1
|
Hinostroza F, Albornoz-Muñoz S, Vergara S, Urra G, Araya-Durán I, Fissore RA, González-Nilo FD, Bustos D, Carvacho I. Structural Implications of H233L and H398P Mutations in Phospholipase Cζ: A Full-Atom Molecular Dynamics Study on Infertility-Associated Dysfunctions. Int J Mol Sci 2025; 26:4706. [PMID: 40429849 PMCID: PMC12111915 DOI: 10.3390/ijms26104706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/22/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Phospholipase Cζ (PLCζ), a sperm-specific enzyme, plays a critical role in mammalian fertilization. Mutations in PLCζ have been linked to male infertility, as they impair its ability to trigger calcium (Ca2+) oscillations necessary for egg activation and embryo development. During fertilization, PLCζ is introduced into the egg, where it hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate and diacylglycerol, leading to Ca2+ release from the endoplasmic reticulum. Human infertility-associated mutations include H233L, H398P, and R553P, which disrupt PLCζ function. To elucidate the molecular consequences of the mutations, we employed full-atom molecular dynamics simulations to analyze structural perturbations and their impact on PIP2 and Ca2+ binding. Our results reveal that H233L and H398P mutations significantly reduce interactions with PIP2, disrupting hydrogen bonding and salt bridge formation, leading to misalignment of the substrate. Additionally, these mutations destabilize Ca2+ binding by altering its positioning within the active site. In contrast, the R553P mutation primarily affects intramolecular stability and enzyme dynamics without impairing substrate or ion binding. Free energy calculations indicate an increased affinity for PIP2 in H233L and H398P mutants, leading to an aberrant substrate positioning and compromised hydrolysis. These structural insights help explain the egg activation failure and infertility of patients carrying these mutations.
Collapse
Affiliation(s)
- Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile;
- Centro para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Sofía Albornoz-Muñoz
- Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Sebastián Vergara
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Gabriela Urra
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (G.U.); (D.B.)
| | - Ingrid Araya-Durán
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (I.A.-D.); (F.D.G.-N.)
| | - Rafael A. Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA;
| | - Fernando Danilo González-Nilo
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (I.A.-D.); (F.D.G.-N.)
| | - Daniel Bustos
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (G.U.); (D.B.)
| | - Ingrid Carvacho
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile;
| |
Collapse
|
2
|
Hu K, Dong B, Wang Y, Meng X. The role of sperm protein in mammal fertilization: insights into gamete adhesion, membrane fusion and oocyte activation. ZYGOTE 2025:1-11. [PMID: 40356503 DOI: 10.1017/s0967199425000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Globally, numerous infertile couples have been assisted by extensive research on mammalian fertilization and the rapid development of Assisted Reproductive Technology (ART). However, 5%-15% of the couples that are selected for in vitro fertilization (IVF) experience a total fertilization failure (TFF), where no zygotes develop despite oocytes and semen parameters appear to be normal. Notably, an essential early event in fertilization is the binding of spermatozoa to the oocyte's external envelope, which followed by the spermatozoa-oocyte fusion. Meanwhile, oocyte activation is a crucial cellular process necessary to block polyspermy and start the development of the zygote. Improper membrane fusion of gametes has been demonstrated to be one of the mechanisms of TFF. Moreover, considering the large amount of research on sperm proteins in recent years, thus in this review, we characterize the role and molecular mechanisms of sperm proteins in the three key processes of gamete adhesion and fusion and oocyte activation, which would provide a comprehensive understanding of the role of sperm proteins in fertilization in mammals and a favourable reference for future studies in assisted reproduction due to FF.
Collapse
Affiliation(s)
- Kaiyue Hu
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Reproductive Medicine, Luoyang, China
| | - Bo Dong
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Andrology, Luoyang, China
| | - Yugang Wang
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Andrology, Luoyang, China
| | - Xiangrui Meng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Lee HC, Akizawa H, Fissore RA. Roles of the EF-hand domain of PLCZ1 in establishing species-specific Ca2+ oscillations in mouse and rat fertilization†. Biol Reprod 2025; 112:663-674. [PMID: 39893624 DOI: 10.1093/biolre/ioaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/29/2024] [Accepted: 01/30/2025] [Indexed: 02/04/2025] Open
Abstract
Periodic increases in cytosolic calcium concentration (Ca2+ oscillations) during mammalian fertilization induce all the events collectively known as egg activation. The sperm-specific phospholipase C, Phospholipase C zeta 1 (PLCZ1) represents the "sperm factor" vital for initiating the persistent Ca2+ oscillations in mammals. Despite sequence conservation, the Ca2+ oscillation-inducing properties of the enzyme differ vastly among species, and this is particularly salient between mouse and rat PLCZ1, where the activities vary at least one order of magnitude in favor of the former. As previously shown, injecting wild-type rat Plcz1 mRNA into metaphase II mouse eggs induced delayed Ca2+ oscillations with low specific activity compared to the homologous mouse Plcz1 mRNA. We, therefore, sought to uncover the factor(s) diversifying these enzymes by swapping functional domains between species, creating chimeric PLCZ1s. When injected into mouse metaphase II eggs, mouse Plcz1 mRNA with the whole- or part of the EF-hand domains swapped with the rat showed a substantial reduction in activity compared to WT. Consistently, the opposite exchange enhanced the rat's enzyme activity. EF-hand domains 1 and 2 seemed to underlie most differences, and mutations of the divergent amino acids within these domains, substitutions for Glu(m-30; r-29) and Gln(m-58; r-57), changed the activity of both species' PLCZ1s in opposite directions. Collectively, our findings support the view that differences in the sequences of EF-hand domains, especially in several of its charged residues, underpin the distinct PLCZ1 activities between these species, revealing the gametes and species' adaptability to optimize the fertilization signal and early development.
Collapse
Affiliation(s)
- Hoi Chang Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Hiroki Akizawa
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
4
|
Azil S, Mbaye MM, Louanjli N, Ghazi B, Benkhalifa M. Phospholipase C zeta: a hidden face of sperm for oocyte activation and early embryonic development. Obstet Gynecol Sci 2024; 67:467-480. [PMID: 39086217 PMCID: PMC11424188 DOI: 10.5468/ogs.24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Oocyte activation is a fundamental event in mammalian fertilization and is initiated by a cascade of calcium signaling and oscillation pathways. Phospholipase C zeta (PLCζ) is involved in modulating cortical granule exocytosis, releasing oocyte meiotic arrest, regulating gene expression, and early embryogenesis. These processes are considered to be initiated and controlled by PLCζ activity via the inositol-1,4,5-triphosphate pathway. The decrease or absence of functional PLCζ due to mutational defects in protein expression or maintenance can impair male fertility. In this literature review, we highlight the significance of PLCζ as a sperm factor involved in oocyte activation, its mechanism of action, the signaling pathway involved, and its close association with oocyte activation. Finally, we discuss the relationship between male infertility and PLCζ deficiency.
Collapse
Affiliation(s)
- Soukaina Azil
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Modou Mamoune Mbaye
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Noureddine Louanjli
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Bouchra Ghazi
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
| | - Moncef Benkhalifa
- Reproductive Medicine, Developmental and Reproductive Biology, Regional University Hospital & School of Medicine and Peritox Laboratory, Picardie University Jules Verne, Amiens, France
| |
Collapse
|
5
|
Abstract
Changes in the intracellular concentration of free calcium (Ca2+) underpin egg activation and initiation of development in animals and plants. In mammals, the Ca2+ release is periodical, known as Ca2+ oscillations, and mediated by the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). Another divalent cation, zinc (Zn2+), increases exponentially during oocyte maturation and is vital for meiotic transitions, arrests, and polyspermy prevention. It is unknown if these pivotal cations interplay during fertilization. Here, using mouse eggs, we showed that basal concentrations of labile Zn2+ are indispensable for sperm-initiated Ca2+ oscillations because Zn2+-deficient conditions induced by cell-permeable chelators abrogated Ca2+ responses evoked by fertilization and other physiological and pharmacological agonists. We also found that chemically or genetically generated eggs with lower levels of labile Zn2+ displayed reduced IP3R1 sensitivity and diminished ER Ca2+ leak despite the stable content of the stores and IP3R1 mass. Resupplying Zn2+ restarted Ca2+ oscillations, but excessive Zn2+ prevented and terminated them, hindering IP3R1 responsiveness. The findings suggest that a window of Zn2+ concentrations is required for Ca2+ responses and IP3R1 function in eggs, ensuring optimal response to fertilization and egg activation.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| | - Emily M Lopes
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of MassachusettsAmherstUnited States
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
6
|
Gonzalez-Castro RA, Carnevale EM. Phospholipase C Zeta 1 (PLCZ1): The Function and Potential for Fertility Assessment and In Vitro Embryo Production in Cattle and Horses. Vet Sci 2023; 10:698. [PMID: 38133249 PMCID: PMC10747197 DOI: 10.3390/vetsci10120698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of oocyte activation failures in humans related to male infertility are associated with gene mutations and/or altered PLCZ1. Consequently, PLCZ1 evaluation could be an effective diagnostic marker and predictor of sperm fertilizing potential for in vivo and in vitro embryo production. The characterization of PLCZ1 has been principally investigated in men and mice, with less known about the PLCZ1 impact on assisted reproduction in other species, such as cattle and horses. In horses, sperm PLCZ1 varies among stallions, and sperm populations with high PLCZ1 are associated with cleavage after intracytoplasmic sperm injection (ICSI). In contrast, bull sperm is less able to initiate calcium oscillations and undergo nuclear remodeling, resulting in poor cleavage after ICSI. Advantageously, injections of PLCZ1 are able to rescue oocyte failure in mouse oocytes after ICSI, promoting full development and birth. However, further research is needed to optimize PLCZ1 diagnostic tests for consistent association with fertility and to determine whether PLCZ1 as an oocyte-activating treatment is a physiological, efficient, and safe method for improving assisted fertilization in cattle and horses.
Collapse
Affiliation(s)
| | - Elaine M. Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
7
|
Akizawa H, Lopes E, Fissore RA. Zn 2+ is Essential for Ca 2+ Oscillations in Mouse Eggs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536745. [PMID: 37131581 PMCID: PMC10153198 DOI: 10.1101/2023.04.13.536745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Changes in the intracellular concentration of free calcium (Ca2+) underpin egg activation and initiation of development in animals and plants. In mammals, the Ca2+ release is periodical, known as Ca2+ oscillations, and mediated by the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). Another divalent cation, zinc (Zn2+), increases exponentially during oocyte maturation and is vital for meiotic transitions, arrests, and polyspermy prevention. It is unknown if these pivotal cations interplay during fertilization. Here, using mouse eggs, we showed that basal concentrations of labile Zn2+ are indispensable for sperm-initiated Ca2+ oscillations because Zn2+-deficient conditions induced by cell-permeable chelators abrogated Ca2+ responses evoked by fertilization and other physiological and pharmacological agonists. We also found that chemically- or genetically generated eggs with lower levels of labile Zn2+ displayed reduced IP3R1 sensitivity and diminished ER Ca2+ leak despite the stable content of the stores and IP3R1 mass. Resupplying Zn2+ restarted Ca2+ oscillations, but excessive Zn2+ prevented and terminated them, hindering IP3R1 responsiveness. The findings suggest that a window of Zn2+ concentrations is required for Ca2+ responses and IP3R1 function in eggs, ensuring optimal response to fertilization and egg activation.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Emily Lopes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Rafael A. Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
8
|
Sagar S, Singh A. Emerging role of phospholipase C mediated lipid signaling in abiotic stress tolerance and development in plants. PLANT CELL REPORTS 2021; 40:2123-2133. [PMID: 34003316 DOI: 10.1007/s00299-021-02713-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Environmental stimuli are primarily perceived at the plasma membrane. Stimuli perception leads to membrane disintegration and generation of molecules which trigger lipid signaling. In plants, lipid signaling regulates important biological functions however, the molecular mechanism involved is unclear. Phospholipases C (PLCs) are important lipid-modifying enzymes in eukaryotes. In animals, PLCs by hydrolyzing phospholipids, such as phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] generate diacylglycerol (DAG) and inositol- 1,4,5-trisphosphate (IP3). However, in plants their phosphorylated variants i.e., phosphatidic acid (PA) and inositol hexakisphosphate (IP6) are proposed to mediate lipid signaling. Specific substrate preferences divide PLCs into phosphatidylinositol-PLC (PI-PLC) and non-specific PLCs (NPC). PLC activity is regulated by various cellular factors including, calcium (Ca2+) concentration, phospholipid substrate, and post-translational modifications. Both PI-PLCs and NPCs are implicated in plants' response to stresses and development. Emerging evidences show that PLCs regulate structural and developmental features, like stomata movement, microtubule organization, membrane remodelling and root development under abiotic stresses. Thus, crucial insights are provided into PLC mediated regulatory mechanism of abiotic stress responses in plants. In this review, we describe the structure and regulation of plant PLCs. In addition, cellular and physiological roles of PLCs in abiotic stresses, phosphorus deficiency, aluminium toxicity, pollen tube growth, and root development are discussed.
Collapse
Affiliation(s)
- Sushma Sagar
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
9
|
Yuan P, Yang C, Ren Y, Yan J, Nie Y, Yan L, Qiao J. A novel homozygous mutation of phospholipase C zeta leading to defective human oocyte activation and fertilization failure. Hum Reprod 2021; 35:977-985. [PMID: 32142120 DOI: 10.1093/humrep/dez293] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Is a novel homozygous phospholipase C zeta (PLCζ), c.1658 G>C; p. R553P mutation in the C2 domain associated with the outcomes of recurrent fertilization failure after ICSI? SUMMARY ANSWER PLCζ, c.1658 G>C led to defective human oocyte activation and fertilization failure, while this mutation in the C2 domain of PLCζ did not compromise concentration, motility and chromosome ploidy of sperm. WHAT IS KNOWN ALREADY Sperm-specific PLCζ is now widely considered to be the physiological stimulus that evokes intracellular calcium (Ca2+) oscillations, which are essential for egg activation during mammalian fertilization. Thus far, few genetic studies have shown that different point mutations in the PLCζ gene are associated with male infertility. STUDY DESIGN, SIZE, DURATION This was a basic medical research to assess pathogenicity for novel mutation in the C2 domain of PLCζ during human fertilization. PARTICIPANTS/MATERIALS, SETTING, METHODS Single-cell omics were applied to analyze the DNA methylation state of the fertilization failure oocytes and the ploidy of the patient's sperm. Whole genome sequencing data for the patient were analyzed for mutations in PLCζ. Sanger sequencing confirmed the presence of a rare variant, and then the mutant and wild-type PLCζ mRNA were injected to observe oocyte activation. MAIN RESULTS AND THE ROLE OF CHANCE The fertilization failure oocytes (n = 4) were triploid and lacking proper DNA demethylation. The whole genome sequencing analysis revealed a novel missense homozygous mutation in PLCζ, c.1658 G>C; p. R553P, which leads to the conversion of arginine 553 to proline. This point mutation does not affect the production of the corresponding protein in sperm. However, microinjection of the mRNA transcribed from the PLCζ R553P mutation gene failed to trigger oocyte activation and the subsequent embryo development. LIMITATIONS, REASONS FOR CAUTION Only one patient with PLCζ mutations was available because of its rare incidence. WIDER IMPLICATIONS OF THE FINDINGS Notably, we discovered a novel homozygous mutation in PLCζ, which results in an abnormal conformation at the C2 domain of the PLCζ protein. Our findings indicate an essential role of PLCζ in human fertilization and the requirement of a normal structure of C2 domain in PLCζ-mediated physiological function. STUDY FUNDING/COMPETING INTEREST(S) This project is funded by the National Natural Science Foundation of China (31571544, 31871482, 31871447) and National Key Research and Development Program (2018YFC1004000, 2017YFA0103801). All authors declared no competing interests. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Peng Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Cen Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Yixin Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Yanli Nie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Khan IM, Cao Z, Liu H, Khan A, Rahman SU, Khan MZ, Sathanawongs A, Zhang Y. Impact of Cryopreservation on Spermatozoa Freeze-Thawed Traits and Relevance OMICS to Assess Sperm Cryo-Tolerance in Farm Animals. Front Vet Sci 2021; 8:609180. [PMID: 33718466 PMCID: PMC7947673 DOI: 10.3389/fvets.2021.609180] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Sperm cryopreservation is a powerful tool for the livestock breeding program. Several technical attempts have been made to enhance the efficiency of spermatozoa cryopreservation in different farm animal species. However, it is well-recognized that mammalian spermatozoa are susceptible to cryo-injury caused by cryopreservation processes. Moreover, the factors leading to cryo-injuries are complicated, and the cryo-damage mechanism has not been methodically explained until now, which directly influences the quality of frozen–thawed spermatozoa. Currently, the various OMICS technologies in sperm cryo-biology have been conducted, particularly proteomics and transcriptomics studies. It has contributed while exploring the molecular alterations caused by cryopreservation, identification of various freezability markers and specific proteins that could be added to semen diluents before cryopreservation to improve sperm cryo-survival. Therefore, understanding the cryo-injury mechanism of spermatozoa is essential for the optimization of current cryopreservation processes. Recently, the application of newly-emerged proteomics and transcriptomics technologies to study the effects of cryopreservation on sperm is becoming a hotspot. This review detailed an updated overview of OMICS elements involved in sperm cryo-tolerance and freeze-thawed quality. While also detailed a mechanism of sperm cryo-injury and utilizing OMICS technology that assesses the sperm freezability potential biomarkers as well as the accurate classification between the excellent and poor freezer breeding candidate.
Collapse
Affiliation(s)
- Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zubing Cao
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongyu Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Adnan Khan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sajid Ur Rahman
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agricultural Sciences, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agriculture University, Beijing, China
| | - Anucha Sathanawongs
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Torra-Massana M, Cornet-Bartolomé D, Barragán M, Durban M, Ferrer-Vaquer A, Zambelli F, Rodriguez A, Oliva R, Vassena R. Novel phospholipase C zeta 1 mutations associated with fertilization failures after ICSI. Hum Reprod 2020; 34:1494-1504. [PMID: 31347677 DOI: 10.1093/humrep/dez094] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Are phospholipase C zeta 1 (PLCZ1) mutations associated with fertilization failure (FF) after ICSI? SUMMARY ANSWER New mutations in the PLCZ1 sequence are associated with FFs after ICSI. WHAT IS KNOWN ALREADY FF occurs in 1-3% of ICSI cycles, mainly due to oocyte activation failure (OAF). The sperm PLCζ/PLCZ1 protein hydrolyzes phosphatidylinositol (4, 5)-bisphosphate in the oocyte, leading to intracellular calcium release and oocyte activation. To date, few PLCZ1 point mutations causing decreased protein levels or activity have been linked to FF. However, functional alterations of PLCζ/PLCZ1 in response to both described and novel mutations have not been investigated. STUDY DESIGN, SIZE, DURATION We performed a study including 37 patients presenting total or partial FF (fertilization rate (FR), ≤25%) after ICSI occurring between 2014 and 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients were divided into two groups based on oocyte evaluation 19 h post ICSI: FF due to a defect in oocyte activation (OAF, n = 22) and FF due to other causes ('no-OAF', n = 15). Samples from 13 men with good fertilization (FR, >50%) were used as controls. PLCζ/PLCZ1 protein localization and levels in sperm were evaluated by immunofluorescence and western blot, respectively. Sanger sequencing on genomic DNA was used to identify PLCZ1 mutations in exonic regions. The effect of the mutations on protein functionality was predicted in silico using the MODICT algorithm. Functional assays were performed by cRNA injection of wild-type and mutated forms of PLCZ1 into human in vitro matured metaphase II oocytes, and fertilization outcomes (second polar body extrusion, pronucleus appearance) scored 19 h after injection. MAIN RESULTS AND THE ROLE OF CHANCE In the OAF group, 12 (54.6%) patients carried at least one mutation in the PLCZ1 coding sequence, one patient out of 15 (6.7%) in the no-OAF group (P < 0.05) and none of the 13 controls (P < 0.05). A total of six different mutations were identified. Five of them were single-nucleotide missense mutations: p.I120M, located at the end of the EF-hand domain; p.R197H, p.L224P and p.H233L, located at the X catalytic domain; and p.S500 L, located at the C2 domain. The sixth mutation, a frameshift variant (p.V326K fs*25), generates a truncated protein at the X-Y linker region. In silico analysis with MODICT predicted all the mutations except p.I120M to be potentially deleterious for PLCζ/PLCZ1 activity. After PLCZ1 cRNA injection, a significant decrease in the percentage of activated oocytes was observed for three mutations (p.R197H, p.H233L and p.V326K fs*25), indicating a deleterious effect on enzymatic activity. PLCZ1 protein localization and expression levels in sperm were similar across groups. FRs were restored (to >60%) in patients carrying PLCZ1 mutations (n = 10) after assisted oocyte activation (AOA), with seven patients achieving pregnancy and live birth. LIMITATIONS, REASONS FOR CAUTION Caution should be exerted when comparing the cRNA injection results with fertilization outcomes after ICSI, especially in patients presenting mutations in heterozygosis. WIDER IMPLICATIONS OF THE FINDINGS PLCZ1 mutations were found in high frequency in patients presenting OAF. Functional analysis of three mutations in human oocytes confirms alteration of PLCζ/PLCZ1 activity and their likely involvement in impaired oocyte activation. Our results suggest that PLCZ1 gene sequencing could be useful as a tool for the diagnosis and counseling of couples presenting FF after ICSI due to OAF. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by intramural funding of Clínica EUGIN, by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia (GENCAT 2015 DI 049 to M. T.-M. and GENCAT 2015 DI 048 to D. C.-B.) and by the Torres Quevedo Program from the Spanish Ministry of Economy and Competitiveness to A. F.-V. No competing interest declared.
Collapse
Affiliation(s)
- Marc Torra-Massana
- Clínica EUGIN, Barcelona, Spain.,Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | - Rafael Oliva
- Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
12
|
Stein P, Savy V, Williams AM, Williams CJ. Modulators of calcium signalling at fertilization. Open Biol 2020; 10:200118. [PMID: 32673518 PMCID: PMC7574550 DOI: 10.1098/rsob.200118] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Calcium (Ca2+) signals initiate egg activation across the animal kingdom and in at least some plants. These signals are crucial for the success of development and, in the case of mammals, health of the offspring. The mechanisms associated with fertilization that trigger these signals and the molecules that regulate their characteristic patterns vary widely. With few exceptions, a major contributor to fertilization-induced elevation in cytoplasmic Ca2+ is release from endoplasmic reticulum stores through the IP3 receptor. In some cases, Ca2+ influx from the extracellular space and/or release from alternative intracellular stores contribute to the rise in cytoplasmic Ca2+. Following the Ca2+ rise, the reuptake of Ca2+ into intracellular stores or efflux of Ca2+ out of the egg drive the return of cytoplasmic Ca2+ back to baseline levels. The molecular mediators of these Ca2+ fluxes in different organisms include Ca2+ release channels, uptake channels, exchangers and pumps. The functions of these mediators are regulated by their particular activating mechanisms but also by alterations in their expression and spatial organization. We discuss here the molecular basis for modulation of Ca2+ signalling at fertilization, highlighting differences across several animal phyla, and we mention key areas where questions remain.
Collapse
Affiliation(s)
- Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Audrey M. Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
13
|
Kashir J. Increasing associations between defects in phospholipase C zeta and conditions of male infertility: not just ICSI failure? J Assist Reprod Genet 2020; 37:1273-1293. [PMID: 32285298 PMCID: PMC7311621 DOI: 10.1007/s10815-020-01748-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Oocyte activation is a fundamental event at mammalian fertilization. In mammals, this process is initiated by a series of characteristic calcium (Ca2+) oscillations, induced by a sperm-specific phospholipase C (PLC) termed PLCzeta (PLCζ). Dysfunction/reduction/deletion of PLCζ is associated with forms of male infertility where the sperm is unable to initiate Ca2+ oscillations and oocyte activation, specifically in cases of fertilization failure. This review article aims to systematically summarize recent advancements and controversies in the field to update expanding clinical associations between PLCζ and various male factor conditions. This article also discusses how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic PLCζ approaches, aiming to direct future research efforts to utilize such knowledge clinically. METHODS An extensive literature search was performed using literature databases (PubMed/MEDLINE/Web of Knowledge) focusing on phospholipase C zeta (PLCzeta; PLCζ), oocyte activation, and calcium oscillations, as well as specific male factor conditions. RESULTS AND DISCUSSION Defective PLCζ or PLCζ-induced Ca2+ release can be linked to multiple forms of male infertility including abnormal sperm parameters and morphology, sperm DNA fragmentation and oxidation, and abnormal embryogenesis/pregnancies. Such sperm exhibit absent/reduced levels, and abnormal localization patterns of PLCζ within the sperm head. CONCLUSIONS Defective PLCζ and abnormal patterns of Ca2+ release are increasingly suspected a significant causative factor underlying abnormalities or insufficiencies in Ca2+ oscillation-driven early embryogenic events. Such cases could potentially strongly benefit from relevant therapeutic and diagnostic applications of PLCζ, or even alternative mechanisms, following further focused research efforts.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia. .,School of Biosciences, Cardiff University, Cardiff, UK. .,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
14
|
Saleh A, Kashir J, Thanassoulas A, Safieh-Garabedian B, Lai FA, Nomikos M. Essential Role of Sperm-Specific PLC-Zeta in Egg Activation and Male Factor Infertility: An Update. Front Cell Dev Biol 2020; 8:28. [PMID: 32064262 PMCID: PMC7000359 DOI: 10.3389/fcell.2020.00028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Sperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological stimulus responsible for generating calcium (Ca2+) oscillations that induce egg activation and early embryonic development during mammalian fertilization. In the mammalian testis, PLCζ expression is detected at spermiogenesis following elongated spermatid differentiation. Sperm-delivered PLCζ induces Ca2+ release via the inositol 1,4,5-trisphosphate (InsP3) signaling pathway. PLCζ is the smallest known mammalian PLC isoform identified to date, with the simplest domain organization. However, the distinctive biochemical properties of PLCζ compared with other PLC isoforms contribute to its unique potency in stimulating cytosolic Ca2+ oscillations within mammalian eggs. Moreover, studies describing PLCζ “knockout” mouse phenotypes confirm the supreme importance of PLCζ at egg activation and monospermic fertilization in mice. Importantly, a number of clinical reports have highlighted the crucial importance of PLCζ in human fertilization by associating PLCζ deficiencies with certain forms of male factor infertility. Herein, we give an update on recent advances that have refined our understanding of how sperm PLCζ triggers Ca2 + oscillations and egg activation in mammals, while also discussing the nature of a potential “alternative” sperm factor. We summarise PLCζ localization in mammalian sperm, and the direct links observed between defective PLCζ protein in sperm and documented cases of male infertility. Finally, we postulate how this sperm protein can be used as a potential diagnostic marker, and also as a powerful therapeutic agent for treatment of certain types of male infertility due to egg activation failure or even in more general cases of male subfertility.
Collapse
Affiliation(s)
- Alaaeldin Saleh
- Member of QU Health, College of Medicine, Qatar University, Doha, Qatar
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - F Anthony Lai
- Member of QU Health, College of Medicine, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Michail Nomikos
- Member of QU Health, College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
15
|
Wakai T, Mehregan A, Fissore RA. Ca 2+ Signaling and Homeostasis in Mammalian Oocytes and Eggs. Cold Spring Harb Perspect Biol 2019; 11:a035162. [PMID: 31427376 PMCID: PMC6886447 DOI: 10.1101/cshperspect.a035162] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca2+]i) represent a vital signaling mechanism enabling communication between and among cells as well as with the environment. Cells have developed a sophisticated set of molecules, "the Ca2+ toolkit," to adapt [Ca2+]i changes to specific cellular functions. Mammalian oocytes and eggs, the subject of this review, are not an exception, and in fact the initiation of embryo devolvement in all species is entirely dependent on distinct [Ca2+]i responses. Here, we review the components of the Ca2+ toolkit present in mammalian oocytes and eggs, the regulatory mechanisms that allow these cells to accumulate Ca2+ in the endoplasmic reticulum, release it, and maintain basal and stable cytoplasmic concentrations. We also discuss electrophysiological and genetic studies that have uncovered Ca2+ influx channels in oocytes and eggs, and we analyze evidence supporting the role of a sperm-specific phospholipase C isoform as the trigger of Ca2+ oscillations during mammalian fertilization including its implication in fertility.
Collapse
Affiliation(s)
- Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Aujan Mehregan
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
16
|
Jones KT. Mammalian sperm contain two factors for calcium release and egg activation: Phospholipase C zeta and a cryptic activating factor. Mol Hum Reprod 2019; 24:465-468. [PMID: 30257016 DOI: 10.1093/molehr/gay038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Keith T Jones
- Faculty of Sciences, University of Adelaide, 5005, South Australia, Australia, and School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, UK
| |
Collapse
|
17
|
Parrington J, Arnoult C, Fissore RA. The eggstraordinary story of how life begins. Mol Reprod Dev 2018; 86:4-19. [PMID: 30411426 DOI: 10.1002/mrd.23083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
More than 15 years have elapsed since the identification of phospholipase C ζ1 (PLCζ) from a genomic search for mouse testis/sperm-specific PLCs. This molecule was proposed to represent the sperm factor responsible for the initiation of calcium (Ca2+ ) oscillations required for egg activation and embryo development in mammals. Supporting evidence for this role emerged from studies documenting its expression in all mammals and other vertebrate species, the physiological Ca2+ rises induced by injection of its messenger RNA into mammalian and nonmammalian eggs, and the lack of expression in infertile males that fail intracytoplasmic sperm injection. In the last year, genetic animal models have added support to its role as the long sought-after sperm factor. In this review, we highlight the findings that demonstrated the role of Ca2+ as the universal signal of egg activation and the experimental buildup that culminated with the identification of PLCζ as the soluble sperm factor. We also discuss the structural-functional properties that make PLCζ especially suited to evoke oscillations in eggs. Lastly, we examine unresolved aspects of the function and regulation of PLCζ and whether or not it is the only sperm factor in mammalian sperm.
Collapse
Affiliation(s)
- John Parrington
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, France.,Institut pour l'Avancée des Biosciences (IAB), INSERM 1209, CNRS UMR 5309, La Tronche, France
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
18
|
Kashir J, Nomikos M, Lai FA. Phospholipase C zeta and calcium oscillations at fertilisation: The evidence, applications, and further questions. Adv Biol Regul 2017; 67:148-162. [PMID: 29108881 DOI: 10.1016/j.jbior.2017.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
Oocyte activation is a fundamental event at mammalian fertilisation, initiated by a series of characteristic calcium (Ca2+) oscillations in mammals. This characteristic pattern of Ca2+ release is induced in a species-specific manner by a sperm-specific enzyme termed phospholipase C zeta (PLCζ). Reduction or absence of functional PLCζ within sperm underlies male factor infertility in humans, due to mutational inactivation or abrogation of PLCζ protein expression. Underlying such clinical implications, a significant body of evidence has now been accumulated that has characterised the unique biochemical and biophysical properties of this enzyme, further aiding the unique clinical opportunities presented. Herein, we present and discuss evidence accrued over the past decade and a half that serves to support the identity of PLCζ as the mammalian sperm factor. Furthermore, we also discuss the potential novel avenues that have yet to be examined regarding PLCζ mechanism of action in both the oocyte, and the sperm. Finally, we discuss the advances that have been made regarding the clinical therapeutic and diagnostic applications of PLCζ in potentially treating male infertility as a result of oocyte activation deficiency (OAD), and also possibly more general cases of male subfertility.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Biomedical & Life Sciences, School of Biosciences, Cardiff University, Cardiff, UK; Alfaisal University, College of Medicine, Riyadh, Saudi Arabia; King Faisal Specialist Hospital & Research Center, Department of Comparative Medicine, Riyadh, Saudi Arabia.
| | - Michail Nomikos
- College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - F Anthony Lai
- College of Biomedical & Life Sciences, School of Biosciences, Cardiff University, Cardiff, UK; College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
19
|
The role and mechanism of action of sperm PLC-zeta in mammalian fertilisation. Biochem J 2017; 474:3659-3673. [PMID: 29061915 DOI: 10.1042/bcj20160521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
At mammalian fertilisation, the fundamental stimulus that triggers oocyte (egg) activation and initiation of early embryonic development is an acute rise of the intracellular-free calcium (Ca2+) concentration inside the egg cytoplasm. This essential Ca2+ increase comprises a characteristic series of repetitive Ca2+ oscillations, starting soon after sperm-egg fusion. Over the last 15 years, accumulating scientific and clinical evidence supports the notion that the physiological stimulus that precedes the cytosolic Ca2+ oscillations is a novel, testis-specific phospholipase C (PLC) isoform, known as PLC-zeta (PLCζ). Sperm PLCζ catalyses the hydrolysis of phosphatidylinositol 4,5-bisphosphate triggering cytosolic Ca2+ oscillations through the inositol 1,4,5-trisphosphate signalling pathway. PLCζ is the smallest known mammalian PLC isoform with the most elementary domain organisation. However, relative to somatic PLCs, the PLCζ isoform possesses a unique potency in stimulating Ca2+ oscillations in eggs that is attributed to its novel biochemical characteristics. In this review, we discuss the latest developments that have begun to unravel the vital role of PLCζ at mammalian fertilisation and decipher its unique mechanism of action within the fertilising egg. We also postulate the significant potential diagnostic and therapeutic capacity of PLCζ in alleviating certain types of male infertility.
Collapse
|
20
|
Xu YR, Yang WX. Calcium influx and sperm-evoked calcium responses during oocyte maturation and egg activation. Oncotarget 2017; 8:89375-89390. [PMID: 29179526 PMCID: PMC5687696 DOI: 10.18632/oncotarget.19679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Under the guidance and regulation of hormone signaling, large majority of mammalian oocytes go through twice cell cycle arrest-resumption prior to the fertilized egg splits: oocyte maturation and egg activation. Cytosolic free calcium elevations and endoplasmic reticulum calcium store alternations are actively involved in triggering the complex machineries and events during oogenesis. Among these, calcium influx had been implicated in the replenishment of endoplasmic reticulum store during oocyte maturation and calcium oscillation during egg activation. This process also drove successful fertilization and early embryo development. Store-operated Ca2+ entry, acts as the principal force of calcium influx, is composed of STIM1 and Orai1 on the plasma membrane. Besides, transient receptor potential channels also participate in the process of calcium inwards. In this review, we summarize the recent researches on the spatial-temporal distribution of store-operated calcium entry components and transient receptor potential channels. Questions about how these channels play function for calcium influx and what impacts these channels have on oocytes are discussed. At the time of sperm-egg fusion, sperm-specific factor(s) diffuse and enable eggs to mount intracellular calcium oscillations. In this review, we also focus on the basic knowledge and the modes of action of the potential sperm factor phospholipase C zeta, as well as the downstream receptor, type 1 inositol 1,4,5-trisphosphate receptor. From the achievement in the previous several decades, it is easy to find that there are too many doubtful points in the field that need researchers take into consideration and take action in the future.
Collapse
Affiliation(s)
- Ya-Ru Xu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Selvaraju S, Parthipan S, Somashekar L, Kolte AP, Krishnan Binsila B, Arangasamy A, Ravindra JP. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci Rep 2017; 7:42392. [PMID: 28276431 PMCID: PMC5343582 DOI: 10.1038/srep42392] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
Mammalian spermatozoa deliver various classes of RNAs to the oocyte during fertilization, and many of them may regulate fertility. The objective of the present study was to determine the composition and abundance of spermatozoal transcripts in fresh bull semen. The entire transcriptome of the spermatozoa from bulls (n = 3) was sequenced using two different platforms (Ion Proton and Illumina) to identify the maximum number of genes present in the spermatozoa. The bovine spermatozoa contained transcripts for 13,833 genes (transcripts per million, TPM > 10). Both intact and fragmented transcripts were found. These spermatozoal transcripts were associated with various stages of spermatogenesis, spermatozoal function, fertilization, and embryo development. The presence of intact transcripts of pregnancy-associated glycoproteins (PAGs) in the spermatozoa suggest a possible influence of sperm transcripts beyond early embryonic development. The specific regions (exon, intron, and exon-intron) of the particular spermatozoal transcripts might help regulate fertilization. This study demonstrates that the use of two different RNA-seq platforms provides a comprehensive profile of bovine spermatozoal RNA. Spermatozoal RNA profiling may be useful as a non-invasive method to delineate possible causes of male infertility and to predict fertility in a manner that is more effective than the conventional methods.
Collapse
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Sivashanmugam Parthipan
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Lakshminarayana Somashekar
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Atul P Kolte
- Omics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - B Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Janivara Parameshwaraiah Ravindra
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| |
Collapse
|
22
|
Male infertility-linked point mutation reveals a vital binding role for the C2 domain of sperm PLCζ. Biochem J 2017; 474:1003-1016. [PMID: 28270562 DOI: 10.1042/bcj20161057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/05/2017] [Accepted: 01/20/2017] [Indexed: 12/14/2022]
Abstract
Sperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological stimulus that evokes intracellular calcium (Ca2+) oscillations that are essential for the initiation of egg activation during mammalian fertilisation. A recent genetic study reported a male infertility case that was directly associated with a point mutation in the PLCζ C2 domain, where an isoleucine residue had been substituted with a phenylalanine (I489F). Here, we have analysed the effect of this mutation on the in vivo Ca2+ oscillation-inducing activity and the in vitro biochemical properties of human PLCζ. Microinjection of cRNA or recombinant protein corresponding to PLCζI489F mutant at physiological concentrations completely failed to cause Ca2+ oscillations and trigger development. However, this infertile phenotype could be effectively rescued by microinjection of relatively high (non-physiological) amounts of recombinant mutant PLCζI489F protein, leading to Ca2+ oscillations and egg activation. Our in vitro biochemical analysis suggested that the PLCζI489F mutant displayed similar enzymatic properties, but dramatically reduced binding to PI(3)P and PI(5)P-containing liposomes compared with wild-type PLCζ. Our findings highlight the importance of PLCζ at fertilisation and the vital role of the C2 domain in PLCζ function, possibly due to its novel binding characteristics.
Collapse
|
23
|
|
24
|
Nomikos M, Thanassoulas A, Beck K, Theodoridou M, Kew J, Kashir J, Calver BL, Matthews E, Rizkallah P, Sideratou Z, Nounesis G, Lai FA. Mutations in PLCδ1 associated with hereditary leukonychia display divergent PIP2 hydrolytic function. FEBS J 2016; 283:4502-4514. [PMID: 27783455 DOI: 10.1111/febs.13939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Hereditary leukonychia is a rare genetic nail disorder characterized by distinctive whitening of the nail plate of all 20 nails. Hereditary leukonychia may exist as an isolated feature, or in simultaneous occurrence with other cutaneous or systemic pathologies. Associations between hereditary leukonychia and mutations in the gene encoding phospholipase C delta-1 (PLCδ1) have previously been identified. However, the molecular mechanisms underlying PLCδ1 mutations and hereditary leukonychia remain uncharacterized. In the present study, we introduced hereditary leukonychia-linked human PLCδ1 mutations (C209R, A574T and S740R) into equivalent residues of rat PLCδ1 (C188R, A553T and S719R), and investigated their effect on the biophysical and biochemical properties of the PLCδ1 protein. Our data suggest that these PLCδ1 mutations associated with hereditary leukonychia do not uniformly alter the enzymatic ability of this protein leading to loss/gain of function, but result in significantly divergent enzymatic properties. We demonstrate here for the first time the importance of PLC-mediated calcium (Ca2+ ) signalling within the manifestation of hereditary leukonychia. PLCδ1 is almost ubiquitous in mammalian cells, which may explain why hereditary leukonychia manifests in association with other systemic pathologies relating to keratin expression.
Collapse
Affiliation(s)
- Michail Nomikos
- College of Medicine, Qatar University, Doha, Qatar.,College of Biomedical and Life Sciences, School of Biosciences, Cardiff University, UK
| | | | - Konrad Beck
- College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, UK
| | - Maria Theodoridou
- College of Biomedical and Life Sciences, School of Biosciences, Cardiff University, UK
| | - Jasmine Kew
- College of Biomedical and Life Sciences, School of Biosciences, Cardiff University, UK
| | - Junaid Kashir
- College of Biomedical and Life Sciences, School of Biosciences, Cardiff University, UK.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Brian L Calver
- College of Biomedical and Life Sciences, School of Biosciences, Cardiff University, UK
| | - Emily Matthews
- College of Biomedical and Life Sciences, School of Biosciences, Cardiff University, UK
| | - Pierre Rizkallah
- College of Biomedical and Life Sciences, School of Medicine, Cardiff University, UK
| | - Zili Sideratou
- National Center for Scientific Research 'Demokritos', Athens, Greece
| | - George Nounesis
- National Center for Scientific Research 'Demokritos', Athens, Greece
| | - F Anthony Lai
- College of Biomedical and Life Sciences, School of Biosciences, Cardiff University, UK
| |
Collapse
|
25
|
Abstract
A series of intracellular oscillations in the free cytosolic Ca(2+) concentration is responsible for activating mammalian eggs at fertilization, thus initiating embryo development. It has been proposed that the sperm causes these Ca(2+) oscillations after membrane fusion by delivering a soluble protein into the egg cytoplasm. We previously identified sperm-specific phospholipase C (PLC)-ζ as a protein that can trigger the same pattern of Ca(2+) oscillations in eggs seen at fertilization. PLCζ appears to be the elusive sperm factor mediating egg activation in mammals. It has potential therapeutic use in infertility treatments to improve the rate of egg activation and early embryo development after intra-cytoplasmic sperm injection. A stable form of recombinant human PLCζ could be a prototype for use in such in vitro fertilization (IVF) treatments. We do not yet understand exactly how PLCζ causes inositol 1,4,5-trisphosphate (InsP3) production in eggs. Sperm PLCζ is distinct among mammalian PI-specific PLCs in that it is far more potent in triggering Ca(2+) oscillations in eggs than other PLCs, but it lacks a PH domain that would otherwise be considered essential for binding to the phosphatidylinositol 4,5-bisphosphate (PIP2) substrate. PLCζ is also unusual in that it does not appear to interact with or hydrolyse plasma membrane PIP2. We consider how other regions of PLCζ may mediate its binding to PIP2 in eggs and how interaction of PLCζ with egg-specific factors could enable the hydrolysis of internal sources of PIP2.
Collapse
|
26
|
Staudt E, Ramasamy P, Plattner H, Simon M. Differential subcellular distribution of four phospholipase C isoforms and secretion of GPI-PLC activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3157-3168. [PMID: 27693913 DOI: 10.1016/j.bbamem.2016.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/04/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
Abstract
Phospholipase C (PLC) is an important enzyme of signal transduction pathways by generation of second messengers from membrane lipids. PLCs are also indicated to cleave glycosylphosphatidylinositol (GPI)-anchors of surface proteins thus releasing these into the environment. However, it remains unknown whether this enzymatic activity on the surface is due to distinct PLC isoforms in higher eukaryotes. Ciliates have, in contrast to other unicellular eukaryotes, multiple PLC isoforms as mammals do. Thus, Paramecium represents a perfect model to study subcellular distribution and potential surface activity of PLC isoforms. We have identified distinct subcellular localizations of four PLC isoforms indicating functional specialization. The association with different calcium release channels (CRCs) argues for distinct subcellular functions. They may serve as PI-PLCs in microdomains for local second messenger responses rather than free floating IP3. In addition, all isoforms can be found on the cell surface and they are found together with GPI-cleaved surface proteins in salt/ethanol washes of cells. We can moreover show them in medium supernatants of living cells where they have access to GPI-anchored surface proteins. Among the isoforms we cannot assign GPI-PLC activity to specific PLC isoforms; rather each PLC is potentially responsible for the release of GPI-anchored proteins from the surface.
Collapse
Affiliation(s)
- Emanuel Staudt
- Saarland University, Molecular Cell Dynamics, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany; University of Kaiserslautern, Department of Biology, Erwin-Schrödinger Straße, Building Nr. 14, 67663 Kaiserslautern, Germany
| | - Pathmanaban Ramasamy
- Saarland University, Molecular Cell Dynamics, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany
| | - Helmut Plattner
- University of Konstanz, Senior Research Group for Cell Biology and Ultrastructure Research, Department of Biology, 78457 Konstanz, Germany
| | - Martin Simon
- Saarland University, Molecular Cell Dynamics, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany.
| |
Collapse
|
27
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
28
|
Abstract
The most fundamental unresolved issue of fertilization is to define how the sperm activates the egg to begin embryo development. Egg activation at fertilization in all species thus far examined is caused by some form of transient increase in the cytoplasmic free Ca2+ concentration. What has not been clear, however, is precisely how the sperm triggers the large changes in Ca2+ observed within the egg cytoplasm. Here, we review the studies indicating that the fertilizing sperm stimulates a cytosolic Ca2+ increase in the egg specifically by delivering a soluble factor that diffuses into the cytosolic space of the egg upon gamete membrane fusion. Evidence is primarily considered in species of eggs where the sperm has been shown to elicit a cytosolic Ca2+ increase by initiating Ca2+ release from intracellular Ca2+ stores. We suggest that our best understanding of these signaling events is in mammals, where the sperm triggers a prolonged series of intracellular Ca2+ oscillations. The strongest empirical studies to date suggest that mammalian sperm-triggered Ca2+ oscillations are caused by the introduction of a sperm-specific protein, called phospholipase C-zeta (PLCζ) that generates inositol trisphosphate within the egg. We will discuss the role and mechanism of action of PLCζ in detail at a molecular and cellular level. We will also consider some of the evidence that a soluble sperm protein might be involved in egg activation in nonmammalian species.
Collapse
Affiliation(s)
- Karl Swann
- College of Biomedical and Life Sciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Anthony Lai
- College of Biomedical and Life Sciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
29
|
Amdani SN, Yeste M, Jones C, Coward K. Phospholipase C zeta (PLCζ) and male infertility: Clinical update and topical developments. Adv Biol Regul 2015; 61:58-67. [PMID: 26700242 DOI: 10.1016/j.jbior.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 01/09/2023]
Abstract
The development of a mammalian embryo is initiated by a sequence of molecular events collectively referred to as 'oocyte activation' and regulated by the release of intracellular calcium in the ooplasm. Over the last decade, phospholipase C zeta (PLCζ), a sperm protein introduced into the oocyte upon gamete fusion, has gained almost universal acceptance as the protein factor responsible for initiating oocyte activation. A large body of consistent and reproducible evidence, from both biochemical and clinical settings, confers support for the role of PLCζ in this fundamental biological context, which has significant ramifications for the management of human male infertility. Oocyte activation deficiency (OAD) and total fertilisation failure (TFF) are known causes of infertility and have both been linked to abnormalities in the structure, expression, and localisation pattern of PLCζ in human sperm. Assisted oocyte activators (AOAs) represent the only therapeutic option available for OAD at present, although these agents have been the source of much debate recently, particularly with regard to their potential epigenetic effects upon the embryo. Consequently, there is much interest in the deployment of sensitive PLCζ assays as prognostic/diagnostic tests and human recombinant PLCζ protein as an alternative form of therapy. Although PLCζ deficiency has been directly linked to a cohort of infertile cases, we have yet to identify the specific causal mechanisms involved. While two genetic mutations have been identified which link defective PLCζ protein to an infertile phenotype, both were observed in the same patient, and have yet to be described in other patients. Consequently, some researchers are investigating the possibility that genetic variations in the form of single nucleotide polymorphisms (SNPs) could provide some explanation, especially since >6000 SNPs have been identified in the PLCζ gene. As yet, however, there is no consistent data to suggest that any of these SNPs influence the functional ability of PLCζ. Other laboratories appear to be focussing upon the PLCζ promoter, which is bi-directional and shared with the actin filament capping muscle Z-line alpha 3 gene (CAPZA3), or seeking to identify interacting proteins within the ooplasm. The aim of this review is to provide a synopsis of recent progress in the application of PLCζ in diagnostic and therapeutic medicine, to discuss our current understanding of how the functional ability of PLCζ might be controlled, and thus how PLCζ deficiency might arise, and finally, to consider the potential implications of alternative sperm protein candidates, such as post-acrosomal WW-domain binding protein (PAWP), which has caused much debate and confusion in the field over the last few years.
Collapse
Affiliation(s)
- Siti Nornadhirah Amdani
- Nuffield Department of Obstetrics & Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tunku Link, Gadong, Brunei Darussalam
| | - Marc Yeste
- Nuffield Department of Obstetrics & Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Celine Jones
- Nuffield Department of Obstetrics & Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics & Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| |
Collapse
|
30
|
Nomikos M, Sanders JR, Parthimos D, Buntwal L, Calver BL, Stamatiadis P, Smith A, Clue M, Sideratou Z, Swann K, Lai FA. Essential Role of the EF-hand Domain in Targeting Sperm Phospholipase Cζ to Membrane Phosphatidylinositol 4,5-Bisphosphate (PIP2). J Biol Chem 2015; 290:29519-30. [PMID: 26429913 PMCID: PMC4705952 DOI: 10.1074/jbc.m115.658443] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 11/25/2022] Open
Abstract
Sperm-specific phospholipase C-ζ (PLCζ) is widely considered to be the physiological stimulus that triggers intracellular Ca2+ oscillations and egg activation during mammalian fertilization. Although PLCζ is structurally similar to PLCδ1, it lacks a pleckstrin homology domain, and it remains unclear how PLCζ targets its phosphatidylinositol 4,5-bisphosphate (PIP2) membrane substrate. Recently, the PLCδ1 EF-hand domain was shown to bind to anionic phospholipids through a number of cationic residues, suggesting a potential mechanism for how PLCs might interact with their target membranes. Those critical cationic EF-hand residues in PLCδ1 are notably conserved in PLCζ. We investigated the potential role of these conserved cationic residues in PLCζ by generating a series of mutants that sequentially neutralized three positively charged residues (Lys-49, Lys-53, and Arg-57) within the mouse PLCζ EF-hand domain. Microinjection of the PLCζ EF-hand mutants into mouse eggs enabled their Ca2+ oscillation inducing activities to be compared with wild-type PLCζ. Furthermore, the mutant proteins were purified, and the in vitro PIP2 hydrolysis and binding properties were monitored. Our analysis suggests that PLCζ binds significantly to PIP2, but not to phosphatidic acid or phosphatidylserine, and that sequential reduction of the net positive charge within the first EF-hand domain of PLCζ significantly alters in vivo Ca2+ oscillation inducing activity and in vitro interaction with PIP2 without affecting its Ca2+ sensitivity. Our findings are consistent with theoretical predictions provided by a mathematical model that links oocyte Ca2+ frequency and the binding ability of different PLCζ mutants to PIP2. Moreover, a PLCζ mutant with mutations in the cationic residues within the first EF-hand domain and the XY linker region dramatically reduces the binding of PLCζ to PIP2, leading to complete abolishment of its Ca2+ oscillation inducing activity.
Collapse
Affiliation(s)
- Michail Nomikos
- From the Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom and
| | - Jessica R Sanders
- From the Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom and
| | - Dimitris Parthimos
- From the Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom and
| | - Luke Buntwal
- From the Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom and
| | - Brian L Calver
- From the Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom and
| | - Panagiotis Stamatiadis
- From the Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom and
| | - Adrian Smith
- From the Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom and
| | - Matthew Clue
- From the Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom and
| | - Zili Sideratou
- the National Center for Scientific Research "Demokritos," 15310 Aghia Paraskevi, Greece
| | - Karl Swann
- From the Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom and
| | - F Anthony Lai
- From the Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom and
| |
Collapse
|
31
|
Abstract
Egg activation is the first step of embryonic development and in mammals is triggered by a series of cytoplasmic calcium (Ca2+) oscillations. Sperm–egg fusion initiates these Ca2+ oscillations by introducing a sperm-specific protein factor into the egg cytoplasm. Substantial evidence indicates that this protein is a sperm-specific phospholipase C (PLC), termed PLC-zeta (PLCζ). PLCζ stimulates cytoplasmic Ca2+ oscillations matching those at fertilization triggering early embryonic development in several mammalian species. Structurally, PLCζ is comprised of four EF-hands, a C2 domain, and X and Y catalytic domains. PLCζ is an unusual PLC since it lacks a pleckstrin homology (PH) domain. It is also distinctive in that its X–Y linker is not involved in auto-inhibition of catalytic activity, but instead binds to phosphatidylinositol 4,5-bisphosphate (PIP2). Moreover, relative to other PLC isoforms, PLCζ possesses unique potency in stimulating Ca2+ oscillations in eggs, although it does not appear to bind to plasma membrane PIP2. In contrast, PLCζ appears to interact with intracellular vesicles in eggs that contain PIP2. I discuss the recent advances in our knowledge of the intriguing biochemical and physiological properties of sperm PLCζ and postulate potential roles for PLCζ in terms of clinical diagnosis and therapy for certain forms of male infertility.
Collapse
|
32
|
Kashir J, Nomikos M, Swann K, Lai FA. PLCζ or PAWP: revisiting the putative mammalian sperm factor that triggers egg activation and embryogenesis. ACTA ACUST UNITED AC 2015; 21:383-8. [DOI: 10.1093/molehr/gav009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 01/03/2023]
|
33
|
Nomikos M, Sanders JR, Theodoridou M, Kashir J, Matthews E, Nounesis G, Lai FA, Swann K. Sperm-specific post-acrosomal WW-domain binding protein (PAWP) does not cause Ca2+ release in mouse oocytes. Mol Hum Reprod 2014; 20:938-47. [PMID: 25057041 DOI: 10.1093/molehr/gau056] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mature mammalian oocytes undergo a prolonged series of cytoplasmic calcium (Ca(2+)) oscillations at fertilization that are the cause of oocyte activation. The Ca(2+) oscillations in mammalian oocytes are driven via inositol 1,4,5-trisphosphate (IP3) generation. Microinjection of the sperm-derived phospholipase C-zeta (PLCζ), which generates IP3, causes the same pattern of Ca(2+) oscillations as observed at mammalian fertilization and it is thought to be the physiological agent that triggers oocyte activation. However, another sperm-specific protein, 'post-acrosomal WW-domain binding protein' (PAWP), has also been reported to elicit activation when injected into mammalian oocytes, and to produce a Ca(2+) increase in frog oocytes. Here we have investigated whether PAWP can induce fertilization-like Ca(2+) oscillations in mouse oocytes. Recombinant mouse PAWP protein was found to be unable to hydrolyse phosphatidylinositol 4,5-bisphosphate in vitro and did not cause any detectable Ca(2+) release when microinjected into mouse oocytes. Microinjection with cRNA encoding either the untagged PAWP, or yellow fluorescent protein (YFP)-PAWP, or luciferase-PAWP fusion proteins all failed to trigger Ca(2+) increases in mouse oocytes. The lack of response in mouse oocytes was despite PAWP being robustly expressed at similar or higher concentrations than PLCζ, which successfully initiated Ca(2+) oscillations in every parallel control experiment. These data suggest that sperm-derived PAWP is not involved in triggering Ca(2+) oscillations at fertilization in mammalian oocytes.
Collapse
Affiliation(s)
- Michail Nomikos
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Jessica R Sanders
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Maria Theodoridou
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK National Center for Scientific Research 'Demokritos', 15310 Aghia Paraskevi, Greece
| | - Junaid Kashir
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Emily Matthews
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - George Nounesis
- National Center for Scientific Research 'Demokritos', 15310 Aghia Paraskevi, Greece
| | - F Anthony Lai
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Karl Swann
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
34
|
Nomikos M, Theodoridou M, Elgmati K, Parthimos D, Calver BL, Buntwal L, Nounesis G, Swann K, Lai FA. Human PLCζ exhibits superior fertilization potency over mouse PLCζ in triggering the Ca(2+) oscillations required for mammalian oocyte activation. Mol Hum Reprod 2014; 20:489-98. [PMID: 24478462 DOI: 10.1093/molehr/gau011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A sperm-specific phospholipase C-zeta (PLCζ) is believed to play an essential role in oocyte activation during mammalian fertilization. Sperm PLCζ has been shown to trigger a prolonged series of repetitive Ca(2+) transients or oscillations in oocytes that precede activation. This remarkable intracellular Ca(2+) signalling phenomenon is a distinctive characteristic observed during in vitro fertilization by sperm. Previous studies have notably observed an apparent differential ability of PLCζ from disparate mammalian species to trigger Ca(2+) oscillations in mouse oocytes. However, the molecular basis and confirmation of the apparent PLCζ species difference in activity remains to be provided. In the present study, we provide direct evidence for the superior effectiveness of human PLCζ relative to mouse PLCζ in generating Ca(2+) oscillations in mouse oocytes. In addition, we have designed and constructed a series of human/mouse PLCζ chimeras to enable study of the potential role of discrete PLCζ domains in conferring the enhanced Ca(2+) signalling potency of human PLCζ. Functional analysis of these human/mouse PLCζ domain chimeras suggests a novel role of the EF-hand domain in the species-specific differences in PLCζ activity. Our empirical observations are compatible with a basic mathematical model for the Ca(2+) dependence of generating cytoplasmic Ca(2+) oscillations in mammalian oocytes by sperm PLCζ.
Collapse
Affiliation(s)
- Michail Nomikos
- Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Maria Theodoridou
- Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK National Center for Scientific Research 'Demokritos', Aghia Paraskevi 15310, Greece
| | - Khalil Elgmati
- Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | - Brian L Calver
- Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Luke Buntwal
- Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - George Nounesis
- National Center for Scientific Research 'Demokritos', Aghia Paraskevi 15310, Greece
| | - Karl Swann
- Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - F Anthony Lai
- Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
35
|
PI-PLC: Phosphoinositide-Phospholipase C in Plant Signaling. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Neri QV, Lee B, Rosenwaks Z, Machaca K, Palermo GD. Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium 2013; 55:24-37. [PMID: 24290744 DOI: 10.1016/j.ceca.2013.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 01/21/2023]
Abstract
Since the establishment of in vitro fertilization, it became evident that almost half of the couples failed to achieve fertilization and this phenomenon was attributed to a male gamete dysfunction. The adoption of assisted fertilization techniques particularly ICSI has been able to alleviate male factor infertility by granting the consistent ability of a viable spermatozoon to activate an oocyte. Single sperm injection, by pinpointing the beginning of fertilization, has been an invaluable tool in clarifying the different aspects of early fertilization and syngamy. However, even with ICSI some couples fail to fertilize due to ooplasmic dysmaturity in relation to the achieved nuclear maturation marked by the extrusion of the first polar body. More uncommon are cases where the spermatozoa partially or completely lack the specific oocyte activating factor. In this work, we review the most relevant aspects of fertilization and its failure through assisted reproductive technologies. Attempts at diagnosing and treating clinical fertilization failure are described.
Collapse
Affiliation(s)
- Queenie V Neri
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bora Lee
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Doha, Qatar
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
37
|
Theodoridou M, Nomikos M, Parthimos D, Gonzalez-Garcia JR, Elgmati K, Calver BL, Sideratou Z, Nounesis G, Swann K, Lai FA. Chimeras of sperm PLCζ reveal disparate protein domain functions in the generation of intracellular Ca2+ oscillations in mammalian eggs at fertilization. Mol Hum Reprod 2013; 19:852-64. [PMID: 24152875 DOI: 10.1093/molehr/gat070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phospholipase C-zeta (PLCζ) is a sperm-specific protein believed to cause Ca(2+) oscillations and egg activation during mammalian fertilization. PLCζ is very similar to the somatic PLCδ1 isoform but is far more potent in mobilizing Ca(2+) in eggs. To investigate how discrete protein domains contribute to Ca(2+) release, we assessed the function of a series of PLCζ/PLCδ1 chimeras. We examined their ability to cause Ca(2+) oscillations in mouse eggs, enzymatic properties using in vitro phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and their binding to PIP2 and PI(3)P with a liposome interaction assay. Most chimeras hydrolyzed PIP2 with no major differences in Ca(2+) sensitivity and enzyme kinetics. Insertion of a PH domain or replacement of the PLCζ EF hands domain had no deleterious effect on Ca(2+) oscillations. In contrast, replacement of either XY-linker or C2 domain of PLCζ completely abolished Ca(2+) releasing activity. Notably, chimeras containing the PLCζ XY-linker bound to PIP2-containing liposomes, while chimeras containing the PLCζ C2 domain exhibited PI(3)P binding. Our data suggest that the EF hands are not solely responsible for the nanomolar Ca(2+) sensitivity of PLCζ and that membrane PIP2 binding involves the C2 domain and XY-linker of PLCζ. To investigate the relationship between PLC enzymatic properties and Ca(2+) oscillations in eggs, we have developed a mathematical model that incorporates Ca(2+)-dependent InsP3 generation by the PLC chimeras and their levels of intracellular expression. These numerical simulations can for the first time predict the empirical variability in onset and frequency of Ca(2+) oscillatory activity associated with specific PLC variants.
Collapse
Affiliation(s)
- Maria Theodoridou
- Institute of Molecular and Experimental Medicine, WHRI, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nomikos M, Kashir J, Swann K, Lai FA. Sperm PLCζ: from structure to Ca2+ oscillations, egg activation and therapeutic potential. FEBS Lett 2013; 587:3609-16. [PMID: 24157362 DOI: 10.1016/j.febslet.2013.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
Significant evidence now supports the assertion that cytosolic calcium oscillations during fertilization in mammalian eggs are mediated by a testis-specific phospholipase C (PLC), termed PLC-zeta (PLCζ) that is released into the egg following gamete fusion. Herein, we describe the current paradigm of PLCζ in this fundamental biological process, summarizing recent important advances in our knowledge of the biochemical and physiological properties of this enzyme. We describe the data suggesting that PLCζ has distinct features amongst PLCs enabling the hydrolysis of its substrate, phosphatidylinositol 4,5-bisphosphate (PIP2) at low Ca(2+) levels. PLCζ appears to be unique in its ability to target PIP2 that is present on intracellular vesicles. We also discuss evidence that PLCζ may be a significant factor in human fertility with potential therapeutic capacity.
Collapse
Affiliation(s)
- Michail Nomikos
- Institute of Molecular and Experimental Medicine, WHRI, Cardiff University School of Medicine, Heath Park, CF144XN Cardiff, UK.
| | | | | | | |
Collapse
|
39
|
Zhao JF, Chen HH, Ojcius DM, Zhao X, Sun D, Ge YM, Zheng LL, Lin X, Li LJ, Yan J. Identification of Leptospira interrogans phospholipase C as a novel virulence factor responsible for intracellular free calcium ion elevation during macrophage death. PLoS One 2013; 8:e75652. [PMID: 24124502 PMCID: PMC3790881 DOI: 10.1371/journal.pone.0075652] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/17/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leptospira-induced macrophage death has been confirmed to play a crucial role in pathogenesis of leptospirosis, a worldwide zoonotic infectious disease. Intracellular free Ca(2+) concentration ([Ca(2+)]i) elevation induced by infection can cause cell death, but [Ca(2+)]i changes and high [Ca(2+)]i-induced death of macrophages due to infection of Leptospira have not been previously reported. METHODOLOGY/PRINCIPAL FINDINGS We first used a Ca(2+)-specific fluorescence probe to confirm that the infection of L. interrogans strain Lai triggered a significant increase of [Ca(2+)]i in mouse J774A.1 or human THP-1 macrophages. Laser confocal microscopic examination showed that the [Ca(2+)]i elevation was caused by both extracellular Ca(2+) influx through the purinergic receptor, P2X7, and Ca(2+) release from the endoplasmic reticulum, as seen by suppression of [Ca(2+)]i elevation when receptor-gated calcium channels were blocked or P2X7 was depleted. The LB361 gene product of the spirochete exhibited phosphatidylinositol phospholipase C (L-PI-PLC) activity to hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2) into inositol-1,4,5-trisphosphate (IP3), which in turn induces intracellular Ca(2+) release from endoplasmic reticulum, with the Km of 199 µM and Kcat of 8.566E-5 S(-1). Secretion of L-PI-PLC from the spirochete into supernatants of leptospire-macrophage co-cultures and cytosol of infected macrophages was also observed by Western Blot assay. Lower [Ca(2+)]i elevation was induced by infection with a LB361-deficient leptospiral mutant, whereas transfection of the LB361 gene caused a mild increase in [Ca(2+)]i. Moreover, PI-PLCs (PI-PLC-β3 and PI-PLC-γ1) of the two macrophages were activated by phosphorylation during infection. Flow cytometric detection demonstrated that high [Ca(2+)]i increases induced apoptosis and necrosis of macrophages, while mild [Ca(2+)]i elevation only caused apoptosis. CONCLUSIONS/SIGNIFICANCE This study demonstrated that L. interrogans infection induced [Ca(2+)]i elevation through extracellular Ca(2+) influx and intracellular Ca(2+) release cause macrophage apoptosis and necrosis, and the LB361 gene product was shown to be a novel PI-PLC of L. interrogans responsible for the [Ca(2+)]i elevation.
Collapse
Affiliation(s)
- Jing-Fang Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Depatment of Clinical Laboratory, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, P.R. China
| | - Hong-Hu Chen
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - David M. Ojcius
- Health Sciences Research Institute and Department Molecular Cell Biology, University of California Merced, Merced, California, United States of America
| | - Xin Zhao
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Dexter Sun
- Department of Neurology and Neuroscience, New York Presbyterian Hospital and Hospital for Special Surgery, Cornell University Weill Medical College, New York, New York, United States of America
| | - Yu-Mei Ge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Lin-Li Zheng
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xu’ai Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jie Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
40
|
Amdani SN, Jones C, Coward K. Phospholipase C zeta (PLCζ): oocyte activation and clinical links to male factor infertility. Adv Biol Regul 2013; 53:292-308. [PMID: 23916605 DOI: 10.1016/j.jbior.2013.07.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 06/02/2023]
Abstract
Mounting scientific and clinical evidence supports the key role played by phospholipase C zeta (PLCζ), a sperm-specific protein, in the activation of oocytes following fertilisation. Lacking a pleckstrin homology domain, PLCζ remains the smallest known mammalian PLC and was first identified in 2002. Since then, PLCζ has been the target for a multitude of studies in both mammalian and non-mammalian species focused upon its fundamental biochemical activity and crucial role as the mediator of oocyte activation. The earliest event subsequent to gamete fusion is the onset of a series of intracellular calcium oscillations within the oocyte, which are known to modulate cortical granule exocytosis, release meiotic arrest, regulate gene expression, recruit maternal mRNA, and initiate embryogenesis. Collectively these processes are known as 'oocyte activation' and together, represent a fundamental mechanism for early embryonic development. Evidence suggests that these processes are initiated and controlled by calcium release from ooplasmic sources in response to PLCζ activity via the inositol-1,4,5-triphosphate (IP3) pathway. While the biochemical action of PLCζ has been extensively studied, especially in relation to the EF-hands, X-Y linker, and C2 domain, all of which play critical roles for in vivo activity, there are still key gaps in our knowledge, particularly in terms of regulation and interaction with other proteins within the oocyte. Moreover, increasing clinical evidence has revealed a strong correlation between certain types of male infertility and the aberrant expression, localisation, structure and function of PLCζ in human sperm, particularly in cases of recurrent intracytoplasmic sperm injection (ICSI) failure, globozoospermia, and oocyte activation deficiency (OAD). In addition, two heterozygous substitution mutations have been identified in the coding sequence of PLCζ in one particular patient causing disruption to the catalytic X and Y domains and resulting in infertility. Although, such cases can be treated via the use of artificial oocyte activators (AOAs) such as calcium ionophores, significant concern remains over the use of such chemical agents, largely due to the fact that calcium release manifests as a single transient, rather than a series of oscillations as observed during normal fertilisation. Current interest in PLCζ is thus to develop a series of prognostic, diagnostic and therapeutic approaches which could first identify male patients that are deficient in PLCζ and then rescue oocyte activation ability via assisted reproductive technology (ART) and a pure, functionally-active, recombinant human PLCζ protein. While significant progress has been made in such areas over recent years, there is a clear need to translate scientific findings to clinical settings in order to maximise successful outcome for patients.
Collapse
Affiliation(s)
- Siti Nornadhirah Amdani
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | | | | |
Collapse
|
41
|
Kashir J, Deguchi R, Jones C, Coward K, Stricker SA. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol Reprod Dev 2013; 80:787-815. [PMID: 23900730 DOI: 10.1002/mrd.22222] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 11/08/2022]
Abstract
Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals.
Collapse
Affiliation(s)
- Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
42
|
Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E. Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 2013; 96:144-57. [PMID: 23856562 DOI: 10.1016/j.biochi.2013.07.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/04/2013] [Indexed: 01/01/2023]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) cleaves, in a Ca(2+)-dependent manner, phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) into diacylglycerol (DAG) and inositol triphosphate (IP3). PI-PLCs are multidomain proteins that are structurally related to the PI-PLCζs, the simplest animal PI-PLCs. Like these animal counterparts, they are only composed of EF-hand, X/Y and C2 domains. However, plant PI-PLCs do not have a conventional EF-hand domain since they are often truncated, while some PI-PLCs have no EF-hand domain at all. Despite this simple structure, plant PI-PLCs are involved in many essential plant processes, either associated with development or in response to environmental stresses. The action of PI-PLCs relies on the mediators they produce. In plants, IP3 does not seem to be the sole active soluble molecule. Inositol pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) also transmit signals, thus highlighting the importance of coupling PI-PLC action with inositol-phosphate kinases and phosphatases. PI-PLCs also produce a lipid molecule, but plant PI-PLC pathways show a peculiarity in that the active lipid does not appear to be DAG but its phosphorylated form, phosphatidic acid (PA). Besides, PI-PLCs can also act by altering their substrate levels. Taken together, plant PI-PLCs show functional differences when compared to their animal counterparts. However, they act on similar general signalling pathways including calcium homeostasis and cell phosphoproteome. Several important questions remain unanswered. The cross-talk between the soluble and lipid mediators generated by plant PI-PLCs is not understood and how the coupling between PI-PLCs and inositol-kinases or DAG-kinases is carried out remains to be established.
Collapse
Affiliation(s)
- Igor Pokotylo
- Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
44
|
Nomikos M, Yu Y, Elgmati K, Theodoridou M, Campbell K, Vassilakopoulou V, Zikos C, Livaniou E, Amso N, Nounesis G, Swann K, Lai FA. Phospholipase Cζ rescues failed oocyte activation in a prototype of male factor infertility. Fertil Steril 2013; 99:76-85. [PMID: 22999959 PMCID: PMC3540263 DOI: 10.1016/j.fertnstert.2012.08.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine the effect of infertility-linked sperm phospholipase Cζ (PLCζ) mutations on their ability to trigger oocyte Ca(2+) oscillations and development, and also to evaluate the potential therapeutic utility of wild-type, recombinant PLCζ protein for rescuing failed oocyte activation and embryo development. DESIGN Test of a novel therapeutic approach to male factor infertility. SETTING University medical school research laboratory. PATIENT(S) Donated unfertilized human oocytes from follicle reduction. INTERVENTION(S) Microinjection of oocytes with recombinant human PLCζ protein or PLCζ cRNA and a Ca(2+)-sensitive fluorescent dye. MAIN OUTCOME MEASURE(S) Measurement of the efficacy of mutant and wild-type PLCζ-mediated enzyme activity, oocyte Ca(2+) oscillations, activation, and early embryo development. RESULT(S) In contrast to the wild-type protein, mutant forms of human sperm PLCζ display aberrant enzyme activity and a total failure to activate unfertilized oocytes. Subsequent microinjection of recombinant human PLCζ protein reliably triggers the characteristic pattern of cytoplasmic Ca(2+) oscillations at fertilization, which are required for normal oocyte activation and successful embryo development to the blastocyst stage. CONCLUSION(S) Dysfunctional sperm PLCζ cannot trigger oocyte activation and results in male factor infertility, so a potential therapeutic approach is oocyte microinjection of active, wild-type PLCζ protein. We have demonstrated that recombinant human PLCζ can phenotypically rescue failed activation in oocytes that express dysfunctional PLCζ, and that this intervention culminates in efficient blastocyst formation.
Collapse
Affiliation(s)
- Michail Nomikos
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom; National Center for Scientific Research "Demokritos," Aghia Paraskevi, Greece.
| | - Yuansong Yu
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Khalil Elgmati
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Maria Theodoridou
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom; National Center for Scientific Research "Demokritos," Aghia Paraskevi, Greece
| | - Karen Campbell
- IVF Wales, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | | | - Christos Zikos
- National Center for Scientific Research "Demokritos," Aghia Paraskevi, Greece
| | - Evangelia Livaniou
- National Center for Scientific Research "Demokritos," Aghia Paraskevi, Greece
| | - Nazar Amso
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - George Nounesis
- National Center for Scientific Research "Demokritos," Aghia Paraskevi, Greece
| | - Karl Swann
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - F Anthony Lai
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.
| |
Collapse
|
45
|
Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: Convergences and divergences among eukaryotic kingdoms. Prog Lipid Res 2013; 52:1-14. [DOI: 10.1016/j.plipres.2012.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022]
|
46
|
Swann K, Lai FA. PLC? and the initiation of Ca2+ oscillations in fertilizing mammalian eggs. Cell Calcium 2013; 53:55-62. [DOI: 10.1016/j.ceca.2012.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
|
47
|
Ramadan WM, Kashir J, Jones C, Coward K. Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology. Cell Commun Signal 2012; 10:12. [PMID: 22591604 PMCID: PMC3393615 DOI: 10.1186/1478-811x-10-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/16/2012] [Indexed: 12/18/2022] Open
Abstract
Infertility affects one in seven couples globally and has recently been classified as a disease by the World Health Organisation (WHO). While in-vitro fertilisation (IVF) offers effective treatment for many infertile couples, cases exhibiting severe male infertility (19-57%) often remain difficult, if not impossible to treat. In such cases, intracytoplasmic sperm injection (ICSI), a technique in which a single sperm is microinjected into the oocyte, is implemented. However, 1-5% of ICSI cycles still fail to fertilise, affecting over 1000 couples per year in the UK alone. Pregnancy and delivery rates for IVF and ICSI rarely exceed 30% and 23% respectively. It is therefore imperative that Assisted Reproductive Technology (ART) protocols are constantly modified by associated research programmes, in order to provide patients with the best chances of conception. Prior to fertilisation, mature oocytes are arrested in the metaphase stage of the second meiotic division (MII), which must be alleviated to allow the cell cycle, and subsequent embryogenesis, to proceed. Alleviation occurs through a series of concurrent events, collectively termed 'oocyte activation'. In mammals, oocytes are activated by a series of intracellular calcium (Ca2+) oscillations following gamete fusion. Recent evidence implicates a sperm-specific phospholipase C, PLCzeta (PLCζ), introduced into the oocyte following membrane fusion as the factor responsible. This review summarises our current understanding of oocyte activation failure in human males, and describes recent advances in our knowledge linking certain cases of male infertility with defects in PLCζ expression and activity. Systematic literature searches were performed using PubMed and the ISI-Web of Knowledge. Databases compiled by the United Nations and World Health Organisation databases (UNWHO), and the Human Fertilization and Embryology Authority (HFEA) were also scrutinised. It is clear that PLCζ plays a fundamental role in the activation of mammalian oocytes, and that genetic, molecular, or biochemical perturbation of this key enzyme is strongly linked to human infertility where oocyte activation is deficient. Consequently, there is significant scope for our understanding of PLCζ to be translated to the ART clinic, both as a novel therapeutic agent with which to rescue oocyte activation deficiency (OAD), or as a prognostic/diagnostic biomarker of oocyte activation ability in target sperm samples.
Collapse
Affiliation(s)
- Walaa M Ramadan
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, OX3, 9DU, UK
| | - Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, OX3, 9DU, UK
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, OX3, 9DU, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, OX3, 9DU, UK
| |
Collapse
|
48
|
Awasthi M, Batra J, Kateriya S. Disulphide bridges of phospholipase C of Chlamydomonas reinhardtii modulates lipid interaction and dimer stability. PLoS One 2012; 7:e39258. [PMID: 22737232 PMCID: PMC3380823 DOI: 10.1371/journal.pone.0039258] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/22/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phospholipase C (PLC) is an enzyme that plays pivotal role in a number of signaling cascades. These are active in the plasma membrane and triggers cellular responses by catalyzing the hydrolysis of membrane phospholipids and thereby generating the secondary messengers. Phosphatidylinositol-PLC (PI-PLC) specifically interacts with phosphoinositide and/or phosphoinositol and catalyzes specific cleavage of sn-3- phosphodiester bond. Several isoforms of PLC are known to form and function as dimer but very little is known about the molecular basis of the dimerization and its importance in the lipid interaction. PRINCIPAL FINDINGS We herein report that, the disruption of disulphide bond of a novel PI-specific PLC of C. reinhardtii (CrPLC) can modulate its interaction affinity with a set of phospholipids and also the stability of its dimer. CrPLC was found to form a mixture of higher oligomeric states with monomer and dimer as major species. Dimer adduct of CrPLC disappeared in the presence of DTT, which suggested the involvement of disulphide bond(s) in CrPLC oligomerization. Dimer-monomer equilibrium studies with the isolated fractions of CrPLC monomer and dimer supported the involvement of covalent forces in the dimerization of CrPLC. A disulphide bridge was found to be responsible for the dimerization and Cys7 seems to be involved in the formation of the disulphide bond. This crucial disulphide bond also modulated the lipid affinity of CrPLC. Oligomers of CrPLC were also captured in in vivo condition. CrPLC was mainly found to be localized in the plasma membrane of the cell. The cell surface localization of CrPLC may have significant implication in the downstream regulatory function of CrPLC. SIGNIFICANCE This study helps in establishing the role of CrPLC (or similar proteins) in the quaternary structure of the molecule its affinities during lipid interactions.
Collapse
Affiliation(s)
- Mayanka Awasthi
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, India
| | - Jyoti Batra
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, India
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
49
|
Swann K, Windsor S, Campbell K, Elgmati K, Nomikos M, Zernicka-Goetz M, Amso N, Lai FA, Thomas A, Graham C. Phospholipase C-ζ-induced Ca2+ oscillations cause coincident cytoplasmic movements in human oocytes that failed to fertilize after intracytoplasmic sperm injection. Fertil Steril 2012; 97:742-7. [PMID: 22217962 PMCID: PMC3334266 DOI: 10.1016/j.fertnstert.2011.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 11/29/2022]
Abstract
Objective To evaluate the imaging of cytoplasmic movements in human oocytes as a potential method to monitor the pattern of Ca2+ oscillations during activation. Design Test of a laboratory technique. Setting University medical school research laboratory. Patient(s) Donated unfertilized human oocytes from intracytoplasmic sperm injection (ICSI) cycles. Intervention(s) Microinjection of oocytes with phospholipase C (PLC) zeta (ζ) cRNA and a Ca2+-sensitive fluorescent dye. Main Outcome Measure(s) Simultaneous detection of oocyte cytoplasmic movements using particle image velocimetry (PIV) and of Ca2+ oscillations using a Ca2+-sensitive fluorescent dye. Result(s) Microinjection of PLCζ cRNA into human oocytes that had failed to fertilize after ICSI resulted in the appearance of prolonged Ca2+ oscillations. Each transient Ca2+ concentration change was accompanied by a small coordinated movement of the cytoplasm that could be detected using PIV analysis. Conclusion(s) The occurrence and frequency of cytoplasmic Ca2+ oscillations, a critical parameter in activating human zygotes, can be monitored by PIV analysis of cytoplasmic movements. This simple method provides a novel, noninvasive approach to determine in real time the occurrence and frequency of Ca2+ oscillations in human zygotes.
Collapse
Affiliation(s)
- Karl Swann
- School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yu Y, Nomikos M, Theodoridou M, Nounesis G, Lai FA, Swann K. PLCζ causes Ca(2+) oscillations in mouse eggs by targeting intracellular and not plasma membrane PI(4,5)P(2). Mol Biol Cell 2012; 23:371-80. [PMID: 22114355 PMCID: PMC3258180 DOI: 10.1091/mbc.e11-08-0687] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/31/2011] [Accepted: 11/16/2011] [Indexed: 01/10/2023] Open
Abstract
Sperm-specific phospholipase C ζ (PLCζ) activates embryo development by triggering intracellular Ca(2+) oscillations in mammalian eggs indistinguishable from those at fertilization. Somatic PLC isozymes generate inositol 1,4,5-trisphophate-mediated Ca(2+) release by hydrolyzing phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in the plasma membrane. Here we examine the subcellular source of PI(4,5)P(2) targeted by sperm PLCζ in mouse eggs. By monitoring egg plasma membrane PI(4,5)P(2) with a green fluorescent protein-tagged PH domain, we show that PLCζ effects minimal loss of PI(4,5)P(2) from the oolemma in contrast to control PLCδ1, despite the much higher potency of PLCζ in eliciting Ca(2+) oscillations. Specific depletion of this PI(4,5)P(2) pool by plasma membrane targeting of an inositol polyphosphate-5-phosphatase (Inp54p) blocked PLCδ1-mediated Ca(2+) oscillations but not those stimulated by PLCζ or sperm. Immunolocalization of PI(4,5)P(2), PLCζ, and catalytically inactive PLCζ (ciPLCζ) revealed their colocalization to distinct vesicular structures inside the egg cortex. These vesicles displayed decreased PI(4,5)P(2) after PLCζ injection. Targeted depletion of vesicular PI(4,5)P(2) by expression of ciPLCζ-fused Inp54p inhibited the Ca(2+) oscillations triggered by PLCζ or sperm but failed to affect those mediated by PLCδ1. In contrast to somatic PLCs, our data indicate that sperm PLCζ induces Ca(2+) mobilization by hydrolyzing internal PI(4,5)P(2) stores, suggesting that the mechanism of mammalian fertilization comprises a novel phosphoinositide signaling pathway.
Collapse
Affiliation(s)
- Yuansong Yu
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Michail Nomikos
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- National Center for Scientific Research Demokritos, 15310 Aghia Paraskevi, Greece
| | - Maria Theodoridou
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- National Center for Scientific Research Demokritos, 15310 Aghia Paraskevi, Greece
| | - George Nounesis
- National Center for Scientific Research Demokritos, 15310 Aghia Paraskevi, Greece
| | - F. Anthony Lai
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Karl Swann
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|