1
|
Prouse T, Larter K, Ghosh S, Kumar N, Mohammad MA, Del Valle L, Majumder R, Majumder S. Exogenous Protein S inhibits pancreatic ductal adenocarcinoma. Thromb Res 2025; 245:109233. [PMID: 39626470 DOI: 10.1016/j.thromres.2024.109233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 12/30/2024]
Affiliation(s)
- Teagan Prouse
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Kristina Larter
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Sonali Ghosh
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Narender Kumar
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Mohammad A Mohammad
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Luis Del Valle
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Rinku Majumder
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America.
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America.
| |
Collapse
|
2
|
Hoffmann S, Berger BT, Lucas LR, Schiele F, Park JE. Discovery of Carbonic Anhydrase 9 as a Novel CLEC2 Ligand in a Cellular Interactome Screen. Cells 2024; 13:2083. [PMID: 39768175 PMCID: PMC11674933 DOI: 10.3390/cells13242083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/30/2025] Open
Abstract
Membrane proteins, especially extracellular domains, are key therapeutic targets due to their role in cell communication and associations. Yet, their functions and interactions often remain unclear. This study presents a general method to discover interactions of membrane proteins with immune cells and subsequently to deorphanize their respective receptors. We developed a comprehensive recombinant protein library of extracellular domains of human transmembrane proteins and proteins found in the ER-Golgi-lysosomal systems. Using this library, we conducted a flow-cytometric screen that identified several cell surface binding events, including an interaction between carbonic anhydrase 9 (CAH9/CA9/CAIX) and CD14high cells. Further analysis revealed this interaction was indirect and mediated via platelets bound to the monocytes. CA9, best known for its diverse roles in cancer, is a promising therapeutic target. We utilized our library to develop an AlphaLISA high-throughput screening assay, identifying CLEC2 as one robust CA9 binding partner. A five-amino-acid sequence (EDLPT) in CA9, identical to a CLEC2 binding domain in Podoplanin (PDPN), was found to be essential for this interaction. Like PDPN, CA9-induced CLEC2 signaling is mediated via Syk. A Hodgkin's lymphoma cell line (HDLM-2) endogenously expressing CA9 can activate Syk-dependent CLEC2 signaling, providing enticing evidence for a novel function of CA9 in hematological cancers. In conclusion, we identified numerous interactions with monocytes and platelets and validated one, CA9, as an endogenous CLEC2 ligand. We provide a new list of other putative CA9 interaction partners and uncovered CA9-induced CLEC2 activation, providing new insights for CA9-based therapeutic strategies.
Collapse
Affiliation(s)
- Sebastian Hoffmann
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| | - Benedict-Tilman Berger
- Division of High-Throughput Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (B.-T.B.); (F.S.)
| | - Liane Rosalie Lucas
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| | - Felix Schiele
- Division of High-Throughput Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (B.-T.B.); (F.S.)
- Division of Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - John Edward Park
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| |
Collapse
|
3
|
Windsor P, Ouyang H, G da Costa JA, Rama Damodaran A, Chen Y, Bhagi-Damodaran A. Gas Tunnel Engineering of Prolyl Hydroxylase Reprograms Hypoxia Signaling in Cells. Angew Chem Int Ed Engl 2024; 63:e202409234. [PMID: 39168829 DOI: 10.1002/anie.202409234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Cells have evolved intricate mechanisms for recognizing and responding to changes in oxygen (O2) concentrations. Here, we have reprogrammed cellular hypoxia (low O2) signaling via gas tunnel engineering of prolyl hydroxylase 2 (PHD2), a non-heme iron dependent O2 sensor. Using computational modeling and protein engineering techniques, we identify a gas tunnel and critical residues therein that limit the flow of O2 to PHD2's catalytic core. We show that systematic modification of these residues can open the constriction topology of PHD2's gas tunnel. Using kinetic stopped-flow measurements with NO as a surrogate diatomic gas, we demonstrate up to 3.5-fold enhancement in its association rate to the iron center of tunnel-engineered mutants. Our most effectively designed mutant displays 9-fold enhanced catalytic efficiency (kcat/KM=830±40 M-1 s-1) in hydroxylating a peptide mimic of hypoxia inducible transcription factor HIF-1α, as compared to WT PHD2 (kcat/KM=90±9 M-1 s-1). Furthermore, transfection of plasmids that express designed PHD2 mutants in HEK-293T mammalian cells reveal significant reduction of HIF-1α and downstream hypoxia response transcripts under hypoxic conditions of 1 % O2. Overall, these studies highlight activation of PHD2 as a new pathway to reprogram hypoxia responses and HIF signaling in cells.
Collapse
Affiliation(s)
- Peter Windsor
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Haiping Ouyang
- Department of Biochemistry and Molecular Biology, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Joseph A G da Costa
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Anoop Rama Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Yue Chen
- Department of Biochemistry and Molecular Biology, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| |
Collapse
|
4
|
Suzuki S, Yashiro M, Izumi N, Tsukioka T, Inoue H, Hara K, Ito R, Tanimura T, Nishiyama N. Impact of CA9 expression in the diagnosis of lymph-node metastases in non-small cell lung cancer based on [18F]FDG PET/CT. PLoS One 2024; 19:e0312846. [PMID: 39471162 PMCID: PMC11521239 DOI: 10.1371/journal.pone.0312846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND Lung cancer is the leading cause of the global cancer incidence and mortality. It is important to obtain an accurate diagnosis of lymph-node metastasis before surgery to select the therapeutic strategy for non-small cell lung cancer (NSCLC) patients. Carbonic anhydrase 9 (CA9) is considered a marker of hypoxia and it has reported that CA9 is associated with tumor invasion and metastasis. In this study, the correlation between the CA9 expression for lymph-node metastases in NSCLC and [18F]FDG PET/CT results was investigated in order to clarify the efficacy of [18F]FDG PET/CT for detecting lymph-node metastases of NSCLC patients. METHODS Among the 564 patients who underwent surgical treatment for NSCLC between 2010 and 2016 at our hospital, a total of 338 patients who underwent preoperative [18F]FDG PET/CT were included in this study. CA9 expression was evaluated by immunochemistry. A lymph node with maximum standardized uptake value (SUVmax) ≥2.5 on [18F]FDG PET/CT was preoperatively defined as a metastatic lymph node. RESULT CA9 positivity was detected in 122 patients; the other 216 patients were CA9-negative. The CA9-positive NSCLC cases significantly associated with pleural invasion (p = 0.0063), pT-factor (p = 0.0080), pN-factor (p = 0.036) and pStage (p = 0.043). CA9-positive patients presented significantly poorer survival rate for OS than that of the CA9-negative patients (p = 0.0024). In the multivariable analysis, histological SCC and CA9 positivity were independent poor-prognosis factors for OS. For the total patient population, the sensitivity and specificity of [18F]FDG PET/CT for lymph-node metastases were 54% and 89%, respectively. In contrast, the sensitivity and specificity were particularly low in the CA9-positive SCC cases (36% and 69%, respectively). CONCLUSION [18F]FDG PET/CT might not be useful for diagnosing lymph-node metastases of CA9-positive SCC cases of NSCLC.
Collapse
Affiliation(s)
- Satoshi Suzuki
- Department of Thoracic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Nobuhiro Izumi
- Department of Thoracic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takuma Tsukioka
- Department of Thoracic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Inoue
- Department of Thoracic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kantaro Hara
- Department of Thoracic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Ryuichi Ito
- Department of Thoracic Surgery, Kansai Rosai Hospital, Hyogo, Japan
| | - Takuya Tanimura
- Department of Thoracic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Noritoshi Nishiyama
- Department of Thoracic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
5
|
Bua S, Nocentini A, Bonardi A, Palma G, Ciampi G, Giliberti A, Iannelli F, Bruzzese F, Supuran CT, de Nigris F. Harnessing Nitric Oxide-Donating Benzofuroxans for Targeted Inhibition of Carbonic Anhydrase IX in Cancer. J Med Chem 2024; 67:15892-15907. [PMID: 39207927 DOI: 10.1021/acs.jmedchem.4c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We describe here the design and antitumor evaluation of benzofuroxan-based nitric oxide (NO)-donor hybrid derivatives targeting human carbonic anhydrases (hCAs) IX and XII. The most effective compounds, 27 and 28, demonstrated potent dual action, exhibiting low nanomolar inhibition constants against hCA IX and significant NO release. Notably, compound 27 showed significant antiproliferative effects against various cancer cell lines, particularly renal carcinoma A-498 cells. In these cells, it significantly reduced the expression of CA IX and iron-regulatory proteins, inducing apoptosis via mitochondrial caspase activity and ferroptosis pathways, as evidenced by increases in ROS, nitrite, and down-regulated expression of ferritin-encoding genes. In three-dimensional tumor models, compound 27 effectively reduced spheroid size and viability. In vivo toxicity studies in mice indicated that the compounds were well-tolerated, with no significant alterations in kidney function. These findings underscore the potential of benzofuroxan-based CA inhibitors for further preclinical evaluations as therapeutic agents targeting renal cell carcinoma.
Collapse
Affiliation(s)
- Silvia Bua
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Giuseppe Palma
- Experimental Animal Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli 80131, Italy
| | - Giulia Ciampi
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli″, Napoli 80138, Italy
| | - Angela Giliberti
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli″, Napoli 80138, Italy
| | - Federica Iannelli
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale, Napoli 80131, Italy
| | - Francesca Bruzzese
- Experimental Animal Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli 80131, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli″, Napoli 80138, Italy
| |
Collapse
|
6
|
Ronca R, Supuran CT. Carbonic anhydrase IX: An atypical target for innovative therapies in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189120. [PMID: 38801961 DOI: 10.1016/j.bbcan.2024.189120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Carbonic anhydrases (CAs), are metallo-enzymes implicated in several pathophysiological processes where tissue pH regulation is required. CA IX is a tumor-associated CA isoform induced by hypoxia and involved in the adaptation of tumor cells to acidosis. Indeed, several tumor-driving pathways can induce CA IX expression, and this in turn has been associated to cancer cells invasion and metastatic features as well as to induction of stem-like features, drug resistance and recurrence. After its functional and structural characterization CA IX targeting approaches have been developed to inhibit its activity in neoplastic tissues, and to date this field has seen an incredible acceleration in terms of therapeutic options and biological readouts. Small molecules inhibitors, hybrid/dual targeting drugs, targeting antibodies and adoptive (CAR-T based) cell therapy have been developed at preclinical level, whereas a sulfonamide CA IX inhibitor and an antibody entered Phase Ib/II clinical trials for the treatment and imaging of different solid tumors. Here recent advances on CA IX biology and pharmacology in cancer, and its therapeutic targeting will be discussed.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy.
| |
Collapse
|
7
|
Abstract
Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid-base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, University of Copenhagen, Faculty of Science, København, Denmark.
| |
Collapse
|
8
|
Fu Y, Zheng P, Zheng X, Chen L, Kong C, Liu W, Li S, Jiang J. Downregulation of HHLA2 inhibits ovarian cancer progression via the NF-κB signaling pathway and suppresses the expression of CA9. Cell Immunol 2023; 388-389:104730. [PMID: 37210768 DOI: 10.1016/j.cellimm.2023.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
HHLA2 has been recently demonstrated to play multifaceted roles in several types of cancers. However, its underlying mechanism in the progression of human ovarian cancer (OC) remains largely unexplored. In the present study, we aimed to determine whether downregulation of HHLA2 inhibited malignant phenotypes of human OC cells and explore its specific mechanism. Our results revealed that downregulation of HHLA2 by transfection with a lentiviral vector significantly suppressed the viability, invasion, and migration of OC cells. Interaction study showed that downregulation of HHLA2 in OC cells reduced the expression of CA9 and increased the expressions of p-IKKβ and p-RelA. Conversely, the viability, invasion, and migration of HHLA2-depleted OC cells were increased when CA9 was upregulated. In vivo, we found that downregulation of HHLA2 significantly inhibited tumor growth, which was reversed by CA9 overexpression. In addition, downregulation of HHLA2 inhibited the OC progression via activating the NF-κB signaling pathway and decreasing the expression of CA9. Collectively, our data suggested a link between HHLA2 and NF-κB axis in the pathogenesis of OC, and these findings might provide valuable insights into the development of novel potential therapeutic targets for OC.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China; Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Panpan Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Caixia Kong
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Wenzhi Liu
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Shuping Li
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China.
| |
Collapse
|
9
|
Ferragu M, Vergori L, Le Corre V, Bellal S, Del Carmen Martinez M, Bigot P. Effects of Large Extracellular Vesicles from Kidney Cancer Patients on the Growth and Environment of Renal Cell Carcinoma Xenografts in a Mouse Model. Curr Issues Mol Biol 2023; 45:2491-2504. [PMID: 36975533 PMCID: PMC10047252 DOI: 10.3390/cimb45030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Plasma membrane-derived vesicles, also referred to as large extracellular vesicles (lEVs), are implicated in several pathophysiological situations, including cancer. However, to date, no studies have evaluated the effects of lEVs isolated from patients with renal cancer on the development of their tumors. In this study, we investigated the effects of three types of lEVs on the growth and peritumoral environment of xenograft clear cell renal cell carcinoma in a mouse model. Xenograft cancer cells were derived from patients' nephrectomy specimens. Three types of lEVs were obtained from pre-nephrectomy patient blood (cEV), the supernatant of primary cancer cell culture (sEV) and from blood from individuals with no medical history of cancer (iEV). Xenograft volume was measured after nine weeks of growth. Xenografts were then removed, and the expression of CD31 and Ki67 were evaluated. We also measured the expression of MMP2 and Ca9 in the native mouse kidney. lEVs from kidney cancer patients (cEV and sEV) tend to increase the size of xenografts, a factor that is related to an increase in vascularization and tumor cell proliferation. cEV also altered organs that were distant from the xenograft. These results suggest that lEVs in cancer patients are involved in both tumor growth and cancer progression.
Collapse
Affiliation(s)
- Matthieu Ferragu
- Urology Department, Angers University Hospital, 49100 Angers, France
| | - Luisa Vergori
- INSERM Unite Mixte de Recherche (UMR) 1063, Stress Oxydant et Pathologies Metaboliques, 49100 Angers, France
| | - Vincent Le Corre
- Urology Department, Angers University Hospital, 49100 Angers, France
| | - Sarah Bellal
- Anatomopathological Department, Angers University Hospital, 49100 Angers, France
| | - Maria Del Carmen Martinez
- INSERM Unite Mixte de Recherche (UMR) 1063, Stress Oxydant et Pathologies Metaboliques, 49100 Angers, France
| | - Pierre Bigot
- Urology Department, Angers University Hospital, 49100 Angers, France
| |
Collapse
|
10
|
Carbonic Anhydrase IX Controls Vulnerability to Ferroptosis in Gefitinib-Resistant Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1367938. [PMID: 36760347 PMCID: PMC9904911 DOI: 10.1155/2023/1367938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023]
Abstract
Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI, such as gefitinib) in lung cancer continues to be a major problem. Recent studies have shown the promise of ferroptosis-inducing therapy in EGFR-TKI resistant cancer, but have not been translated into clinical benefits. Here, we identified carbonic anhydrase IX (CA9) was upregulated in gefitinib-resistant lung cancer. Then we measured the cell viability, intracellular reactive oxygen species (ROS) levels, and labile iron levels after the treatment of ferroptosis inducer erastin. We found that CA9 confers resistance to ferroptosis-inducing drugs. Mechanistically, CA9 is involved in the inhibition of transferrin endocytosis and the stabilization of ferritin, leading to resistance to ferroptosis. Targeting CA9 promotes iron uptake and release, thus triggering gefitinib-resistant cell ferroptosis. Notably, CA9 inhibitor enhances the ferroptosis-inducing effect of cisplatin on gefitinib-resistant cells, thus eliminating resistant cells in heterogeneous tumor tissues. Taken together, CA9-targeting therapy is a promising approach to improve the therapeutic effect of gefitinib-resistant lung cancer by inducing ferroptosis.
Collapse
|
11
|
Bádon ES, Beke L, Mokánszki A, András C, Méhes G. Carbonic Anhydrase IX Expression and Treatment Response Measured in Rectal Adenocarcinoma Following Neoadjuvant Chemo-Radiotherapy. Int J Mol Sci 2023; 24:ijms24032581. [PMID: 36768903 PMCID: PMC9916425 DOI: 10.3390/ijms24032581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The overexpression of the pH regulator carbonic anhydrase IX (CAIX) due to hypoxic/metabolic stress was reported in various tumors as an adverse prognostic feature. Our retrospective study aimed to investigate the general pattern and dynamics of CAIX expression in rectal adenocarcinoma following preoperative neoadjuvant therapy (NAT) in matched initial biopsy and surgical resection samples. A total of 40/55 (72.72%) of the post-treatment samples showed partial CAIX expression, frequently in the proximity of hypoxic tumor areas. CAIX expression showed a significant increase in post-treatment tumors (mean% 21.8 ± 24.9 SD vs. 39.4 ± 29.4 SD, p < 0.0001), that was not obvious in untreated tumors (mean% 15.0 ± 21.3 SD vs. 20 ± 23.02, p = 0.073). CAIXhigh phenotype was associated with mutant KRAS status and lack of pathological regression (WHO Tumor Regression Grade 4 and 5). However, the adverse effect of CAIX on overall or progression-free survival could not be statistically confirmed. In conclusion, the dynamic upregulation of CAIX expression is a general feature of rectal adenocarcinoma following neoadjuvant chemo-radiotherapy indicating therapy-induced metabolic reprogramming and cellular adaptation. A synergism of the CAIX-associated regulatory pathways and the mutant KRAS oncogenic signaling most likely contributes to therapy resistance and survival of residual cancer.
Collapse
Affiliation(s)
- Emese Sarolta Bádon
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lívia Beke
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla András
- Department of Oncology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-5-2411-600
| |
Collapse
|
12
|
Eloranta K, Pihlajoki M, Liljeström E, Nousiainen R, Soini T, Lohi J, Cairo S, Wilson DB, Parkkila S, Heikinheimo M. SLC-0111, an inhibitor of carbonic anhydrase IX, attenuates hepatoblastoma cell viability and migration. Front Oncol 2023; 13:1118268. [PMID: 36776327 PMCID: PMC9909558 DOI: 10.3389/fonc.2023.1118268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Background In response to hypoxia, tumor cells undergo transcriptional reprogramming including upregulation of carbonic anhydrase (CA) IX, a metalloenzyme that maintains acid-base balance. CAIX overexpression has been shown to correlate with poor prognosis in various cancers, but the role of this CA isoform in hepatoblastoma (HB) has not been examined. Methods We surveyed the expression of CAIX in HB specimens and assessed the impact of SLC-0111, a CAIX inhibitor, on cultured HB cells in normoxic and hypoxic conditions. Results CAIX immunoreactivity was detected in 15 out of 21 archival pathology HB specimens. The CAIX-positive cells clustered in the middle of viable tumor tissue or next to necrotic areas. Tissue expression of CAIX mRNA was associated with metastasis and poor clinical outcome of HB. Hypoxia induced a striking upregulation of CAIX mRNA and protein in three HB cell models: the immortalized human HB cell line HUH6 and patient xenograft-derived lines HB-295 and HB-303. Administration of SLC-0111 abrogated the hypoxia-induced upregulation of CAIX and decreased HB cell viability, both in monolayer and spheroid cultures. In addition, SLC-0111 reduced HB cell motility in a wound healing assay. Transcriptomic changes triggered by SLC-0111 administration differed under normoxic vs. hypoxic conditions, although SLC-0111 elicited upregulation of several tumor suppressor genes under both conditions. Conclusion Hypoxia induces CAIX expression in HB cells, and the CAIX inhibitor SLC-0111 has in vitro activity against these malignant cells.
Collapse
Affiliation(s)
- Katja Eloranta
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,*Correspondence: Marjut Pihlajoki,
| | - Emmi Liljeström
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ruth Nousiainen
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tea Soini
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stefano Cairo
- Xentech, Evry, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy,Champions Oncology, Hackensack, NJ, United States
| | - David B. Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,FICAN Mid, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
| |
Collapse
|
13
|
Yoon M, Lee HK, Park EY, Kim JH, Lee JH, Kim YS, Kim HJ, Kim H, Yoo CW, Lee S, Hong EK, Kim TH, Kim TS, Seo SS, Kang S, Chang SJ, Shin HJ, Uong TNT, Lee S, Kim JY. Randomized multicenter phase II trial of prophylactic irradiation of para-aortic lymph nodes in advanced cervical cancer according to tumor hypoxia: Korean Radiation Oncology Group (KROG 07-01) study. Int J Cancer 2022; 151:2182-2194. [PMID: 35751421 DOI: 10.1002/ijc.34190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
We conducted a prospective phase II study on whether extended-field irradiation (EFI) confers survival benefits depending on hypoxic markers in locally advanced uterine cervical cancer (LAUCC). RNA-seq was performed to identify immune and hypoxic gene signatures. A total of 288 patients were randomized to either EFI or pelvic radiotherapy (PRT). All patients completed chemoradiotherapy. Overall, significantly higher 5-year para-aortic recurrence free survival (PARFS) rate occurred in EFI (97.6%) than in PRT group (87.2%), with marginal tendency to improve disease-free survival (DFS; 78% vs 70%, P = .066). Subgroup analyses were performed based on carbonic anhydrase 9 (CA9)-only positive, CA9/hypoxia-inducible factor (HIF) double positive and CA9 negative. In the CA9-only positive, EFI successfully increased 5-year PARFS (100% vs 76.4%, P = .010), resulting in significantly improved long-term DFS (85.7% vs 54.7%, P = .023) compared to the PRT, while there was no such benefit of EFI in the CA9/HIFs double positive. RNA-seq analysis identified distinct immunehigh subgroup with negative correlation with hypoxia gene signatures (R = -.37, P < .01), which showed a higher 5-year DFS than the immunelow (P = .032). Hypoxia-related genes were upregulated in the CA9/HIFs double positive compared to CA9 negative (P < .05). Only 17.4% of patients in CA9-negative group showed immunelow signatures, while 40.0% of patients in the double-positive group exhibited immunelow signatures. In conclusion, EFI improved PARFS significantly in all patients, but therapeutic efficacy of EFI in terms of improved DFS was solely observed in CA9-only positive LAUCC, and not in CA9/HIFs double-positive subgroup. RNA-seq analysis suggested that hypoxia-induced immunosuppression may be related to treatment resistance in LAUCC.
Collapse
Affiliation(s)
- Meesun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Hyo Kyung Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Eun Young Park
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Jin Hee Kim
- Department of Radiation Oncology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea
| | - Jong Hoon Lee
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University, Seoul, South Korea
| | - Young Seok Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, South Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University, College of Medicine, Seoul, South Korea
| | - Hunjung Kim
- Department of Radiation Oncology, Inha University Hospital, Inha University, School of Medicine, Incheon, South Korea
| | - Chong Woo Yoo
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Sun Lee
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Kyung Hong
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Tae Hyun Kim
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Tae-Sung Kim
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Sang-Soo Seo
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Sokbom Kang
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Suk-Joon Chang
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, South Korea
| | - Hye Jin Shin
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Tung Nguyen Thanh Uong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Joo-Young Kim
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| |
Collapse
|
14
|
Cheng T, Shan G, Yang H, Gu J, Lu C, Xu F, Ge D. Development of a ferroptosis-based model to predict prognosis, tumor microenvironment, and drug response for lung adenocarcinoma with weighted genes co-expression network analysis. Front Pharmacol 2022; 13:1072589. [PMID: 36467089 PMCID: PMC9712758 DOI: 10.3389/fphar.2022.1072589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 08/17/2023] Open
Abstract
Objective: The goal of this study was to create a risk model based on the ferroptosis gene set that affects lung adenocarcinoma (LUAD) patients' prognosis and to investigate the potential underlying mechanisms. Material and Methods: A cohort of 482 LUAD patients from the TCGA database was used to develop the prognostic model. We picked the module genes from the ferroptosis gene set using weighted genes co-expression network analysis (WGCNA). The least absolute shrinkage and selection operator (LASSO) and univariate cox regression were used to screen the hub genes. Finally, the multivariate Cox analysis constructed a risk prediction score model. Three other cohorts of LUAD patients from the GEO database were included to validate the prediction ability of our model. Furthermore, the differentially expressed genes (DEG), immune infiltration, and drug sensitivity were analyzed. Results: An eight-gene-based prognostic model, including PIR, PEBP1, PPP1R13L, CA9, GLS2, DECR1, OTUB1, and YWHAE, was built. The patients from the TCGA database were classified into the high-RS and low-RS groups. The high-RS group was characterized by poor overall survival (OS) and less immune infiltration. Based on clinical traits, we separated the patients into various subgroups, and RS had remarkable prediction performance in each subgroup. The RS distribution analysis demonstrated that the RS was significantly associated with the stage of the LUAD patients. According to the study of immune cell infiltration in both groups, patients in the high-RS group had a lower abundance of immune cells, and less infiltration was associated with worse survival. Besides, we discovered that the high-RS group might not respond well to immune checkpoint inhibitors when we analyzed the gene expression of immune checkpoints. However, drug sensitivity analysis suggested that high-RS groups were more sensitive to common LUAD agents such as Afatinib, Erlotinib, Gefitinib, and Osimertinib. Conclusion: We constructed a novel and reliable ferroptosis-related model for LUAD patients, which was associated with prognosis, immune cell infiltration, and drug sensitivity, aiming to shed new light on the cancer biology and precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Xiong H, Liu X, Xie Z, Zhu L, Lu H, Wang C, Yao J. Metabolic Symbiosis-Blocking Nano-Combination for Tumor Vascular Normalization Treatment. Adv Healthc Mater 2022; 11:e2102724. [PMID: 35708141 DOI: 10.1002/adhm.202102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/02/2022] [Indexed: 01/27/2023]
Abstract
The clinical anti-vascular endothelial growth factor (anti-VEGF) drugs and metronomic chemotherapy (MET) induced tumor vascular normalization treatment (TVNT) are easily antagonized by tumor microenvironment metabolic cross-talk between tumor cells and endothelial cells (ECs). To overcome this dilemma, nanodrug with the ability of ECs targeted glycolysis inhibition and nanodrug with the ability of tumor cell glycolysis inhibition, anti-VEGF, and MET are combined to prepare Nano-combination the pathways related to angiogenesis, tumor cell proliferation, and immunosuppression and breaking the negative sugar-lipid-protein metabolism balance in tumor microenvironment. Thus, stronger and more lasting normalized tumor vascular network and remarkable antitumor efficacy are obtained after treatment, constructing a positive feedback loop between TVNT and anti-tumor therapy. Above all, this study provides a new insight for solving the bottleneck of clinical TVNT.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiaoyan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Zuohan Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Linyuan Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Haipeng Lu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Changzhou, 213164, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
16
|
Maurya VK, Szwarc MM, Fernandez-Valdivia R, Lonard DM, Song Y, Joshi N, Fazleabas AT, Lydon JP. Early growth response 1 transcription factor is essential for the pathogenic properties of human endometriotic epithelial cells. Reproduction 2022; 164:41-54. [PMID: 35679138 PMCID: PMC9339520 DOI: 10.1530/rep-22-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 01/13/2023]
Abstract
Although a non-malignant gynecological disorder, endometriosis displays some pathogenic features of malignancy, such as cell proliferation, migration, invasion and adaptation to hypoxia. Current treatments of endometriosis include pharmacotherapy and/or surgery, which are of limited efficacy and often associated with adverse side effects. Therefore, to develop more effective therapies to treat this disease, a broader understanding of the underlying molecular mechanisms that underpin endometriosis needs to be attained. Using immortalized human endometriotic epithelial and stromal cell lines, we demonstrate that the early growth response 1 (EGR1) transcription factor is essential for cell proliferation, migration and invasion, which represent some of the pathogenic properties of endometriotic cells. Genome-wide transcriptomics identified an EGR1-dependent transcriptome in human endometriotic epithelial cells that potentially encodes a diverse spectrum of proteins that are known to be involved in tissue pathologies. To underscore the utility of this transcriptomic data set, we demonstrate that carbonic anhydrase 9 (CA9), a homeostatic regulator of intracellular pH, is not only a molecular target of EGR1 but is also important for maintaining many of the cellular properties of human endometriotic epithelial cells that are also ascribed to EGR1. Considering therapeutic intervention strategies are actively being developed for EGR1 and CAIX in the treatment of other pathologies, we believe EGR1 and its transcriptome (which includes CA9) will offer not only a new conceptual framework to advance our understanding of endometriosis but will also furnish new molecular vulnerabilities to be leveraged as potential therapeutic options in the future treatment of endometriosis.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yong Song
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Niraj Joshi
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
17
|
Russell S, Xu L, Kam Y, Abrahams D, Ordway B, Lopez AS, Bui MM, Johnson J, Epstein T, Ruiz E, Lloyd MC, Swietach P, Verduzco D, Wojtkowiak J, Gillies RJ. Proton export upregulates aerobic glycolysis. BMC Biol 2022; 20:163. [PMID: 35840963 PMCID: PMC9287933 DOI: 10.1186/s12915-022-01340-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the "Warburg Effect." It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes. Oncogenic drivers can increase the expression of most proteins in the glycolytic pathway, including the terminal step of exporting H+ equivalents from the cytoplasm. Proton exporters maintain an alkaline cytoplasmic pH, which can enhance all glycolytic enzyme activities, even in the absence of oncogene-related expression changes. Based on this observation, we hypothesized that increased uptake and fermentative metabolism of glucose could be driven by the expulsion of H+ equivalents from the cell. RESULTS To test this hypothesis, we stably transfected lowly glycolytic MCF-7, U2-OS, and glycolytic HEK293 cells to express proton-exporting systems: either PMA1 (plasma membrane ATPase 1, a yeast H+-ATPase) or CA-IX (carbonic anhydrase 9). The expression of either exporter in vitro enhanced aerobic glycolysis as measured by glucose consumption, lactate production, and extracellular acidification rate. This resulted in an increased intracellular pH, and metabolomic analyses indicated that this was associated with an increased flux of all glycolytic enzymes upstream of pyruvate kinase. These cells also demonstrated increased migratory and invasive phenotypes in vitro, and these were recapitulated in vivo by more aggressive behavior, whereby the acid-producing cells formed higher-grade tumors with higher rates of metastases. Neutralizing tumor acidity with oral buffers reduced the metastatic burden. CONCLUSIONS Therefore, cancer cells which increase export of H+ equivalents subsequently increase intracellular alkalization, even without oncogenic driver mutations, and this is sufficient to alter cancer metabolism towards an upregulation of aerobic glycolysis, a Warburg phenotype. Overall, we have shown that the traditional understanding of cancer cells favoring glycolysis and the subsequent extracellular acidification is not always linear. Cells which can, independent of metabolism, acidify through proton exporter activity can sufficiently drive their metabolism towards glycolysis providing an important fitness advantage for survival.
Collapse
Affiliation(s)
- Shonagh Russell
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Graduate School, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
| | - Liping Xu
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Yoonseok Kam
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA 9505 USA
| | - Dominique Abrahams
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Bryce Ordway
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Graduate School, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
| | - Alex S. Lopez
- Anatomic Pathology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Marilyn M. Bui
- Anatomic Pathology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Analytic Microscopy Core, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Joseph Johnson
- Analytic Microscopy Core, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | | | - Epifanio Ruiz
- Small Animal Imaging Department, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Mark C. Lloyd
- Inspirata, Inc., One North Dale Mabry Hwy. Suite 600, Tampa, FL 33609 USA
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT UK
| | - Daniel Verduzco
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Jonathan Wojtkowiak
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Robert J. Gillies
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| |
Collapse
|
18
|
Stevens RP, Alexeyev MF, Kozhukhar N, Pastukh V, Paudel SS, Bell J, Tambe DT, Stevens T, Lee JY. Carbonic anhydrase IX proteoglycan-like and intracellular domains mediate pulmonary microvascular endothelial cell repair and angiogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 323:L48-L57. [PMID: 35672011 DOI: 10.1152/ajplung.00337.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lungs of patients with acute respiratory distress syndrome (ARDS) have hyperpermeable capillaries that must undergo repair in an acidic microenvironment. Pulmonary microvascular endothelial cells (PMVECs) have an acid-resistant phenotype, in part due to carbonic anhydrase IX (CA IX). CA IX also facilitates PMVEC repair by promoting aerobic glycolysis, migration, and network formation. Molecular mechanisms of how CA IX performs such a wide range of functions are unknown. CA IX is comprised of four domains known as the proteoglycan-like (PG), catalytic (CA), transmembrane (TM), and intracellular (IC) domains. We hypothesized that the PG and CA domains mediate PMVEC pH homeostasis and repair, and the IC domain regulates aerobic glycolysis and PI3k/Akt signaling. The functions of each CA IX domain were investigated using PMVEC cell lines that express either a full-length CA IX protein or a CA IX protein harboring a domain deletion. We found that the PG domain promotes intracellular pH homeostasis, migration, and network formation. The CA and IC domains mediate Akt activation but negatively regulate aerobic glycolysis. The IC domain also supports migration while inhibiting network formation. Finally, we show that exposure to acidosis suppresses aerobic glycolysis and migration, even though intracellular pH is maintained in PMVECs. Thus, we report that 1) The PG and IC domains mediate PMVEC migration and network formation, 2) the CA and IC domains support PI3K/Akt signaling, and 3) acidosis impairs PMVEC metabolism and migration independent of intracellular pH homeostasis.
Collapse
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Viktoriya Pastukh
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Jessica Bell
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Dhananjay T Tambe
- Department of Mechanical, Aerospace, and Biomedical Engineering, College of Medicine, University of South Alabama, Mobile, Alabama, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Ji Young Lee
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States.,Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama, United States.,Division of Pulmonary and Critical Care Medicine, College of Medicine, University of South Alabama, Mobile, AL, United States.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
19
|
Kciuk M, Gielecińska A, Mujwar S, Mojzych M, Marciniak B, Drozda R, Kontek R. Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. J Enzyme Inhib Med Chem 2022; 37:1278-1298. [PMID: 35506234 PMCID: PMC9090362 DOI: 10.1080/14756366.2022.2052868] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbonic anhydrases IX and CAXII (CAIX/CAXII) are transmembrane zinc metalloproteins that catalyze a very basic but crucial physiological reaction: the conversion of carbon dioxide into bicarbonate with a release of the proton. CA, especially CAIX and CAXII isoforms gained the attention of many researchers interested in anticancer drug design due to pivotal functions of enzymes in the cancer cell metastasis and response to hypoxia, and their expression restricted to malignant cells. This offers an opportunity to develop new targeted therapies with fewer side effects. Continuous efforts led to the discovery of a series of diverse compounds with the most abundant sulphonamide derivatives. Here we review current knowledge considering small molecule and antibody-based targeting of CAIX/CAXII in cancer.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland.,Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Somdutt Mujwar
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Rafał Drozda
- Department of Gastrointestinal Endoscopy, Wl. Bieganski Hospital, Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Manić L, Wallace D, Onganer PU, Taalab YM, Farooqi AA, Antonijević B, Buha Djordjevic A. Epigenetic mechanisms in metal carcinogenesis. Toxicol Rep 2022; 9:778-787. [PMID: 36561948 PMCID: PMC9764177 DOI: 10.1016/j.toxrep.2022.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 03/26/2022] [Indexed: 12/25/2022] Open
Abstract
Many metals exhibit genotoxic and/or carcinogenic effects. These toxic metals can be found ubiquitously - in drinking water, food, air, general use products, in everyday and occupational settings. Exposure to such carcinogenic metals can result in serious health disorders, including cancer. Arsenic, cadmium, chromium, nickel, and their compounds have already been recognized as carcinogens by the International Agency for Research on Cancer. This review summarizes a wide range of epigenetic mechanisms contributing to carcinogenesis induced by these metals, primarily including, but not limited to, DNA methylation, miRNA regulation, and histone posttranslational modifications. The mechanisms are described and discussed both from a metal-centric and a mechanism-centric standpoint. The review takes a broad perspective, putting the mechanisms in the context of real-life exposure, and aims to assist in guiding future research, particularly with respect to the assessment and control of exposure to carcinogenic metals and novel therapy development.
Collapse
Affiliation(s)
- Luka Manić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - David Wallace
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, Tulsa, United States
| | - Pinar Uysal Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, UK
| | - Yasmeen M. Taalab
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany,Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Dakahlia Governate 35516, Egypt
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, RLMC, Lahore, Pakistan
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia,Correspondence to: Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
21
|
Nazon C, Pierrevelcin M, Willaume T, Lhermitte B, Weingertner N, Marco AD, Bund L, Vincent F, Bierry G, Gomez-Brouchet A, Redini F, Gaspar N, Dontenwill M, Entz-Werle N. Together Intra-Tumor Hypoxia and Macrophagic Immunity Are Driven Worst Outcome in Pediatric High-Grade Osteosarcomas. Cancers (Basel) 2022; 14:cancers14061482. [PMID: 35326631 PMCID: PMC8945994 DOI: 10.3390/cancers14061482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Radiological and immunohistochemical data were correlated with the outcome in a retrospective monocentric cohort of 30 pediatric osteosarcomas (OTS). A necrotic volume of more than 50 cm3 at diagnosis was significantly linked to a worse overall survival (OS). Regarding immunohistochemical analyses, an overexpression of hypoxic markers, such as HIF-1α and anhydrase carbonic IX (CAIX), was significantly linked to a worse OS, while pS6-RP hyperexpression was correlated with a better survival. We also featured that CD68 positive cells, representative of macrophagic M1 polarization, were mostly associated with HIF-1α and CAIX hyperexpressions and that M2-like polarization, mostly related to CD163 positivity, was correlated to mTor activation. These findings, involving clinical, radiological and biology data, allowed us to hypothesize a dual signature association ready to use routinely in future protocols. Abstract Background: Osteosarcomas (OTS) represent the most common primary bone cancer diagnosed in adolescents and young adults. Despite remarkable advances, there are no objective molecular or imaging markers able to predict an OTS outcome at diagnosis. Focusing on biomarkers contributing broadly to treatment resistance, we examine the interplay between the tumor-associated macrophages and intra-tumor hypoxia. Methods: Radiological and immunohistochemical (IHC) data were correlated with the outcome in a retrospective and monocentric cohort of 30 pediatric OTS. We studied hypoxic (pS6, phospho-mTor, HIF-1α and carbonic anhydrase IX (CAIX)) and macrophagic (CD68 and CD163) biomarkers. Results: The imaging analyses were based on MRI manual volumetric measures on axial post-contrast T1 weighted images, where, for each tumor, we determined the necrotic volume and its ratio to the entire tumor volume. When they were above 50 cm3 and 20%, respectively, they correlated with a worse overall survival (p = 0.0072 and p = 0.0136, respectively) and event-free survival (p = 0.0059 and p = 0.0143, respectively). IHC assessments enable a significant statistical link between HIF-1α/CAIX hyper-expressions, CD68+ cells and a worse outcome, whereas activation of mTor pathway was linked to a better survival rate and CD163+ cells. Conclusions: This study evidenced the links between hypoxia and immunity in OTS, as their poor outcome may be related to a larger necrotic volume on diagnostic MRI and, in biopsies, to a specific IHC profile.
Collapse
Affiliation(s)
- Charlotte Nazon
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France; (C.N.); (F.V.)
| | - Marina Pierrevelcin
- CNRS UMR 7021, Laboratory of Bioimaging and Pathologies, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch, France; (M.P.); (B.L.); (M.D.)
| | - Thibault Willaume
- Radiology Department, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France; (T.W.); (G.B.)
| | - Benoît Lhermitte
- CNRS UMR 7021, Laboratory of Bioimaging and Pathologies, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch, France; (M.P.); (B.L.); (M.D.)
- Pathology Department, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France;
| | - Noelle Weingertner
- Pathology Department, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France;
| | - Antonio Di Marco
- Department of Orthopedic Surgery and Traumatology, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France;
| | - Laurent Bund
- Department of Pediatric Surgery, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France;
| | - Florence Vincent
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France; (C.N.); (F.V.)
| | - Guillaume Bierry
- Radiology Department, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France; (T.W.); (G.B.)
| | - Anne Gomez-Brouchet
- Department of Pathology, University Hospital of Toulouse, 1 Avenue Irène Joliot Curie, 31100 Toulouse, France;
| | - Françoise Redini
- INSERM UMR1238, PHY-OS, Bone Sarcomas and Remodeling of Calcified Tissues, Nantes University, 44000 Nantes, France;
| | - Nathalie Gaspar
- Department of Oncology for Children and Adolescents, Gustave Roussy, 94805 Villejuif, France;
- INSERM U1015, Gustave Roussy, University of Paris-Saclay, 94805 Villejuif, France
- University of Paris-Saclay, 91400 Orsay, France
| | - Monique Dontenwill
- CNRS UMR 7021, Laboratory of Bioimaging and Pathologies, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch, France; (M.P.); (B.L.); (M.D.)
| | - Natacha Entz-Werle
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France; (C.N.); (F.V.)
- CNRS UMR 7021, Laboratory of Bioimaging and Pathologies, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch, France; (M.P.); (B.L.); (M.D.)
- Correspondence: ; Tel.: +33-3-88-12-83-96; Fax: +33-3-88-12-80-92
| |
Collapse
|
22
|
Toberer F, Winkler JK, Haenssle HA, Heinzel-Gutenbrunner M, Enk A, Hartschuh W, Helmbold P, Kutzner H. [Immunohistochemical analysis of a hypoxia-associated signature in melanomas with positive and negative sentinel lymph nodes : Hypoxia-associated signature of primary cutaneous melanomas]. Hautarzt 2022; 73:283-290. [PMID: 34997269 PMCID: PMC8964660 DOI: 10.1007/s00105-021-04934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/01/2022]
Abstract
Metabolic reprogramming mediated by hypoxia-inducible factors and its downstream targets plays a crucial role in many human malignancies. Excessive proliferation of tumor cells under hypoxic conditions leads to metabolic reprogramming and altered gene expression enabling tumors to adapt to their hypoxic environment. Here we analyzed the metabolic signatures of primary cutaneous melanomas with positive and negative sentinel node status in order to evaluate potential differences in their metabolic signature. We found a positive correlation of the expression of glucose transporter 1 (GLUT-1) with tumor thickness and ulceration in all melanomas with subgroup analyses as well as in the subgroup with a negative sentinel node. Furthermore, the expression of vascular endothelial growth factor (VEGF) was positively correlated with the presence of ulceration in melanomas with positive sentinel node.
Collapse
Affiliation(s)
- Ferdinand Toberer
- Universitäts-Hautklinik Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Deutschland.
| | - Julia K Winkler
- Universitäts-Hautklinik Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Deutschland
| | - Holger A Haenssle
- Universitäts-Hautklinik Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Deutschland
| | | | - Alexander Enk
- Universitäts-Hautklinik Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Deutschland
| | - Wolfgang Hartschuh
- Universitäts-Hautklinik Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Deutschland
| | - Peter Helmbold
- Universitäts-Hautklinik Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Deutschland
| | - Heinz Kutzner
- Dermatopathologie Bodensee, Friedrichshafen, Deutschland
| |
Collapse
|
23
|
Horikawa M, Sabe H, Onodera Y. Dual roles of AMAP1 in the transcriptional regulation and intracellular trafficking of carbonic anhydrase IX. Transl Oncol 2022; 15:101258. [PMID: 34742153 PMCID: PMC8577137 DOI: 10.1016/j.tranon.2021.101258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The cell-surface enzyme carbonic anhydrase IX (CAIX/CA9) promotes tumor growth, survival, invasion, and metastasis, mainly via its pH-regulating functions. Owing to its tumor-specific expression, CAIX-targeting antibodies/chemicals are utilized for therapeutic and diagnostic purposes. However, mechanisms of CAIX trafficking, which affects such CAIX-targeting modalities remain unclear. In this study, roles of the AMAP1-PRKD2 pathway, which mediates integrin recycling of invasive cancer cells, in CAIX trafficking were investigated. METHODS Using highly invasive MDA-MB-231 breast cancer cells, the physical association and colocalization of endogenous proteins were analyzed by immunoprecipitation and immunofluorescence, protein/mRNA levels were quantified by western blotting/qPCR, and cell-surface transport and intracellular/extracellular pH regulation were measured by biotin-labeling and fluorescent dye-based assays, respectively. The correlation between mRNA levels and patients' prognoses was analyzed using a TCGA breast cancer dataset. RESULTS AMAP1 associated with the CAIX protein complex, and they colocalized at the plasma membrane and tubulovesicular structures. AMAP1 knockdown reduced total/surface CAIX, induced its lysosomal accumulation and degradation, and affected intracellular/extracellular pH. PRKD2 knockdown excluded AMAP1 from the CAIX complex and reduced total CAIX in a lysosome-dependent manner. Unexpectedly, AMAP1 knockdown also reduced CAIX mRNA. AMAP1 interacted with PIAS3, which stabilizes HIF-1α, a transcriptional regulator of CA9. AMAP1 knockdown inhibited the PIAS3-HIF-1α interaction and destabilized the HIF-1α protein. High-ASAP1 (AMAP1-encoding gene) together with high-PIAS3 correlated with high-CA9 and an unfavorable prognosis in breast cancer. CONCLUSION The AMAP1-PRKD2 pathway regulates CAIX trafficking, and modulates its total/surface expression. The AMAP1-PIAS3 interaction augments CA9 transcription by stabilizing HIF-1α, presumably contributing to an unfavorable prognosis.
Collapse
Affiliation(s)
- Mei Horikawa
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Yasuhito Onodera
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
24
|
Post-translational modifications in tumor-associated carbonic anhydrases. Amino Acids 2021; 54:543-558. [PMID: 34436666 DOI: 10.1007/s00726-021-03063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Human carbonic anhydrases IX (hCA IX) and XII (hCA XII) are two proteins associated with tumor formation and development. These enzymes have been largely investigated both from a biochemical and a functional point of view. However, limited data are currently available on the characterization of their post-translational modifications (PTMs) and the functional implication of these structural changes in the tumor environment. In this review, we summarize existing literature data on PTMs of hCA IX and hCA XII, such as disulphide bond formation, phosphorylation, O-/N-linked glycosylation, acetylation and ubiquitination, highlighting, when possible, their specific role in cancer pathological processes.
Collapse
|
25
|
Trojan SE, Dudzik P, Totoń-Żurańska J, Laidler P, Kocemba-Pilarczyk KA. Expression of Alternative Splice Variants of 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase-4 in Normoxic and Hypoxic Melanoma Cells. Int J Mol Sci 2021; 22:8848. [PMID: 34445551 PMCID: PMC8396304 DOI: 10.3390/ijms22168848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer-specific isoenzyme of phosphofructokinase II (PFKFB4), as our previous research has shown, may be one of the most important enzymes contributing to the intensification of glycolysis in hypoxic malignant melanoma cells. Although the PFKFB4 gene seems to play a crucial role in the progression of melanoma, so far there are no complete data on the expression of PFKFB4 at the isoform level and the influence of hypoxia on alternative splicing. Using RT-qPCR and semi-quantitative RT-PCR, we presented the PFKFB4 gene expression profile at the level of six isoforms described in the OMIM NCBI database in normoxic and hypoxic melanoma cells. Additionally, using VMD software, we analyzed the structure of isoforms at the protein level, concluding about the catalytic activity of individual isoforms. Our research has shown that five isoforms of PFKFB4 are expressed in melanoma cells, of which the D and F isoforms are highly constitutive, while the canonical B isoform seems to be the main isoform induced in hypoxia. Our results also indicate that the expression profile at the level of the PFKFB4 gene does not reflect the expression at the level of individual isoforms. Our work clearly indicates that the PFKFB4 gene expression profile should be definitely analyzed at the level of individual isoforms. Moreover, the analysis at the protein level allowed the selection of those isoforms whose functional validation should be performed to fully understand the importance of PFKFB4 expression in the metabolic adaptation of malignant melanoma cells.
Collapse
Affiliation(s)
- Sonia E. Trojan
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Paulina Dudzik
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Justyna Totoń-Żurańska
- Jagiellonian University Medical College, Center for Medical Genomics-OMICRON, 31-034 Krakow, Poland;
| | - Piotr Laidler
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Kinga A. Kocemba-Pilarczyk
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| |
Collapse
|
26
|
Hao X, Luo W, Qiu X. The association of transcription factor Prox1 with the proliferation, migration, and invasion of lung cancer. Open Life Sci 2021; 16:602-610. [PMID: 34183992 PMCID: PMC8218550 DOI: 10.1515/biol-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background The current study investigates the effect of transcription factor Prox1 on the proliferation, migration, and invasion ability of lung cancer. Methods Lung cancer cell lines (A549 and H446 cells) were transfected with Prox1NAD and siRNA, respectively. Thus, the A549 and H446 cells overexpressed Prox1 after transfection of Prox1NAD plasmids, and A549 and H446 cells have low expression of Prox1 after transfection with siRNA. Reverse transcriptase quantitative PCR and western blot analyses were used to detect Prox1 mRNA and protein expression in cells. Plate clone formation experiments and MTT experiments were used to detect cell proliferation. Western blot was used to detect the expression of Rho family-related proteins in cells. Results Compared to untransfected wild-type A549 and H446 that served as blank controls, the expression level of Prox1mRNA and protein in A549 and H446 cells overexpressing Prox1 after plasmid transfection was high, while the expression level of Prox1mRNA and protein in A549 and H446 cells with low expression of Prox1 after siRNA transfection was low. With the increase of Prox1 expression, the expression of RhoA and RhoC increased, while the expression of RhoB decreased. Conclusion The finding of this study may provide a new approach for the treatment of lung cancer using targeted gene therapy.
Collapse
Affiliation(s)
- Xinxin Hao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China.,Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| |
Collapse
|
27
|
Carbonic Anhydrase IX Promotes Human Cervical Cancer Cell Motility by Regulating PFKFB4 Expression. Cancers (Basel) 2021; 13:cancers13051174. [PMID: 33803236 PMCID: PMC7967120 DOI: 10.3390/cancers13051174] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Carbonic anhydrase IX (CAIX) is a hypoxia-induced protein that is highly expressed in numerous human cancers. However, the molecular mechanisms involved in CAIX and human cervical cancer metastasis remain poorly understood. Our study found that CAIX overexpression increases PFKFB4 expression and EMT, promoting cervical cancer cell migration. CAIX could contribute to cervical cancer cell metastasis and its inhibition could be a cervical cancer treatment strategy. Abstract Carbonic anhydrase IX (CAIX) is a hypoxia-induced protein that is highly expressed in numerous human cancers. However, the molecular mechanisms involved in CAIX and human cervical cancer metastasis remain poorly understood. In this study, CAIX overexpression in SiHa cells increased cell migration and epithelial-to-mesenchymal transition (EMT). Silencing CAIX in the Caski cell line decreased the motility of cells and EMT. Furthermore, the RNA-sequencing analysis identified a target gene, bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB4), which is influenced by CAIX overexpression and knockdown. A positive correlation was found between CAIX expression and PFKFB4 levels in the cervical cancer of the TCGA database. Mechanistically, CAIX overexpression activated the phosphorylation of extracellular signal-regulated kinases (ERKs) to induce EMT and promote cell migration. In clinical results, human cervical cancer patients with CAIXhigh/PFKFB4high expression in the late stage had higher rates of lymph node metastasis and the shortest survival time. Our study found that CAIX overexpression increases PFKFB4 expression and EMT, promoting cervical cancer cell migration. CAIX could contribute to cervical cancer cell metastasis and its inhibition could be a cervical cancer treatment strategy.
Collapse
|
28
|
Aldera AP, Govender D. Carbonic anhydrase IX: a regulator of pH and participant in carcinogenesis. J Clin Pathol 2021; 74:jclinpath-2020-207073. [PMID: 33619217 DOI: 10.1136/jclinpath-2020-207073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/31/2020] [Accepted: 01/24/2021] [Indexed: 11/04/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane metalloenzyme which is upregulated in tumour cells under hypoxic conditions. CAIX expression is induced by the accumulation of hypoxia-inducible factor-1α and has several downstream effects, including acidification of the extracellular pH, loss of cellular adhesion and increased tumour cell migration. CAIX is upregulated in a variety of solid organ tumours and has prognostic implications. High CAIX protein expression is a marker of poor prognosis in breast, lung, ovarian and bladder carcinomas. Conversely, low expression is an indicator of poor prognosis in clear cell renal cell carcinoma (CCRCC). CAIX immunohistochemistry is useful diagnostically to identify metastatic CCRCC, and the recently recognised clear cell papillary renal cell carcinoma. There is much interest in targeting CAIX with monoclonal antibodies and small molecule inhibitors. There are several small molecule inhibitors under development which have shown promising results in clinical trials. In this paper, we provide an overview of the role of CAIX in tumourigenesis and outline its use as a prognostic, diagnostic and therapeutic biomarker.
Collapse
Affiliation(s)
- Alessandro Pietro Aldera
- Division of Anatomical Pathology, University of Cape Town, Cape Town, South Africa
- JDW Pathology Inc, Cape Town, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, University of Cape Town, Cape Town, South Africa
- Anatomical Pathology, Pathcare Cape Town, Cape Town, South Africa
| |
Collapse
|
29
|
Peppicelli S, Andreucci E, Ruzzolini J, Bianchini F, Nediani C, Supuran CT, Calorini L. The Carbonic Anhydrase IX inhibitor SLC-0111 as emerging agent against the mesenchymal stem cell-derived pro-survival effects on melanoma cells. J Enzyme Inhib Med Chem 2021; 35:1185-1193. [PMID: 32396749 PMCID: PMC7269050 DOI: 10.1080/14756366.2020.1764549] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSC) take part to solid tumour-associated stroma and critically influence progression of malignancy. Our study represents a striking example of melanoma progression to a more malignant and resistant phenotype promoted by MSC and the possibility to contrast this diabolic liaison using CAIX inhibitors. In particular, we demonstrated that melanoma cells exposed to a MSC-conditioned medium switch to a more malignant phenotype, characterised by resistance to programmed cell death and endowed with an epithelial-to-mesenchymal transition and stem cell characteristics. These effects were reversed abrogating MSC CAIX activity using SLC-0111, a CAIX inhibitor. Moreover, the acquisition by melanoma cells of a Vemurafenib-resistant phenotype upon MSC-conditioned medium exposure was removed when MSC were treated with SLC-0111. Therefore, MSC may profoundly reprogramme melanoma cells towards a wide resistant phenotype through CAIX involvement, as the use of SLC-0111 is able to contrast the development of this highly risky adaptation for disease progression.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Elena Andreucci
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Jessica Ruzzolini
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Francesca Bianchini
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Chiara Nediani
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | | | - Lido Calorini
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy.,Center of Excellence for Research, Transfer and High Education, DenoTHE University of Florence, Florence, Italy
| |
Collapse
|
30
|
Daunys S, Petrikaitė V. The roles of carbonic anhydrases IX and XII in cancer cell adhesion, migration, invasion and metastasis. Biol Cell 2020; 112:383-397. [PMID: 32894882 DOI: 10.1111/boc.201900099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/02/2012] [Indexed: 12/17/2022]
Abstract
The main function of carbonic anhydrases (CAs) in cancer cells is the pH regulation through a conversion of H2 O and CO2 to H+ and HCO3 - . However, the data of in vitro and in vivo studies have demonstrated that transmembrane isoforms of CA IX and CA XII are involved in various steps of cancer cell migration, invasion and metastasis. According to literature, inhibition of these CAs can affect the expression of multiple proteins. Some scientific groups have reported the possible interactions between CA IX and E-cadherin-catenin system, CA IX and integrins, CA IX, CA XII and ion transporters, which all are highly involved in cell-to-cell adhesion, the formation of membrane protrusions and focal adhesions. Nevertheless, CA IX and CA XII have a high impact on tumour growth and metastases formation. The data discussed in this review are quite recent. It highly support the role of CA IX and CA XII in various cancer metastasis processes through their interactions to other invasion proteins. Nevertheless, all findings show the great potential of these CAs in the context of research and application in clinical use.
Collapse
Affiliation(s)
- Simonas Daunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, LT-10257, Lithuania
| | - Vilma Petrikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, LT-10257, Lithuania.,Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| |
Collapse
|
31
|
Bu J, Nair A, Kubiatowicz LJ, Poellmann MJ, Jeong WJ, Reyes-Martinez M, Armstrong AJ, George DJ, Wang AZ, Zhang T, Hong S. Surface engineering for efficient capture of circulating tumor cells in renal cell carcinoma: From nanoscale analysis to clinical application. Biosens Bioelectron 2020; 162:112250. [PMID: 32392161 PMCID: PMC10510655 DOI: 10.1016/j.bios.2020.112250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/29/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022]
Abstract
Sensitive detection of circulating tumor cells (CTCs) from patients' peripheral blood facilitates on-demand monitoring of tumor progression. However, clinically significant capture of renal cell carcinoma CTCs (RCC-CTCs) remains elusive due to their heterogenous surface receptor expression. Herein, a novel capture platform is developed to detect RCC-CTCs through integration of dendrimer-mediated multivalent binding, a mixture of antibodies, and biomimetic cell rolling. The nanoscale binding kinetics measured using atomic force microscopy reveal that dendrimer-coated surfaces exhibit an order of magnitude enhancement in off-rate kinetics compared to surface without dendrimers, which translated into cell capture improvements by ~60%. Selectin-induced cell rolling facilitates surface recruitment of cancer cells, further improving cancer cell capture by up to 1.7-fold. Lastly, an antibody cocktail targeting four RCC-CTC surface receptors, which included epithelial cell adhesion molecule (EpCAM), carbonic anhydrase IX (CA9), epidermal growth factor receptor (EGFR), and hepatocyte growth factor receptor (c-Met), improves the capture of RCC cells by up to 80%. The optimal surface configuration outperforms the conventional assay solely relying on EpCAM, as demonstrated by detecting significantly more CTCs in patients' samples (9.8 ± 5.1 vs. 1.8 ± 2.0 CTCs mL-1). These results demonstrate that the newly engineered capture platform effectively detects RCC-CTCs for their potential use as tumor biomarkers.
Collapse
Affiliation(s)
- Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Ashita Nair
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Luke J Kubiatowicz
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Woo-Jin Jeong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Madison, WI, 53705, USA
| | - Marco Reyes-Martinez
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Andrew Z Wang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tian Zhang
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Madison, WI, 53705, USA; Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
32
|
Lee SH, Griffiths JR. How and Why Are Cancers Acidic? Carbonic Anhydrase IX and the Homeostatic Control of Tumour Extracellular pH. Cancers (Basel) 2020; 12:cancers12061616. [PMID: 32570870 PMCID: PMC7352839 DOI: 10.3390/cancers12061616] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The acidic tumour microenvironment is now recognized as a tumour phenotype that drives cancer somatic evolution and disease progression, causing cancer cells to become more invasive and to metastasise. This property of solid tumours reflects a complex interplay between cellular carbon metabolism and acid removal that is mediated by cell membrane carbonic anhydrases and various transport proteins, interstitial fluid buffering, and abnormal tumour-associated vessels. In the past two decades, a convergence of advances in the experimental and mathematical modelling of human cancers, as well as non-invasive pH-imaging techniques, has yielded new insights into the physiological mechanisms that govern tumour extracellular pH (pHe). In this review, we examine the mechanisms by which solid tumours maintain a low pHe, with a focus on carbonic anhydrase IX (CAIX), a cancer-associated cell surface enzyme. We also review the accumulating evidence that suggest a role for CAIX as a biological pH-stat by which solid tumours stabilize their pHe. Finally, we highlight the prospects for the clinical translation of CAIX-targeted therapies in oncology.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
- Correspondence:
| | - John R. Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK;
| |
Collapse
|
33
|
Toberer F, Haenssle HA, Heinzel-Gutenbrunner M, Enk A, Hartschuh W, Helmbold P, Kutzner H. Metabolic reprogramming and angiogenesis in primary cutaneous Merkel cell carcinoma: expression of hypoxia-inducible factor-1α and its central downstream factors. J Eur Acad Dermatol Venereol 2020; 35:88-94. [PMID: 32396987 DOI: 10.1111/jdv.16600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Metabolic reprogramming and altered gene expression mediated by hypoxia-inducible factors play crucial roles during tumour growth and progression. Nevertheless, studies analysing the expression of hypoxia-inducible factor-1α and its downstream targets in Merkel cell carcinoma (MCC) are lacking but are warranted to shed more light on MCC pathogenesis and to potentially provide new therapeutic options. OBJECTIVES To analyse the immunohistochemical expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor-A (referred to as VEGF throughout the manuscript), VEGF receptor-2 (VEGFR-2), VEGF receptor-3 (VEGFR-3), glucose transporter-1 (Glut-1), monocarboxylate transporter 4 (MCT4) and carbonic anhydrase IX (CAIX) in primary cutaneous MCC. METHODS The 16 paraffin-embedded primary cutaneous MCCs (Merkel cell polyomavirus (McPyV) positive/negative: 11/5) were analysed by immunohistochemistry, namely HIF-1α, VEGF, VEGFR-2 (KDR), VEGFR-3 (FLT4), Glut-1, MCT4 and CAIX. An established quantification score (QS) was applied to quantitate the protein expression by considering the percentage of positive tumour cells (0: 0%; 1: up to 1%; 2: 2-10%; 3: 11-50%; 4: >50%) in relation to the staining intensity (0: negative; 1: low; 2: medium; 3: strong). RESULTS HIF-1α was expressed in all MCCs and predominantly found at the invading edges of tumour margins. The HIF-1α downstream factors Glut-1, MCT4 and CAIX were expressed in 13 of 16 MCC (81%), 14 of 16 MCC (88%) and 16 of 16 MCC (100%), respectively. Interestingly, VEGF and VEGFR-2 were not expressed in tumour cells, whereas VEGFR-3 was expressed in all MCCs. HIF-1α was expressed significantly stronger in McPyV+ tumours (QS: 10.36 ± 2.41) than in McPyV- tumours (QS: 5.40 ± 1.34; P = 0.002). Similarly, VEGFR-3 was also expressed significantly stronger in McPyV+ tumours (QS: 10.00 ± 2.52) than in McPyV- tumours (QS: 5.40 ± 3.43, P = 0.019). CONCLUSIONS Our data provide first evidence for a role of HIF-1α in induced metabolic reprogramming contributing to MCC pathogenesis. The metabolic signatures of McPyV+ and McPyV- tumours seem to show relevant differences.
Collapse
Affiliation(s)
- F Toberer
- Department of Dermatology, Venerology and Allergology, University Medical Center, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - H A Haenssle
- Department of Dermatology, Venerology and Allergology, University Medical Center, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | - A Enk
- Department of Dermatology, Venerology and Allergology, University Medical Center, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - W Hartschuh
- Department of Dermatology, Venerology and Allergology, University Medical Center, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - P Helmbold
- Department of Dermatology, Venerology and Allergology, University Medical Center, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - H Kutzner
- Dermatopathology, Bodensee, Friedrichshafen, Germany
| |
Collapse
|
34
|
Li Z, Jiang L, Toyokuni S. Role of carbonic anhydrases in ferroptosis-resistance. Arch Biochem Biophys 2020; 689:108440. [PMID: 32485154 DOI: 10.1016/j.abb.2020.108440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Iron is essential for all the lives on earth but may trigger a switch toward ferroptosis, a novel form of regulated necrosis. Carbonic anhydrases (CAs) are ubiquitous enzymes from microbes to humans. The primary function of CAs is to regulate cellular pH by hydrating carbon dioxide (CO2) to protons (H+) and bicarbonate ions (HCO3-). Furthermore, CAs play roles in biosynthetic reactions, such as gluconeogenesis, lipogenesis, ureagenesis and are also associated with tumor metabolism, suggesting that CAs may be a potential target for the treatment of cancers. We have recently revealed a novel function of CA IX in ferroptosis-resistance by using human malignant mesothelioma cells. Herein, we aim to review the potential molecular association between ferroptosis and CAs, from the viewpoint of iron-metabolism, lipogenesis and signaling pathways both under physiological and pathological contexts.
Collapse
Affiliation(s)
- Zan Li
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; Sydney Medical School, The University of Sydney, NSW, Australia.
| |
Collapse
|
35
|
Pharmacological Inhibition of CA-IX Impairs Tumor Cell Proliferation, Migration and Invasiveness. Int J Mol Sci 2020; 21:ijms21082983. [PMID: 32340282 PMCID: PMC7215745 DOI: 10.3390/ijms21082983] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022] Open
Abstract
Carbonic anhydrase IX (CA-IX) plays a pivotal role in regulation of pH in tumor milieu catalyzing carbonic acid formation by hydrating CO2. An acidification of tumor microenvironment contributes to tumor progression via multiple processes, including reduced cell-cell adhesion, increased migration and matrix invasion. We aimed to assess whether the pharmacological inhibition of CA-IX could impair tumor cell proliferation and invasion. Tumor epithelial cells from breast (MDA-MB-231) and lung (A549) cancer were used to evaluate the cytotoxic effect of sulfonamide CA-IX inhibitors. Two CA-IX enzyme blockers were tested, SLC-0111 (at present in phase Ib clinical trial) and AA-06-05. In these cells, the drugs inhibited cell proliferation, migration and invasion through shifting of the mesenchymal phenotype toward an epithelial one and by impairing matrix metalloprotease-2 (MMP-2) activity. The antitumor activity was elicited via apoptosis pathway activation. An upregulation of p53 was observed, which in turn regulated the activation of caspase-3. Inhibition of proteolytic activity was accompanied by upregulation of the endogenous tissue inhibitor TIMP-2. Collectively, these data confirm the potential use of CA-IX inhibitors, and in particular SLC-0111 and AA-06-05, as agents to be further developed, alone or in combination with other conventional anticancer drugs.
Collapse
|
36
|
Ward C, Meehan J, Gray ME, Murray AF, Argyle DJ, Kunkler IH, Langdon SP. The impact of tumour pH on cancer progression: strategies for clinical intervention. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:71-100. [PMID: 36046070 PMCID: PMC9400736 DOI: 10.37349/etat.2020.00005] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of cellular pH is frequent in solid tumours and provides potential opportunities for therapeutic intervention. The acidic microenvironment within a tumour can promote migration, invasion and metastasis of cancer cells through a variety of mechanisms. Pathways associated with the control of intracellular pH that are under consideration for intervention include carbonic anhydrase IX, the monocarboxylate transporters (MCT, MCT1 and MCT4), the vacuolar-type H+-ATPase proton pump, and the sodium-hydrogen exchanger 1. This review will describe progress in the development of inhibitors to these targets.
Collapse
Affiliation(s)
- Carol Ward
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Mark E Gray
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG Midlothian, UK
| | - Alan F Murray
- School of Engineering, Institute for Integrated Micro and Nano Systems, EH9 3JL Edinburgh, UK
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG Midlothian, UK
| | - Ian H Kunkler
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| |
Collapse
|
37
|
Calhoun MA, Cui Y, Elliott EE, Mo X, Otero JJ, Winter JO. MicroRNA-mRNA Interactions at Low Levels of Compressive Solid Stress Implicate mir-548 in Increased Glioblastoma Cell Motility. Sci Rep 2020; 10:311. [PMID: 31941933 PMCID: PMC6962377 DOI: 10.1038/s41598-019-56983-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is an astrocytic brain tumor with median survival times of <15 months, primarily as a result of high infiltrative potential and development of resistance to therapy (i.e., surgical resection, chemoradiotherapy). A prominent feature of the GBM microenvironment is compressive solid stress (CSS) caused by uninhibited tumor growth within the confined skull. Here, we utilized a mechanical compression model to apply CSS (<115 Pa) to well-characterized LN229 and U251 GBM cell lines and measured their motility, morphology, and transcriptomic response. Whereas both cell lines displayed a peak in migration at 23 Pa, cells displayed differential response to CSS with either minimal (i.e., U251) or large changes in motility (i.e., LN229). Increased migration of LN229 cells was also correlated to increased cell elongation. These changes were tied to epigenetic signaling associated with increased migration and decreases in proliferation predicted via Ingenuity® Pathway Analysis (IPA), characteristics associated with tumor aggressiveness. miRNA-mRNA interaction analysis revealed strong influence of the miR548 family (i.e., mir-548aj, mir-548az, mir-548t) on differential signaling induced by CSS, suggesting potential targets for pharmaceutical intervention that may improve patient outcomes.
Collapse
Affiliation(s)
- Mark A Calhoun
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Yixiao Cui
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Eileen E Elliott
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH, USA
| | - Jose J Otero
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Jessica O Winter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA. .,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
38
|
Yamali C, Gul HI, Ece A, Bua S, Angeli A, Sakagami H, Sahin E, Supuran CT. Synthesis, biological evaluation and in silico modelling studies of 1,3,5-trisubstituted pyrazoles carrying benzenesulfonamide as potential anticancer agents and selective cancer-associated hCA IX isoenzyme inhibitors. Bioorg Chem 2019; 92:103222. [PMID: 31499260 DOI: 10.1016/j.bioorg.2019.103222] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
Inhibition of carbonic anhydrases (CAs, EC 4.2.1.1) has clinical importance for the treatment of several diseases. They participate in crucial regulatory mechanisms for balancing intracellular and extracellular pH of the cells. Among CA isoforms, selective inhibition of hCA IX has been linked to decreasing of cell growth for both primary tumors and metastases. The discovery of novel CA inhibitors as anticancer drug candidates is a current topic in medicinal chemistry. 1,3,5-Trisubstituted pyrazoles carrying benzenesulfonamide were evaluated against physiologically abundant cytosolic hCA I and hCA II and trans-membrane, tumor-associated hCA IX isoforms by a stopped-flow CO2 hydrase method. Their in vitro cytotoxicities were screened against human oral squamous cell carcinoma (OSCC) cell lines (HSC-2) and human mesenchymal normal oral cells (HGF) via 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) test. Compounds 6, 8, 9, 11, and 12 showed low nanomolar hCA II inhibitory potency with Ki < 10 nM, whereas compounds 9 and 12 displayed Ki < 10 nM against hCA IX isoenzyme when compared with reference Acetazolamide (AZA). Compound 9, 4-(3-(hydrazinecarbonyl)-5-(4-nitrophenyl)-1H-pyrazol-1-yl)benzenesulfonamide, can be considered as the most selective hCA IX inhibitor over off-target cytosolic isoenzymes hCA I and hCA II with the lowest Ki value of 2.3 nM and selectivity ratios of 3217 (hCA I/hCA IX) and 3.9 (hCA II/hCA IX). Isoform selectivity profiles were also discussed using in silico modelling. Cytotoxicity results pointed out that compounds 5 (CC50 = 37.7 μM) and 11 (CC50 = 58.1 μM) can be considered as lead cytotoxic compounds since they were more cytotoxic than 5-Fluorouracil (5-FU) and Methotrexate (MTX).
Collapse
Affiliation(s)
- Cem Yamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Silvia Bua
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Sakado, Saitama 350-0283, Japan
| | - Ertan Sahin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
39
|
Li Z, Jiang L, Chew SH, Hirayama T, Sekido Y, Toyokuni S. Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma under hypoxia. Redox Biol 2019; 26:101297. [PMID: 31442913 PMCID: PMC6831888 DOI: 10.1016/j.redox.2019.101297] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 01/30/2023] Open
Abstract
Hypoxia and acidity provide microenvironment for selection under evolutionary pressure and proliferation in cancer cells. Carbonic anhydrases (CAs) are a superfamily of metalloenzymes present in all life kingdoms, equilibrating the reactions among CO2, bicarbonate and H+. CA9, a membrane-associated α-CA, has been a drug target for various cancers. Whereas iron is essential not only for cancer cells but also for all the lives on earth, little is known on the association among hypoxia, iron metabolism, extracellular acidity and redox regulation. Malignant mesothelioma (MM), an aggressive tumor with poor prognosis, is an intriguing model in that asbestos-associated pathogenesis includes excess iron environment during carcinogenesis. Re-analysis of rat asbestos-induced MM model revealed an inverse association between high CA9 expression and survival. Here we used human MMs to identify the molecular events surrounding CA9 from the viewpoint of iron metabolism. CA9 expression was significantly higher in MM cells than in MeT-5A mesothelial cells, which was further amplified under hypoxia (1%O2) with increased catalytic Fe(II). CA9 suppression by inhibitors (S4 and U104) decreased viability and migration of MM cells, accompanied by overexpression of TFRC, IREB1/2 and FPN1(SLC40A1) and by downregulation of FTH/FTL. This expressional pattern was similar to that of erastin-induced ferroptosis in the same cells. Furthermore, we observed mitochondrial fission and enhanced autophagy with increased catalytic Fe(II) in both mitochondria and lysosomes after CA9 inhibition, accompanied by increased peroxides, mitochondrial O2− and lipid peroxidation. The eventual cell death was significantly inhibited by deferoxamine, ferrostatin-1 and Z-VAD-FMK, suggesting a mixed cell death of ferroptosis and apoptosis. Therefore, CA9 plays a role in equilibrating among hypoxia, iron metabolism and redox regulation in MM cells.
Collapse
Affiliation(s)
- Zan Li
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shan Hwu Chew
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1113, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Sydney Medical School, The University of Sydney, NSW, Australia.
| |
Collapse
|
40
|
New Monoclonal Antibodies for a Selective Detection of Membrane-Associated and Soluble Forms of Carbonic Anhydrase IX in Human Cell Lines and Biological Samples. Biomolecules 2019; 9:biom9080304. [PMID: 31349673 PMCID: PMC6723738 DOI: 10.3390/biom9080304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/26/2023] Open
Abstract
Monoclonal antibodies (MAbs) selectively targeting tumor-associated antigens such as carbonic anhydrase IX (CA IX) can significantly contribute to research, diagnostics, and treatment of CA IX-related cancers. CA IX is overexpressed in numerous hypoxic cancers where it promotes tumor progression. Therefore, it is considered as a promising tumor biomarker. A novel collection of MAbs against recombinant CA IX was developed and evaluated in different immunoassays for studying CA IX expression. The reactivity of MAbs with native cell surface protein was confirmed by flow cytometry and the presence of hypoxia-inducible CA IX was investigated in several human cancer cell lines. In addition, the applicability of MAbs for visualization of CA IX-positive tumor cells by immunofluorescence microscopy was demonstrated. MAb H7 was identified as the most promising MAb for different immunoassays. It recognized a linear epitope covering CA IX sequence of 12 amino acid residues 55-GEDDPLGEEDLP-66 within the proteoglycan domain. The MAb H7 was the only one of the collection to immunoprecipitate CA IX protein from cell lysates and detect the denatured CA IX with near-infrared fluorescence Western blot. It was also employed in sandwich enzyme-linked immunosorbent assay to detect a soluble form of CA IX in growth medium of tumor cells and blood plasma samples. The diagnostic potential of the MAb H7 was confirmed on formalin-fixed and paraffin-embedded tissue specimen of cervical carcinoma in situ by immunohistochemistry. The generated MAbs, in particularly clone H7, have great potential in diagnostics and research of CA IX-related cancers.
Collapse
|
41
|
John A, Sivashanmugam M, Natarajan SK, Umashankar V. Computational modeling of novel inhibitory peptides targeting proteoglycan like region of carbonic anhydrase IX and in vitro validation in HeLa cells. J Biomol Struct Dyn 2019; 38:1995-2006. [PMID: 31146646 DOI: 10.1080/07391102.2019.1623075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a tumour-associated, hypoxia-induced, membrane-bound metallo-enzyme which catalyzes the reversible hydration of carbon dioxide (CO2) to bicarbonate (HCO3-) and proton (H+) ions. Over expression of CAIX is observed in cancers of colon, lung, kidney, breast, etc. CAIX plays a vital role in maintaining favourable intracellular pH for tumour cell growth and extracellular acidification which in-turn leads to drug resistance and spread of factors influencing tumour invasion. The N-terminal proteoglycan (PG) - like fragment of CAIX is unique to this isoform and is considered as potential druggable hotspot. Recently, M75 monoclonal antibody targeting the LPGEEDLPG epitope of PG like region has been proposed to reduce cellular adhesion in cancer cells. LPGEEDLPG fragment in complex with M75 has been crystallized and it serves as a strong base for development of peptide inhibitors based on interacting interfaces. Thus, in this study, an in-depth analysis of intermolecular interactions in LPGEEDLPG-M75 complex was carried out by implementing extensive molecular dynamics simulations, binding free energy calculations so as to infer the major determinant fragments of M75 that can be used as peptide inhibitors targeting PG region. Based on these analyses, 3 peptides (Pep1, Pep2 and Pep3) were synthesized and validated by in vitro assays involving cytotoxicity assessment, CAIX inhibition analysis through Direct and Indirect functional assays, and inhibition of Cell adhesion in HeLa cells. The results reveal Pep1 to be a promising inhibitor as it could efficiently modulate CAIX mediated pH homeostasis and cell adhesion in cancer cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arun John
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.,School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Muthukumaran Sivashanmugam
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Sulochana Konerirajapuram Natarajan
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Vetrivel Umashankar
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
42
|
Gide TN, Quek C, Menzies AM, Tasker AT, Shang P, Holst J, Madore J, Lim SY, Velickovic R, Wongchenko M, Yan Y, Lo S, Carlino MS, Guminski A, Saw RPM, Pang A, McGuire HM, Palendira U, Thompson JF, Rizos H, Silva IPD, Batten M, Scolyer RA, Long GV, Wilmott JS. Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell 2019; 35:238-255.e6. [PMID: 30753825 DOI: 10.1016/j.ccell.2019.01.003] [Citation(s) in RCA: 635] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 11/07/2018] [Accepted: 01/07/2019] [Indexed: 11/21/2022]
Abstract
Cancer immunotherapies provide survival benefits in responding patients, but many patients fail to respond. Identifying the biology of treatment response and resistance are a priority to optimize drug selection and improve patient outcomes. We performed transcriptomic and immune profiling on 158 tumor biopsies from melanoma patients treated with anti-PD-1 monotherapy (n = 63) or combined anti-PD-1 and anti-CTLA-4 (n = 57). These data identified activated T cell signatures and T cell populations in responders to both treatments. Further mass cytometry analysis identified an EOMES+CD69+CD45RO+ effector memory T cell phenotype that was significantly more abundant in responders to combined immunotherapy compared with non-responders (n = 18). The gene expression profile of this population was associated with longer progression-free survival in patients treated with single agent and greater tumor shrinkage in both treatments.
Collapse
MESH Headings
- Aged
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- Drug Resistance, Neoplasm
- Female
- Humans
- Immunologic Memory/drug effects
- Ipilimumab/administration & dosage
- Lectins, C-Type/immunology
- Leukocyte Common Antigens/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Melanoma/drug therapy
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/pathology
- Middle Aged
- Nivolumab/administration & dosage
- Phenotype
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Retrospective Studies
- Signal Transduction/drug effects
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Treatment Outcome
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Tuba N Gide
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia; Department of Medical Oncology, Mater Hospital, North Sydney, NSW 2060, Australia
| | - Annie T Tasker
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| | - Ping Shang
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| | - Jeff Holst
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jason Madore
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| | - Su Yin Lim
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Rebecca Velickovic
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| | - Matthew Wongchenko
- Oncology Biomarker Development, Genentech Inc, South San Francisco, CA 94080, USA
| | - Yibing Yan
- Oncology Biomarker Development, Genentech Inc, South San Francisco, CA 94080, USA
| | - Serigne Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2145, Australia
| | - Alexander Guminski
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia; Department of Medical Oncology, Mater Hospital, North Sydney, NSW 2060, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Angel Pang
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Umaimainthan Palendira
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Helen Rizos
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcel Batten
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia; Department of Medical Oncology, Mater Hospital, North Sydney, NSW 2060, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
43
|
Bonatelli M, Silva ECA, Cárcano FM, Zaia MG, Lopes LF, Scapulatempo-Neto C, Pinheiro C. The Warburg Effect Is Associated With Tumor Aggressiveness in Testicular Germ Cell Tumors. Front Endocrinol (Lausanne) 2019; 10:417. [PMID: 31316469 PMCID: PMC6610306 DOI: 10.3389/fendo.2019.00417] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 02/01/2023] Open
Abstract
Testicular Germ Cell Tumors (TGCTs) are a rare group of neoplasms and the most common solid malignancy arising in young male adults. Despite the good response of these tumors to platinum-based chemotherapy, some patients are refractory to treatment and present poor clinical outcomes. During carcinogenesis and tumor development, cancer cells reprogram energy metabolism toward a hyper-glycolytic phenotype, an emerging hallmark of cancer. This phenomenon, known as the Warburg effect or aerobic glycolysis, involves overexpression of metabolism-related proteins, like glucose and monocarboxylate transporters, pH regulators and intracellular glycolytic enzymes. The metabolic profile of TGCTs is very little explored and, recently, this metabolic rewiring of cancer cells has been associated with aggressive clinicopathological characteristics of these tumors. The overexpression of monocarboxylate transporter 4 (MCT4) in TGCTs has been pointed out as a poor prognostic factor, as well as a promising therapeutic target. As a result, the main aim of the present study was to evaluate the prognostic value of key metabolism-related proteins in TGCTs. The immunohistochemical expressions of CD44 (as a monocarboxylate transporter chaperone), glucose transporter 1 (GLUT1), carbonic anhydrase IX (CAIX), hexokinase II (HKII) and lactate dehydrogenase V (LDHV) were evaluated in a series of 148 adult male patients with TGCTs and associated with clinicopathological parameters. In addition, paired normal tissues were also evaluated. The sample included 75 seminoma and 73 non-seminoma tumors. GLUT1 and CD44 expression was significantly increased in malignant samples when compared to paired normal samples. Conversely, HKII and LDHV expressions were significantly decreased in malignant samples. Concerning the clinicopathological values, CAIX expression was significantly associated with disease recurrence, while HKII expression was significantly associated with aggressive characteristics of TGCTs, including higher staging and non-seminoma histology. In conclusion, this study brings new insights on the metabolic characteristics of TGCTs, showing alterations in the expression of proteins related with the Warburg effect, as well as associations of the hyper-glycolytic and acid-resistant phenotype with aggressive clinicopathological parameters.
Collapse
Affiliation(s)
- Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | | | - Flavio M. Cárcano
- Department of Medical Oncology, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata—FACISB, São Paulo, Brazil
| | - Maurício G. Zaia
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Luiz F. Lopes
- Barretos Children's Cancer Hospital, São Paulo, Brazil
| | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Department of Pathology, Barretos Cancer Hospital, São Paulo, Brazil
| | - Céline Pinheiro
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata—FACISB, São Paulo, Brazil
- *Correspondence: Céline Pinheiro
| |
Collapse
|
44
|
Koukourakis MI, Giatromanolaki A. Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. Int J Radiat Biol 2018; 95:408-426. [PMID: 29913092 DOI: 10.1080/09553002.2018.1490041] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The anaerobic metabolism of glucose by cancer cells, even under well-oxygenated conditions, has been documented by Otto Warburg as early as 1927. Micro-environmental hypoxia and intracellular pathways activating the hypoxia-related gene response, shift cancer cell metabolism to anaerobic pathways. In the current review, we focus on a major enzyme involved in anaerobic transformation of pyruvate to lactate, namely lactate dehydrogenase 5 (LDH5). The value of LDH5 as a marker of prognosis of cancer patients, as a predictor of response to radiotherapy (RT) and chemotherapy and, finally, as a major target for cancer treatment and radio-sensitization is reported and discussed. Clinical, translational and experimental data supporting the uniqueness of the LDHA gene and its product LDH5 isoenzyme are summarized and future directions for a metabolic treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Michael I Koukourakis
- a Department of Radiotherapy and Oncology, Medical School, Democritus University of Thrace , Alexandroupolis , Greece
| | - Alexandra Giatromanolaki
- b Department of Pathology , Medical School, Democritus University of Thrace , Alexandroupolis , Greece
| |
Collapse
|
45
|
Okuno K, Matsubara T, Nakamura T, Iino T, Kakimoto T, Asanuma K, Matsumine A, Sudo A. Carbonic anhydrase IX enhances tumor cell proliferation and tumor progression in osteosarcoma. Onco Targets Ther 2018; 11:6879-6886. [PMID: 30349321 PMCID: PMC6190629 DOI: 10.2147/ott.s177605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose We investigated the effect of carbonic anhydrase IX (CA IX) inhibitor under hypoxia and normoxia in SaOS2 human osteosarcoma cell line. We also evaluated the expression of CA IX in 27 patients diagnosed with osteosarcoma. Materials and methods CA IX expression in SaOS2 cells cultured under different oxygen tensions was analyzed by Western blotting. To evaluate the effect of CA IX inhibitor, MTS cell viability assay was performed after cells were treated with various concentrations of doxorubicin with or without a CA IX inhibitor. Finally, CA IX expression in patient-derived osteosarcoma samples was evaluated by immunohistochemistry. Results Treatment with CA IX inhibitor significantly suppressed cell proliferation and migration under hypoxic conditions. CA IX expression was observed in 81% of 27 patients. The 5-year survival rates in patients with high and low stain scores were 43.8% and 81.8%, respectively. Conclusion CA IX inhibitors have the potential to suppress cell proliferation, migration, and chemoresistance.
Collapse
Affiliation(s)
- Kazuma Okuno
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan, .,Department of Orthopedic Surgery, Ise Red Cross Hospital, Ise, Japan,
| | - Takao Matsubara
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan,
| | - Tomoki Nakamura
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan,
| | - Takahiro Iino
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan,
| | - Takuya Kakimoto
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan,
| | - Kunihiro Asanuma
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan,
| | - Akihiko Matsumine
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan, .,Department of Orthopedic Surgery, Fukui University Graduate School of Medicine, Fukui, Japan
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan,
| |
Collapse
|
46
|
Yang L, Yang Z, Li D, Liu Z, Zou Q, Yuan Y, Xu H. Overexpression of FZD1 and CAIX are Associated with Invasion, Metastasis, and Poor-Prognosis of the Pancreatic Ductal Adenocarcinoma. Pathol Oncol Res 2018; 24:899-906. [PMID: 28921449 DOI: 10.1007/s12253-017-0284-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/02/2017] [Indexed: 12/26/2022]
Abstract
Approximately 80% of patients with pancreatic ductal adenocarcinoma (PDAC) have metastatic disease with poor prognosis, but clinically available biomarkers have not yet been identified. This study was to investigate the clinical significance of FZD1 and CAIX in PDACs. FZD1 and CAIX protein expression was measured using EnVision immunohistochemistry. Positive FZD1 or CAIX expression was significantly higher in PDAC than that in precursor lesions (p < 0.01). Positive FZD1 or CAIX expression was significantly lower in cases with well-differentiated adenocarcinoma, no-metastasis of the lymph node, no-invasion of regional tissues, and TNM I/II stage disease than in cases with poorly-differentiated adenocarcinoma, metastasis and invasion, and TNM stage III+ IV stage disease (p < 0.05 or p < 0.01). The expression of FZD1 positively correlated with CAIX in PDAC (P = 0.000). Univariate Kaplan-Meier analysis showed that FZD1 and/or CAIX expression (p < 0.001) was significantly associated with shorter overall survival (p < 0.05). Cox multivariate analysis showed that differentiation, tumor mass, lymph node metastasis, invasion, TNM stage, FZD1 and CAIX levels negatively correlated with overall survival. Positive FZD1 and CAIX expressions are poor prognostic factors in PDAC patients. FZD1 and CAIX might be important biological markers for the carcinogenesis, metastasis, invasion, and prognosis of PDAC.
Collapse
Affiliation(s)
- Liangliang Yang
- Public Health College, Central South University, Changsha, Hunan, 410078, China
| | - Zhulin Yang
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daiqiang Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziru Liu
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huilan Xu
- Public Health College, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
47
|
Langella E, Buonanno M, Vullo D, Dathan N, Leone M, Supuran CT, De Simone G, Monti SM. Biochemical, biophysical and molecular dynamics studies on the proteoglycan-like domain of carbonic anhydrase IX. Cell Mol Life Sci 2018; 75:3283-3296. [PMID: 29564477 PMCID: PMC11105230 DOI: 10.1007/s00018-018-2798-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
Human carbonic anhydrase IX (hCA IX) is a tumour-associated enzyme present in a limited number of normal tissues, but overexpressed in several malignant human tumours. It is a transmembrane protein, where the extracellular region consists of a greatly investigated catalytic CA domain and a much less investigated proteoglycan-like (PG) domain. Considering its important role in tumour biology, here, we report for the first time the full characterization of the PG domain, providing insights into its structural and functional features. In particular, this domain has been produced at high yields in bacterial cells and characterized by means of biochemical, biophysical and molecular dynamics studies. Results show that it belongs to the family of intrinsically disordered proteins, being globally unfolded with only some local residual polyproline II secondary structure. The observed conformational flexibility may have several important roles in tumour progression, facilitating interactions of hCA IX with partner proteins assisting tumour spreading and progression.
Collapse
Affiliation(s)
- Emma Langella
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Daniela Vullo
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Florence, Italy
| | - Nina Dathan
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Florence, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy.
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy.
| |
Collapse
|
48
|
Tanaka A, Ishikawa S, Ushiku T, Yamazawa S, Katoh H, Hayashi A, Kunita A, Fukayama M. Frequent CLDN18-ARHGAP fusion in highly metastatic diffuse-type gastric cancer with relatively early onset. Oncotarget 2018; 9:29336-29350. [PMID: 30034621 PMCID: PMC6047683 DOI: 10.18632/oncotarget.25464] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/28/2018] [Indexed: 12/16/2022] Open
Abstract
CLDN18-ARHGAP26/6 fusions have been identified in gastric cancers, with a predominance in diffuse-type gastric cancers (DGCs). Although in vitro experiments have suggested an oncogenic role for CLDN18-ARHGAP26/6 fusions, the exact frequencies and clinicopathological characteristics of the fusion-positive cases are poorly understood. We analyzed 254 cases of gastric cancer (172 diffuse-type and 82 intestinal-type) using RT-PCR and FISH, and also analyzed TCGA transcriptome datasets to identify genes that are related to the aggressive behaviors of fusion-positive cancers. Our assays identified 26 fusion-positive cases, 22 of which were DGCs (22/172, 12.8%). Unlike fusion-negative DGCs, almost all fusion-positive DGCs retained E-cadherin expression (P = 0.036). Fusion-positive DGCs also showed a higher prevalence of lymphatic and distant organ metastases, and these trends were only significant in the younger age group (< 60 years). In this group, the majority of cases with distant organ metastases (4 of 6 cases) were fusion-positive, and the multivariate regression analysis revealed that fusion status was an independent predictive marker for distant organ metastases (P = 0.002). In the TCGA dataset analysis, carbonic anhydrase 9 was postulated to be a potential modulator of the age-specific effects of the fusion protein, compatible with the immunohistochemical analysis of our cohort. Therefore, CLDN18-ARHGAP26/6 fusion-positive DGCs are considered biologically distinct entities that will require more advanced therapeutic options.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sho Yamazawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akimasa Hayashi
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Kim JY, Lee SH, An S, Kim SJ, Sung YN, Song KB, Hwang DW, Kim SC, Hong SM. Carbonic anhydrase 9 expression in well-differentiated pancreatic neuroendocrine neoplasms might be associated with aggressive behavior and poor survival. Virchows Arch 2018; 472:739-748. [PMID: 29666945 DOI: 10.1007/s00428-018-2353-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/18/2018] [Accepted: 04/02/2018] [Indexed: 12/26/2022]
Abstract
Well-differentiated pancreatic neuroendocrine neoplasms/tumors (PanNETs) are rare neoplasms with diverse clinical behavior. Biomarker discovery is important for predicting clinical course and prognosis of PanNET patients. Carbonic anhydrase 9 (CA9) and vimentin are hypoxia and epithelial-mesenchymal transition-related proteins of which expression in many carcinomas has been associated with poor prognosis, but their significance in PanNET has yet to be determined. We assessed CA9 and vimentin expression in 164 PanNETs and compared this with clinicopathologic characteristics. CA9 expression was observed in normal islets, while neuroendocrine microadenomas and small (< 1 cm) PanNETs showed loss of CA9 expression. CA9 and vimentin expression was observed in 38 (23%) and 36 (22%) of PanNETs, respectively. CA9 expression was associated with larger size (p = 0.001), higher grade (p < 0.001), higher pT category (p < 0.001), lymph node (p = 0.003) and distant (p = 0.047) metastases, higher AJCC stage (p < 0.001), and lymphovascular (p < 0.001) and perineural (p = 0.002) invasion. PanNET patients with CA9 expression had a shorter recurrence-free survival (5-year survival rate 47%) than those without CA9 expression (76%) by univariate (p = 0.001) but not multivariate analysis. Vimentin expression correlated with CA9 expression (p < 0.001) but not with other clinicopathologic factors. In conclusion, CA9 expression was observed in normal islets, while neuroendocrine microadenomas and small (< 1 cm) PanNETs showed CA9 expression loss. CA9 expression gradually reappeared in larger PanNETs, and this was associated with clinical progression and decreased patient survival by univariate but not multivariate analysis.
Collapse
Affiliation(s)
- Joo Young Kim
- Department of Pathology, Nowon Eulji Medical Center, Eulji University, Seoul, South Korea
| | | | - Soyeon An
- Department of Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, South Korea
| | - Sung Joo Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - You-Na Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Ki-Byung Song
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dae Wook Hwang
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
50
|
Supuran CT, Alterio V, Di Fiore A, D' Ambrosio K, Carta F, Monti SM, De Simone G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Med Res Rev 2018; 38:1799-1836. [PMID: 29635752 DOI: 10.1002/med.21497] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
Human carbonic anhydrase (CA) IX is a tumor-associated protein, since it is scarcely present in normal tissues, but highly overexpressed in a large number of solid tumors, where it actively contributes to survival and metastatic spread of tumor cells. Due to these features, the characterization of its biochemical, structural, and functional features for drug design purposes has been extensively carried out, with consequent development of several highly selective small molecule inhibitors and monoclonal antibodies to be used for different purposes. Aim of this review is to provide a comprehensive state-of-the-art of studies performed on this enzyme, regarding structural, functional, and biomedical aspects, as well as the development of molecules with diagnostic and therapeutic applications for cancer treatment. A brief description of additional pharmacologic applications for CA IX inhibition in other diseases, such as arthritis and ischemia, is also provided.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, Naples, Italy
| | | | - Fabrizio Carta
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | | |
Collapse
|