1
|
Li S, Sun H, Fang F, Zhang S, Chen J, Shao C, Fu Y, Chen L. The Spatial Transcriptomic Atlas of Human Limbus and Vital Niche Microenvironment Regulating the Fate of Limbal Epithelial Stem Cells. Invest Ophthalmol Vis Sci 2025; 66:52. [PMID: 40131296 PMCID: PMC11951063 DOI: 10.1167/iovs.66.3.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/02/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose This study aimed to generate the spatial atlas of the human limbus using spatial transcriptomic technology and reveal the deep interaction among the niche microenvironment. Methods The spatial transcriptomic atlas of human limbus was performed using 10× Genomics Space Ranger software platform. Single-cell RNA sequencing data of human limbal epithelial stem cells (LESCs) were downloaded for integrating analysis. Results We profiled more than 400 spots within each sample and spatially located major cell types within the limbus area. LESCs were localized mainly in the basement membrane, and limbal niche cells were situated predominantly within the stromal area. Next, the limbus was divided into four regions based on histological structure, and the differential expressed genes among the four regions were analyzed. Notably, GPHB5 was highly expressed in the epithelium of the middle region and co-staining with deltaNp63 suggested it might be a novel potential biomarker of LESCs. Subsequently, limbal mesenchymal stem cells were found to exhibit the greatest amounts of ligands associated with LESCs. The widespread activity of COL6A2/CD44 signaling among limbal mesenchymal stem cells, melanocytes, immune cells, and LESCs indicate its essential role in mediating bidirectional communication via the collagen pathway. Conclusions This research mapped the spatial positioning of key cells within the limbal niche and detailed interactions between major cell types. These findings provide a foundation for further LESC research and enhance our understanding of corneal biology.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Fei Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Siyi Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Junzhao Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chunyi Shao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
2
|
Inada S, Chiba Y, Tian T, Sato H, Wang X, Yoshizaki K, Oka S, Yamada A, Fukumoto S. Expression patterns of keratin family members during tooth development and the role of keratin 17 in cytodifferentiation of stratum intermedium and stellate reticulum. J Cell Physiol 2024; 239:1-13. [PMID: 39014890 DOI: 10.1002/jcp.31387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Keratins are typical intermediate filament proteins of the epithelium that exhibit highly specific expression patterns related to the epithelial type and stage of cellular differentiation. They are important for cytoplasmic stability and epithelial integrity and are involved in various intracellular signaling pathways. Several keratins are associated with enamel formation. However, information on their expression patterns during tooth development remains lacking. In this study, we analyzed the spatiotemporal expression of keratin family members during tooth development using single-cell RNA-sequencing (scRNA-seq) and microarray analysis. scRNA-seq datasets from postnatal Day 1 mouse molars revealed that several keratins are highly expressed in the dental epithelium, indicating the involvement of keratin family members in cellular functions. Among various keratins, keratin 5 (Krt5), keratin 14 (Krt14), and keratin 17 (Krt17) are highly expressed in the tooth germ; KRT17 is specifically expressed in the stratum intermedium (SI) and stellate reticulum (SR). Depletion of Krt17 did not affect cell proliferation in the dental epithelial cell line SF2 but suppressed their differentiation ability. These results suggest that Krt17 is essential for SI cell differentiation. Furthermore, scRNA-seq results indicated that Krt5, Krt14, and Krt17 exhibited distinct expression patterns in ameloblast, SI, and SR cells. Our findings contribute to the elucidation of novel mechanisms underlying tooth development.
Collapse
Affiliation(s)
- Saori Inada
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuta Chiba
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tian Tian
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Hiroshi Sato
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Keigo Yoshizaki
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Sae Oka
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoshi Fukumoto
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
3
|
El‐Ayoubi A, Arakelyan A, Klawitter M, Merk L, Hakobyan S, Gonzalez‐Menendez I, Quintanilla Fend L, Holm PS, Mikulits W, Schwab M, Danielyan L, Naumann U. Development of an optimized, non-stem cell line for intranasal delivery of therapeutic cargo to the central nervous system. Mol Oncol 2024; 18:528-546. [PMID: 38115217 PMCID: PMC10920084 DOI: 10.1002/1878-0261.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Neural stem cells (NSCs) are considered to be valuable candidates for delivering a variety of anti-cancer agents, including oncolytic viruses, to brain tumors. However, owing to the previously reported tumorigenic potential of NSC cell lines after intranasal administration (INA), here we identified the human hepatic stellate cell line LX-2 as a cell type capable of longer resistance to replication of oncolytic adenoviruses (OAVs) as a therapeutic cargo, and that is non-tumorigenic after INA. Our data show that LX-2 cells can longer withstand the OAV XVir-N-31 replication and oncolysis than NSCs. By selecting the highly migratory cell population out of LX-2, an offspring cell line with a higher and more stable capability to migrate was generated. Additionally, as a safety backup, we applied genomic herpes simplex virus thymidine kinase (HSV-TK) integration into LX-2, leading to high vulnerability to ganciclovir (GCV). Histopathological analyses confirmed the absence of neoplasia in the respiratory tracts and brains of immuno-compromised mice 3 months after INA of LX-2 cells. Our data suggest that LX-2 is a novel, robust, and safe cell line for delivering anti-cancer and other therapeutic agents to the brain.
Collapse
Affiliation(s)
- Ali El‐Ayoubi
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Arsen Arakelyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
| | - Moritz Klawitter
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Luisa Merk
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Siras Hakobyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
- Armenian Institute of BioinformaticsYerevanArmenia
| | - Irene Gonzalez‐Menendez
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Leticia Quintanilla Fend
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der IsarTechnical University of MunichGermany
- Department of Oral and Maxillofacial SurgeryMedical University InnsbruckAustria
- XVir Therapeutics GmbHMunichGermany
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Matthias Schwab
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Lusine Danielyan
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Ulrike Naumann
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
- Gene and RNA Therapy Center (GRTC)Faculty of Medicine University TübingenGermany
| |
Collapse
|
4
|
Kiel M, Wuebker S, Remy M, Riemondy K, Smith F, Carey C, Williams T, Van Otterloo E. MEMO1 Is Required for Ameloblast Maturation and Functional Enamel Formation. J Dent Res 2023; 102:1261-1271. [PMID: 37475472 PMCID: PMC11066519 DOI: 10.1177/00220345231185758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Coordinated mineralization of soft tissue is central to organismal form and function, while dysregulated mineralization underlies several human pathologies. Oral epithelial-derived ameloblasts are polarized, secretory cells responsible for generating enamel, the most mineralized substance in the human body. Defects in ameloblast development result in enamel anomalies, including amelogenesis imperfecta. Identifying proteins critical in ameloblast development can provide insight into specific pathologies associated with enamel-related disorders or, more broadly, mechanisms of mineralization. Previous studies identified a role for MEMO1 in bone mineralization; however, whether MEMO1 functions in the generation of additional mineralized structures remains unknown. Here, we identify a critical role for MEMO1 in enamel mineralization. First, we show that Memo1 is expressed in ameloblasts and, second, that its conditional deletion from ameloblasts results in enamel defects, characterized by a decline in mineral density and tooth integrity. Histology revealed that the mineralization defects in Memo1 mutant ameloblasts correlated with a disruption in ameloblast morphology. Finally, molecular profiling of ameloblasts and their progenitors in Memo1 oral epithelial mutants revealed a disruption to cytoskeletal-associated genes and a reduction in late-stage ameloblast markers, relative to controls. Collectively, our findings integrate MEMO1 into an emerging network of molecules important for ameloblast development and provide a system to further interrogate the relationship of cytoskeletal and amelogenesis-related defects.
Collapse
Affiliation(s)
- M. Kiel
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - S. Wuebker
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - M.T. Remy
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - K.A. Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F. Smith
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C.M. Carey
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - T. Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO, USA
| | - E. Van Otterloo
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
- Department of Periodontics, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- The University of Iowa Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Zheng X, Huang W, He Z, Li Y, Li S, Song Y. Effects of Fam83h truncation mutation on enamel developmental defects in male C57/BL6J mice. Bone 2023; 166:116595. [PMID: 36272714 DOI: 10.1016/j.bone.2022.116595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Truncation mutations in family with sequence similarity, member H (FAM83H) gene are considered the main cause of autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI); however, its pathogenic mechanism in amelogenesis remains poorly characterized. This study aimed to investigate the effects of truncated FAM83H on developmental defects in enamel. CRISPR/Cas9 technology was used to develop a novel Fam83h c.1186C > T (p.Q396*) knock-in mouse strain, homologous to the human FAM83H c.1192C > T mutation in ADHCAI. The Fam83hQ396⁎/Q396⁎ mice showed poor growth, a sparse and scruffy coat, scaly skin and early mortality compared to control mice. Moreover, the forelimbs of homozygous mice were swollen, exhibiting a significant inflammatory response. Incisors of Fam83hQ396⁎/Q396⁎ mice appeared chalky white, shorter, and less sharp than those of control mice, and energy dispersive X-ray spectroscopy (EDS) analysis and Prussian blue staining helped identify decreased iron and increased calcium (Ca) and phosphorus (P) levels, with an unchanged Ca/P ratio. The expression of iron transportation proteins, transferrin receptor (TFRC) and solute carrier family 40 member 1 (SLC40A1), was decreased in Fam83h-mutated ameloblasts. Micro-computed tomography revealed enamel defects in Fam83hQ396⁎/Q396⁎ mice. Fam83hQ396⁎/Q396⁎ enamel showed decreased Vickers hardness and distorted enamel rod structure and ameloblast arrangement. mRNA sequencing showed that the cell adhesion pathway was most notably clustered in LS8-Fam83h-mutated cells. Immunofluorescence analysis further revealed decreased protein expression of desmoglein 3, a component of desmosomes, in Fam83h-mutated ameloblasts. The FAM83H-casein kinase 1α (CK1α)-keratin 14 (K14)-amelogenin (AMELX) interaction was detected in ameloblasts. And K14 and AMELX were disintegrated from the tetramer in Fam83h-mutated ameloblasts in vitro and in vivo. In secretory stage ameloblasts of Fam83hQ396⁎/Q396⁎ mice, AMELX secretion exhibited obvious retention in the cytoplasm. In conclusion, truncated FAM83H exerted dominant-negative effects on gross development, amelogenesis, and enamel biomineralization by disturbing iron transportation, influencing the transportation and secretion of AMELX, and interfering with cell-cell adhesion in ameloblasts.
Collapse
Affiliation(s)
- Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wushuang Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhenru He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shiyu Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Liao CY, Yang SF, Wu TJ, Chang H, Huang CYF, Liu YF, Wang CH, Liou JC, Hsu SL, Lee H, Sheu GT, Chang JT. Novel function of PERP-428 variants impacts lung cancer risk through the differential regulation of PTEN/MDM2/p53-mediated antioxidant activity. Free Radic Biol Med 2021; 167:307-320. [PMID: 33731308 DOI: 10.1016/j.freeradbiomed.2021.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/11/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Identifying genetic risk factors and understanding their mechanisms will help reduce lung cancer incidence. The p53 apoptosis effect is related to PMP-22 (PERP), a tetraspan membrane protein, and an apoptotic effector protein downstream of p53. Although historically considered a tumor suppressor, PERP is highly expressed in lung cancers. Stable knockdown of PERP expression induces CL1-5 and A549 lung cancer cell death, but transient knockdown has no effect. Interestingly, relative to the PERP-428GG genotype, PERP-428CC was associated with the highest lung cancer risk (OR = 5.38; 95% CI = 2.12-13.65, p < 0.001), followed by the PERP-428CG genotype (OR = 2.34; 95% CI = 1.55-3.55, p < 0.001). Ectopic expression of PERP-428G, but not PERP-428C, protects lung cancer cells against ROS-induced DNA damage. Mechanistically, PERP-428 SNPs differentially regulate p53 protein stability. p53 negatively regulates the expression of the antioxidant enzymes catalase (CAT) and glutathione reductase (GR), thereby modulating redox status. p53 protein stability is higher in PERP-428C-expressing cells than in PERP-428G-expressing cells because MDM2 expression is decreased and p53 Ser20 phosphorylation is enhanced in PERP-428C-expressing cells. The MDM2 mRNA level is decreased in PERP-428C-expressing cells via PTEN-mediated downregulation of the MDM2 constitutive p1 promoter. This study reveals that in individuals with PERP-428CC, CAT/GR expression is decreased via the PTEN/MDM2/p53 pathway. These individuals have an increased lung cancer risk. Preventive antioxidants and avoidance of ROS stressors are recommended to prevent lung cancer or other ROS-related chronic diseases.
Collapse
Affiliation(s)
- Chen-Yi Liao
- Institute of Medicine, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan; CSMU Lung Cancer Research Center, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Ting-Jian Wu
- Institute of Medicine, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Han Chang
- Department of Pathology, China Medical University Hospital, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan.
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming University, No. 155, Sec. 2, Linong Street, Taipei, 11221, Taiwan.
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Chi-Hsiang Wang
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Jhong-Chio Liou
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Shih-Lan Hsu
- Department of Education & Research, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec. 4, Taichung 407204, Taiwan.
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan; CSMU Lung Cancer Research Center, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan; Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| | - Jinghua Tsai Chang
- Institute of Medicine, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan; CSMU Lung Cancer Research Center, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan; Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, 110 Sec. 1, Chien-Kuo N. Road, Taichung, 40203, Taiwan.
| |
Collapse
|
7
|
Sweat M, Sweat Y, Yu W, Su D, Leonard RJ, Eliason SL, Amendt BA. The miR-200 family is required for ectodermal organ development through the regulation of the epithelial stem cell niche. STEM CELLS (DAYTON, OHIO) 2021; 39:761-775. [PMID: 33529466 PMCID: PMC8247948 DOI: 10.1002/stem.3342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The murine lower incisor ectodermal organ contains a single epithelial stem cell (SC) niche that provides epithelial progenitor cells to the continuously growing rodent incisor. The dental stem cell niche gives rise to several cell types and we demonstrate that the miR‐200 family regulates these cell fates. The miR‐200 family is highly enriched in the differentiated dental epithelium and absent in the stem cell niche. In this study, we inhibited the miR‐200 family in developing murine embryos using new technology, resulting in an expanded epithelial stem cell niche and lack of cell differentiation. Inhibition of individual miRs within the miR‐200 cluster resulted in differential developmental and cell morphology defects. miR‐200 inhibition increased the expression of dental epithelial stem cell markers, expanded the stem cell niche and decreased progenitor cell differentiation. RNA‐seq. identified miR‐200 regulatory pathways involved in cell differentiation and compartmentalization of the stem cell niche. The miR‐200 family regulates signaling pathways required for cell differentiation and cell cycle progression. The inhibition of miR‐200 decreased the size of the lower incisor due to increased autophagy and cell death. New miR‐200 targets demonstrate gene networks and pathways controlling cell differentiation and maintenance of the stem cell niche. This is the first report demonstrating how the miR‐200 family is required for in vivo progenitor cell proliferation and differentiation.
Collapse
Affiliation(s)
- Mason Sweat
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Yan Sweat
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Wenjie Yu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Dan Su
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Riley J Leonard
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Steven L Eliason
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Epithelial loss of mitochondrial oxidative phosphorylation leads to disturbed enamel and impaired dentin matrix formation in postnatal developed mouse incisor. Sci Rep 2020; 10:22037. [PMID: 33328493 PMCID: PMC7744519 DOI: 10.1038/s41598-020-77954-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/12/2020] [Indexed: 12/03/2022] Open
Abstract
The formation of dentin and enamel matrix depends on reciprocal interactions between epithelial-mesenchymal cells. To assess the role of mitochondrial function in amelogenesis and dentinogenesis, we studied postnatal incisor development in K320E-TwinkleEpi mice. In these mice, a loss of mitochondrial DNA (mtDNA), followed by a severe defect in the oxidative phosphorylation system is induced specifically in Keratin 14 (K14+) expressing epithelial cells. Histochemical staining showed severe reduction of cytochrome c oxidase activity only in K14+ epithelial cells. In mutant incisors, H&E staining showed severe defects in the ameloblasts, in the epithelial cells of the stratum intermedium and the papillary cell layer, but also a disturbed odontoblast layer. The lack of amelogenin in the enamel matrix of K320E-TwinkleEpi mice indicated that defective ameloblasts are not able to form extracellular enamel matrix proteins. In comparison to control incisors, von Kossa staining showed enamel biomineralization defects and dentin matrix impairment. In mutant incisor, TUNEL staining and ultrastructural analyses revealed differentiation defects, while in hair follicle cells apoptosis is prevalent. We concluded that mitochondrial oxidative phosphorylation in epithelial cells of the developed incisor is required for Ca2+ homeostasis to regulate the formation of enamel matrix and induce the differentiation of ectomesenchymal cells into odontoblasts.
Collapse
|
9
|
Chiba Y, Saito K, Martin D, Boger ET, Rhodes C, Yoshizaki K, Nakamura T, Yamada A, Morell RJ, Yamada Y, Fukumoto S. Single-Cell RNA-Sequencing From Mouse Incisor Reveals Dental Epithelial Cell-Type Specific Genes. Front Cell Dev Biol 2020; 8:841. [PMID: 32984333 PMCID: PMC7490294 DOI: 10.3389/fcell.2020.00841] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Dental epithelial stem cells give rise to four types of dental epithelial cells: inner enamel epithelium (IEE), outer enamel epithelium (OEE), stratum intermedium (SI), and stellate reticulum (SR). IEE cells further differentiate into enamel-forming ameloblasts, which play distinct roles, and are essential for enamel formation. These are conventionally classified by their shape, although their transcriptome and biological roles are yet to be fully understood. Here, we aimed to use single-cell RNA sequencing to clarify the heterogeneity of dental epithelial cell types. Unbiased clustering of 6,260 single cells from incisors of postnatal day 7 mice classified them into two clusters of ameloblast, IEE/OEE, SI/SR, and two mesenchymal populations. Secretory-stage ameloblasts expressed Amel and Enam were divided into Dspp + and Ambn + ameloblasts. Pseudo-time analysis indicated Dspp + ameloblasts differentiate into Ambn + ameloblasts. Further, Dspp and Ambn could be stage-specific markers of ameloblasts. Gene ontology analysis of each cluster indicated potent roles of cell types: OEE in the regulation of tooth size and SR in the transport of nutrients. Subsequently, we identified novel dental epithelial cell marker genes, namely Pttg1, Atf3, Cldn10, and Krt15. The results not only provided a resource of transcriptome data in dental cells but also contributed to the molecular analyses of enamel formation.
Collapse
Affiliation(s)
- Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Craig Rhodes
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| |
Collapse
|
10
|
Roberts O, Paraoan L. PERP-ing into diverse mechanisms of cancer pathogenesis: Regulation and role of the p53/p63 effector PERP. Biochim Biophys Acta Rev Cancer 2020; 1874:188393. [PMID: 32679166 DOI: 10.1016/j.bbcan.2020.188393] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
The tetraspan plasma membrane protein PERP (p53 apoptosis effector related to PMP22) is a lesser-known transcriptional target of p53 and p63. A member of the PMP22/GAS3/EMP membrane protein family, PERP was originally identified as a p53 target specifically trans-activated during apoptosis, but not during cell-cycle arrest. Several studies have since shown downregulation of PERP expression in numerous cancers, suggesting that PERP is a tumour suppressor protein. This review focusses on the important advances made in elucidating the mechanisms regulating PERP expression and its function as a tumour suppressor in diverse human cancers, including breast cancer and squamous cell carcinoma. Investigating PERP's role in clinically-aggressive uveal melanoma has revealed that PERP engages a positive-feedback loop with p53 to regulate its own expression, and that p63 is required beside p53 to achieve pro-apoptotic levels of PERP in this cancer. Furthermore, the recent discovery of the apoptosis-mediating interaction of PERP with SERCA2b at the plasma membrane-endoplasmic reticulum interface demonstrates a novel mechanism of PERP stabilisation, and how PERP can mediate Ca2+ signalling to facilitate apoptosis. The multi-faceted role of PERP in cancer, involving well-documented functions in mediating apoptosis and cell-cell adhesion is discussed, alongside PERP's emerging roles in epithelial-mesenchymal transition, and PERP crosstalk with inflammation signalling pathways, and other signalling pathways. The potential for restoring PERP expression as a means of cancer therapy is also considered.
Collapse
Affiliation(s)
- Owain Roberts
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
11
|
Colley M, Liang S, Tan C, Trobough KP, Bach SB, Chun YHP. Mapping and Identification of Native Proteins of Developing Teeth in Mouse Mandibles. Anal Chem 2020; 92:7630-7637. [PMID: 32362116 PMCID: PMC7898936 DOI: 10.1021/acs.analchem.0c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mass spectrometry imaging is a powerful tool of increasing utility due to its ability to spatially resolve molecular biomarkers directly from sectioned tissues. One hindrance to its universality is that no single protocol is sufficient for every tissue type, fixation, and pretreatment. Mineralized tissues are uniquely challenging as extensive decalcification protocols are necessary to achieve thin sections. In this study, we optimized a method to image tryptic peptides by matrix-assisted laser desorption ionization mass spectrometry of decalcified, formalin-fixed paraffin-embedded mouse hemimandibles. Using a combination of on-tissue MS/MS and hydrogel extraction LC-MS/MS, peptides from the enamel, dentin, periodontal ligament, alveolar bone, pulp, and other regions are identified and mapped. This breakthrough method provides a comprehensive approach to biomarker discovery in dental and craniofacial tissues which is highly relevant given that diseases originating from this region of the body are the most prevalent across all populations.
Collapse
Affiliation(s)
- Madeline Colley
- Department of Chemistry, UT San Antonio, San Antonio, TX, USA
| | - Sitai Liang
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | - Chunyan Tan
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | - Kyle P. Trobough
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | | | - Yong-Hee Patricia Chun
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
12
|
Nakatomi M, Ida-Yonemochi H, Nakatomi C, Saito K, Kenmotsu S, Maas RL, Ohshima H. Msx2 Prevents Stratified Squamous Epithelium Formation in the Enamel Organ. J Dent Res 2018; 97:1355-1364. [PMID: 29863959 DOI: 10.1177/0022034518777746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tooth enamel is manufactured by the inner enamel epithelium of the multilayered enamel organ. Msx2 loss-of-function mutation in a mouse model causes an abnormal accumulation of epithelial cells in the enamel organ, but the underlying mechanism by which Msx2 regulates amelogenesis is poorly understood. We therefore performed detailed histological and molecular analyses of Msx2 null mice. Msx2 null ameloblasts and stratum intermedium (SI) cells differentiated normally in the early stages of amelogenesis. However, during subsequent developmental stages, the outer enamel epithelium (OEE) became highly proliferative and transformed into a keratinized stratified squamous epithelium that ectopically expressed stratified squamous epithelium markers, including Heat shock protein 25, Loricrin, and Keratin 10. Moreover, expression of hair follicle-specific keratin genes such as Keratin 26 and Keratin 73 was upregulated in the enamel organ of Msx2 mutants. With the accumulation of keratin in the stellate reticulum (SR) region and subsequent odontogenic cyst formation, SI cells gradually lost the ability to differentiate, and the expression of Sox2 and Notch1 was downregulated, leading to ameloblast depolarization. As a consequence, the organization of the Msx2 mutant enamel organ became disturbed and enamel failed to form in the normal location. Instead, there was ectopic mineralization that likely occurred within the SR. In summary, we show that during amelogenesis, Msx2 executes a bipartite function, repressing the transformation of OEE into a keratinized stratified squamous epithelium while simultaneously promoting the development of a properly differentiated enamel organ competent for enamel formation.
Collapse
Affiliation(s)
- M Nakatomi
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,2 Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - H Ida-Yonemochi
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - C Nakatomi
- 3 General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan.,4 Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - K Saito
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S Kenmotsu
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - R L Maas
- 5 Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - H Ohshima
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
13
|
Nishikawa S. Cytoskeleton, intercellular junctions, planar cell polarity, and cell movement in amelogenesis. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Robertson SYT, Wen X, Yin K, Chen J, Smith CE, Paine ML. Multiple Calcium Export Exchangers and Pumps Are a Prominent Feature of Enamel Organ Cells. Front Physiol 2017; 8:336. [PMID: 28588505 PMCID: PMC5440769 DOI: 10.3389/fphys.2017.00336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
Calcium export is a key function for the enamel organ during all stages of amelogenesis. Expression of a number of ATPase calcium transporting, plasma membrane genes (ATP2B1-4/PMCA1-4), solute carrier SLC8A genes (sodium/calcium exchanger or NCX1-3), and SLC24A gene family members (sodium/potassium/calcium exchanger or NCKX1-6) have been investigated in the developing enamel organ in earlier studies. This paper reviews the calcium export pathways that have been described and adds novel insights to the spatiotemporal expression patterns of PMCA1, PMCA4, and NCKX3 during amelogenesis. New data are presented to show the mRNA expression profiles for the four Atp2b1-4 gene family members (PMCA1-4) in secretory-stage and maturation-stage rat enamel organs. These data are compared to expression profiles for all Slc8a and Slc24a gene family members. PMCA1, PMCA4, and NCKX3 immunolocalization data is also presented. Gene expression profiles quantitated by real time PCR show that: (1) PMCA1, 3, and 4, and NCKX3 are most highly expressed during secretory-stage amelogenesis; (2) NCX1 and 3, and NCKX6 are expressed during secretory and maturation stages; (3) NCKX4 is most highly expressed during maturation-stage amelogenesis; and (4) expression levels of PMCA2, NCX2, NCKX1, NCKX2, and NCKX5 are negligible throughout amelogenesis. In the enamel organ PMCA1 localizes to the basolateral membrane of both secretory and maturation ameloblasts; PMCA4 expression is seen in the basolateral membrane of secretory and maturation ameloblasts, and also cells of the stratum intermedium and papillary layer; while NCKX3 expression is limited to Tomes' processes, and the apical membrane of maturation-stage ameloblasts. These new findings are discussed in the perspective of data already present in the literature, and highlight the multiplicity of calcium export systems in the enamel organ needed to regulate biomineralization.
Collapse
Affiliation(s)
- Sarah Y T Robertson
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| | - Xin Wen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| | - Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| | - Junjun Chen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States.,Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Charles E Smith
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill UniversityMontreal, QC, Canada
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| |
Collapse
|
15
|
FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep 2016; 6:26557. [PMID: 27222304 PMCID: PMC4879633 DOI: 10.1038/srep26557] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/05/2016] [Indexed: 12/23/2022] Open
Abstract
FAM83H is essential for the formation of dental enamel because a mutation in the FAM83H gene causes amelogenesis imperfecta (AI). We previously reported that the overexpression of FAM83H often occurs and disorganizes the keratin cytoskeleton in colorectal cancer cells. We herein show that FAM83H regulates the organization of the keratin cytoskeleton and maintains the formation of desmosomes in ameloblastoma cells. FAM83H is expressed and localized on keratin filaments in human ameloblastoma cell lines and in mouse ameloblasts and epidermal germinative cells in vivo. FAM83H shows preferential localization to keratin filaments around the nucleus that often extend to cell-cell junctions. Alterations in the function of FAM83H by its overexpression, knockdown, or an AI-causing truncated mutant prevent the proper organization of the keratin cytoskeleton in ameloblastoma cells. Furthermore, the AI-causing mutant prevents desmosomal proteins from being localized to cell-cell junctions. The effects of the AI-causing mutant depend on its binding to and possible inhibition of casein kinase I (CK-1). The suppression of CK-1 by its inhibitor, D4476, disorganizes the keratin cytoskeleton. Our results suggest that AI caused by the FAM83H mutation is mediated by the disorganization of the keratin cytoskeleton and subsequent disruption of desmosomes in ameloblasts.
Collapse
|
16
|
Cox BN, Snead ML. Cells as strain-cued automata. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2016; 87:177-226. [PMID: 31178602 PMCID: PMC6550492 DOI: 10.1016/j.jmps.2015.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We argue in favor of representing living cells as automata and review demonstrations that autonomous cells can form patterns by responding to local variations in the strain fields that arise from their individual or collective motions. An autonomous cell's response to strain stimuli is assumed to be effected by internally-generated, internally-powered forces, which generally move the cell in directions other than those implied by external energy gradients. Evidence of cells acting as strain-cued automata have been inferred from patterns observed in nature and from experiments conducted in vitro. Simulations that mimic particular cases of pattern forming share the idealization that cells are assumed to pass information among themselves solely via mechanical boundary conditions, i.e., the tractions and displacements present at their membranes. This assumption opens three mechanisms for pattern formation in large cell populations: wavelike behavior, kinematic feedback in cell motility that can lead to sliding and rotational patterns, and directed migration during invasions. Wavelike behavior among ameloblast cells during amelogenesis (the formation of dental enamel) has been inferred from enamel microstructure, while strain waves in populations of epithelial cells have been observed in vitro. One hypothesized kinematic feedback mechanism, "enhanced shear motility", accounts successfully for the spontaneous formation of layered patterns during amelogenesis in the mouse incisor. Directed migration is exemplified by a theory of invader cells that sense and respond to the strains they themselves create in the host population as they invade it: analysis shows that the strain fields contain positional information that could aid the formation of cell network structures, stabilizing the slender geometry of branches and helping govern the frequency of branch bifurcation and branch coalescence (the formation of closed networks). In simulations of pattern formation in homogeneous populations and network formation by invaders, morphological outcomes are governed by the ratio of the rates of two competing time dependent processes, one a migration velocity and the other a relaxation velocity related to the propagation of strain information. Relaxation velocities are approximately constant for different species and organs, whereas cell migration rates vary by three orders of magnitude. We conjecture that developmental processes use rapid cell migration to achieve certain outcomes, and slow migration to achieve others. We infer from analysis of host relaxation during network formation that a transition exists in the mechanical response of a host cell from animate to inanimate behavior when its strain changes at a rate that exceeds 10-4-10-3s-1. The transition has previously been observed in experiments conducted in vitro.
Collapse
Affiliation(s)
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of USC, Los Angeles, CA 90033, USA
| |
Collapse
|
17
|
Jheon AH, Prochazkova M, Meng B, Wen T, Lim YJ, Naveau A, Espinoza R, Sone ED, Ganss B, Siebel CW, Klein OD. Inhibition of Notch Signaling During Mouse Incisor Renewal Leads to Enamel Defects. J Bone Miner Res 2016; 31:152-62. [PMID: 26179131 PMCID: PMC4840178 DOI: 10.1002/jbmr.2591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/18/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022]
Abstract
The continuously growing rodent incisor is an emerging model for the study of renewal of mineralized tissues by adult stem cells. Although the Bmp, Fgf, Shh, and Wnt pathways have been studied in this organ previously, relatively little is known about the role of Notch signaling during incisor renewal. Notch signaling components are expressed in enamel-forming ameloblasts and the underlying stratum intermedium (SI), which suggested distinct roles in incisor renewal and enamel mineralization. Here, we injected adult mice with inhibitory antibodies against several components of the Notch pathway. This blockade led to defects in the interaction between ameloblasts and the SI cells, which ultimately affected enamel formation. Furthermore, Notch signaling inhibition led to the downregulation of desmosome-specific proteins such as PERP and desmoplakin, consistent with the importance of desmosomes in the integrity of ameloblast-SI attachment and enamel formation. Together, our data demonstrate that Notch signaling is critical for proper enamel formation during incisor renewal, in part by regulating desmosome-specific components, and that the mouse incisor provides a model system to dissect Jag-Notch signaling mechanisms in the context of mineralized tissue renewal.
Collapse
Affiliation(s)
- Andrew H. Jheon
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
| | - Michaela Prochazkova
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
- Department of Anthropology and Human Genetics, Charles University in Prague, Czech Republic
| | - Bo Meng
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
| | - Timothy Wen
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
| | - Young-Jun Lim
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
- Seoul National University, Seoul, South Korea
| | - Adrien Naveau
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
| | - Ruben Espinoza
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
| | - Eli D. Sone
- Institute of Biomaterials and Biomedical Engineering, Department of Materials Science and Engineering, and Faculty of Dentistry, University of Toronto, Ontario, Canada
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, USA
- Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, USA
| |
Collapse
|
18
|
MMP7 is required to mediate cell invasion and tumor formation upon Plakophilin3 loss. PLoS One 2015; 10:e0123979. [PMID: 25875355 PMCID: PMC4395386 DOI: 10.1371/journal.pone.0123979] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/24/2015] [Indexed: 11/30/2022] Open
Abstract
Plakophilin3 (PKP3) loss results in increased transformation in multiple cell lines in vitro and increased tumor formation in vivo. A microarray analysis performed in the PKP3 knockdown clones, identified an inflammation associated gene signature in cell lines derived from stratified epithelia as opposed to cell lines derived from simple epithelia. However, in contrast to the inflammation associated gene signature, the expression of MMP7 was increased upon PKP3 knockdown in all the cell lines tested. Using vector driven RNA interference, it was demonstrated that MMP7 was required for in-vitro cell migration and invasion and tumor formation in vivo. The increase in MMP7 levels was due to the increase in levels of the Phosphatase of Regenerating Liver3 (PRL3), which is observed upon PKP3 loss. The results suggest that MMP7 over-expression may be one of the mechanisms by which PKP3 loss leads to increased cell invasion and tumor formation.
Collapse
|
19
|
Balic A, Thesleff I. Tissue Interactions Regulating Tooth Development and Renewal. Curr Top Dev Biol 2015; 115:157-86. [DOI: 10.1016/bs.ctdb.2015.07.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Neupane S, Sohn WJ, Rijal G, Lee YJ, Lee S, Yamamoto H, An CH, Cho SW, Lee Y, Shin HI, Kwon TY, Kim JY. Developmental regulations of Perp in mice molar morphogenesis. Cell Tissue Res 2014; 358:109-21. [DOI: 10.1007/s00441-014-1908-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/30/2014] [Indexed: 12/17/2022]
|
21
|
Hu JKH, Mushegyan V, Klein OD. On the cutting edge of organ renewal: Identification, regulation, and evolution of incisor stem cells. Genesis 2014; 52:79-92. [PMID: 24307456 PMCID: PMC4252016 DOI: 10.1002/dvg.22732] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
Abstract
The rodent incisor is one of a number of organs that grow continuously throughout the life of an animal. Continuous growth of the incisor arose as an evolutionary adaptation to compensate for abrasion at the distal end of the tooth. The sustained turnover of cells that deposit the mineralized dental tissues is made possible by epithelial and mesenchymal stem cells residing at the proximal end of the incisor. A complex network of signaling pathways and transcription factors regulates the formation, maintenance, and differentiation of these stem cells during development and throughout adulthood. Research over the past 15 years has led to significant progress in our understanding of this network, which includes FGF, BMP, Notch, and Hh signaling, as well as cell adhesion molecules and micro-RNAs. This review surveys key historical experiments that laid the foundation of the field and discusses more recent findings that definitively identified the stem cell population, elucidated the regulatory network, and demonstrated possible genetic mechanisms for the evolution of continuously growing teeth.
Collapse
Affiliation(s)
- Jimmy Kuang-Hsien Hu
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vagan Mushegyan
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Li X, Venugopalan SR, Cao H, Pinho FO, Paine ML, Snead ML, Semina EV, Amendt BA. A model for the molecular underpinnings of tooth defects in Axenfeld-Rieger syndrome. Hum Mol Genet 2014; 23:194-208. [PMID: 23975681 PMCID: PMC3857954 DOI: 10.1093/hmg/ddt411] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022] Open
Abstract
Patients with Axenfeld-Rieger Syndrome (ARS) present various dental abnormalities, including hypodontia, and enamel hypoplasia. ARS is genetically associated with mutations in the PITX2 gene, which encodes one of the earliest transcription factors to initiate tooth development. Thus, Pitx2 has long been considered as an upstream regulator of the transcriptional hierarchy in early tooth development. However, because Pitx2 is also a major regulator of later stages of tooth development, especially during amelogenesis, it is unclear how mutant forms cause ARS dental anomalies. In this report, we outline the transcriptional mechanism that is defective in ARS. We demonstrate that during normal tooth development Pitx2 activates Amelogenin (Amel) expression, whose product is required for enamel formation, and that this regulation is perturbed by missense PITX2 mutations found in ARS patients. We further show that Pitx2-mediated Amel activation is controlled by chromatin-associated factor Hmgn2, and that Hmgn2 prevents Pitx2 from efficiently binding to and activating the Amel promoter. Consistent with a physiological significance to this interaction, we show that K14-Hmgn2 transgenic mice display a severe loss of Amel expression on the labial side of the lower incisors, as well as enamel hypoplasia-consistent with the human ARS phenotype. Collectively, these findings define transcriptional mechanisms involved in normal tooth development and shed light on the molecular underpinnings of the enamel defect observed in ARS patients who carry PITX2 mutations. Moreover, our findings validate the etiology of the enamel defect in a novel mouse model of ARS.
Collapse
Affiliation(s)
- Xiao Li
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Shankar R. Venugopalan
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Huojun Cao
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Flavia O. Pinho
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Michael L. Paine
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA and
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA and
| | - Elena V. Semina
- Division of Developmental Biology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| |
Collapse
|
23
|
KUBANOV AA, MICHENKO AV, ABRAMOVA TV, KOZHUSHNAYA OS, FRIGO NV, ZNAMENSKAYA LF. Role of polymorphisms of PERP gene in the development of acantholysis in patients with pemphigus vulgaris. VESTNIK DERMATOLOGII I VENEROLOGII 2013. [DOI: 10.25208/vdv568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Goal. To determine the nucleotide protein-coding PERP gene sequence and assess the relation between the revealed mutations/polymorphisms and development of true acantholytic pemphigus as well as particular features of its course. Materials and methods. The protein-coding PERP gene DNA sequence was studied by the sequence analysis method in 18 patients with true acantholytic pemphigus. Results. Two polymorphisms were discovered in patients with true acantholytic pemphigus in Exon 3 of the PERP gene for the first time: rs648802 (non-synonymous) and rs648396 (synonymous). The incidence of wild type genotypes in the revealed polymorphisms (С/С genotype rs648802 and Т/Т genotype rs648396) in healthy volunteers reliably exceeded that in patients (p = 0.049). Patients with true acantholytic pemphigus are characterized by a higher incidence rate of mutant heterozygous genotypes С/G rs648802 and Т/C rs648396 (p = 0.09). Mutant heterozygous genotypes of the polymorphisms (G/G genotype rs648802 and С/С genotype rs648396) were revealed in patients with the earlier onset of the disease (41-60 years) (p = 0.025) more often while heterozygous genotypes (С/G genotype rs648802 and T/С genotype rs648396) were revealed when the disease developed at the age of 61 or older more often (p = 0.01). Conclusion. Identification of the polymorphous genotype by the sequence method or other molecular methods (e.g. PCR) can be used to forecast the terms when true acantholytic pemphigus can emerge in genetically inclined patients. However, it should be noted that it is necessary to specify the preliminary results obtained based on a greater sample of patients with true acantholytic pemphigus.
Collapse
|
24
|
Goodwin AF, Tidyman WE, Jheon AH, Sharir A, Zheng X, Charles C, Fagin JA, McMahon M, Diekwisch TGH, Ganss B, Rauen KA, Klein OD. Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Hum Mol Genet 2013; 23:682-92. [PMID: 24057668 DOI: 10.1093/hmg/ddt455] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RASopathies are syndromes caused by gain-of-function mutations in the Ras signaling pathway. One of these conditions, Costello syndrome (CS), is typically caused by an activating de novo germline mutation in HRAS and is characterized by a wide range of cardiac, musculoskeletal, dermatological and developmental abnormalities. We report that a majority of individuals with CS have hypo-mineralization of enamel, the outer covering of teeth, and that similar defects are present in a CS mouse model. Comprehensive analysis of the mouse model revealed that ameloblasts, the cells that generate enamel, lacked polarity, and the ameloblast progenitor cells were hyperproliferative. Ras signals through two main effector cascades, the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. To determine through which pathway Ras affects enamel formation, inhibitors targeting either PI3K or MEK 1 and 2 (MEK 1/2), kinases in the MAPK pathway, were utilized. MEK1/2 inhibition rescued the hypo-mineralized enamel, normalized the ameloblast polarity defect and restored normal progenitor cell proliferation. In contrast, PI3K inhibition only corrected the progenitor cell proliferation phenotype. We demonstrate for the first time the central role of Ras signaling in enamel formation in CS individuals and present the mouse incisor as a model system to dissect the roles of the Ras effector pathways in vivo.
Collapse
Affiliation(s)
- Alice F Goodwin
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Modesto A, Klein O, Tenuta LMA, Gerlach RF, Vieira AR. Summary of the IADR Cariology Research, Craniofacial Biology, and Mineralized Tissue Groups Symposium, Iguaçu Falls, Brazil, June 2012: Gene-environment Interactions and Epigenetics in Oral Diseases: Enamel Formation and its Clinical Impact on Tooth Defects, Caries, and Erosion. DENTISTRY 3000 2013; 1:http://dentistry3000.pitt.edu/ojs/index.php/dentistry3000/article/view/16/17. [PMID: 25392764 PMCID: PMC4225817 DOI: 10.5195/d3000.2013.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Characteristics of enamel may influence or modulate individual susceptibility to caries and erosion. These characteristics are defined during development, which is under strict genetic control, but can easily be modified in many ways by environmental factors. In the symposium, translational aspects of embryology, biochemistry, and genetics of amelogenesis were presented. The symposium provided unique insight into how basic sciences integrate with clinically relevant problems. The need for improved understanding of risks at the individual level, taking into consideration both environmental exposures and genetic background, was presented. The symposium was divided into four stepwise and interconnected topics as follows: 1) The Many Faces of Enamel Development; 2) Enamel Pathogenesis: Biochemistry Lessons; 3) Environmental Factors on Enamel Formation; and, 4) Genetic Variation in Enamel Formation Genes.
Collapse
Affiliation(s)
- Adriana Modesto
- University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA, USA
| | - Ophir Klein
- University of California, School of Dentistry, San Francisco, CA, USA
| | - Livia M A Tenuta
- University of Campinas, Piracicaba Dental School, Piracicaba, SP, Brazil
| | | | - Alexandre R Vieira
- University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Bartlett JD, Smith CE. Modulation of cell-cell junctional complexes by matrix metalloproteinases. J Dent Res 2012; 92:10-7. [PMID: 23053846 DOI: 10.1177/0022034512463397] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ameloblast cell layer of the enamel organ is in contact with the forming enamel as it develops into the hardest substance in the body. Ameloblasts move in groups that slide by one another as the enamel layer thickens. Each ameloblast is responsible for the formation of one enamel rod, and the rods are the mineralized trail that moving ameloblasts leave behind. Matrix metalloproteinases (MMPs) facilitate cell movement in various tissues during development, and in this review we suggest that the tooth-specific MMP, enamelysin (MMP20), facilitates ameloblast movements during enamel development. Mmp20 null mice have thin brittle enamel with disrupted rod patterns that easily abrades from the underlying dentin. Strikingly, the Mmp20 null mouse enamel organ morphology is noticeably dysplastic during late-stage development, when MMP20 is no longer expressed. We suggest that in addition to its role of cleaving enamel matrix proteins, MMP20 also cleaves junctional complexes present on ameloblasts to foster the cell movement necessary for formation of the decussating enamel rod pattern. Therefore, inactivation of MMP20 would result in tight ameloblast cell-cell attachments that may cause maturation-stage enamel organ dysplasia. The tight ameloblast attachments would also preclude the ameloblast movement necessary to form decussating enamel rod patterns.
Collapse
Affiliation(s)
- J D Bartlett
- Department of Mineralized Tissue Biology, Forsyth Institute, Harvard School of Dental Medicine, Cambridge, MA, USA.
| | | |
Collapse
|
27
|
Holcroft J, Ganss B. Identification of amelotin- and ODAM-interacting enamel matrix proteins using the yeast two-hybrid system. Eur J Oral Sci 2012; 119 Suppl 1:301-6. [PMID: 22243260 DOI: 10.1111/j.1600-0722.2011.00870.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The formation of dental enamel is a prototype of functional tissue development through biomineralization. Amelotin (AMTN) is a recently discovered secreted enamel protein predominantly expressed during the maturation stage of enamel formation. It accumulates in a basal lamina-like structure at the interface between ameloblasts and enamel mineral and it co-localizes with another recently described enamel protein, odontogenic ameloblast-associated protein (ODAM). The purpose of this study was to determine whether AMTN and ODAM bind to each other and/or to other well-established enamel matrix proteins. The coding sequences of all enamel proteins were cloned into appropriate vectors of the GAL4-based Matchmaker Gold Yeast Two-Hybrid System. The growth of yeast cells on selective media and color induction were used as indicators for reporter gene expression through protein-protein interactions in combinations of prey and bait constructs. We found that AMTN interacts with itself and with ODAM, but not with amelogenin (AMEL), ameloblastin (AMBN), or enamelin (ENAM). Using ODAM as bait, the interaction with AMTN was confirmed. Furthermore, ODAM was found to bind to itself and to AMBN, as well as weakly to AMEL but not to ENAM. We propose a model where the distinct expression of AMTN and ODAM and their interaction are involved in defining the enamel microstructure at the enamel surface.
Collapse
Affiliation(s)
- James Holcroft
- Matrix Dynamics Group, University of Toronto, Faculty of Dentistry, Toronto, ON, Canada
| | | |
Collapse
|
28
|
Li CY, Cha W, Luder HU, Charles RP, McMahon M, Mitsiadis TA, Klein OD. E-cadherin regulates the behavior and fate of epithelial stem cells and their progeny in the mouse incisor. Dev Biol 2012; 366:357-66. [PMID: 22537490 DOI: 10.1016/j.ydbio.2012.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 12/20/2022]
Abstract
Stem cells are essential for the regeneration and homeostasis of many organs, such as tooth, hair, skin, and intestine. Although human tooth regeneration is limited, a number of animals have evolved continuously growing teeth that provide models of stem cell-based organ renewal. A well-studied model is the mouse incisor, which contains dental epithelial stem cells in structures known as cervical loops. These stem cells produce progeny that proliferate and migrate along the proximo-distal axis of the incisor and differentiate into enamel-forming ameloblasts. Here, we studied the role of E-cadherin in behavior of the stem cells and their progeny. Levels of E-cadherin are highly dynamic in the incisor, such that E-cadherin is expressed in the stem cells, downregulated in the transit-amplifying cells, re-expressed in the pre-ameloblasts and then downregulated again in the ameloblasts. Conditional inactivation of E-cadherin in the cervical loop led to decreased numbers of label-retaining stem cells, increased proliferation, and decreased cell migration in the mouse incisor. Using both genetic and pharmacological approaches, we showed that Fibroblast Growth Factors regulate E-cadherin expression, cell proliferation and migration in the incisor. Together, our data indicate that E-cadherin is an important regulator of stem cells and their progeny during growth of the mouse incisor.
Collapse
Affiliation(s)
- Chun-Ying Li
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, UCSF, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Matsuura T, Kawata VKS, Nagoshi H, Tomooka Y, Sasaki K, Ikawa S. Regulation of proliferation and differentiation of mouse tooth germ epithelial cells by distinct isoforms of p51/p63. Arch Oral Biol 2012; 57:1108-15. [PMID: 22440406 DOI: 10.1016/j.archoralbio.2012.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/21/2012] [Accepted: 02/26/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVES p51/p63 gene, one of the p53 families, is specifically expressed in tooth germ epithelial cells and is essential for tooth development. This study aims to elucidate roles of p51/p63 in ameloblastic cell differentiation. MATERIALS AND METHODS We determined expression pattern of each of p51/p63 isoforms by reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting using emtg (epithelium of molar tooth germ)-1, -2, -3, -4, and -5 cell lines established from a mandibular molar tooth germ of p53-deficient mice and SF2 cells which differentiates into ameloblasts upon exposure to NT4. Furthermore, we investigated the function of p51/p63 in these cells by Tet system, which enables inducible expression and knock down of the target genes of interest by exposing cells to doxycycline. RESULTS The expression of ΔNp51B/ΔNp63α, an isoform without transactivation domain, was detected at high level in immature cells, while the expression of TAp51/TAp63 isoforms, isoforms of with the transactivation domain, was detected at high level in mature cells. Moreover, induction of TAp51A/TAp63γ expression led to down-regulation of ΔNp51B/ΔNp63α expression and cell proliferation. Interestingly, this also led to up-regulation of ameloblastin expression, a differentiation marker of amelogenesis. CONCLUSIONS The results suggested that p51/p63 might regulate the cell proliferation and differentiation of tooth germ epithelial cells.
Collapse
Affiliation(s)
- Takashi Matsuura
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|