapse
|
46
|
Alp/Enigma family proteins cooperate in Z-disc formation and myofibril assembly. PLoS Genet 2013; 9:e1003342. [PMID: 23505387 PMCID: PMC3591300 DOI: 10.1371/journal.pgen.1003342] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
The Drosophila Alp/Enigma family protein Zasp52 localizes to myotendinous junctions and Z-discs. It is required for terminal muscle differentiation and muscle attachment. Its vertebrate ortholog ZASP/Cypher also localizes to Z-discs, interacts with α-actinin through its PDZ domain, and is involved in Z-disc maintenance. Human mutations in ZASP cause myopathies and cardiomyopathies. Here we show that Drosophila Zasp52 is one of the earliest markers of Z-disc assembly, and we use a Zasp52-GFP fusion to document myofibril assembly by live imaging. We demonstrate that Zasp52 is required for adult Z-disc stability and pupal myofibril assembly. In addition, we show that two closely related proteins, Zasp66 and the newly identified Zasp67, are also required for adult Z-disc stability and are participating with Zasp52 in Z-disc assembly resulting in more severe, synergistic myofibril defects in double mutants. Zasp52 and Zasp66 directly bind to α-actinin, and they can also form a ternary complex. Our results indicate that Alp/Enigma family members cooperate in Z-disc assembly and myofibril formation; and we propose, based on sequence analysis, a novel class of PDZ domain likely involved in α-actinin binding.
Collapse
|
47
|
Myopodin is an F-actin bundling protein with multiple independent actin-binding regions. J Muscle Res Cell Motil 2012; 34:61-9. [PMID: 23225103 DOI: 10.1007/s10974-012-9334-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 11/28/2012] [Indexed: 01/14/2023]
Abstract
The assembly of striated muscle myofibrils is a multistep process in which a variety of proteins is involved. One of the first and most important steps in myofibrillogenesis is the arrangement of thin myofilaments into ordered I-Z-I brushes, requiring the coordinated activity of numerous actin binding proteins. The early expression of myopodin prior to sarcomeric α-actinin, as well as its binding to actin, α-actinin and filamin indicate an important role for this protein in actin cytoskeleton remodelling with the precise function of myopodin in this process yet remaining to be resolved. While myopodin was previously described as a protein capable of cross-linking actin filaments into thick bundles upon transient transfections, it has remained unclear whether myopodin alone is capable of bundling actin, or if additional proteins are involved. We have therefore investigated the in vitro actin binding properties of myopodin. High speed cosedimentation assays with skeletal muscle actin confirmed direct binding of myopodin to F-actin and showed that this interaction is mediated by at least two independent actin binding sites, found in all myopodin isoforms identified to date. Furthermore, low-speed cosedimentation assays revealed that not only full length myopodin, but also the fragment containing only the second binding site, bundles microfilaments in the absence of accessory proteins. Ultrastructural analysis demonstrated that this bundling activity resembled that of α-actinin. Biochemical experiments revealed that bundling was not achieved by myopodin's ability to dimerize, indicating the presence of two individual F-actin binding sites within the second binding segment. Thus full length myopodin contains at least three F-actin binding sites. These data provide further understanding of the mechanisms by which myopodin contributes to actin reorganization during myofibril assembly.
Collapse
|
48
|
Abstract
Over the past decade, compelling evidence has emerged from population-based studies to suggest that AF is a heritable disease. More recently, we have begun to elucidate the genetic substrate underlying AF. Genome-wide association studies (GWAS) have led to the identification of multiple risk loci that confer increased susceptibility to the arrhythmia. These loci harbor intriguing candidate genes including those encoding ion channels, transcription factors, and signaling molecules. Current efforts are ongoing to functionally validate the role of these genes in disease pathogenesis. In the future, novel genotyping technologies such as exome sequencing and whole-genome sequencing promise to uncover a greater proportion of the heritability underlying AF. In this article we review recent advances in AF genetics research and discuss future developments in the field.
Collapse
Affiliation(s)
- Saagar Mahida
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | | |
Collapse
|
49
|
Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Ritchie MD, Smith AV, Arking DE, Müller-Nurasyid M, Krijthe BP, Lubitz SA, Bis JC, Chung MK, Dörr M, Ozaki K, Roberts JD, Smith JG, Pfeufer A, Sinner MF, Lohman K, Ding J, Smith NL, Smith JD, Rienstra M, Rice KM, Van Wagoner DR, Magnani JW, Wakili R, Clauss S, Rotter JI, Steinbeck G, Launer LJ, Davies RW, Borkovich M, Harris TB, Lin H, Völker U, Völzke H, Milan DJ, Hofman A, Boerwinkle E, Chen LY, Soliman EZ, Voight BF, Li G, Chakravarti A, Kubo M, Tedrow UB, Rose LM, Ridker PM, Conen D, Tsunoda T, Furukawa T, Sotoodehnia N, Xu S, Kamatani N, Levy D, Nakamura Y, Parvez B, Mahida S, Furie KL, Rosand J, Muhammad R, Psaty BM, Meitinger T, Perz S, Wichmann HE, Witteman JCM, Kao WHL, Kathiresan S, Roden DM, Uitterlinden AG, Rivadeneira F, McKnight B, Sjögren M, Newman AB, Liu Y, Gollob MH, Melander O, Tanaka T, Stricker BHC, Felix SB, Alonso A, Darbar D, Barnard J, Chasman DI, Heckbert SR, Benjamin EJ, Gudnason V, Kääb S. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet 2012; 44:670-5. [PMID: 22544366 DOI: 10.1038/ng.2261] [Citation(s) in RCA: 477] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 04/05/2012] [Indexed: 11/09/2022]
Abstract
Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death. We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation susceptibility loci were identified and replicated in an additional sample of individuals of European ancestry, including 5,381 subjects with and 10,030 subjects without atrial fibrillation (P < 5 × 10(-8)). Four of the loci identified in Europeans were further replicated in silico in a GWAS of Japanese individuals, including 843 individuals with and 3,350 individuals without atrial fibrillation. The identified loci implicate candidate genes that encode transcription factors related to cardiopulmonary development, cardiac-expressed ion channels and cell signaling molecules.
Collapse
Affiliation(s)
- Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kawano F, Fujita R, Nakai N, Terada M, Ohira T, Ohira Y. HSP25 can modulate myofibrillar desmin cytoskeleton following the phosphorylation at Ser15 in rat soleus muscle. J Appl Physiol (1985) 2011; 112:176-86. [PMID: 21998265 DOI: 10.1152/japplphysiol.00783.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The main purpose of the present study was to investigate the role(s) of 25-kDa heat shock protein (HSP25) in the regulation and integration of myofibrillar Z-disc structure during down- or upregulation of the size in rat soleus muscle fibers. Hindlimb unloading by tail suspension was performed in adult rats for 7 days, and reloading was allowed for 5 days after the termination of suspension. Interaction of HSP25 and Z-disc proteins, phosphorylation status, distribution, and complex formation of HSP25 were investigated. Non- and single-phosphorylated HSP25s were generally expressed in the cytoplasmic fraction of normal muscle. The level of total HSP25, as well as the phosphorylation ratio, did not change significantly in response to atrophy. Increased expressions of HSP25, phosphorylated at serine 15 (p-Ser15) and dual-phosphorylated form, were noted, when atrophied muscles were reloaded. Myofibrillar HSP25 was also noted in reloaded muscle. Histochemical analysis further indicated the localization of p-Ser15 in the regions with disorganization of Z-disc structure in reloaded muscle fibers. HSP25 formed a large molecular complex in the cytoplasmic fraction of normal muscle, whereas dissociation of free HSP25 with Ser15 phosphorylation was noted in reloaded muscle. The interaction of p-Ser15 with desmin and actinin was detected in Z-discs by proximity ligation assay. Strong interaction between p-Ser15 and desmin, but not actinin, was noted in the disorganized areas. These results indicated that HSP25 contributed to the desmin cytoskeletal organization following the phosphorylation at Ser15 during reloading and regrowing of soleus muscle.
Collapse
Affiliation(s)
- Fuminori Kawano
- Graduate School of Medicine, Osaka University, Toyonaka City, Osaka, Japan
| | | | | | | | | | | |
Collapse
|