1
|
Pinho V, Neves-Petersen MT, Machado R, Castro Gomes A. Light Assisted Covalent Immobilization of Proteins for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406561. [PMID: 39887935 DOI: 10.1002/smll.202406561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/24/2025] [Indexed: 02/01/2025]
Abstract
The covalent immobilization of proteins attracts considerable interest in the biomedical field due to its potential applications in biosensors, recombinant protein purification, and the development of personalized therapeutic carriers. In response to the demand for more cost-effective, time-efficient, and simpler protocols, photo-immobilization emerges as a technique that circumvents the limitations of conventional methods. This approach offers enhanced precision at the nanoscale level and facilitates device reusability, thereby aligning with current sustainability concerns. Photo-immobilization is versatile, as it can be applied to both 2D and 3D substrates. While some methods involve complex protocols using genetically engineered photosensitive linkers, more straightforward techniques rely on amino acid bonds, such as disulfide bonds, for covalent protein bonding. Photo-immobilization can be achieved with both ultraviolet (UV) and visible light. This systematic review examines literature from Scopus, PubMed, and Web of Science, offering insights into relevant studies and considerations for covalent protein immobilization, and presents photochemical approaches applicable to major protein types.
Collapse
Affiliation(s)
- Vanessa Pinho
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Raúl Machado
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
2
|
Ambroise R, Takasugi P, Liu J, Qian L. Direct Cardiac Reprogramming in the Age of Computational Biology. J Cardiovasc Dev Dis 2024; 11:273. [PMID: 39330331 PMCID: PMC11432431 DOI: 10.3390/jcdd11090273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Heart disease continues to be one of the most fatal conditions worldwide. This is in part due to the maladaptive remodeling process by which ischemic cardiac tissue is replaced with a fibrotic scar. Direct cardiac reprogramming presents a unique solution for restoring injured cardiac tissue through the direct conversion of fibroblasts into induced cardiomyocytes, bypassing the transition through a pluripotent state. Since its inception in 2010, direct cardiac reprogramming using the transcription factors Gata4, Mef2c, and Tbx5 has revolutionized the field of cardiac regenerative medicine. Just over a decade later, the field has rapidly evolved through the expansion of identified molecular and genetic factors that can be used to optimize reprogramming efficiency. The integration of computational tools into the study of direct cardiac reprogramming has been critical to this progress. Advancements in transcriptomics, epigenetics, proteomics, genome editing, and machine learning have not only enhanced our understanding of the underlying mechanisms driving this cell fate transition, but have also driven innovations that push direct cardiac reprogramming closer to clinical application. This review article explores how these computational advancements have impacted and continue to shape the field of direct cardiac reprogramming.
Collapse
Affiliation(s)
- Rachelle Ambroise
- Department of Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paige Takasugi
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
4
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
5
|
Collagen-Based Biomimetic Systems to Study the Biophysical Tumour Microenvironment. Cancers (Basel) 2022; 14:cancers14235939. [PMID: 36497421 PMCID: PMC9739814 DOI: 10.3390/cancers14235939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The extracellular matrix (ECM) is a pericellular network of proteins and other molecules that provides mechanical support to organs and tissues. ECM biophysical properties such as topography, elasticity and porosity strongly influence cell proliferation, differentiation and migration. The cell's perception of the biophysical microenvironment (mechanosensing) leads to altered gene expression or contractility status (mechanotransduction). Mechanosensing and mechanotransduction have profound implications in both tissue homeostasis and cancer. Many solid tumours are surrounded by a dense and aberrant ECM that disturbs normal cell functions and makes certain areas of the tumour inaccessible to therapeutic drugs. Understanding the cell-ECM interplay may therefore lead to novel and more effective therapies. Controllable and reproducible cell culturing systems mimicking the ECM enable detailed investigation of mechanosensing and mechanotransduction pathways. Here, we discuss ECM biomimetic systems. Mainly focusing on collagen, we compare and contrast structural and molecular complexity as well as biophysical properties of simple 2D substrates, 3D fibrillar collagen gels, cell-derived matrices and complex decellularized organs. Finally, we emphasize how the integration of advanced methodologies and computational methods with collagen-based biomimetics will improve the design of novel therapies aimed at targeting the biophysical and mechanical features of the tumour ECM to increase therapy efficacy.
Collapse
|
6
|
Li J, Peng L, Chen Q, Ye Z, Zhao T, Hou S, Gu J, Hang Q. Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel) 2022; 14:cancers14143377. [PMID: 35884437 PMCID: PMC9318555 DOI: 10.3390/cancers14143377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer (PC) is a highly aggressive malignant tumor with an extremely poor prognosis. Early diagnosis and treatment are key to improving the survival rate of PC patients. Emerging studies show that integrins might contribute to the pathogenesis of PC. This review presents the various signaling pathways that are mediated by integrins in PC and emphasizes the multiple functions of integrin β1 in malignant behaviors of PC. It also discusses the clinical significance of integrin β1 as well as integrin β1-based therapy in PC patients. Abstract Pancreatic cancer (PC) is characterized by rapid progression and a high mortality rate. The current treatment is still based on surgical treatment, supplemented by radiotherapy and chemotherapy, and new methods of combining immune and molecular biological treatments are being explored. Despite this, the survival rate of PC patients is still very disappointing. Therefore, clarifying the molecular mechanism of PC pathogenesis and developing precisely targeted drugs are key to improving PC prognosis. As the most common β subunit of the integrin family, integrin β1 has been proved to be closely related to the vascular invasion, distant metastasis, and survival of PC patients, and treatment targeting integrin β1 in PC has gained initial success in animal models. In this review, we summarize the various signaling pathways by which integrins are involved in PC, focusing on the roles of integrin β1 in the malignant behaviors of PC. Additionally, recent studies regarding the feasibility of integrin β1 as a diagnostic and prognostic biomarker in PC are also discussed. Finally, we present the progress of several integrin β1-based clinical trials to highlight the potential of integrin β1 as a target for personalized therapy in PC.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
| | - Liyao Peng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Ziping Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tiantian Zhao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Sicong Hou
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| |
Collapse
|
7
|
Shahina Z, Bhat SV, Ndlovu E, Sultana T, Körnig A, Dague É, Dahms TES. Cellulomics of Live Yeast by Advanced and Correlative Microscopy. Fungal Biol 2022. [DOI: 10.1007/978-3-030-83749-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Vesperini D, Montalvo G, Qu B, Lautenschläger F. Characterization of immune cell migration using microfabrication. Biophys Rev 2021; 13:185-202. [PMID: 34290841 PMCID: PMC8285443 DOI: 10.1007/s12551-021-00787-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system provides our defense against pathogens and aberrant cells, including tumorigenic and infected cells. Motility is one of the fundamental characteristics that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors, even in the absence of external treatments. These processes are termed "immune surveillance." Migration disorders of immune cells are related to autoimmune diseases, chronic inflammation, and tumor evasion. It is therefore essential to characterize immune cell motility in different physiologically and pathologically relevant scenarios to understand the regulatory mechanisms of functionality of immune responses. This review is focused on immune cell migration, to define the underlying mechanisms and the corresponding investigative approaches. We highlight the challenges that immune cells encounter in vivo, and the microfabrication methods to mimic particular aspects of their microenvironment. We discuss the advantages and disadvantages of the proposed tools, and provide information on how to access them. Furthermore, we summarize the directional cues that regulate individual immune cell migration, and discuss the behavior of immune cells in a complex environment composed of multiple directional cues.
Collapse
Affiliation(s)
- Doriane Vesperini
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Galia Montalvo
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
- Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Franziska Lautenschläger
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
9
|
Liang J, Huang W, Jiang L, Paul C, Li X, Wang Y. Concise Review: Reduction of Adverse Cardiac Scarring Facilitates Pluripotent Stem Cell-Based Therapy for Myocardial Infarction. Stem Cells 2019; 37:844-854. [PMID: 30913336 PMCID: PMC6599570 DOI: 10.1002/stem.3009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cells (PSCs) are an attractive, reliable source for generating functional cardiomyocytes for regeneration of infarcted heart. However, inefficient cell engraftment into host tissue remains a notable challenge to therapeutic success due to mechanical damage or relatively inhospitable microenvironment. Evidence has shown that excessively formed scar tissues around cell delivery sites present as mechanical and biological barriers that inhibit migration and engraftment of implanted cells. In this review, we focus on the functional responses of stem cells and cardiomyocytes during the process of cardiac fibrosis and scar formation. Survival, migration, contraction, and coupling function of implanted cells may be affected by matrix remodeling, inflammatory factors, altered tissue stiffness, and presence of electroactive myofibroblasts in the fibrotic microenvironment. Although paracrine factors from implanted cells can improve cardiac fibrosis, the transient effect is insufficient for complete repair of an infarcted heart. Furthermore, investigation of interactions between implanted cells and fibroblasts including myofibroblasts helps the identification of new targets to optimize the host substrate environment for facilitating cell engraftment and functional integration. Several antifibrotic approaches, including the use of pharmacological agents, gene therapies, microRNAs, and modified biomaterials, can prevent progression of heart failure and have been developed as adjunct therapies for stem cell-based regeneration. Investigation and optimization of new biomaterials is also required to enhance cell engraftment of engineered cardiac tissue and move PSCs from a laboratory setting into translational medicine.
Collapse
Affiliation(s)
- Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Xiangnan Li
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Wang J, Boddupalli A, Koelbl J, Nam DH, Ge X, Bratlie KM, Schneider IC. Degradation and Remodeling of Epitaxially Grown Collagen Fibrils. Cell Mol Bioeng 2019; 12:69-84. [PMID: 31007771 PMCID: PMC6472930 DOI: 10.1007/s12195-018-0547-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION— The extracellular matrix (ECM) in the tumor microenvironment contains high densities of collagen that are highly aligned, resulting in directional migration called contact guidance that facilitates efficient migration out of the tumor. Cancer cells can remodel the ECM through traction force controlled by myosin contractility or proteolytic activity controlled by matrix metalloproteinase (MMP) activity, leading to either enhanced or diminished contact guidance. METHODS— Recently, we have leveraged the ability of mica to epitaxially grow aligned collagen fibrils in order to assess contact guidance. In this article, we probe the mechanisms of remodeling of aligned collagen fibrils on mica by breast cancer cells. RESULTS— We show that cells that contact guide with high fidelity (MDA-MB-231 cells) exert more force on the underlying collagen fibrils than do cells that contact guide with low fidelity (MTLn3 cells). These high traction cells (MDA-MB-231 cells) remodel collagen fibrils over hours, pulling so hard that the collagen fibrils detach from the surface, effectively delaminating the entire contact guidance cue. Myosin or MMP inhibition decreases this effect. Interestingly, blocking MMP appears to increase the alignment of cells on these substrates, potentially allowing the alignment through myosin contractility to be uninhibited. Finally, amplification or dampening of contact guidance with respect to a particular collagen fibril organization is seen under different conditions. CONCLUSIONS— Both myosin II contractility and MMP activity allow MDA-MB-231 cells to remodel and eventually destroy epitaxially grown aligned collagen fibrils.
Collapse
Affiliation(s)
- Juan Wang
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Anuraag Boddupalli
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Joseph Koelbl
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Dong Hyun Nam
- Department of Chemical Engineering, University of California Riverside, Riverside, CA USA
| | - Xin Ge
- Department of Chemical Engineering, University of California Riverside, Riverside, CA USA
| | - Kaitlin M. Bratlie
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
- Department of Materials Science and Engineering, Iowa State University, Ames, IA USA
| | - Ian C. Schneider
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA USA
| |
Collapse
|
11
|
Brilha S, Chong DLW, Khawaja AA, Ong CWM, Guppy NJ, Porter JC, Friedland JS. Integrin α2β1 Expression Regulates Matrix Metalloproteinase-1-Dependent Bronchial Epithelial Repair in Pulmonary Tuberculosis. Front Immunol 2018; 9:1348. [PMID: 29988449 PMCID: PMC6024194 DOI: 10.3389/fimmu.2018.01348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/31/2018] [Indexed: 11/22/2022] Open
Abstract
Pulmonary tuberculosis (TB) is caused by inhalation of Mycobacterium tuberculosis, which damages the bronchial epithelial barrier to establish local infection. Matrix metalloproteinase-1 plays a crucial role in the immunopathology of TB, causing breakdown of type I collagen and cavitation, but this collagenase is also potentially involved in bronchial epithelial repair. We hypothesized that the extracellular matrix (ECM) modulates M. tuberculosis-driven matrix metalloproteinase-1 expression by human bronchial epithelial cells (HBECs), regulating respiratory epithelial cell migration and repair. Medium from monocytes stimulated with M. tuberculosis induced collagenase activity in bronchial epithelial cells, which was reduced by ~87% when cells were cultured on a type I collagen matrix. Matrix metalloproteinase-1 had a focal localization, which is consistent with cell migration, and overall secretion decreased by 32% on type I collagen. There were no associated changes in the specific tissue inhibitors of metalloproteinases. Decreased matrix metalloproteinase-1 secretion was due to ligand-binding to the α2β1 integrin and was dependent on the actin cytoskeleton. In lung biopsies, samples from patients with pulmonary TB, integrin α2β1 is highly expressed on the bronchial epithelium. Areas of lung with disrupted collagen matrix showed an increase in matrix metalloproteinases-1 expression compared with areas where collagen was comparable to control lung. Type I collagen matrix increased respiratory epithelial cell migration in a wound-healing assay, and this too was matrix metalloproteinase-dependent, since it was blocked by the matrix metalloproteinase inhibitor GM6001. In summary, we report a novel mechanism by which α2β1-mediated signals from the ECM modulate matrix metalloproteinase-1 secretion by HBECs, regulating their migration and epithelial repair in TB.
Collapse
Affiliation(s)
- Sara Brilha
- Infectious Diseases and Immunity, Imperial College London, London, United Kingdom.,Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Deborah L W Chong
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Akif A Khawaja
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Catherine W M Ong
- Infectious Diseases and Immunity, Imperial College London, London, United Kingdom.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Naomi J Guppy
- UCL Advanced Diagnostics, University College London, London, United Kingdom
| | - Joanna C Porter
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Jon S Friedland
- Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Coelho NM, McCulloch CA. Mechanical signaling through the discoidin domain receptor 1 plays a central role in tissue fibrosis. Cell Adh Migr 2018; 12:348-362. [PMID: 29513135 PMCID: PMC6363045 DOI: 10.1080/19336918.2018.1448353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
The preservation of tissue and organ architecture and function depends on tightly regulated interactions of cells with the extracellular matrix (ECM). These interactions are maintained in a dynamic equilibrium that balances intracellular, myosin-generated tension with extracellular resistance conferred by the mechanical properties of the extracellular matrix. Disturbances of this equilibrium can lead to the development of fibrotic lesions that are associated with a wide repertoire of high prevalence diseases including obstructive cardiovascular diseases, muscular dystrophy and cancer. Mechanotransduction is the process by which mechanical cues are converted into biochemical signals. At the core of mechanotransduction are sensory systems, which are frequently located at sites of cell-ECM and cell-cell contacts. As integrins (cell-ECM junctions) and cadherins (cell-cell contacts) have been extensively studied, we focus here on the properties of the discoidin domain receptor 1 (DDR1), a tyrosine kinase that mediates cell adhesion to collagen. DDR1 expression is positively associated with fibrotic lesions of heart, kidney, liver, lung and perivascular tissues. As the most common end-point of all fibrotic disorders is dysregulated collagen remodeling, we consider here the mechanical signaling functions of DDR1 in processing of fibrillar collagen that lead to tissue fibrosis.
Collapse
Affiliation(s)
- Nuno M. Coelho
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
13
|
Stukel JM, Willits RK. The interplay of peptide affinity and scaffold stiffness on neuronal differentiation of neural stem cells. ACTA ACUST UNITED AC 2018; 13:024102. [PMID: 29133625 DOI: 10.1088/1748-605x/aa9a4b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells are sensitive to physical cues in their environment, such as the stiffness of the substrate, peptide density, and peptide affinity. Understanding how neural stem cells (NSCs) sense and respond to these matrix cues has the potential to improve disease outcome, particularly if a regenerative response can be exploited. While the material properties are known to influence other stem cells, little is known about how NSC differentiation is altered by this interplay of mechanical, or bulk properties, with peptide concentration and affinity, or microscale properties. We are interested in the combined effect of bulk and microscale features in an in vitro hydrogel model and therefore we investigated NSC differentiation by focusing on integrin interactions via RGD peptide affinity and concentration. Our studies demonstrated that the peptide concentration affected adhesion as there were more cells on scaffolds with 1 mM RGD than 2.5 mM RGD. The hydrogel stiffness affected neurite length in differentiating NSCs, as 0.1-0.8 kPa substrates promoted greater neurite extension than 4.2-7.9 kPa substrates. The NSCs differentiated towards β-ΙΙΙ tubulin positive cells on scaffolds with RGD after 7 days and those scaffolds containing 1 mM linear or cyclic RGD had longer neurite extensions than scaffolds containing 0.1 or 2.5 mM RGD. While peptide affinity had a lesser effect on the NSC response in our hydrogel system, blocking actin, myosin II, or integrin interactions resulted in changes to the cell morphology and focal adhesion assembly. Overall, these results demonstrated NSCs are more responsive to a change in tissue stiffness than peptide affinity in the range of gels tested, which may influence design of materials for neural tissue engineering.
Collapse
|
14
|
Abstract
Cell migration is an adaptive process that depends on and responds to physical and molecular triggers. Moving cells sense and respond to tissue mechanics and induce transient or permanent tissue modifications, including extracellular matrix stiffening, compression and deformation, protein unfolding, proteolytic remodelling and jamming transitions. Here we discuss how the bi-directional relationship of cell-tissue interactions (mechanoreciprocity) allows cells to change position and contributes to single-cell and collective movement, structural and molecular tissue organization, and cell fate decisions.
Collapse
|
15
|
Hui J, Pang SW. Dynamic Tracking of Osteoblastic Cell Traction Force during Guided Migration. Cell Mol Bioeng 2017; 11:11-23. [PMID: 31719876 DOI: 10.1007/s12195-017-0514-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/11/2017] [Indexed: 11/30/2022] Open
Abstract
Introduction Continuous development of cell traction force can regulate cell migration on various extracellular matrixes in vivo. However, the topographical effect on traction force is still not fully understood. Methods Micropost sensors with parallel guiding gratings were fabricated in polydimethylsiloxane to track the cell traction force during topographical guidance in real time. The force distributions along MC3T3-E1 mouse osteoblasts were captured every minute. The traction force in the leading, middle, and trailing regions was monitored during forward and reversed cell migration. Results The traction force showed periodic changes during cell migration when the cell changed from elongated to contracted shape. For cell migration without guiding pattern, the leading region showed the largest traction force among the three regions, typically 5.8 ± 0.8 nanonewton (nN) when the cell contracted and 7.1 ± 0.5 nN when it elongated. During guided cell migration, a lower traction force was obtained. When a cell contracted, the trailing traction force was 4.1 ± 0.4 for non-guided migration and 2.2 ± 0.2 nN for guided migration. As a cell became elongated, the trailing traction force was 6.0 ± 0.5 nN during non-guided migration and 4.8 ± 0.3 nN under guidance. When a cell reversed its migration direction, the magnitudes of the traction force from the leading to the trailing regions also flipped. Conclusion The cell traction force is continuously influenced by topographical guidance, which determines cell migration speed and direction. These results of cell traction force development on various topographies could lead to better cell migration control using topotaxis.
Collapse
Affiliation(s)
- J Hui
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.,Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | - S W Pang
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.,Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
16
|
Li M, Dang D, Liu L, Xi N, Wang Y. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Trans Nanobioscience 2017; 16:523-540. [PMID: 28613180 DOI: 10.1109/tnb.2017.2714462] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.
Collapse
|
17
|
Coelho NM, Arora PD, van Putten S, Boo S, Petrovic P, Lin AX, Hinz B, McCulloch CA. Discoidin Domain Receptor 1 Mediates Myosin-Dependent Collagen Contraction. Cell Rep 2017; 18:1774-1790. [DOI: 10.1016/j.celrep.2017.01.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/20/2016] [Accepted: 01/24/2017] [Indexed: 01/04/2023] Open
|
18
|
He L, Chen W, Wu PH, Jimenez A, Wong BS, San A, Konstantopoulos K, Wirtz D. Local 3D matrix confinement determines division axis through cell shape. Oncotarget 2016; 7:6994-7011. [PMID: 26515603 PMCID: PMC4872764 DOI: 10.18632/oncotarget.5848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/03/2015] [Indexed: 12/24/2022] Open
Abstract
How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.
Collapse
Affiliation(s)
- Lijuan He
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Angela Jimenez
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Bin Sheng Wong
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Angela San
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Departments of Oncology and Pathology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Departments of Oncology and Pathology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
19
|
Mrkonjic S, Destaing O, Albiges-Rizo C. Mechanotransduction pulls the strings of matrix degradation at invadosome. Matrix Biol 2016; 57-58:190-203. [PMID: 27392543 DOI: 10.1016/j.matbio.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023]
Abstract
Degradation of the extracellular matrix is a critical step of tumor cell invasion. Both protease-dependent and -independent mechanisms have been described as alternate processes in cancer cell motility. Interestingly, some effectors of protease-dependent degradation are focalized at invadosomes and are directly coupled with contractile and adhesive machineries composed of multiple mechanosensitive proteins. This review presents recent findings in protease-dependent mechanisms elucidating the ways the force affects extracellular matrix degradation by targeting protease expression and activity at invadosome. The aim is to highlight mechanosensing and mechanotransduction processes to direct the degradative activity at invadosomes, with the focus on membrane tension, proteases and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sanela Mrkonjic
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France
| | - Olivier Destaing
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| | - Corinne Albiges-Rizo
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| |
Collapse
|
20
|
Mechanotransduction: Relevance to Physical Therapist Practice-Understanding Our Ability to Affect Genetic Expression Through Mechanical Forces. Phys Ther 2016; 96:712-21. [PMID: 26700270 DOI: 10.2522/ptj.20150073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/13/2015] [Indexed: 12/20/2022]
Abstract
Mechanotransduction, the mechanism by which mechanical perturbation influences genetic expression and cellular behavior, is an area of molecular biology undergoing rapid exploration and discovery. Cells are sensitive to forces such as shear, tension, and compression, and they respond accordingly through cellular proliferation, migration, tissue repair, altered metabolism, and even stem cell differentiation and maturation. The study of how cells sense and respond to mechanical stimulation is under robust expansion, with new scientific methods and technologies at our disposal. The application of these technologies to physical therapist practice may hold answers to some of our age-old questions while creating new avenues for our profession to optimize movement for societal health. Embracing this science as foundational to our profession will allow us to be valuable scientific collaborators with distinctive knowledge of the effects of loading. These partnerships will be key to augmenting the clinical utility of emerging therapies such as regenerative medicine, tissue engineering, and gene therapy. Collaboration with other scientific disciplines in these endeavors, along with the inclusion and application of these discoveries in our academic programs, will enhance the understanding of the impact of our practice on biologic and genetic processes. A basic understanding of mechanotransduction and its relevance to physical therapist practice is warranted to begin the conversation.
Collapse
|
21
|
Applications of Atomic Force Microscopy in Exploring Drug Actions in Lymphoma-Targeted Therapy at the Nanoscale. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-015-0180-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Ribeiro AJS, Denisin AK, Wilson RE, Pruitt BL. For whom the cells pull: Hydrogel and micropost devices for measuring traction forces. Methods 2016; 94:51-64. [PMID: 26265073 PMCID: PMC4746112 DOI: 10.1016/j.ymeth.2015.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/10/2015] [Accepted: 08/06/2015] [Indexed: 01/16/2023] Open
Abstract
While performing several functions, adherent cells deform their surrounding substrate via stable adhesions that connect the intracellular cytoskeleton to the extracellular matrix. The traction forces that deform the substrate are studied in mechanotrasduction because they are affected by the mechanics of the extracellular milieu. We review the development and application of two methods widely used to measure traction forces generated by cells on 2D substrates: (i) traction force microscopy with polyacrylamide hydrogels and (ii) calculation of traction forces with arrays of deformable microposts. Measuring forces with these methods relies on measuring substrate displacements and converting them into forces. We describe approaches to determine force from displacements and elaborate on the necessary experimental conditions for this type of analysis. We emphasize device fabrication, mechanical calibration of substrates and covalent attachment of extracellular matrix proteins to substrates as key features in the design of experiments to measure cell traction forces with polyacrylamide hydrogels or microposts. We also report the challenges and achievements in integrating these methods with platforms for the mechanical stimulation of adherent cells. The approaches described here will enable new studies to understand cell mechanical outputs as a function of mechanical inputs and advance the understanding of mechanotransduction mechanisms.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, United States
| | - Aleksandra K Denisin
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Bioengineering, Stanford University, Stanford, CA 94305, United States
| | - Robin E Wilson
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, United States; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
23
|
Kim T, Sridharan I, Ma Y, Zhu B, Chi N, Kobak W, Rotmensch J, Schieber JD, Wang R. Identifying distinct nanoscopic features of native collagen fibrils towards early diagnosis of pelvic organ prolapse. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:667-675. [PMID: 26656625 DOI: 10.1016/j.nano.2015.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/20/2015] [Accepted: 11/09/2015] [Indexed: 01/02/2023]
Abstract
UNLABELLED Pelvic organ prolapse (POP) is characterized by weakening of the connective tissues and loss of support for the pelvic organs. Collagen is the predominant, load-bearing protein within pelvic floor connective tissues. In this study, we examined the nanoscopic structures and biomechanics of native collagen fibrils in surgical, vaginal wall connective tissues from healthy women and POP patients. Compared to controls, collagen fibrils in POP samples were bulkier, more uneven in width and stiffer with aberrant D-period. Additionally, the ratio of collagen I (COLI) and collagen III (COLIII) is doubled in POP with a concomitant reduction of the amount of total collagen. Thus, POP is characterized by abnormal biochemical composition and biophysical characteristics of collagen fibrils that form a loose and fragile fiber network accountable for the weak load-bearing capability. The study identifies nanoscale alterations in collagen as diagnostic markers that could enable pre-symptomatic or early diagnosis of POP. FROM THE CLINICAL EDITOR Pelvic organ prolapse (POP) occurs due to abnormalities of the supporting connective tissues. The underlying alterations of collagen fibers in the connective tissues have not been studied extensively. In this article, the authors showed that collagen fibrils in POP patients were much different from normal controls. The findings may provide a framework for the diagnosis of other connective diseases.
Collapse
Affiliation(s)
- Taeyoung Kim
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Yin Ma
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | - Bofan Zhu
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | - Naiwei Chi
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | - William Kobak
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob Rotmensch
- Department of Obstetrics and Gynecology, Rush University Medical School, Chicago, IL, USA
| | - Jay D Schieber
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Rong Wang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA.
| |
Collapse
|
24
|
Chang JH, Huang YH, Cunningham CM, Han KY, Chang M, Seiki M, Zhou Z, Azar DT. Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea. Surv Ophthalmol 2015; 61:478-97. [PMID: 26647161 DOI: 10.1016/j.survophthal.2015.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022]
Abstract
The cornea is transparent and avascular, and retention of these characteristics is critical to maintaining vision clarity. Under normal conditions, wound healing in response to corneal injury occurs without the formation of new blood vessels; however, neovascularization may be induced during corneal wound healing when the balance between proangiogenic and antiangiogenic mediators is disrupted to favor angiogenesis. Matrix metalloproteinases (MMPs), which are key factors in extracellular matrix remodeling and angiogenesis, contribute to the maintenance of this balance, and in pathologic instances, can contribute to its disruption. Here, we elaborate on the facilitative role of MMPs, specifically MMP-14, in corneal neovascularization. MMP-14 is a transmembrane MMP that is critically involved in extracellular matrix proteolysis, exosome transport, and cellular migration and invasion, processes that are critical for angiogenesis. To aid in developing efficacious therapies that promote healing without neovascularization, it is important to understand and further investigate the complex pathways related to MMP-14 signaling, which can also involve vascular endothelial growth factor, basic fibroblast growth factor, Wnt/β-catenin, transforming growth factor, platelet-derived growth factor, hepatocyte growth factor or chemokines, epidermal growth factor, prostaglandin E2, thrombin, integrins, Notch, Toll-like receptors, PI3k/Akt, Src, RhoA/RhoA kinase, and extracellular signal-related kinase. The involvement and potential contribution of these signaling molecules or proteins in neovascularization are the focus of the present review.
Collapse
Affiliation(s)
- Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yu-Hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christy M Cunningham
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Motoharu Seiki
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhongjun Zhou
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
25
|
Choi B, Park KS, Kim JH, Ko KW, Kim JS, Han DK, Lee SH. Stiffness of Hydrogels Regulates Cellular Reprogramming Efficiency Through Mesenchymal-to-Epithelial Transition and Stemness Markers. Macromol Biosci 2015; 16:199-206. [DOI: 10.1002/mabi.201500273] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/26/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Bogyu Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Kwang-Sook Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
- Center for Biomaterials, Korea Institute of Science and Technology, P.O. Box 131; Cheongryang; Seoul 130-650 Republic of Korea
| | - Ji-Ho Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Kyoung-Won Ko
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Jin-Su Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, P.O. Box 131; Cheongryang; Seoul 130-650 Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro; Bundang-gu; Seongnam-si Gyeonggi-do 463-400 Korea
| |
Collapse
|
26
|
Li M, Liu L, Xi N, Wang Y, Xiao X, Zhang W. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy. SCIENCE CHINA-LIFE SCIENCES 2015; 58:889-901. [PMID: 26354505 DOI: 10.1007/s11427-015-4914-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 05/06/2015] [Indexed: 12/19/2022]
Abstract
Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - LianQing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Ning Xi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China. .,Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| | - YueChao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| | - XiuBin Xiao
- Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing, 100071, China
| | - WeiJing Zhang
- Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing, 100071, China
| |
Collapse
|
27
|
Fusco S, Panzetta V, Embrione V, Netti PA. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions. Acta Biomater 2015; 23:63-71. [PMID: 26004223 DOI: 10.1016/j.actbio.2015.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/28/2015] [Accepted: 05/10/2015] [Indexed: 12/31/2022]
Abstract
Mechanical properties of materials strongly influence cell fate and functions. Focal adhesions are involved in the extremely important processes of mechanosensing and mechanotransduction. To address the relationship between the mechanical properties of cell substrates, focal adhesion/cytoskeleton assembly and cell functions, we investigated the behavior of NIH/3T3 cells over a wide range of stiffness (3-1000kPa) using two of the most common synthetic polymers for cell cultures: polyacrylamide and polydimethylsiloxane. An overlapping stiffness region was created between them to compare focal adhesion characteristics and cell functions, taking into account their different time-dependent behavior. Indeed, from a rheological point of view, polyacrylamide behaves like a strong gel (elastically), whereas polydimethylsiloxane like a viscoelastic solid. First, focal adhesion characteristics and dynamics were addressed in terms of material stiffness, then cell spreading area, migration rate and cell mechanical properties were correlated with focal adhesion size and assembly. Focal adhesion size was found to increase in the whole range of stiffness and to be in agreement in the overlapping rigidity region for the investigated materials. Cell mechanics directly correlated with focal adhesion lengths, whereas migration rate followed an inverse correlation. Cell spreading correlated with the substrate stiffness on polyacrylamide hydrogel, while no specific trend was found on polydimethylsiloxane. Substrate mechanics can be considered as a key physical cue that regulates focal adhesion assembly, which in turn governs important cellular properties and functions.
Collapse
|
28
|
Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy. Acta Pharmacol Sin 2015; 36:769-82. [PMID: 26027658 DOI: 10.1038/aps.2015.28] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed.
Collapse
|
29
|
Zaidel-Bar R, Zhenhuan G, Luxenburg C. The contractome – a systems view of actomyosin contractility in non-muscle cells. J Cell Sci 2015; 128:2209-17. [DOI: 10.1242/jcs.170068] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Actomyosin contractility is a highly regulated process that affects many fundamental biological processes in each and every cell in our body. In this Cell Science at a Glance article and the accompanying poster, we mined the literature and databases to map the contractome of non-muscle cells. Actomyosin contractility is involved in at least 49 distinct cellular functions that range from providing cell architecture to signal transduction and nuclear activity. Containing over 100 scaffolding and regulatory proteins, the contractome forms a highly complex network with more than 230 direct interactions between its components, 86 of them involving phosphorylation. Mapping these interactions, we identify the key regulatory pathways involved in the assembly of actomyosin structures and in activating myosin to produce contractile forces within non-muscle cells at the exact time and place necessary for cellular function.
Collapse
Affiliation(s)
- Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, T-lab building #05-01, 5A Engineering Drive 1, 117411, Singapore
| | - Guo Zhenhuan
- Mechanobiology Institute, National University of Singapore, T-lab building #05-01, 5A Engineering Drive 1, 117411, Singapore
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| |
Collapse
|
30
|
da Rocha-Azevedo B, Ho CH, Grinnell F. PDGF‑stimulated dispersal of cell clusters and disruption of fibronectin matrix on three-dimensional collagen matrices requires matrix metalloproteinase-2. Mol Biol Cell 2015; 26:1098-105. [PMID: 25589674 PMCID: PMC4357509 DOI: 10.1091/mbc.e14-09-1396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous studies showed that morphogenic cell clustering depends on fibronectin fibrillar matrix assembly under procontractile conditions. The present study shows that disruption of fibronectin matrix necessary for dispersal of cell clusters under promigratory conditions requires matrix metalloproteinases, especially MMP-2. Formation of cell clusters is a common morphogenic cell behavior observed during tissue and organ development and homeostasis, as well as during pathological disorders. Dynamic regulation of cell clustering depends on the balance between contraction of cells into clusters and migration of cells as dispersed individuals. Previously we reported that under procontractile culture conditions, fibronectin fibrillar matrix assembly by human fibroblasts functioned as a nucleation center for cell clustering on three-dimensional collagen matrices. Here we report that switching preformed cell clusters from procontractile to promigratory culture conditions results in cell dispersal out of clusters and disruption of FN matrix. Experiments using small interfering RNA silencing and pharmacological inhibition demonstrated that matrix metalloproteinase activity involving MMP-2 was necessary for fibronectin matrix disruption and dispersal of cell clusters.
Collapse
Affiliation(s)
| | - Chin-Han Ho
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039
| | - Frederick Grinnell
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039
| |
Collapse
|
31
|
Mi Li, Lianqing Liu, Ning Xi, Yuechao Wang, Xiubin Xiao, Weijing Zhang. Quantitative Analysis of Drug-Induced Complement-Mediated Cytotoxic Effect on Single Tumor Cells Using Atomic Force Microscopy and Fluorescence Microscopy. IEEE Trans Nanobioscience 2015; 14:84-94. [DOI: 10.1109/tnb.2014.2370759] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Wang J, Petefish J, Hillier AC, Schneider IC. Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:307-14. [PMID: 25531276 PMCID: PMC4295811 DOI: 10.1021/la503254x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.
Collapse
Affiliation(s)
- Juan Wang
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Joseph
W. Petefish
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Andrew C. Hillier
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Ian C. Schneider
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| |
Collapse
|
33
|
Aung A, Seo YN, Lu S, Wang Y, Jamora C, del Álamo JC, Varghese S. 3D traction stresses activate protease-dependent invasion of cancer cells. Biophys J 2014; 107:2528-37. [PMID: 25468332 DOI: 10.1016/j.bpj.2014.07.078] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/12/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022] Open
Abstract
Cell invasion and migration that occurs, for example, in cancer metastasis is rooted in the ability of cells to navigate through varying levels of physical constraint exerted by the extracellular matrix. Cancer cells can invade matrices in either a protease-independent or a protease-dependent manner. An emerging critical component that influences the mode of cell invasion is the traction stresses generated by the cells in response to the physicostructural properties of the extracellular matrix. In this study, we have developed a reference-free quantitative assay for measuring three-dimensional (3D) traction stresses generated by cells during the initial stages of invasion into matrices exerting varying levels of mechanical resistance. Our results show that as cells encounter higher mechanical resistance, a larger fraction of them shift to protease-mediated invasion, and this process begins at lower values of cell invasion depth. On the other hand, the compressive stress generated by the cells at the onset of protease-mediated invasion is found to be independent of matrix stiffness, suggesting that 3D traction stress is a key factor in triggering protease-mediated cancer cell invasion. At low 3D compressive traction stresses, cells utilize bleb formation to indent the matrix in a protease independent manner. However, at higher stress values, cells utilize invadopodia-like structures to mediate protease-dependent invasion into the 3D matrix. The critical value of compressive traction stress at the transition from a protease-independent to a protease-dependent mode of invasion is found to be ∼165 Pa.
Collapse
Affiliation(s)
- Aereas Aung
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Young N Seo
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Shaoying Lu
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Yingxiao Wang
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Colin Jamora
- Department of Bioengineering, University of California-San Diego, La Jolla, California; IFOM-inStem Joint Research Laboratory, Bangalore, India
| | - Juan C del Álamo
- Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California; Institute of Engineering in Medicine, University of California-San Diego, La Jolla, California.
| | - Shyni Varghese
- Department of Bioengineering, University of California-San Diego, La Jolla, California; Institute of Engineering in Medicine, University of California-San Diego, La Jolla, California; IFOM-inStem Joint Research Laboratory, Bangalore, India.
| |
Collapse
|
34
|
Zhu B, Li W, Lewis RV, Segre CU, Wang R. E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation. Biomacromolecules 2014; 16:202-13. [PMID: 25405355 PMCID: PMC4294589 DOI: 10.1021/bm501403f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Biocomposite
matrices with high mechanical strength, high stability,
and the ability to direct matrix-specific stem cell differentiation
are essential for the reconstruction of lesioned tissues in tissue
engineering and cell therapeutics. Toward this end, we used the electrospinning
technique to fabricate well-aligned composite fibers from collagen
and spider dragline silk protein, obtained from the milk of transgenic
goats, mimicking the native extracellular matrix (ECM) on a similar
scale. Collagen and the dragline silk proteins were found to mix homogeneously
at all ratios in the electrospun (E-spun) fibers. As a result, the
ultimate tensile strength and elasticity of the fibers increased monotonically
with silk percentage, whereas the stretchability was slightly reduced.
Strikingly, we found that the incorporation of silk proteins to collagen
dramatically increased the matrix stability against excessive fiber
swelling and shape deformation in cell culture medium. When human
decidua parietalis placental stem cells (hdpPSCs) were seeded on the
collagen–silk matrices, the matrices were found to support
cell proliferation at a similar rate as that of the pure collagen
matrix, but they provided cell adhesion with reduced strengths and
induced cell polarization at varied levels. Matrices containing 15
and 30 wt % silk in collagen (CS15, CS30) were found to induce a level
of neural differentiation comparable to that of pure collagen. In
particular, CS15 matrix induced the highest extent of cell polarization
and promoted the development of extended 1D neural filaments strictly
in-line with the aligned fibers. Taking the increased mechanical strength
and fiber stability into consideration, CS15 and CS30 E-spun fibers
offer better alternatives to pure collagen fibers as scaffolds that
can be potentially utilized in neural tissue repair and the development
of future nanobiodevices.
Collapse
Affiliation(s)
- Bofan Zhu
- Department of Biological and Chemical Sciences, ‡Department of Physics, Illinois Institute of Technology , Chicago, Illinois 60616, United States
| | | | | | | | | |
Collapse
|
35
|
Ruffini F, Graziani G, Levati L, Tentori L, D'Atri S, Lacal PM. Cilengitide downmodulates invasiveness and vasculogenic mimicry of neuropilin 1 expressing melanoma cells through the inhibition of αvβ5 integrin. Int J Cancer 2014; 136:E545-58. [PMID: 25284767 DOI: 10.1002/ijc.29252] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/17/2014] [Indexed: 01/09/2023]
Abstract
During melanoma progression, tumour cells show increased adhesiveness to the vascular wall, invade the extracellular matrix (ECM) and frequently form functional channels similar to vascular vessels (vasculogenic mimicry). These properties are mainly mediated by the interaction of integrins with ECM components. Since we had previously identified neuropilin 1 (NRP-1), a coreceptor of vascular endothelial growth factor A (VEGF-A), as an important determinant of melanoma aggressiveness, aims of this study were to identify the specific integrins involved in the highly invasive phenotype of NRP-1 expressing cells and to investigate their role as targets to counteract melanoma progression. Melanoma aggressiveness was evaluated in vitro as cell ability to migrate through an ECM layer and to form tubule-like structures using transfected cells. Integrins relevant to these processes were identified using specific blocking antibodies. The αvβ5 integrin was found to be responsible for about 80% of the capability of NRP-1 expressing cells to adhere on vitronectin. In these cells αvβ5 expression level was twice higher than in low-invasive control cells and contributed to the ability of melanoma cells to form tubule-like structures on matrigel. Cilengitide, a potent inhibitor of αν integrins activation, reduced ECM invasion, vasculogenic mimicry and secretion of VEGF-A and metalloproteinase 9 by melanoma cells. In conclusion, we demonstrated that ανβ5 integrin is involved in the highly aggressive phenotype of melanoma cells expressing NRP-1. Moreover, we identified a novel mechanism that contributes to the antimelanoma activity of the αv integrin inhibitor cilengitide based on the inhibition of vasculogenic mimicry.
Collapse
Affiliation(s)
- Federica Ruffini
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Subbiah R, Du P, Van SY, Suhaeri M, Hwang MP, Lee K, Park K. Fibronectin-tethered graphene oxide as an artificial matrix for osteogenesis. Biomed Mater 2014; 9:065003. [DOI: 10.1088/1748-6041/9/6/065003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Li W, Zhu B, Strakova Z, Wang R. Two-way regulation between cells and aligned collagen fibrils: local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells. Biochem Biophys Res Commun 2014; 450:1377-82. [PMID: 25003322 DOI: 10.1016/j.bbrc.2014.06.136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/29/2014] [Indexed: 12/26/2022]
Abstract
It has been well established that an aligned matrix provides structural and signaling cues to guide cell polarization and cell fate decision. However, the modulation role of cells in matrix remodeling and the feedforward effect on stem cell differentiation have not been studied extensively. In this study, we report on the concerted changes of human decidua parietalis placental stem cells (hdpPSCs) and the highly ordered collagen fibril matrix in response to cell-matrix interaction. With high-resolution imaging, we found the hdpPSCs interacted with the matrix by deforming the cell shape, harvesting the nearby collagen fibrils, and reorganizing the fibrils around the cell body to transform a 2D matrix to a localized 3D matrix. Such a unique 3D matrix prompted high expression of β-1 integrin around the cell body that mediates and facilitates the stem cell differentiation toward neural cells. The study offers insights into the coordinated, dynamic changes at the cell-matrix interface and elucidates cell modulation of its matrix to establish structural and biochemical cues for effective cell growth and differentiation.
Collapse
Affiliation(s)
- Wen Li
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S Dearborn ST., Chicago, IL 60616, United States
| | - Bofan Zhu
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S Dearborn ST., Chicago, IL 60616, United States
| | - Zuzana Strakova
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 S Wood Street, M/C 808, Chicago, IL 60612, United States
| | - Rong Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S Dearborn ST., Chicago, IL 60616, United States.
| |
Collapse
|
38
|
Checa S, Rausch MK, Petersen A, Kuhl E, Duda GN. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization. Biomech Model Mechanobiol 2014; 14:1-13. [PMID: 24718853 DOI: 10.1007/s10237-014-0581-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/26/2014] [Indexed: 12/21/2022]
Abstract
Physical cues play a fundamental role in a wide range of biological processes, such as embryogenesis, wound healing, tumour invasion and connective tissue morphogenesis. Although it is well known that during these processes, cells continuously interact with the local extracellular matrix (ECM) through cell traction forces, the role of these mechanical interactions on large scale cellular and matrix organization remains largely unknown. In this study, we use a simple theoretical model to investigate cellular and matrix organization as a result of mechanical feedback signals between cells and the surrounding ECM. The model includes bi-directional coupling through cellular traction forces to deform the ECM and through matrix deformation to trigger cellular migration. In addition, we incorporate the mechanical contribution of matrix fibres and their reorganization by the cells. We show that a group of contractile cells will self-polarize at a large scale, even in homogeneous environments. In addition, our simulations mimic the experimentally observed alignment of cells in the direction of maximum stiffness and the building up of tension as a consequence of cell and fibre reorganization. Moreover, we demonstrate that cellular organization is tightly linked to the mechanical feedback loop between cells and matrix. Cells with a preference for stiff environments have a tendency to form chains, while cells with a tendency for soft environments tend to form clusters. The model presented here illustrates the potential of simple physical cues and their impact on cellular self-organization. It can be used in applications where cell-matrix interactions play a key role, such as in the design of tissue engineering scaffolds and to gain a basic understanding of pattern formation in organogenesis or tissue regeneration.
Collapse
Affiliation(s)
- Sara Checa
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinkum, Institutsgebäude Süd/Südstraße 2, Augustenburger Platz 1, 13353 , Berlin, Germany,
| | | | | | | | | |
Collapse
|
39
|
Li M, Liu L, Xi N, Wang Y, Xiao X, Zhang W. Nanoscale imaging and mechanical analysis of Fc receptor-mediated macrophage phagocytosis against cancer cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1609-1621. [PMID: 24495237 DOI: 10.1021/la4042524] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fc receptor-mediated macrophage phagocytosis against cancer cells is an important mechanism in the immune therapy of cancers. Traditional research about macrophage phagocytosis was based on optical microscopy, which cannot reveal detailed information because of the 200-nm-resolution limit. Quantitatively investigating the macrophage phagocytosis at micro- and nanoscale levels is still scarce. The advent of atomic force microscopy (AFM) offers an excellent analytical instrument for quantitatively investigating the biological processes at single-cell and single-molecule levels under native conditions. In this work, we combined AFM and fluorescence microscopy to visualize and quantify the detailed changes in cell morphology and mechanical properties during the process of Fc receptor-mediated macrophage phagocytosis against cancer cells. Lymphoma cells were discernible by fluorescence staining. Then, the dynamic process of phagocytosis was observed by time-lapse optical microscopy. Next, AFM was applied to investigate the detailed cellular behaviors during macrophage phagocytosis under the guidance of fluorescence recognition. AFM imaging revealed the distinct features in cellular ultramicrostructures for the different steps of macrophage phagocytosis. AFM cell mechanical property measurements indicated that the binding of cancer cells to macrophages could make macrophages become stiffer. The experimental results provide novel insights in understanding the Fc-receptor-mediated macrophage phagocytosis.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences , Shenyang 110016, China
| | | | | | | | | | | |
Collapse
|
40
|
Li M, Xiao X, Zhang W, Liu L, Xi N, Wang Y. Nanoscale distribution of CD20 on B-cell lymphoma tumour cells and its potential role in the clinical efficacy of rituximab. J Microsc 2014; 254:19-30. [PMID: 24499016 DOI: 10.1111/jmi.12112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
Abstract
Rituximab is an exciting monoclonal antibody drug approved for treating B-cell lymphomas and its target is the CD20 antigen which is expressed on the surface of B cells. In recent years, the variable efficacies of rituximab among different lymphoma patients have become an important clinical issue and urgently need to be solved for further development of antibodies with enhanced efficacies. In this work, atomic force microscopy (AFM) was used to investigate the nanoscale distribution of CD20 on the surface of tumour B cells from lymphoma patients to examine its potential role in the clinical therapeutic effects of rituximab. By performing ROR1 fluorescence labelling (ROR1 is a specific tumour cell surface marker) on the bone marrow cells prepared from B-cell lymphoma patients, the tumour B cells were recognized, and then AFM tips carrying rituximabs via polyethylene glycol crosslinkers were moved to the tumour cells to probe the specific CD20-rituximab interactions. By applying AFM single-molecule force spectroscopy (SMFS) at the local areas (500×500 nm²) on the surface of tumour B cells, the nanoscale distributions of CD20 on the surface of tumour B cells were mapped, visually showing that CD20 distributed heterogeneously on the cell surface. Bone marrow cell samples from three clinical B-cell lymphoma cases were collected to analyze the binding affinity and nanoscale distribution of CD20 on tumour cells. The experimental results showed that CD20 distribution on tumour cells were to some extent related to the clinical therapeutic outcomes while the CD20-rituximab binding forces did not have distinct effects to the clinical outcomes. These results can provide novel insights in understanding the rituximab's clinical efficacies from the nanoscale distribution of CD20 on the tumour cells at single-cell and single-molecule levels.
Collapse
Affiliation(s)
- M Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.,University of Chinese Academy of Sciences, Beijing, China
| | - X Xiao
- Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing, China
| | - W Zhang
- Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing, China
| | - L Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - N Xi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.,Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Y Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
41
|
Poster Presentations. Regen Med 2013. [DOI: 10.2217/rme.13.pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Abstract
Integrins are transmembrane receptors that mediate cell adhesion to neighboring cells and to the extracellular matrix. Here, the various modes in which integrin-mediated adhesion regulates intracellular signaling pathways impinging on cell survival, proliferation, and differentiation are considered. Subsequently, evidence that integrins also control crucial signaling cascades in cancer cells is discussed. Lastly, the important role of integrin signaling in tumor cells as well as in stromal cells that support cancer growth, metastasis, and therapy resistance indicates that integrin signaling may be an attractive target for (combined) cancer therapy strategies. Current approaches to target integrins in this context are reviewed.
Collapse
|
43
|
Li M, Liu L, Xi N, Wang Y, Dong Z, Xiao X, Zhang W. Progress of AFM single-cell and single-molecule morphology imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5906-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Schröder HM, Hoffmann SC, Hecker M, Korff T, Ludwig T. The tetraspanin network modulates MT1-MMP cell surface trafficking. Int J Biochem Cell Biol 2013; 45:1133-44. [PMID: 23500527 DOI: 10.1016/j.biocel.2013.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 02/11/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
Abstract
The membrane-type 1 matrix metalloproteinase (MT1-MMP) drives fundamental physiological and pathophysiological processes. Among other substrates, MT1-MMP cleaves components of the extracellular matrix and activates other matrix-cleaving proteases such as MMP-2. Trafficking is a highly effective means to modulate MT1-MMP cell surface expression, and hence regulate its function. Here, we describe the complex interaction of MT1-MMP with tetraspanins, their effects on MT1-MMP intracellular trafficking and proteolytic function. Tetraspanins are credited as membrane organizers that form a network within the membrane to regulate the trafficking of associated proteins. In short, we found MT1-MMP to interact with the tetraspanin-associated EWI-2 protein by a yeast two-hybrid screen. Immunoprecipitation analysis confirmed this interaction and further revealed that MT1-MMP also stably interacts with distinct tetraspanins (CD9, CD37, CD53, CD63, CD81, and CD82) and the tetraspanin-like MAL protein. By using different MT1-MMP truncation constructs and mutants, we observed that all tetraspanins and MAL associated with the hemopexin domain of MT1-MMP. Moreover, this interaction was independent of O-glycosylation of MT1-MMP and exclusively occurred in the endoplasmic reticulum. Here, the respective subcellular compartment was identified by fitting the MT1-MMP interaction pattern to a model for post-translational processing of MT1-MMP. In addition, tetraspanins differentially affected the cell surface localization of MT1-MMP, its capacity to activate pro-MMP-2, and the collagen invasion capacity. Interestingly, the degree of tetraspanin-MT1-MMP association did not correlate with its impact on MT1-MMP function. Tetraspanins thus distinctly affect MT1-MMP subcellular localization and function, and may constitute an effective mechanism to control MT1-MMP-dependent proteolysis at the cell surface.
Collapse
Affiliation(s)
- H M Schröder
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
45
|
Polackwich RJ, Koch D, Arevalo R, Miermont AM, Jee KJ, Lazar J, Urbach J, Mueller SC, McAllister RG. A novel 3D fibril force assay implicates src in tumor cell force generation in collagen networks. PLoS One 2013; 8:e58138. [PMID: 23536784 PMCID: PMC3594227 DOI: 10.1371/journal.pone.0058138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 02/04/2013] [Indexed: 01/16/2023] Open
Abstract
New insight into the biomechanics of cancer cell motility in 3D extracellular matrix (ECM) environments would significantly enhance our understanding of aggressive cancers and help identify new targets for intervention. While several methods for measuring the forces involved in cell-matrix interactions have been developed, previous to this study none have been able to measure forces in a fibrillar environment. We have developed a novel assay for simultaneously measuring cell mechanotransduction and motility in 3D fibrillar environments. The assay consists of a controlled-density fibrillar collagen gel atop a controlled-stiffness polyacrylamide (PAA) surface. Forces generated by living cells and their migration in the 3D collagen gel were measured with the 3D motion of tracer beads within the PAA layer. Here, this 3D fibril force assay is used to study the role of the invasion-associated protein kinase Src in mechanotransduction and motility. Src expression and activation are linked with proliferation, invasion, and metastasis, and have been shown to be required in 2D for invadopodia membranes to direct and mediate invasion. Breast cancer cell line MDA-MD-231 was stably transfected with GFP-tagged constitutively active Src or wild-type Src. In 3D fibrillar collagen matrices we found that, relative to wild-type Src, constitutively active Src: 1) increased the strength of cell-induced forces on the ECM, 2) did not significantly change migration speed, and 3) increased both the duration and the length, but not the number, of long membrane protrusions. Taken together, these results support the hypothesis that Src controls invasion by controlling the ability of the cell to form long lasting cellular protrusions to enable penetration through tissue barriers, in addition to its role in promoting invadopodia matrix-degrading activity.
Collapse
Affiliation(s)
- Robert J. Polackwich
- Physics Department, Georgetown University, Washington, DC, United States of America
| | - Daniel Koch
- Physics Department, Georgetown University, Washington, DC, United States of America
| | - Richard Arevalo
- Physics Department, Georgetown University, Washington, DC, United States of America
| | - Anne M. Miermont
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathleen J. Jee
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - John Lazar
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Jeffrey Urbach
- Physics Department, Georgetown University, Washington, DC, United States of America
| | - Susette C. Mueller
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Ryan G. McAllister
- Physics Department, Georgetown University, Washington, DC, United States of America
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
46
|
Schlüter DK, Ramis-Conde I, Chaplain MAJ. Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. Biophys J 2013; 103:1141-51. [PMID: 22995486 DOI: 10.1016/j.bpj.2012.07.048] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 01/18/2023] Open
Abstract
Cell migration is vitally important in a wide variety of biological contexts ranging from embryonic development and wound healing to malignant diseases such as cancer. It is a very complex process that is controlled by intracellular signaling pathways as well as the cell's microenvironment. Due to its importance and complexity, it has been studied for many years in the biomedical sciences, and in the last 30 years it also received an increasing amount of interest from theoretical scientists and mathematical modelers. Here we propose a force-based, individual-based modeling framework that links single-cell migration with matrix fibers and cell-matrix interactions through contact guidance and matrix remodelling. With this approach, we can highlight the effect of the cell's environment on its migration. We investigate the influence of matrix stiffness, matrix architecture, and cell speed on migration using quantitative measures that allow us to compare the results to experiments.
Collapse
|
47
|
Petrie RJ, Yamada KM. At the leading edge of three-dimensional cell migration. J Cell Sci 2013; 125:5917-26. [PMID: 23378019 DOI: 10.1242/jcs.093732] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells migrating on flat two-dimensional (2D) surfaces use actin polymerization to extend the leading edge of the plasma membrane during lamellipodia-based migration. This mode of migration is not universal; it represents only one of several mechanisms of cell motility in three-dimensional (3D) environments. The distinct modes of 3D migration are strongly dependent on the physical properties of the extracellular matrix, and they can be distinguished by the structure of the leading edge and the degree of matrix adhesion. How are these distinct modes of cell motility in 3D environments related to each other and regulated? Recent studies show that the same type of cell migrating in 3D extracellular matrix can switch between different leading edge structures. This mode-switching behavior, or plasticity, by a single cell suggests that the apparent diversity of motility mechanisms is integrated by a common intracellular signaling pathway that governs the mode of cell migration. In this Commentary, we propose that the mode of 3D cell migration is governed by a signaling axis involving cell-matrix adhesions, RhoA signaling and actomyosin contractility, and that this might represent a universal mechanism that controls 3D cell migration.
Collapse
Affiliation(s)
- Ryan J Petrie
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
48
|
Mechanical cues in cellular signalling and communication. Cell Tissue Res 2012; 352:77-94. [PMID: 23224763 DOI: 10.1007/s00441-012-1531-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/14/2012] [Indexed: 12/19/2022]
Abstract
Multicellular organisms comprise an organized array of individual cells surrounded by a meshwork of biomolecules and fluids. Cells have evolved various ways to communicate with each other, so that they can exchange information and thus fulfil their specified and unique functions. At the same time, cells are also physical entities that are subjected to a variety of local and global mechanical cues arising in the microenvironment. Cells are equipped with several different mechanisms to sense the physical properties of the microenvironment and the mechanical forces arising within it. These mechanical cues can elicit a variety of responses that have been shown to play a crucial role in vivo. In this review, we discuss the current views and understanding of cell mechanics and demonstrate the emerging evidence of the interplay between physiological mechanical cues and cell-cell communication pathways.
Collapse
|
49
|
Kirmse R, Otto H, Ludwig T. The extracellular matrix remodeled: Interdependency of matrix proteolysis, cell adhesion, and force sensing. Commun Integr Biol 2012; 5:71-3. [PMID: 22482015 DOI: 10.4161/cib.17342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Membrane Type-1 Matrix Metalloproteinase (MT1-MMP, MMP-14) is regarded as the prototype of a membrane- tethered protease. It drives fundamental biological processes ranging from embryogenesis to cancer metastasis. The proteolytic cleavage of proteins by MT1-MMP can rapidly alter the biophysical properties of a cell's microenvironment. Cell's must thus be able to sense and react to these alterations and transduce these effectively in biochemical signals and cell responses. Although many cells react as acutely to such physical stimuli as they do to chemical ones, the regulatory effects of these have been less extensively explored. In order to investigate a possible interdependency of proteolytic matrix cleavage by MT1-MMP and the generation and sensing of force by cells, a model system was established which exploits the properties of a matrix array of parallel collagen-I fibers. The resulting an-isotropy of the matrix with high tensile strength along the fibers and high mobility perpendicular to it allows the convenient detection of bundling and cleavage of the collagen fibers, as well as spreading and durotaxis of the cells. In summary, we have demonstrated that cell adhesion, force generation, and force sensing are vital for the regulation of MT1-MMP for efficient cleavage of collagen-I.
Collapse
|
50
|
Stevens LJ, Page-McCaw A. A secreted MMP is required for reepithelialization during wound healing. Mol Biol Cell 2012; 23:1068-79. [PMID: 22262460 PMCID: PMC3302734 DOI: 10.1091/mbc.e11-09-0745] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are extracellular proteases highly expressed at wound sites. However, the precise function of MMPs during reepithelialization in vivo has been elusive in mammalian models because of the high level of redundancy among the 24 mammalian MMPs. For this reason we used Drosophila melanogaster, whose genome encodes only two MMPs-one secreted type (Mmp1) and one membrane-anchored type (Mmp2)-to study the function and regulation of the secreted class of MMPs in vivo. In the absence of redundancy, we found that the Drosophila secreted MMP, Mmp1, is required in the epidermis to facilitate reepithelialization by remodeling the basement membrane, promoting cell elongation and actin cytoskeletal reorganization, and activating extracellular signal-regulated kinase signaling. In addition, we report that the jun N-terminal kinase (JNK) pathway upregulates Mmp1 expression after wounding, but that Mmp1 is expressed independent of the JNK pathway in unwounded epidermis. When the JNK pathway is ectopically activated to overexpress Mmp1, the rate of healing is accelerated in an Mmp1-dependent manner. A primary function of Mmp1, under the control of the JNK pathway, is to promote basement membrane repair, which in turn may permit cell migration and the restoration of a continuous tissue.
Collapse
Affiliation(s)
- Laura J Stevens
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|