1
|
Xiao H, Li M, Zhong Y, Patel A, Xu R, Zhang C, Athy TW, Fang S, Xu T, Du S. Hsf1 is essential for proteotoxic stress response in smyd1b-deficient embryos and fish survival under heat shock. FASEB J 2025; 39:e70283. [PMID: 39760245 PMCID: PMC11740226 DOI: 10.1096/fj.202401875r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Molecular chaperones play critical roles in post-translational maintenance in protein homeostasis. Previous studies have shown that loss of Smyd1b function results in defective myofibril organization and dramatic upregulation of heat shock protein gene (hsp) expression in muscle cells of zebrafish embryos. To investigate the molecular mechanisms and functional importance of this stress response, we characterized changes of gene expression in smyd1b knockdown and knockout embryos using RNA-seq. The results showed that the top upregulated genes encode mostly cytosolic heat shock proteins. Co-IP assay revealed that the upregulated cytosolic Hsp70s associate with myosin chaperone UNC45b which is critical for myosin protein folding and sarcomere assembly. Strikingly, several hsp70 genes also display muscle-specific upregulation in response to heat shock-induced stress in zebrafish embryos. To investigate the regulation of hsp gene upregulation and its functional significance in muscle cells, we generated heat shock factor 1 (hsf-/-) knockout zebrafish mutants and analyzed hsp gene expression and muscle phenotype in the smyd1b-/-single and hsf1-/-;smyd1b-/- double-mutant embryos. The results showed that knockout of hsf1 blocked the hsp gene upregulation and worsened the muscle defects in smyd1b-/- mutant embryos. Moreover, we demonstrated that Hsf1 is essential for fish survival under heat shock (HS) conditions. Together, these studies uncover a correlation between Smyd1b deficiency and the Hsf1-activated heat shock response (HSR) in regulating muscle protein homeostasis and myofibril assembly and demonstrate that the Hsf1-mediated hsp gene upregulation is vital for the survival of zebrafish larvae under thermal stress conditions.
Collapse
Affiliation(s)
- Huanhuan Xiao
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Mofei Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
- Tianjin Normal University, Tianjin, China
| | - Yongwang Zhong
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Avani Patel
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Rui Xu
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, United States
| | - Thomas W. Athy
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Shengyun Fang
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Tianjun Xu
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
2
|
Prill K, Windsor Reid P, Pilgrim D. Heart Morphogenesis Requires Smyd1b for Proper Incorporation of the Second Heart Field in Zebrafish. Genes (Basel) 2025; 16:52. [PMID: 39858599 PMCID: PMC11764850 DOI: 10.3390/genes16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Abnormal development of the second heart field significantly contributes to congenital heart defects, often caused by disruptions in tightly regulated molecular pathways. Smyd1, a gene encoding a protein with SET and MYND domains, is essential for heart and skeletal muscle development. Mutations in SMYD1 result in severe cardiac malformations and misregulation of Hand2 expression in mammals. This study examines the role of Smyd1b in zebrafish cardiac morphogenesis to elucidate its function and the mechanisms underlying congenital heart defects. Methods: Smyd1b (still heart) mutant embryos were analyzed for cardiac defects, and changes in gene expression related to heart development using live imaging, in situ hybridization, quantitative PCR and immunofluorescent comparisons and analysis. Results: Smyd1b mutants displayed severe cardiac defects, including failure to loop, severe edema, and an expansion of cardiac jelly linked to increased has2 expression. Additionally, the expression of key cardiac transcription factors, such as gata4, gata5, and nkx2.5, was notably reduced, indicating disrupted transcriptional regulation. The migration of cardiac progenitors was impaired and the absence of Islet-1-positive cells in the mutant hearts suggests a failed contribution of SHF progenitor cells. Conclusions: These findings underscore the essential role of Smyd1b in regulating cardiac morphogenesis and the development of the second heart field. This study highlights the potential of Smyd1b as a key factor in understanding the genetic and molecular mechanisms underlying congenital heart defects and cardiac development.
Collapse
Affiliation(s)
- Kendal Prill
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (K.P.); (P.W.R.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Pamela Windsor Reid
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (K.P.); (P.W.R.)
- Department of Biological Science, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Dave Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (K.P.); (P.W.R.)
| |
Collapse
|
3
|
Xu R, Li S, Chien CJ, Zhong Y, Xiao H, Fang S, Du S. Expression of Smyd1b_tv1 by Alternative Splicing in Cardiac Muscle is Critical for Sarcomere Organization in Cardiomyocytes and Heart Function. Mol Cell Biol 2024; 44:543-561. [PMID: 39320962 PMCID: PMC11583600 DOI: 10.1080/10985549.2024.2402660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 09/27/2024] Open
Abstract
Smyd1, a member of the Smyd lysine methyltransferase family, plays an important role in myofibrillogenesis of skeletal and cardiac muscles. Loss of Smyd1b (a Smyd1 ortholog) function in zebrafish results in embryonic death from heart malfunction. smyd1b encodes two isoforms, Smyd1b_tv1 and Smyd1b_tv2, differing by 13 amino acids due to alternative splicing. While smyd1 alternative splicing is evolutionarily conserved, the isoform-specific expression and function of Smyd1b_tv1 and Smyd1b_tv2 remained unknown. Here we analyzed their expression and function in skeletal and cardiac muscles. Our analysis revealed expression of smyd1b_tv1 predominately in cardiac and smyd1b_tv2 in skeletal muscles. Using zebrafish models expressing only one isoform, we demonstrated that Smyd1b_tv1 is essential for cardiomyocyte differentiation and fish viability, whereas Smyd1b_tv2 is dispensable for heart development and fish survival. Cellular and biochemical analyses revealed that Smyd1b_tv1 differs from Smyd1b_tv2 in protein localization and binding with myosin chaperones. While Smyd1b_tv2 diffused in the cytosol of muscle cells, Smyd1b_tv1 was localized to M-lines and essential for sarcomere organization in cardiomyocytes. Co-IP analysis revealed a stronger binding of Smyd1b_tv1 with chaperones and cochaperones compared with Smyd1b_tv2. Collectively, these findings highlight the nonequivalence of Smyd1b isoforms in cardiomyocyte differentiation, emphasizing the critical role of Smyd1b_tv1 in cardiac function.
Collapse
Affiliation(s)
- Rui Xu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Siping Li
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Chien-Ju Chien
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yongwang Zhong
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Huanhuan Xiao
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shengyun Fang
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Zheng C, Zhong Y, Zhang P, Guo Q, Li F, Duan Y. Dynamic transcriptome profiles of skeletal muscle growth and development in Shaziling and Yorkshire pigs using RNA-sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7301-7314. [PMID: 38647104 DOI: 10.1002/jsfa.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND We previously demonstrated that Shaziling and Yorkshire pigs differ in growth rate and meat quality. However, the molecular mechanisms responsible for such phenotypic differences remain unclear. In the present study, we performed a transcriptomic analysis of 36 longissimus dorsi (LM) and 36 soleus (SM) muscle samples from Shaziling and Yorkshire pigs at six postnatal stages (30, 60, 90, 150, 210 and 300 days) to explore the differences in postnatal skeletal muscle of Shaziling and Yorkshire pigs. RESULTS Muscle morphological changes and the number of differentially expressed genes indicated the two stages of 60-90 days and 150-210 days were critical for the muscle growth and development in Shaziling pigs. Genes such as FLNC, COL1A1, NRAP, SMYD1, TNNI3, CRYAB and PDLIM3 played vital roles in the muscle growth, and genes such as CCDC71L, LPIN1, CPT1A, UCP3, NR4A3 and PDK4 played dominant roles in the lipid metabolism. Additionally, in contrast to the LM, the percentage of slow-twitch muscle fibers in the SM of both breeds consistently decreased from 30 to 150 days of age, but there was a significant rebound at 210 days of age. However, the percentage of slow-twitch muscle fibers in the SM of Shaziling pigs was higher than that in Yorkshire pigs, which may be associated with the calcium signaling pathway and the PPARβ/δ signaling pathway. CONCLUSION The present study detected two critical periods and many functional genes for the muscle growth and development of Shaziling pigs, and showed differences in muscle fiber characteristics between Shaziling and Yorkshire pigs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yinzhao Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Liang Y, Wei S, Peng X, Feng Q, Li L, Liang D, Wu H, Zhang X, Huang C, Lin Y. Identification of differentially expressed genes, pathways, and immune infiltration in diabetes. Clinics (Sao Paulo) 2024; 79:100436. [PMID: 39096856 PMCID: PMC11345339 DOI: 10.1016/j.clinsp.2024.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 08/05/2024] Open
Abstract
This study aimed to perform exhaustive bioinformatic analysis by using GSE29221 micro-array maps obtained from healthy controls and Type 2 Diabetes (T2DM) patients. Raw data are downloaded from the Gene Expression Omnibus database and processed by the limma package in R software to identify Differentially Expressed Genes (DEGs). Gene ontology functional analysis and Kyoto Gene Encyclopedia and Genome Pathway analysis are performed to determine the biological functions and pathways of DEGs. A protein interaction network is constructed using the STRING database and Cytoscape software to identify key genes. Finally, immune infiltration analysis is performed using the Cibersort method. This study has implications for understanding the underlying molecular mechanism of T2DM and provides potential targets for further research.
Collapse
Affiliation(s)
- Ying Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - ShuXiang Wei
- Department of Endocrinology, Guangdong Tongjiang Hospital, Foshan City, Guangdong Province, China
| | - Xing Peng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - QiLing Feng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - LingLing Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - DieFei Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - HongShi Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - XiaoYun Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - ChuLin Huang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - YongQing Lin
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
6
|
Schmidt L, Saynisch M, Hoegsbjerg C, Schmidt A, Mackey A, Lackmann JW, Müller S, Koch M, Brachvogel B, Kjaer M, Antczak P, Krüger M. Spatial proteomics of skeletal muscle using thin cryosections reveals metabolic adaptation at the muscle-tendon transition zone. Cell Rep 2024; 43:114374. [PMID: 38900641 DOI: 10.1016/j.celrep.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Morphological studies of skeletal muscle tissue provide insights into the architecture of muscle fibers, the surrounding cells, and the extracellular matrix (ECM). However, a spatial proteomics analysis of the skeletal muscle including the muscle-tendon transition zone is lacking. Here, we prepare cryotome muscle sections of the mouse soleus muscle and measure each slice using short liquid chromatography-mass spectrometry (LC-MS) gradients. We generate 3,000 high-resolution protein profiles that serve as the basis for a network analysis to reveal the complex architecture of the muscle-tendon junction. Among the protein profiles that increase from muscle to tendon, we find proteins related to neuronal activity, fatty acid biosynthesis, and the renin-angiotensin system (RAS). Blocking the RAS in cultured mouse tenocytes using losartan reduces the ECM synthesis. Overall, our analysis of thin cryotome sections provides a spatial proteome of skeletal muscle and reveals that the RAS acts as an additional regulator of the matrix within muscle-tendon junctions.
Collapse
Affiliation(s)
- Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Michael Saynisch
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Christian Hoegsbjerg
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Part of IOC Research Center Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Abigail Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Part of IOC Research Center Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan-Wilm Lackmann
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Stefan Müller
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Part of IOC Research Center Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philipp Antczak
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
7
|
Berkholz J, Schmitt A, Fragasso A, Schmid AC, Munz B. Smyd1: Implications for novel approaches in rhabdomyosarcoma therapy. Exp Cell Res 2024; 434:113863. [PMID: 38097153 DOI: 10.1016/j.yexcr.2023.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Rhabdomyosarcoma (RMS), a tumor that consists of poorly differentiated skeletal muscle cells, is the most common soft-tissue sarcoma in children. Despite considerable progress within the last decades, therapeutic options are still limited, warranting the need for novel approaches. Recent data suggest deregulation of the Smyd1 protein, a sumoylation target as well as H3K4me2/3 methyltransferase and transcriptional regulator in myogenesis, and its binding partner skNAC, in RMS cells. Here, we show that despite the fact that most RMS cells express at least low levels of Smyd1 and skNAC, failure to upregulate expression of these genes in reaction to differentiation-promoting signals can always be observed. While overexpression of the Smyd1 gene enhances many aspects of RMS cell differentiation and inhibits proliferation rate and metastatic potential of these cells, functional integrity of the putative Smyd1 sumoylation motif and its SET domain, the latter being crucial for HMT activity, appear to be prerequisites for most of these effects. Based on these findings, we explored the potential for novel RMS therapeutic strategies, employing small-molecule compounds to enhance Smyd1 activity. In particular, we tested manipulation of (a) Smyd1 sumoylation, (b) stability of H3K4me2/3 marks, and (c) calpain activity, with calpains being important targets of Smyd1 in myogenesis. We found that specifically the last strategy might represent a promising approach, given that suitable small-molecule compounds will be available for clinical use in the future.
Collapse
Affiliation(s)
- Janine Berkholz
- Charité - University Medicine Berlin, Institute of Physiology, Charitéplatz 1, D-10117, Berlin, Germany
| | - Angelika Schmitt
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany
| | - Annunziata Fragasso
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany
| | - Anna-Celina Schmid
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany
| | - Barbara Munz
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany; Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, D-72074 / D-72076, Tübingen, Germany.
| |
Collapse
|
8
|
Tang J, Wu C, Xu Y, Yang B, Xi Y, Cai M, Tian Z. Resistance training up-regulates Smyd1 expression and inhibits oxidative stress and endoplasmic reticulum stress in the heart of middle-aged mice. Free Radic Biol Med 2024; 210:304-317. [PMID: 38042222 DOI: 10.1016/j.freeradbiomed.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Persistent oxidative stress and endoplasmic reticulum (ER) stress are the primary mechanisms of age-related cardiovascular diseases. Although exercise training is viewed as an effective anti-aging approach, further exploration is needed to identify the mechanisms and functional targets. In this study, the impact of resistance training (RT) on the expression of Smyd1, the levels of reactive oxygen species (ROS) and the expression of ER stress-related protein in the hearts of mice of different ages were assessed. In addition, the role of Smyd1 in the aging-induced oxidative stress and ER stress were evaluated in d-galactose (D-gal)-treated H9C2 cells. We demonstrated that RT in middle age increased the expression of Smyd1 and restricted heart aging-induced ER stress. Overexpression of Smyd1 restrained oxidative stress and ER stress in D-gal-treated H9C2 cells, while the inhibition of Nrf2 and Smyd1 escalated ER stress. These findings demonstrate that Smyd1 has significant impact in regulating age-related ER stress. RT in middle age can up-regulates Smyd1 expression and inhibits oxidative stress and ER stress in the heart.
Collapse
Affiliation(s)
- Jie Tang
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Chenyang Wu
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Yuxiang Xu
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Boran Yang
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Yue Xi
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Mengxin Cai
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, PR China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, PR China
| |
Collapse
|
9
|
Cordeiro-Spinetti E, Rothbart SB. Lysine methylation signaling in skeletal muscle biology: from myogenesis to clinical insights. Biochem J 2023; 480:1969-1986. [PMID: 38054592 DOI: 10.1042/bcj20230223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Lysine methylation signaling is well studied for its key roles in the regulation of transcription states through modifications on histone proteins. While histone lysine methylation has been extensively studied, recent discoveries of lysine methylation on thousands of non-histone proteins has broadened our appreciation for this small chemical modification in the regulation of protein function. In this review, we highlight the significance of histone and non-histone lysine methylation signaling in skeletal muscle biology, spanning development, maintenance, regeneration, and disease progression. Furthermore, we discuss potential future implications for its roles in skeletal muscle biology as well as clinical applications for the treatment of skeletal muscle-related diseases.
Collapse
Affiliation(s)
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan 49503, U.S.A
| |
Collapse
|
10
|
Álvarez S, Mullen AM, Álvarez C, Hamill RM, O'Neill E, Gagaoua M. Impact of sampling location and aging on the Longissimus thoracis et lumborum muscle proteome of dry-aged beef. Meat Sci 2023; 205:109315. [PMID: 37625354 DOI: 10.1016/j.meatsci.2023.109315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
This study aimed to explore the differences in the proteome and molecular pathways between two sampling locations (external, internal) of bovine Longissimus thoracis et lumborum (LTL) muscles at 0, 21, and 28 days of dry-aging (i.e. 3, 24, and 31 days post-mortem). It further assessed the impact of post-mortem aging on the meat proteome changes and the biological processes at interplay. Proteins related to defence response to bacterium and regulation of viral entry into host cell were identified to be more abundant on the external location before dry-aging, which may be associated to the oxidative conditions and microbial activity to which post-mortem muscle is exposed during dressing, chilling, and/or quartering of the carcasses. This highlights the relevance of sampling from interior tissues when searching for meat quality biomarkers. As dry-aging progressed, the meat proteome and related biological processes changed differently between sampling locations; proteins related to cell-cell adhesion and ATP metabolic processes pathways were revealed in the external location at 21 and 28 days, respectively. On the other hand, the impact of aging on the proteome of the interior meat samples, evidenced that muscle contraction and structure together with energy metabolism were the major pathways driving dry-aging. Additionally, aging impacted other pathways in the interior tissues, such as regulation of calcium import, neutrophil activation, and regeneration. Overall, the differences in the proteome allowed discriminating the three dry-aging times, regardless of the sampling location. Several proteins were proposed for validation as robust biomarkers to monitor the aging process (tenderization) of dry-aged beef: TTN, GRM4, EEF1A1, LDB3, CILP2, TNNT3, GAPDH, SERPINI1, and OMD.
Collapse
Affiliation(s)
- Sara Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland; School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | - Anne Maria Mullen
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Carlos Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Ruth M Hamill
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Eileen O'Neill
- School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | | |
Collapse
|
11
|
Li F, Xu M, Miao J, Hu N, Wang Y, Wang L. Down-regulated Smyd1 participated in the inhibition of myoblast differentiation induced by cigarette smoke extract. Toxicol Lett 2023; 383:S0378-4274(23)00211-4. [PMID: 37385529 DOI: 10.1016/j.toxlet.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The histone methyltransferase Smyd1 is essential for muscle development; however, its role in smoking-induced skeletal muscle atrophy and dysfunction has not been investigated thus far. In this study, Smyd1 was overexpressed or knocked down in C2C12 myoblasts by an adenovirus vector and cultured in differentiation medium containing 5% cigarette smoke extract (CSE) for 4 days. CSE exposure resulted in inhibition of C2C12 cell differentiation and downregulation of Smyd1 expression, whereas Smyd1 overexpression reduced the degree of inhibition of myotube differentiation caused by CSE exposure. CSE exposure activated P2RX7-mediated apoptosis and pyroptosis, caused increased intracellular reactive oxygen species (ROS) levels, and impaired mitochondrial biogenesis and increased protein degradation by downregulating PGC1α, whereas Smyd1 overexpression partially restored the altered protein levels caused by CSE exposure. Smyd1 knockdown alone produced a phenotype similar to CSE exposure, and Smyd1 knockdown during CSE exposure aggravated the degree of inhibition of myotube differentiation and the degree of activation of P2RX7. CSE exposure suppressed H3K4me2 expression, and chromatin immunoprecipitation confirmed the transcriptional regulation of P2rx7 by H3K4me2 modification. Our findings suggest that CSE exposure mediates C2C12 cell apoptosis and pyroptosis through the Smyd1-H3K4me2-P2RX7 axis, and inhibits PGC1α expression to impair mitochondrial biosynthesis and increase protein degradation by inhibiting Smyd1 expression, ultimately leading to abnormal C2C12 myoblasts differentiation and impaired myotube formation.
Collapse
Affiliation(s)
- Fang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province
| | - Mengting Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province
| | - Jianing Miao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province
| | - Nengyin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| | - Lili Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province.
| |
Collapse
|
12
|
Szulik MW, Reyes-Múgica M, Marker DF, Gomez AM, Zinn MD, Walsh LK, Ochoa JP, Franklin S, Ghaloul-Gonzalez L. Identification of Two Homozygous Variants in MYBPC3 and SMYD1 Genes Associated with Severe Infantile Cardiomyopathy. Genes (Basel) 2023; 14:659. [PMID: 36980931 PMCID: PMC10048717 DOI: 10.3390/genes14030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Mutations in cardiac genes are one of the primary causes of infantile cardiomyopathy. In this study, we report the genetic findings of two siblings carrying variations in the MYBPC3 and SMYD1 genes. The first patient is a female proband exhibiting hypertrophic cardiomyopathy (HCM) and biventricular heart failure carrying a truncating homozygous MYBPC3 variant c.1224-52G>A (IVS13-52G>A) and a novel homozygous variant (c.302A>G; p.Asn101Ser) in the SMYD1 gene. The second patient, the proband's sibling, is a male infant diagnosed with hypertrophic cardiomyopathy and carries the same homozygous MYBPC3 variant. While this specific MYBPC3 variant (c.1224-52G>A, IVS13-52G>A) has been previously reported to be associated with adult-onset hypertrophic cardiomyopathy, this is the first report linking it to infantile cardiomyopathy. In addition, this work describes, for the first time, a novel SMYD1 variant (c.302A>G; p.Asn101Ser) that has never been reported. We performed a histopathological evaluation of tissues collected from both probands and show that these variants lead to myofibrillar disarray, reduced and irregular mitochondrial cristae and cardiac fibrosis. Together, these results provide critical insight into the molecular functionality of these genes in human cardiac physiology.
Collapse
Affiliation(s)
- Marta W. Szulik
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Miguel Reyes-Múgica
- Division of Pediatric Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Daniel F. Marker
- Division of Neuropathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ana M. Gomez
- Division of Pediatric Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Matthew D. Zinn
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Leslie K. Walsh
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Juan Pablo Ochoa
- Biomedical Research Institute of A Coruña, 15006 A Coruña, Spain
- Cardiovascular Genetics, Health In Code, 15008 A Coruña, Spain
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lina Ghaloul-Gonzalez
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
13
|
Padilla A, Manganaro JF, Huesgen L, Roess DA, Brown MA, Crans DC. Targeting Epigenetic Changes Mediated by Members of the SMYD Family of Lysine Methyltransferases. Molecules 2023; 28:molecules28042000. [PMID: 36838987 PMCID: PMC9967872 DOI: 10.3390/molecules28042000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.
Collapse
Affiliation(s)
- Alyssa Padilla
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - John F. Manganaro
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Lydia Huesgen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Mark A. Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
- Graduate Degree Program in Ecology, Department of Ethnic Studies, Global Health and Health Disparities, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523-1612, USA
- Correspondence: (M.A.B.); (D.C.C.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Correspondence: (M.A.B.); (D.C.C.)
| |
Collapse
|
14
|
Zare A, Salehpour A, Khoradmehr A, Bakhshalizadeh S, Najafzadeh V, Almasi-Turk S, Mahdipour M, Shirazi R, Tamadon A. Epigenetic Modification Factors and microRNAs Network Associated with Differentiation of Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Cardiomyocytes: A Review. Life (Basel) 2023; 13:life13020569. [PMID: 36836926 PMCID: PMC9965891 DOI: 10.3390/life13020569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 02/22/2023] Open
Abstract
More research is being conducted on myocardial cell treatments utilizing stem cell lines that can develop into cardiomyocytes. All of the forms of cardiac illnesses have shown to be quite amenable to treatments using embryonic (ESCs) and induced pluripotent stem cells (iPSCs). In the present study, we reviewed the differentiation of these cell types into cardiomyocytes from an epigenetic standpoint. We also provided a miRNA network that is devoted to the epigenetic commitment of stem cells toward cardiomyocyte cells and related diseases, such as congenital heart defects, comprehensively. Histone acetylation, methylation, DNA alterations, N6-methyladenosine (m6a) RNA methylation, and cardiac mitochondrial mutations are explored as potential tools for precise stem cell differentiation.
Collapse
Affiliation(s)
- Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Sahar Almasi-Turk
- Department of Basic Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 7135644144, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| |
Collapse
|
15
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
16
|
Protein quality control systems in hypertrophic cardiomyopathy: pathogenesis and treatment potential. J Geriatr Cardiol 2022; 19:780-784. [PMID: 36338284 PMCID: PMC9618844 DOI: 10.11909/j.issn.1671-5411.2022.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
17
|
Müller M, Eghbalian R, Boeckel JN, Frese KS, Haas J, Kayvanpour E, Sedaghat-Hamedani F, Lackner MK, Tugrul OF, Ruppert T, Tappu R, Martins Bordalo D, Kneuer JM, Piekarek A, Herch S, Schudy S, Keller A, Grammes N, Bischof C, Klinke A, Cardoso-Moreira M, Kaessmann H, Katus HA, Frey N, Steinmetz LM, Meder B. NIMA-related kinase 9 regulates the phosphorylation of the essential myosin light chain in the heart. Nat Commun 2022; 13:6209. [PMID: 36266340 PMCID: PMC9585074 DOI: 10.1038/s41467-022-33658-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
To adapt to changing hemodynamic demands, regulatory mechanisms modulate actin-myosin-kinetics by calcium-dependent and -independent mechanisms. We investigate the posttranslational modification of human essential myosin light chain (ELC) and identify NIMA-related kinase 9 (NEK9) to interact with ELC. NEK9 is highly expressed in the heart and the interaction with ELC is calcium-dependent. Silencing of NEK9 results in blunting of calcium-dependent ELC-phosphorylation. CRISPR/Cas9-mediated disruption of NEK9 leads to cardiomyopathy in zebrafish. Binding to ELC is mediated via the protein kinase domain of NEK9. A causal relationship between NEK9 activity and ELC-phosphorylation is demonstrated by genetic sensitizing in-vivo. Finally, we observe significantly upregulated ELC-phosphorylation in dilated cardiomyopathy patients and provide a unique map of human ELC-phosphorylation-sites. In summary, NEK9-mediated ELC-phosphorylation is a calcium-dependent regulatory system mediating cardiac contraction and inotropy.
Collapse
Affiliation(s)
- Marion Müller
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Rose Eghbalian
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Jes-Niels Boeckel
- Clinic and Polyclinic for Cardiology, University of Leipzig, Leipzig, Germany
| | - Karen S Frese
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jan Haas
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Elham Kayvanpour
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Maximilian K Lackner
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Oguz F Tugrul
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Thomas Ruppert
- CFMP, Core Facility for Mass Spectrometry & Proteomics at ZMBH, Heidelberg University, Heidelberg, Germany
- ZMBH, Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Rewati Tappu
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Diana Martins Bordalo
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jasmin M Kneuer
- Clinic and Polyclinic for Cardiology, University of Leipzig, Leipzig, Germany
| | - Annika Piekarek
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Sabine Herch
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Sarah Schudy
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University Medical School, Stanford, CA, USA
| | - Nadja Grammes
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University Medical School, Stanford, CA, USA
| | - Cornelius Bischof
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Henrik Kaessmann
- ZMBH, Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Hugo A Katus
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Lars M Steinmetz
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Stanford Genome Technology Center, Stanford University Medical School, Stanford, CA, USA
| | - Benjamin Meder
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany.
- Stanford Genome Technology Center, Stanford University Medical School, Stanford, CA, USA.
| |
Collapse
|
18
|
Hayat R. Dynamics of metabolism and regulation of epigenetics during cardiomyocytes maturation. Cell Biol Int 2022; 47:30-40. [PMID: 36208083 DOI: 10.1002/cbin.11931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/09/2022]
Abstract
Maturation is the last step of heart growth that prepares the organ over the lifetime of the mammal for powerful, effective, and sustained pumping. Structural, gene expression, physiological, and functional specialties of cardiomyocytes describe this mechanism as the heart transits from fetus to adult phases. The main cornerstones of maturation of cardiomyocytes are reviewed and primary regulatory mechanisms are summarized to facilitate and organize these cellular activities. During embryonic development, cardiomyocytes proliferate rigorously but leave the cell cycle permanently immediately after the parturition of the child and experience terminal differentiation. The activation of a host of genes specific for the mature heart is correlated with the exit from the cell cycle. Even when exposed to mitogenic stimuli, the bulk of mature cardiomyocytes do not re-join the cell cycle. The reason for this permanent exit from the cell cycle is shown to be linked with stable switching off of the genes of the cell cycle directly involved in the G2/M transition phase and cytokinesis development. Researchers also trying to explain the molecular mechanism involved in stable inhibition of the gene and described structural changes (epigenetic and chromatin) in this mechanism. Substantial developments in the future with advances in the scientific platforms used for cardiomyocyte maturation research will broaden our understanding of this mechanism and result in better maturation of cardiomyocyte-derived pluripotent stem cells and effective treatment approaches for cardiovascular diseases.
Collapse
Affiliation(s)
- Rabia Hayat
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
19
|
Yuan P, Fan S, Zhai B, Li Y, Li S, Li H, Zhang H, Zhang Y, Han R, Tian Y, Li G, Kang X. miR-181a-5p can inhibit the proliferation and promote the differentiation of chicken primary myoblasts. Br Poult Sci 2022; 63:813-820. [PMID: 35848781 DOI: 10.1080/00071668.2022.2102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. Myoblast proliferation and differentiation is one of the most important biological processes in the development of skeletal muscle. MicroRNAs (miRNAs) play a crucial role in this process.2. In this study, the expression level of miR-181a-5p was detected, which found that miR-181a-5p was expressed differently in different tissues, different embryonic ages, and different differentiation stages of primary myoblasts in Gushi chickens.3. The effect of miR-181a-5p was further investigated on chicken primary myoblasts (CPMs). The results of cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and cell cycle showed that miR-181a-5p could inhibit the proliferation of CPM. The miR-181a-5p promoted the expression of MYOD, MYOG, and MYHC. MYHC protein immunofluorescence experiments showed that miR-181a-5p increased the area of myotubes.4. In total, 63 potential target genes of mir-181a-5p in mRNA transcriptome data analysis were identified. Functional enrichment analysis was performed on these target genes, and ASNS, SMYD1, and FOS were found to play regulatory roles in biological processes such as muscle development. It was speculated that miR-181a-5p played a role in myoblast development through these genes.5. In conclusion, miR-181a-5p can inhibit the proliferation of chicken myoblasts and promote the differentiation of chicken myoblasts. This study laid the foundation for further research on the regulatory mechanism of miR-181a-5p in the development of skeletal muscle and the formation of excellent meat quality traits in Gushi chicken.
Collapse
Affiliation(s)
- Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuaihao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongtai Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
20
|
Chen M, Li J, Wang J, Le Y, Liu C. SMYD1 alleviates septic myocardial injury by inhibiting endoplasmic reticulum stress. Biosci Biotechnol Biochem 2021; 85:2383-2391. [PMID: 34601561 DOI: 10.1093/bbb/zbab167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/21/2021] [Indexed: 11/14/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a major complication of sepsis. SET and MYND domain containing 1 (SMYD1) has central importance in heart development, and its role in SIC has not been identified. Herein, we found that the expression of SMYD1 was downregulated in myocardial tissues of SIC patients (from GEO database: GSE79962) and lipopolysaccharide (LPS)-induced SIC rats, and LPS-induced H9c2 cardiomyocytes. We used LPS-stimulated H9c2 cells that mimic sepsis in vitro to explore the function of SMYD1 in SIC. MTT assay, LDH and CK-MB release assay, flow cytometry, and ELISA assay showed that SMYD1 overexpression enhanced cell viability, alleviated cell injury, impeded apoptosis, and reduced the level of proinflammatory factors and NF-κB activation under the condition of LPS stimulation. Moreover, SMYD1 exerted protective effect on H9c2 cells stimulated with LPS through relieving endoplasmic reticulum (ER) stress. In conclusion, overexpression of SMYD1 alleviates cardiac injury through relieving ER stress during sepsis.
Collapse
Affiliation(s)
- Meixue Chen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jing Li
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jinfeng Wang
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuan Le
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chunfeng Liu
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Xu R, Du S. Overexpression of Lifeact-GFP Disrupts F-Actin Organization in Cardiomyocytes and Impairs Cardiac Function. Front Cell Dev Biol 2021; 9:746818. [PMID: 34765602 PMCID: PMC8576398 DOI: 10.3389/fcell.2021.746818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022] Open
Abstract
Lifeact-GFP is a frequently used molecular probe to study F-actin structure and dynamic assembly in living cells. In this study, we generated transgenic zebrafish models expressing Lifeact-GFP specifically in cardiac muscles to investigate the effect of Lifeact-GFP on heart development and its application to study cardiomyopathy. The data showed that transgenic zebrafish with low to moderate levels of Lifeact-GFP expression could be used as a good model to study contractile dynamics of actin filaments in cardiac muscles in vivo. Using this model, we demonstrated that loss of Smyd1b, a lysine methyltransferase, disrupted F-actin filament organization in cardiomyocytes of zebrafish embryos. Our studies, however, also demonstrated that strong Lifeact-GFP expression in cardiomyocytes was detrimental to actin filament organization in cardiomyocytes that led to pericardial edema and early embryonic lethality of zebrafish embryos. Collectively, these data suggest that although Lifeact-GFP is a good probe for visualizing F-actin dynamics, transgenic models need to be carefully evaluated to avoid artifacts induced by Lifeact-GFP overexpression.
Collapse
Affiliation(s)
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Matsubara S, Osugi T, Shiraishi A, Wada A, Satake H. Comparative analysis of transcriptomic profiles among ascidians, zebrafish, and mice: Insights from tissue-specific gene expression. PLoS One 2021; 16:e0254308. [PMID: 34559810 PMCID: PMC8462739 DOI: 10.1371/journal.pone.0254308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022] Open
Abstract
Tissue/organ-specific genes (TSGs) are important not only for understanding organ development and function, but also for investigating the evolutionary lineages of organs in animals. Here, we investigate the TSGs of 9 adult tissues of an ascidian, Ciona intestinalis Type A (Ciona robusta), which lies in the important position of being the sister group of vertebrates. RNA-seq and qRT-PCR identified the Ciona TSGs in each tissue, and BLAST searches identified their homologs in zebrafish and mice. Tissue distributions of the vertebrate homologs were analyzed and clustered using public RNA-seq data for 12 zebrafish and 30 mouse tissues. Among the vertebrate homologs of the Ciona TSGs in the neural complex, 48% and 63% showed high expression in the zebrafish and mouse brain, respectively, suggesting that the central nervous system is evolutionarily conserved in chordates. In contrast, vertebrate homologs of Ciona TSGs in the ovary, pharynx, and intestine were not consistently highly expressed in the corresponding tissues of vertebrates, suggesting that these organs have evolved in Ciona-specific lineages. Intriguingly, more TSG homologs of the Ciona stomach were highly expressed in the vertebrate liver (17-29%) and intestine (22-33%) than in the mouse stomach (5%). Expression profiles for these genes suggest that the biological roles of the Ciona stomach are distinct from those of their vertebrate counterparts. Collectively, Ciona tissues were categorized into 3 groups: i) high similarity to the corresponding vertebrate tissues (neural complex and heart), ii) low similarity to the corresponding vertebrate tissues (ovary, pharynx, and intestine), and iii) low similarity to the corresponding vertebrate tissues, but high similarity to other vertebrate tissues (stomach, endostyle, and siphons). The present study provides transcriptomic catalogs of adult ascidian tissues and significant insights into the evolutionary lineages of the brain, heart, and digestive tract of chordates.
Collapse
Affiliation(s)
- Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
- * E-mail:
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Azumi Wada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
23
|
Kim YJ, Tamadon A, Kim YY, Kang BC, Ku SY. Epigenetic Regulation of Cardiomyocyte Differentiation from Embryonic and Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:8599. [PMID: 34445302 PMCID: PMC8395249 DOI: 10.3390/ijms22168599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
With the intent to achieve the best modalities for myocardial cell therapy, different cell types are being evaluated as potent sources for differentiation into cardiomyocytes. Embryonic stem cells and induced pluripotent stem cells have great potential for future progress in the treatment of myocardial diseases. We reviewed aspects of epigenetic mechanisms that play a role in the differentiation of these cells into cardiomyocytes. Cardiomyocytes proliferate during fetal life, and after birth, they undergo permanent terminal differentiation. Upregulation of cardiac-specific genes in adults induces hypertrophy due to terminal differentiation. The repression or expression of these genes is controlled by chromatin structural and epigenetic changes. However, few studies have reviewed and analyzed the epigenetic aspects of the differentiation of embryonic stem cells and induced pluripotent stem cells into cardiac lineage cells. In this review, we focus on the current knowledge of epigenetic regulation of cardiomyocyte proliferation and differentiation from embryonic and induced pluripotent stem cells through histone modification and microRNAs, the maintenance of pluripotency, and its alteration during cardiac lineage differentiation.
Collapse
Affiliation(s)
- Yong-Jin Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 08308, Korea;
| | - Amin Tamadon
- Department of Marine Stem Cell and Tissue Engineering, Bushehr University of Medical Sciences, Bushehr 14174, Iran;
| | - Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Byeong-Cheol Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
24
|
Jin X, Liu W, Miao J, Tai Z, Li L, Guan P, Liu JX. Copper ions impair zebrafish skeletal myofibrillogenesis via epigenetic regulation. FASEB J 2021; 35:e21686. [PMID: 34101239 DOI: 10.1096/fj.202100183r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022]
Abstract
Unbalanced copper (Cu2+ ) homeostasis is associated with the developmental defects of vertebrate myogenesis, but the underlying molecular mechanisms remain elusive. In this study, it was found that Cu2+ stressed zebrafish embryos and larvae showed reduced locomotor speed as well as loose and decreased myofibrils in skeletal muscle, coupled with the downregulated expression of muscle fiber markers mylpfa and smyhc1l and the irregular arrangement of myofibril and sarcomere. Meanwhile, the Cu2+ stressed zebrafish embryos and larvae also showed significant reduction in the expression of H3K4 methyltransferase smyd1b transcripts and H3K4me3 protein as well as in the binding enrichment of H3K4me3 on gene mylpfa promoter in skeletal muscle cells, suggesting that smyd1b-H3K4me3 axis mediates the Cu2+ -induced myofibrils specification defects. Additionally, whole genome DNA methylation sequencing unveiled that the gene smyd5 exhibited significant promoter hyper-methylation and increased expression in Cu2+ stressed embryos, and the ectopic expression of smyd5 in zebrafish embryos also induced the myofibrils specification defects as those observed in Cu2+ stressed embryos. Moreover, Cu2+ was shown to suppress myofibrils specification and smyd1b promoter transcriptional activity directly independent of the integral function of copper transporter cox17 and atp7b. All these data may shed light on the linkage of unbalanced copper homeostasis with specific gene promoter methylation and epigenetic histone protein modification as well as the resultant signaling transduction and the myofibrillogenesis defects.
Collapse
Affiliation(s)
- XiaoDong Jin
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jing Miao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - ZhiPeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - PengPeng Guan
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Fittipaldi R, Floris P, Proserpio V, Cotelli F, Beltrame M, Caretti G. The Lysine Methylase SMYD3 Modulates Mesendodermal Commitment during Development. Cells 2021; 10:cells10051233. [PMID: 34069776 PMCID: PMC8157265 DOI: 10.3390/cells10051233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
SMYD3 (SET and MYND domain containing protein 3) is a methylase over-expressed in cancer cells and involved in oncogenesis. While several studies uncovered key functions for SMYD3 in cancer models, the SMYD3 role in physiological conditions has not been fully elucidated yet. Here, we dissect the role of SMYD3 at early stages of development, employing mouse embryonic stem cells (ESCs) and zebrafish as model systems. We report that SMYD3 depletion promotes the induction of the mesodermal pattern during in vitro differentiation of ESCs and is linked to an upregulation of cardiovascular lineage markers at later stages. In vivo, smyd3 knockdown in zebrafish favors the upregulation of mesendodermal markers during zebrafish gastrulation. Overall, our study reveals that SMYD3 modulates levels of mesendodermal markers, both in development and in embryonic stem cell differentiation.
Collapse
Affiliation(s)
- Raffaella Fittipaldi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Pamela Floris
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Valentina Proserpio
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Monica Beltrame
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Giuseppina Caretti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Correspondence: ; Tel.: +39-025-031-5002
| |
Collapse
|
26
|
Stability of Smyd1 in endothelial cells is controlled by PML-dependent SUMOylation upon cytokine stimulation. Biochem J 2021; 478:217-234. [PMID: 33241844 DOI: 10.1042/bcj20200603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
Smyd1 is an epigenetic modulator of gene expression that has been well-characterized in muscle cells. It was recently reported that Smyd1 levels are modulated by inflammatory processes. Since inflammation affects the vascular endothelium, this study aimed to characterize Smyd1 expression in endothelial cells. We detected Smyd1 in human endothelial cells (HUVEC and EA.hy926 cells), where the protein was largely localized in PML nuclear bodies (PML-NBs). By transfection of EA.hy926 cells with expression vectors encoding Smyd1, PML, SUMO1, active or mutant forms of the SUMO protease SuPr1 and/or the SUMO-conjugation enzyme UBC9, as well as Smyd1- or PML-specific siRNAs, in the presence or absence of the translation blocker cycloheximide or the proteasome-inhibitor MG132, and supported by computational modeling, we show that Smyd1 is SUMOylated in a PML-dependent manner and thereby addressed for degradation in proteasomes. Furthermore, transfection with Smyd1-encoding vectors led to PML up-regulation at the mRNA level, while PML transfection lowered Smyd1 protein stability. Incubation of EA.hy926 cells with the pro-inflammatory cytokine TNF-α resulted in a constant increase in Smyd1 mRNA and protein over 24 h, while incubation with IFN-γ induced a transient increase in Smyd1 expression, which peaked at 6 h and decreased to control values within 24 h. The IFN-γ-induced increase in Smyd1 was accompanied by more Smyd1 SUMOylation and more/larger PML-NBs. In conclusion, our data indicate that in endothelial cells, Smyd1 levels are regulated through a negative feedback mechanism based on SUMOylation and PML availability. This molecular control loop is stimulated by various cytokines.
Collapse
|
27
|
Marchione AD, Thompson Z, Kathrein KL. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. Brief Funct Genomics 2021:elab022. [PMID: 33782688 DOI: 10.1093/bfgp/elab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023] Open
Abstract
The complex processes necessary for embryogenesis require a gene regulatory network that is complex and systematic. Gene expression regulates development and organogenesis, but this process is altered and fine-tuned by epigenetic regulators that facilitate changes in the chromatin landscape. Epigenetic regulation of embryogenesis adjusts the chromatin structure by modifying both DNA through methylation and nucleosomes through posttranslational modifications of histone tails. The zebrafish is a well-characterized model organism that is a quintessential tool for studying developmental biology. With external fertilization, low cost and high fecundity, the zebrafish are an efficient tool for studying early developmental stages. Genetic manipulation can be performed in vivo resulting in quick identification of gene function. Large-scale genome analyses including RNA sequencing, chromatin immunoprecipitation and chromatin structure all are feasible in the zebrafish. In this review, we highlight the key events in zebrafish development where epigenetic regulation plays a critical role from the early stem cell stages through differentiation and organogenesis.
Collapse
|
28
|
Jiao S, Xu R, Du S. Smyd1 is essential for myosin expression and sarcomere organization in craniofacial, extraocular, and cardiac muscles. J Genet Genomics 2021; 48:208-218. [PMID: 33958316 PMCID: PMC9234968 DOI: 10.1016/j.jgg.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
Skeletal and cardiac muscles are striated myofibers that contain highly organized sarcomeres for muscle contraction. Recent studies revealed that Smyd1, a lysine methyltransferase, plays a key role in sarcomere assembly in heart and trunk skeletal muscles. However, Smyd1 expression and function in craniofacial muscles are not known. Here, we analyze the developmental expression and function of two smyd1 paralogous genes, smyd1a and smyd1b, in craniofacial and cardiac muscles of zebrafish embryos. Our data show that loss of smyd1a (smyd1amb5) or smyd1b (smyd1bsa15678) has no visible effects on myogenic commitment and expression of myod and myosin heavy-chain mRNA transcripts in craniofacial muscles. However, myosin heavy-chain protein accumulation and sarcomere organization are dramatically reduced in smyd1bsa15678 single mutant, and almost completely diminish in smyd1amb5; smyd1bsa15678 double mutant, but not in smyd1amb5 mutant. Similar defects are also observed in cardiac muscles of smyd1bsa15678 mutant. Defective craniofacial and cardiac muscle formation is associated with an upregulation of hsp90α1 and unc45b mRNA expression in smyd1bsa15678 and smyd1amb5; smyd1bsa15678 mutants. Together, our studies indicate that Smyd1b, but not Smyd1a, plays a key role in myosin heavy-chain protein expression and sarcomere organization in craniofacial and cardiac muscles. Loss of smyd1b results in muscle-specific stress response.
Collapse
Affiliation(s)
- Shuang Jiao
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Rui Xu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA.
| |
Collapse
|
29
|
Rattka M, Westphal S, Gahr BM, Just S, Rottbauer W. Spen deficiency interferes with Connexin 43 expression and leads to heart failure in zebrafish. J Mol Cell Cardiol 2021; 155:25-35. [PMID: 33549680 DOI: 10.1016/j.yjmcc.2021.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies identified Spen as a putative modifier of cardiac function, however, the precise function of Spen in the cardiovascular system is not known yet. Here, we analyzed for the first time the in vivo role of Spen in zebrafish and found that targeted Spen inactivation led to progressive impairment of cardiac function in the zebrafish embryo. In addition to diminished cardiac contractile force, Spen-deficient zebrafish embryos developed bradycardia, atrioventricular block and heart chamber fibrillation. Assessment of cardiac-specific transcriptional profiles identified Connexin 43 (Cx43), a cardiac gap junction protein and crucial regulator of cardiomyocyte-to-cardiomyocyte communication, to be significantly diminished in Spen-deficient zebrafish embryos. Similar to the situation in Spen-deficient embryos, Morpholino-mediated knockdown of cx43 in zebrafish resulted in cardiac contractile dysfunction, bradycardia, atrioventricular block and fibrillation of the cardiac chambers. Furthermore, ectopic overexpression of cx43 in Spen deficient embryos led to the reconstitution of cardiac contractile function and suppression of cardiac arrhythmia. Additionally, sensitizing experiments by simultaneously injecting sub-phenotypic concentrations of spen- and cx43-Morpholinos into zebrafish embryos resulted in pathological supra-additive effects. In summary, our findings highlight a crucial role of Spen in controlling cx43 expression and demonstrate the Spen-Cx43 axis to be a vital regulatory cascade that is indispensable for proper heart function in vivo.
Collapse
Affiliation(s)
- Manuel Rattka
- Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, Ulm 89081, Germany; Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Sören Westphal
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Bernd M Gahr
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, Ulm 89081, Germany.
| |
Collapse
|
30
|
She P, Zhang H, Peng X, Sun J, Gao B, Zhou Y, Zhu X, Hu X, Lai KS, Wong J, Zhou B, Wang L, Zhong TP. The Gridlock transcriptional repressor impedes vertebrate heart regeneration by restricting expression of lysine methyltransferase. Development 2020; 147:147/18/dev190678. [PMID: 32988975 PMCID: PMC7541343 DOI: 10.1242/dev.190678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Teleost zebrafish and neonatal mammalian hearts exhibit the remarkable capacity to regenerate through dedifferentiation and proliferation of pre-existing cardiomyocytes (CMs). Although many mitogenic signals that stimulate zebrafish heart regeneration have been identified, transcriptional programs that restrain injury-induced CM renewal are incompletely understood. Here, we report that mutations in gridlock (grl; also known as hey2), encoding a Hairy-related basic helix-loop-helix transcriptional repressor, enhance CM proliferation and reduce fibrosis following damage. In contrast, myocardial grl induction blunts CM dedifferentiation and regenerative responses to heart injury. RNA sequencing analyses uncover Smyd2 lysine methyltransferase (KMT) as a key transcriptional target repressed by Grl. Reduction in Grl protein levels triggered by injury induces smyd2 expression at the wound myocardium, enhancing CM proliferation. We show that Smyd2 functions as a methyltransferase and modulates the Stat3 methylation and phosphorylation activity. Inhibition of the KMT activity of Smyd2 reduces phosphorylated Stat3 at cardiac wounds, suppressing the elevated CM proliferation in injured grl mutant hearts. Our findings establish an injury-specific transcriptional repression program in governing CM renewal during heart regeneration, providing a potential strategy whereby silencing Grl repression at local regions might empower regeneration capacity to the injured mammalian heart. Highlighted Article: Novel mechanisms of the Grl-Smyd2 network govern vertebrate CM renewal and heart regeneration, which might be relevant in developing strategies for regeneration interventions in humans.
Collapse
Affiliation(s)
- Peilu She
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huifang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangwen Peng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bangjun Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yating Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xuejiao Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xueli Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kaa Seng Lai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bin Zhou
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Linhui Wang
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
31
|
Role of Muscle-Specific Histone Methyltransferase (Smyd1) in Exercise-Induced Cardioprotection against Pathological Remodeling after Myocardial Infarction. Int J Mol Sci 2020; 21:ijms21197010. [PMID: 32977624 PMCID: PMC7582695 DOI: 10.3390/ijms21197010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Pathological remodeling is the main detrimental complication after myocardial infarction (MI). Overproduction of reactive oxygen species (ROS) in infarcted myocardium may contribute to this process. Adequate exercise training after MI may reduce oxidative stress-induced cardiac tissue damage and remodeling. SET and MYND domain containing 1 (Smyd1) is a muscle-specific histone methyltransferase which is upregulated by resistance training, may strengthen sarcomere assembly and myofiber folding, and may promote skeletal muscles growth and hypertrophy. However, it remains elusive if Smyd1 has similar functions in post-MI cardiac muscle and participates in exercise-induced cardioprotection. Accordingly, we investigated the effects of interval treadmill exercise on cardiac function, ROS generation, Smyd1 expression, and sarcomere assembly of F-actin in normal and infarcted hearts. Adult male rats were randomly divided into five groups (n = 10/group): control (C), exercise alone (EX), sham-operated (S), MI induced by permanent ligation of left anterior descending coronary artery (MI), and MI with interval exercise training (MI + EX). Exercise training significantly improved post-MI cardiac function and sarcomere assembly of F-actin. The cardioprotective effects were associated with increased Smyd1, Trx1, cTnI, and α-actinin expression as well as upregulated ratio of phosphorylated AMP-activated protein kinase (AMPK)/AMPK, whereas Hsp90, MuRF1, brain natriuretic peptide (BNP) expression, ROS generation, and myocardial fibrosis were attenuated. The improved post-MI cardiac function was associated with increased Smyd1 expression. In cultured H9C2 cardiomyoblasts, in vitro treatment with H2O2 (50 µmol/L) or AMP-activated protein kinase (AMPK) agonist (AICAR, 1 mmol/L) or their combination for 4 h simulated the effects of exercise on levels of ROS and Smyd1. In conclusion, we demonstrated a novel role of Smyd1 in association with post-MI exercise-induced cardioprotection. The moderate level of ROS-induced upregulation of Smyd1 may be an important target for modulating post-MI cardiac function and remodeling.
Collapse
|
32
|
Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020; 148:89-102. [PMID: 32920010 DOI: 10.1016/j.yjmcc.2020.08.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
The sarcomere is the basic contractile unit of striated muscle and is a highly ordered protein complex with the actin and myosin filaments at its core. Assembling the sarcomere constituents into this organized structure in development, and with muscle growth as new sarcomeres are built, is a complex process coordinated by numerous factors. Once assembled, the sarcomere requires constant maintenance as its continuous contraction is accompanied by elevated mechanical, thermal, and oxidative stress, which predispose proteins to misfolding and toxic aggregation. To prevent protein misfolding and maintain sarcomere integrity, the sarcomere is monitored by an assortment of protein quality control (PQC) mechanisms. The need for effective PQC is heightened in cardiomyocytes which are terminally differentiated and must survive for many years while preserving optimal mechanical output. To prevent toxic protein aggregation, molecular chaperones stabilize denatured sarcomere proteins and promote their refolding. However, when old and misfolded proteins cannot be salvaged by chaperones, they must be recycled via degradation pathways: the calpain and ubiquitin-proteasome systems, which operate under basal conditions, and the stress-responsive autophagy-lysosome pathway. Mutations to and deficiency of the molecular chaperones and associated factors charged with sarcomere maintenance commonly lead to sarcomere structural disarray and the progression of heart disease, highlighting the necessity of effective sarcomere PQC for maintaining cardiac function. This review focuses on the dynamic regulation of assembly and turnover at the sarcomere with an emphasis on the chaperones involved in these processes and describes the alterations to chaperones - through mutations and deficient expression - implicated in disease progression to heart failure.
Collapse
|
33
|
Swist S, Unger A, Li Y, Vöge A, von Frieling-Salewsky M, Skärlén Å, Cacciani N, Braun T, Larsson L, Linke WA. Maintenance of sarcomeric integrity in adult muscle cells crucially depends on Z-disc anchored titin. Nat Commun 2020; 11:4479. [PMID: 32900999 PMCID: PMC7478974 DOI: 10.1038/s41467-020-18131-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
The giant protein titin is thought to be required for sarcomeric integrity in mature myocytes, but direct evidence for this hypothesis is limited. Here, we describe a mouse model in which Z-disc-anchored TTN is depleted in adult skeletal muscles. Inactivation of TTN causes sarcomere disassembly and Z-disc deformations, force impairment, myocyte de-stiffening, upregulation of TTN-binding mechanosensitive proteins and activation of protein quality-control pathways, concomitant with preferential loss of thick-filament proteins. Interestingly, expression of the myosin-bound Cronos-isoform of TTN, generated from an alternative promoter not affected by the targeting strategy, does not prevent deterioration of sarcomere formation and maintenance. Finally, we demonstrate that loss of Z-disc-anchored TTN recapitulates muscle remodeling in critical illness ‘myosinopathy’ patients, characterized by TTN-depletion and loss of thick filaments. We conclude that full-length TTN is required to integrate Z-disc and A-band proteins into the mature sarcomere, a function that is lost when TTN expression is pathologically lowered. Titin is considered an integrator of muscle cell proteins but direct evidence is limited. Here, titin is inactivated in adult mouse muscles, which causes sarcomere disassembly, protein mis-expression and force impairment, recapitulating key alterations in critical illness myopathy patient muscles.
Collapse
Affiliation(s)
- Sandra Swist
- Department of Systems Physiology, Ruhr University Bochum, D-44780, Bochum, Germany.
| | - Andreas Unger
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany
| | - Yong Li
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany
| | - Anja Vöge
- Department of Systems Physiology, Ruhr University Bochum, D-44780, Bochum, Germany
| | | | - Åsa Skärlén
- Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231, Bad Nauheim, Germany
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Wolfgang A Linke
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany.
| |
Collapse
|
34
|
Szulik MW, Davis K, Bakhtina A, Azarcon P, Bia R, Horiuchi E, Franklin S. Transcriptional regulation by methyltransferases and their role in the heart: highlighting novel emerging functionality. Am J Physiol Heart Circ Physiol 2020; 319:H847-H865. [PMID: 32822544 DOI: 10.1152/ajpheart.00382.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methyltransferases are a superfamily of enzymes that transfer methyl groups to proteins, nucleic acids, and small molecules. Traditionally, these enzymes have been shown to carry out a specific modification (mono-, di-, or trimethylation) on a single, or limited number of, amino acid(s). The largest subgroup of this family, protein methyltransferases, target arginine and lysine side chains of histone molecules to regulate gene expression. Although there is a large number of functional studies that have been performed on individual methyltransferases describing their methylation targets and effects on biological processes, no analyses exist describing the spatial distribution across tissues or their differential expression in the diseased heart. For this review, we performed tissue profiling in protein databases of 199 confirmed or putative methyltransferases to demonstrate the unique tissue-specific expression of these individual proteins. In addition, we examined transcript data sets from human heart failure patients and murine models of heart disease to identify 40 methyltransferases in humans and 15 in mice, which are differentially regulated in the heart, although many have never been functionally interrogated. Lastly, we focused our analysis on the largest subgroup, that of protein methyltransferases, and present a newly emerging phenomenon in which 16 of these enzymes have been shown to play dual roles in regulating transcription by maintaining the ability to both activate and repress transcription through methyltransferase-dependent or -independent mechanisms. Overall, this review highlights a novel paradigm shift in our understanding of the function of histone methyltransferases and correlates their expression in heart disease.
Collapse
Affiliation(s)
- Marta W Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Presley Azarcon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Emilee Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
35
|
Function of the MYND Domain and C-Terminal Region in Regulating the Subcellular Localization and Catalytic Activity of the SMYD Family Lysine Methyltransferase Set5. Mol Cell Biol 2020; 40:MCB.00341-19. [PMID: 31685550 DOI: 10.1128/mcb.00341-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022] Open
Abstract
SMYD lysine methyltransferases target histones and nonhistone proteins for methylation and are critical regulators of muscle development and implicated in neoplastic transformation. They are characterized by a split catalytic SET domain and an intervening MYND zinc finger domain, as well as an extended C-terminal domain. Saccharomyces cerevisiae contains two SMYD proteins, Set5 and Set6, which share structural elements with the mammalian SMYD enzymes. Set5 is a histone H4 lysine 5, 8, and 12 methyltransferase, implicated in the regulation of stress responses and genome stability. While the SMYD proteins have diverse roles in cells, there are many gaps in our understanding of how these enzymes are regulated. Here, we performed mutational analysis of Set5, combined with phosphoproteomics, to identify regulatory mechanisms for its enzymatic activity and subcellular localization. Our results indicate that the MYND domain promotes Set5 chromatin association in cells and is required for its role in repressing subtelomeric genes. Phosphoproteomics revealed extensive phosphorylation of Set5, and phosphomimetic mutations enhance Set5 catalytic activity but diminish its ability to interact with chromatin in cells. These studies uncover multiple regions within Set5 that regulate its localization and activity and highlight potential avenues for understanding mechanisms controlling the diverse roles of SMYD enzymes.
Collapse
|
36
|
Heart Transplantation from Biventricular Support in Infant with Novel SMYD1 Mutation. Pediatr Cardiol 2019; 40:1745-1747. [PMID: 31278431 DOI: 10.1007/s00246-019-02139-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
SET and MYND domain-containing protein 1 (SMYD1) has been shown to be responsible for the development of fast twitch and cardiac muscle. Mutations in SMYD1 have been shown to be uniformly fatal in laboratory studies, and not previously described in living humans. We describe here the care of an infant suffering from cardiac failure due to an SMYD1 mutation requiring biventricular assist devices as a bridge to successful heart transplantation. The patient is now doing well 2 years post-transplant and represents a known survivor of a suspected uniformly fatal genetic mutation.
Collapse
|
37
|
Fan LL, Ding DB, Huang H, Chen YQ, Jin JY, Xia K, Xiang R. A de novo mutation of SMYD1 (p.F272L) is responsible for hypertrophic cardiomyopathy in a Chinese patient. Clin Chem Lab Med 2019; 57:532-539. [PMID: 30205637 DOI: 10.1515/cclm-2018-0578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/09/2018] [Indexed: 11/15/2022]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is a serious disorder and one of the leading causes of mortality worldwide. HCM is characterized as left ventricular hypertrophy in the absence of any other loading conditions. In previous studies, mutations in at least 50 genes have been identified in HCM patients. Methods In this research, the genetic lesion of an HCM patient was identified by whole exome sequencing. Real-time polymerase chain reaction (PCR), immunofluorescence and Western blot were used to analyze the effects of the identified mutation. Results According to whole exome sequencing, we identified a de novo mutation (c.814T>C/p.F272L) of SET and MYND domain containing histone methyltransferase 1 (SMYD1) in a Chinese patient with HCM exhibiting syncope. We then generated HIS-SMYD1-pcDNA3.1+ (WT and c.814T>C/p.F272L) plasmids for transfection into AC16 cells to functionalize the mutation. The immunofluorescence experiments indicated that this mutation may block the SMYD1 protein from entering the nucleus. Both Western blot and real-time PCR revealed that, compared with cells transfected with WT plasmids, the expression of HCM-associated genes such as β-myosin heavy chains, SMYD1 chaperones (HSP90) and downstream targets including TGF-β were all disrupted in cells transfected with the mutant plasmid. Previous studies have demonstrated that SMYD1 plays a crucial role in sarcomere organization and heart development. Conclusions This novel mutation (c.814T>C/p.F272L) may be the first identified disease-causing mutation of SMYD1 in HCM patients worldwide. Our research expands the spectrum of HCM-causing genes and contributes to genetic counseling for HCM patients.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Dong-Bo Ding
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Hao Huang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Ya-Qin Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jie-Yuan Jin
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Kun Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, P.R. China.,Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| |
Collapse
|
38
|
Li B, Li S, He Q, Du S. Generation of MuRF-GFP transgenic zebrafish models for investigating murf gene expression and protein localization in Smyd1b and Hsp90α1 knockdown embryos. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110368. [PMID: 31669374 DOI: 10.1016/j.cbpb.2019.110368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
Abstract
Muscle-specific RING-finger proteins (MuRFs) are E3 ubiquitin ligases that play important roles in protein quality control in skeletal and cardiac muscles. Here we characterized murf gene expression and protein localization in zebrafish embryos. We found that the zebrafish genome contains six murf genes, including murf1a, murf1b, murf2a, murf2b, murf3 and a murf2-like gene that are specifically expressed in skeletal and cardiac muscles of zebrafish embryos. To analyze the subcellular localization, we generated transgenic zebrafish models expressing MurF1a-GFP or MuRF2a-GFP fusion proteins. MuRF1a-GFP and MuRF2a-GFP showed distinct patterns of subcellular localization. MuRF1a-GFP displayed a striated pattern of localization in myofibers, whereas MuRF2a-GFP mainly exhibited a random pattern of punctate distribution. The MuRF1a-GFP signal appeared as small dots aligned along the M-lines of the sarcomeres in skeletal myofibers. To determine whether knockdown of smyd1b or hsp90α1 that increased myosin protein degradation could alter murf gene expression or MuRF protein localization, we knocked down smyd1b or hsp90α1 in wild type, Tg(ef1a:MurF1a-GFP) and Tg(ef1a:MuRF2a-GFP) transgenic zebrafish embryos. Knockdown of smyd1b or hsp90α1 had no effect on murf gene expression. However, the sarcomeric distribution of MuRF1a-GFP was abolished in the knockdown embryos. This was accompanied by an increased random punctate distribution of MuRF1a-GFP in muscle cells of zebrafish embryos. Collectively, these studies demonstrate that MuRFs are specifically expressed in developing muscles of zebrafish embryos. The M-line localization MuRF1a is altered by sarcomere disruption in smyd1b or hsp90α1 knockdown embryos.
Collapse
Affiliation(s)
- Baojun Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Siping Li
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Qiuxia He
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 East Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
39
|
Prill K, Carlisle C, Stannard M, Windsor Reid PJ, Pilgrim DB. Myomesin is part of an integrity pathway that responds to sarcomere damage and disease. PLoS One 2019; 14:e0224206. [PMID: 31644553 PMCID: PMC6808450 DOI: 10.1371/journal.pone.0224206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The structure and function of the sarcomere of striated muscle is well studied but the steps of sarcomere assembly and maintenance remain under-characterized. With the aid of chaperones and factors of the protein quality control system, muscle proteins can be folded and assembled into the contractile apparatus of the sarcomere. When sarcomere assembly is incomplete or the sarcomere becomes damaged, suites of chaperones and maintenance factors respond to repair the sarcomere. Here we show evidence of the importance of the M-line proteins, specifically myomesin, in the monitoring of sarcomere assembly and integrity in previously characterized zebrafish muscle mutants. We show that myomesin is one of the last proteins to be incorporated into the assembling sarcomere, and that in skeletal muscle, its incorporation requires connections with both titin and myosin. In diseased zebrafish sarcomeres, myomesin1a shows an early increase of gene expression, hours before chaperones respond to damaged muscle. We found that myomesin expression is also more specific to sarcomere damage than muscle creatine kinase, and our results and others support the use of myomesin assays as an early, specific, method of detecting muscle damage.
Collapse
Affiliation(s)
- Kendal Prill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Casey Carlisle
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Megan Stannard
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - David B. Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
40
|
Hellerschmied D, Lehner A, Franicevic N, Arnese R, Johnson C, Vogel A, Meinhart A, Kurzbauer R, Deszcz L, Gazda L, Geeves M, Clausen T. Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin. Nat Commun 2019; 10:4781. [PMID: 31636255 PMCID: PMC6803673 DOI: 10.1038/s41467-019-12667-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Myosin is a motor protein that is essential for a variety of processes ranging from intracellular transport to muscle contraction. Folding and assembly of myosin relies on a specific chaperone, UNC-45. To address its substrate-targeting mechanism, we reconstitute the interplay between Caenorhabditis elegans UNC-45 and muscle myosin MHC-B in insect cells. In addition to providing a cellular chaperone assay, the established system enabled us to produce large amounts of functional muscle myosin, as evidenced by a biochemical and structural characterization, and to directly monitor substrate binding to UNC-45. Data from in vitro and cellular chaperone assays, together with crystal structures of binding-deficient UNC-45 mutants, highlight the importance of utilizing a flexible myosin-binding domain. This so-called UCS domain can adopt discrete conformations to efficiently bind and fold substrate. Moreover, our data uncover the molecular basis of temperature-sensitive UNC-45 mutations underlying one of the most prominent motility defects in C. elegans. Myosin, a motor protein essential for intracellular transport to muscle contraction, requires a chaperone UNC-45 for folding and assembly. Here authors use in vitro reconstitution and structural biology to characterize the interplay between UNC-45 and muscle myosin MHC-B.
Collapse
Affiliation(s)
- Doris Hellerschmied
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. .,Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Essen, Germany.
| | | | - Nina Franicevic
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Renato Arnese
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Chloe Johnson
- School of Biosciences, University of Kent, Canterbury, UK
| | - Antonia Vogel
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Luiza Deszcz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Linn Gazda
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Michael Geeves
- School of Biosciences, University of Kent, Canterbury, UK
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. .,Medical University Vienna, Vienna, Austria.
| |
Collapse
|
41
|
Abstract
Supplemental Digital Content is available in the text. If unifying principles could be revealed for how the same genome encodes different eukaryotic cells and for how genetic variability and environmental input are integrated to impact cardiovascular health, grand challenges in basic cell biology and translational medicine may succumb to experimental dissection. A rich body of work in model systems has implicated chromatin-modifying enzymes, DNA methylation, noncoding RNAs, and other transcriptome-shaping factors in adult health and in the development, progression, and mitigation of cardiovascular disease. Meanwhile, deployment of epigenomic tools, powered by next-generation sequencing technologies in cardiovascular models and human populations, has enabled description of epigenomic landscapes underpinning cellular function in the cardiovascular system. This essay aims to unpack the conceptual framework in which epigenomes are studied and to stimulate discussion on how principles of chromatin function may inform investigations of cardiovascular disease and the development of new therapies.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Douglas J Chapski
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Thomas M Vondriska
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles.
| |
Collapse
|
42
|
Cai M, Han L, Liu L, He F, Chu W, Zhang J, Tian Z, Du S. Defective sarcomere assembly in smyd1a and smyd1b zebrafish mutants. FASEB J 2019; 33:6209-6225. [PMID: 30817176 PMCID: PMC6463926 DOI: 10.1096/fj.201801578r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Two smyd1 paralogues, smyd1a and smyd1b, have been identified in zebrafish. Although Smyd1b function has been reported in fast muscle, its function in slow muscle and the function of Smyd1a, in general, are uncertain. In this study, we generated 2 smyd1a mutant alleles and analyzed the muscle defects in smyd1a and smyd1b single and double mutants in zebrafish. We demonstrated that knockout of smyd1a alone had no visible effect on muscle development and fish survival. This was in contrast to the smyd1b mutant, which exhibited skeletal and cardiac muscle defects, leading to early embryonic lethality. The smyd1a and smyd1b double mutants, however, showed a stronger muscle defect compared with smyd1a or smyd1b mutation alone, namely, the complete disruption of sarcomere organization in slow and fast muscles. Immunostaining revealed that smyd1a; smyd1b double mutations had no effect on myosin gene expression but resulted in a dramatic reduction of myosin protein levels in muscle cells of zebrafish embryos. This was accompanied by the up-regulation of hsp40 and hsp90-α1 gene expression. Together, our studies indicate that both Smyd1a and Smyd1b partake in slow and fast muscle development although Smyd1b plays a dominant role compared with Smyd1a.-Cai, M., Han, L., Liu, L., He, F., Chu, W., Zhang, J., Tian, Z., Du, S. Defective sarcomere assembly in smyd1a and smyd1b zebrafish mutants.
Collapse
Affiliation(s)
- Mengxin Cai
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Lichen Han
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lusha Liu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng He
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- School of Fisheries, Ocean University of China, Qingdao, China
| | - Wuying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Brockmann SJ, Freischmidt A, Oeckl P, Müller K, Ponna SK, Helferich AM, Paone C, Reinders J, Kojer K, Orth M, Jokela M, Auranen M, Udd B, Hermann A, Danzer KM, Lichtner P, Walther P, Ludolph AC, Andersen PM, Otto M, Kursula P, Just S, Weishaupt JH. CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency. Hum Mol Genet 2019; 27:706-715. [PMID: 29315381 DOI: 10.1093/hmg/ddx436] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10.
Collapse
Affiliation(s)
| | | | - Patrick Oeckl
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Kathrin Müller
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Srinivas K Ponna
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | | | - Christoph Paone
- Molecular Cardiology, Department of Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jörg Reinders
- Institute for Functional Genomics, University Regensburg, 93053 Regensburg, Germany
| | - Kerstin Kojer
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Michael Orth
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Manu Jokela
- Neuromuscular Research Center, Tampere University and University Hospital, 33014 Tampere, Finland
| | - Mari Auranen
- Neurological Department, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University and University Hospital, 33014 Tampere, Finland
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany.,German Center for Neurodegenerative Diseases, Dresden Research Site, 01307 Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Karin M Danzer
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Paul Walther
- Zentrale Einrichtung Elektronenmikroskopie, Universitaet Ulm, 89081 Ulm, Germany
| | | | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187 Umeå, Sweden
| | - Markus Otto
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland.,Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
| | | |
Collapse
|
44
|
Loss of SMYD1 Results in Perinatal Lethality via Selective Defects within Myotonic Muscle Descendants. Diseases 2018; 7:diseases7010001. [PMID: 30577454 PMCID: PMC6473627 DOI: 10.3390/diseases7010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
SET and MYND Domain 1 (SMYD1) is a cardiac and skeletal muscle-specific, histone methyl transferase that is critical for both embryonic and adult heart development and function in both mice and men. We report here that skeletal muscle-specific, myogenin (myoG)-Cre-mediated conditional knockout (CKO) of Smyd1 results in perinatal death. As early as embryonic day 12.5, Smyd1 CKOs exhibit multiple skeletal muscle defects in proliferation, morphology, and gene expression. However, all myotonic descendants are not afflicted equally. Trunk muscles are virtually ablated with excessive accumulation of brown adipose tissue (BAT), forelimb muscles are disorganized and improperly differentiated, but other muscles, such as the masseter, are normal. While expression of major myogenic regulators went unscathed, adaptive and innate immune transcription factors critical for BAT development/physiology were downregulated. Whereas classical mitochondrial BAT accumulation went unscathed following loss of SMYD1, key transcription factors, including PRDM16, UCP-1, and CIDE-a that control skeletal muscle vs. adipose fate, were downregulated. Finally, in rare adults that survive perinatal lethality, SMYD1 controls specification of some, but not all, skeletal muscle fiber-types.
Collapse
|
45
|
Helferich AM, Brockmann SJ, Reinders J, Deshpande D, Holzmann K, Brenner D, Andersen PM, Petri S, Thal DR, Michaelis J, Otto M, Just S, Ludolph AC, Danzer KM, Freischmidt A, Weishaupt JH. Dysregulation of a novel miR-1825/TBCB/TUBA4A pathway in sporadic and familial ALS. Cell Mol Life Sci 2018; 75:4301-4319. [PMID: 30030593 PMCID: PMC11105367 DOI: 10.1007/s00018-018-2873-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/07/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
Genetic and functional studies suggest diverse pathways being affected in the neurodegenerative disease amyotrophic lateral sclerosis (ALS), while knowledge about converging disease mechanisms is rare. We detected a downregulation of microRNA-1825 in CNS and extra-CNS system organs of both sporadic (sALS) and familial ALS (fALS) patients. Combined transcriptomic and proteomic analysis revealed that reduced levels of microRNA-1825 caused a translational upregulation of tubulin-folding cofactor b (TBCB). Moreover, we found that excess TBCB led to depolymerization and degradation of tubulin alpha-4A (TUBA4A), which is encoded by a known ALS gene. Importantly, the increase in TBCB and reduction of TUBA4A protein was confirmed in brain cortex tissue of fALS and sALS patients, and led to motor axon defects in an in vivo model. Our discovery of a microRNA-1825/TBCB/TUBA4A pathway reveals a putative pathogenic cascade in both fALS and sALS extending the relevance of TUBA4A to a large proportion of ALS cases.
Collapse
Affiliation(s)
- Anika M Helferich
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sarah J Brockmann
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jörg Reinders
- Institute of Functional Genomics, Regensburg University, 93053, Regensburg, Germany
| | | | - Karlheinz Holzmann
- Genomics-Core Facility, Center for Biomedical Research, Ulm University Hospital, 89081, Ulm, Germany
| | - David Brenner
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter M Andersen
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Dietmar R Thal
- Laboratory for Neuropathology, Institute of Pathology, Ulm University, 89081, Ulm, Germany
- Laboratory for Neuropathology, Department of Neurosciences, KU Leuven, 3000, Louvain, Belgium
- Department of Pathology, UZ Leuven, 3000, Louvain, Belgium
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, 89081, Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, 89081, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jochen H Weishaupt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
46
|
Xiao D, Wang H, Hao L, Guo X, Ma X, Qian Y, Chen H, Ma J, Zhang J, Sheng W, Shou W, Huang G, Ma D. The roles of SMYD4 in epigenetic regulation of cardiac development in zebrafish. PLoS Genet 2018; 14:e1007578. [PMID: 30110327 PMCID: PMC6110521 DOI: 10.1371/journal.pgen.1007578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/27/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
SMYD4 belongs to a family of lysine methyltransferases. We analyzed the role of smyd4 in zebrafish development by generating a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated severe cardiac malformations, including defects in left-right patterning and looping and hypoplastic ventricles, suggesting that smyd4 was critical for heart development. Importantly, we identified two rare SMYD4 genetic variants in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was pathogenic. Our data suggested that smyd4 functions as a histone methyltransferase and, by interacting with HDAC1, also serves as a potential modulator for histone acetylation. Transcriptome and bioinformatics analyses of smyd4L544Efs*1 and wild-type developing hearts suggested that smyd4 is a key epigenetic regulator involved in regulating endoplasmic reticulum-mediated protein processing and several important metabolic pathways in developing zebrafish hearts. SMYD4 belongs to a SET and MYND domain-containing lysine methyltransferase. In zebrafish, smyd4 is ubiquitously expressed in early embryos and becomes enriched in the developing heart at 48 hours post-fertilization (hpf). We generated a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated a strong defect in cardiomyocyte proliferation, which led to a severe cardiac malformation, including left-right looping defects and hypoplastic ventricles. More importantly, two rare genetic variants of SMYD4 were enriched in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was highly pathogenic. Using mass spectrometric analysis, SMYD4 was shown to specifically interact with histone deacetylase 1 (HDAC1) via its MYND domain. Altered di- and tri-methylation of histone 3 lysine 4 (H3K4me2 and H3K4me3) and acetylation of histone 3 in smyd4L544Efs*1 mutants suggested that smyd4 plays an important role in epigenetic regulation. Transcriptome and pathway analyses demonstrated that the expression levels of 3,856 genes were significantly altered, which included cardiac contractile genes, key signaling pathways in cardiac development, the endoplasmic reticulum-mediated protein processing pathway, and several important metabolic pathways. Taken together, our data suggests that smyd4 is a key epigenetic regulator of cardiac development.
Collapse
Affiliation(s)
- Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijun Wang
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Lili Hao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiao Guo
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Hongbo Chen
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Jing Ma
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Weinian Shou
- Cardiovascular Developmental Biology Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States of America
- * E-mail: (WS); (GH); (DM)
| | - Guoying Huang
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (WS); (GH); (DM)
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (WS); (GH); (DM)
| |
Collapse
|
47
|
Zebrafish VCAP1X2 regulates cardiac contractility and proliferation of cardiomyocytes and epicardial cells. Sci Rep 2018; 8:7856. [PMID: 29777134 PMCID: PMC5959901 DOI: 10.1038/s41598-018-26110-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/01/2018] [Indexed: 01/08/2023] Open
Abstract
Sarcomeric signaling complexes are important to sustain proper sarcomere structure and function, however, the mechanisms underlying these processes are not fully elucidated. In a gene trap experiment, we found that vascular cell adhesion protein 1 isoform X2 (VCAP1X2) mutant embryos displayed a dilated cardiomyopathy phenotype, including reduced cardiac contractility, enlarged ventricular chamber and thinned ventricular compact layer. Cardiomyocyte and epicardial cell proliferation was decreased in the mutant heart ventricle, as was the expression of pAKT and pERK. Contractile dysfunction in the mutant was caused by sarcomeric disorganization, including sparse myofilament, blurred Z-disc, and decreased gene expression for sarcomere modulators (smyd1b, mypn and fhl2a), sarcomeric proteins (myh6, myh7, vmhcl and tnnt2a) and calcium regulators (ryr2b and slc8a1a). Treatment of PI3K activator restored Z-disc alignment while injection of smyd1b mRNA restored Z-disc alignment, contractile function and cardiomyocyte proliferation in ventricles of VCAP1X2 mutant embryos. Furthermore, injection of VCAP1X2 variant mRNA rescued all phenotypes, so long as two cytosolic tyrosines were left intact. Our results reveal two tyrosine residues located in the VCAP1X2 cytoplasmic domain are essential to regulate cardiac contractility and the proliferation of ventricular cardiomyocytes and epicardial cells through modulating pAKT and pERK expression levels.
Collapse
|
48
|
Cai M, Si Y, Zhang J, Tian Z, Du S. Zebrafish Embryonic Slow Muscle Is a Rapid System for Genetic Analysis of Sarcomere Organization by CRISPR/Cas9, but Not NgAgo. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:168-181. [PMID: 29374849 DOI: 10.1007/s10126-018-9794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Zebrafish embryonic slow muscle cells, with their superficial localization and clear sarcomere organization, provide a useful model system for genetic analysis of muscle cell differentiation and sarcomere assembly. To develop a quick assay for testing CRISPR-mediated gene editing in slow muscles of zebrafish embryos, we targeted a red fluorescence protein (RFP) reporter gene specifically expressed in slow muscles of myomesin-3-RFP (Myom3-RFP) zebrafish embryos. We demonstrated that microinjection of RFP-sgRNA with Cas9 protein or Cas9 mRNA resulted in a mosaic pattern in loss of RFP expression in slow muscle fibers of the injected zebrafish embryos. To uncover gene functions in sarcomere organization, we targeted two endogenous genes, slow myosin heavy chain-1 (smyhc1) and heat shock protein 90 α1 (hsp90α1), which are specifically expressed in zebrafish muscle cells. We demonstrated that injection of Cas9 protein or mRNA with respective sgRNAs targeted to smyhc1 or hsp90a1 resulted in a mosaic pattern of myosin thick filament disruption in slow myofibers of the injected zebrafish embryos. Moreover, Myom3-RFP expression and M-line localization were also abolished in these defective myofibers. Given that zebrafish embryonic slow muscles are a rapid in vivo system for testing genome editing and uncovering gene functions in muscle cell differentiation, we investigated whether microinjection of Natronobacterium gregoryi Argonaute (NgAgo) system could induce genetic mutations and muscle defects in zebrafish embryos. Single-strand guide DNAs targeted to RFP, Smyhc1, or Hsp90α1 were injected with NgAgo mRNA into Myom3-RFP zebrafish embryos. Myom3-RFP expression was analyzed in the injected embryos. The results showed that, in contrast to the CRISPR/Cas9 system, injection of the NgAgo-gDNA system did not affect Myom3-RFP expression and sarcomere organization in myofibers of the injected embryos. Sequence analysis failed to detect genetic mutations at the target genes. Together, our studies demonstrate that zebrafish embryonic slow muscle is a rapid model for testing gene editing technologies in vivo and uncovering gene functions in muscle cell differentiation.
Collapse
Affiliation(s)
- Mengxin Cai
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710062, China
| | - Yufeng Si
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Hunan, 250014, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710062, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA.
- Department of Bioengineering and Environmental Science, Changsha University, Hunan, 250014, China.
| |
Collapse
|
49
|
Paone C, Rudeck S, Etard C, Strähle U, Rottbauer W, Just S. Loss of zebrafish Smyd1a interferes with myofibrillar integrity without triggering the misfolded myosin response. Biochem Biophys Res Commun 2018; 496:339-345. [PMID: 29331378 DOI: 10.1016/j.bbrc.2018.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
Sarcomeric protein turnover needs to be tightly balanced to assure proper assembly and renewal of sarcomeric units within muscle tissues. The mechanisms regulating these fundamental processes are only poorly understood, but of great clinical importance since many cardiac and skeletal muscle diseases are associated with defective sarcomeric organization. The SET- and MYND domain containing protein 1b (Smyd1b) is known to play a crucial role in myofibrillogenesis by functionally interacting with the myosin chaperones Unc45b and Hsp90α1. In zebrafish, Smyd1b, Unc45b and Hsp90α1 are part of the misfolded myosin response (MMR), a regulatory transcriptional response that is activated by disturbed myosin homeostasis. Genome duplication in zebrafish led to a second smyd1 gene, termed smyd1a. Morpholino- and CRISPR/Cas9-mediated knockdown of smyd1a led to significant perturbations in sarcomere structure resulting in decreased cardiac as well as skeletal muscle function. Similar to Smyd1b, we found Smyd1a to localize to the sarcomeric M-band in skeletal and cardiac muscles. Overexpression of smyd1a efficiently compensated for the loss of Smyd1b in flatline (fla) mutant zebrafish embryos, rescued the myopathic phenotype and suppressed the MMR in Smyd1b-deficient embryos, suggesting overlapping functions of both Smyd1 paralogs. Interestingly, Smyd1a is not transcriptionally activated in Smyd1b-deficient fla mutants, demonstrating lack of genetic compensation despite the functional redundancy of both zebrafish Smyd1 paralogs.
Collapse
Affiliation(s)
- Christoph Paone
- Molecular Cardiology, Department of Inner Medicine II, University of Ulm, Ulm, Germany
| | - Steven Rudeck
- Molecular Cardiology, Department of Inner Medicine II, University of Ulm, Ulm, Germany
| | - Christelle Etard
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Inner Medicine II, University of Ulm, Ulm, Germany.
| |
Collapse
|
50
|
Carlisle C, Prill K, Pilgrim D. Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle. Int J Mol Sci 2017; 19:E32. [PMID: 29271938 PMCID: PMC5795982 DOI: 10.3390/ijms19010032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/28/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
Protein folding factors (chaperones) are required for many diverse cellular functions. In striated muscle, chaperones are required for contractile protein function, as well as the larger scale assembly of the basic unit of muscle, the sarcomere. The sarcomere is complex and composed of hundreds of proteins and the number of proteins and processes recognized to be regulated by chaperones has increased dramatically over the past decade. Research in the past ten years has begun to discover and characterize the chaperones involved in the assembly of the sarcomere at a rapid rate. Because of the dynamic nature of muscle, wear and tear damage is inevitable. Several systems, including chaperones and the ubiquitin proteasome system (UPS), have evolved to regulate protein turnover. Much of our knowledge of muscle development focuses on the formation of the sarcomere but recent work has begun to elucidate the requirement and role of chaperones and the UPS in sarcomere maintenance and disease. This review will cover the roles of chaperones in sarcomere assembly, the importance of chaperone homeostasis and the cooperation of chaperones and the UPS in sarcomere integrity and disease.
Collapse
Affiliation(s)
- Casey Carlisle
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Kendal Prill
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Dave Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|