1
|
Roa-Espitia AL, Reyes-Miguel T, Salgado-Lucio ML, Cordero-Martínez J, Tafoya-Domínguez D, Hernández-González EO. TMEM16A Maintains Acrosomal Integrity Through ERK1/2, RhoA, and Actin Cytoskeleton During Capacitation. Int J Mol Sci 2025; 26:3750. [PMID: 40332387 PMCID: PMC12027809 DOI: 10.3390/ijms26083750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
Mammalian spermatozoa undergo a series of physiological and biochemical changes in the oviduct that lead them to acquire the ability to fertilize eggs. During their transit in the oviduct, spermatozoa face a series of environmental changes that can affect sperm viability. A series of ion channels and transporters, as well as the sperm cytoskeleton, allow spermatozoa to remain viable and functional. Cl- channels such as TMEM16A (calcium-activated chloride channel), CFTR (cystic fibrosis transmembrane conductance regulator), and ClC3 (chloride voltage-gated channel 3) are some of the ion transporters involved in maintaining cellular homeostasis. They are expressed in mammalian spermatozoa and are associated with capacitation, acrosomal reaction, and motility. However, little is known about their role in maintaining sperm volume. Therefore, this study aimed to determine the mechanism through which TMEM16A maintains sperm volume during capacitation. The effects of TMEM16A were compared to those of CFTR and ClC3. Spermatozoa were capacitated in the presence of specific TMEM16A, CFTR, and ClC3 inhibitors, and the results showed that only TMEM16A inhibition increased acrosomal volume, leading to changes within the acrosome. Similarly, only TMEM16A inhibition prevented actin polymerization during capacitation. Further analysis showed that TMEM16A inhibition also prevented ERK1/2 and RhoA activation. On the other hand, TMEM16A and CFTR inhibition affected both capacitation and spontaneous acrosomal reaction, whereas ClC3 inhibition only affected the spontaneous acrosomal reaction. In conclusion, during capacitation, TMEM16A activity regulates acrosomal structure through actin polymerization and by regulating ERK1/2 and RhoA activities.
Collapse
Affiliation(s)
- Ana L. Roa-Espitia
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute, México Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (A.L.R.-E.); (T.R.-M.); (M.L.S.-L.); (D.T.-D.)
| | - Tania Reyes-Miguel
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute, México Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (A.L.R.-E.); (T.R.-M.); (M.L.S.-L.); (D.T.-D.)
| | - Monica L. Salgado-Lucio
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute, México Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (A.L.R.-E.); (T.R.-M.); (M.L.S.-L.); (D.T.-D.)
- Department of Health Sciences, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Colonia Vicentina, Alcaldía Iztapalapa, México City 09310, Mexico
| | - Joaquín Cordero-Martínez
- Department of Biochemistry, National School of Biological Sciences, National Polytechnic Institute, Prolongación Manuel Carpio y Plan de Ayala s/n Col, Santo Tomás, Del. Miguel Hidalgo, México City 07738, Mexico;
| | - Dennis Tafoya-Domínguez
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute, México Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (A.L.R.-E.); (T.R.-M.); (M.L.S.-L.); (D.T.-D.)
| | - Enrique O. Hernández-González
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute, México Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (A.L.R.-E.); (T.R.-M.); (M.L.S.-L.); (D.T.-D.)
| |
Collapse
|
2
|
Zaccolo M, Kovanich D. Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions. Physiol Rev 2025; 105:541-591. [PMID: 39115424 PMCID: PMC7617275 DOI: 10.1152/physrev.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
The 3',5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signaling pathway with a specific focus on adenylyl cyclases, A-kinase anchoring proteins, and phosphodiesterases. We discuss how they are organized inside the intracellular space and how they achieve exquisite regulation of signaling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalized cAMP signaling, and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
3
|
Farinha CM. Disrupting the TGF-β-Wnt Balance to Control the Polarity of the Cystic Fibrosis Airway Epithelium. Am J Respir Cell Mol Biol 2024; 71:16-17. [PMID: 38574230 PMCID: PMC11225871 DOI: 10.1165/rcmb.2024-0112ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Carlos M Farinha
- BioISI - Biosystems and Integrative Sciences Institute Faculty of Sciences University of Lisbon Lisbon, Portugal
| |
Collapse
|
4
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
5
|
Lohse MJ, Bock A, Zaccolo M. G Protein-Coupled Receptor Signaling: New Insights Define Cellular Nanodomains. Annu Rev Pharmacol Toxicol 2024; 64:387-415. [PMID: 37683278 DOI: 10.1146/annurev-pharmtox-040623-115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
G protein-coupled receptors are the largest and pharmacologically most important receptor family and are involved in the regulation of most cell functions. Most of them reside exclusively at the cell surface, from where they signal via heterotrimeric G proteins to control the production of second messengers such as cAMP and IP3 as well as the activity of several ion channels. However, they may also internalize upon agonist stimulation or constitutively reside in various intracellular locations. Recent evidence indicates that their function differs depending on their precise cellular localization. This is because the signals they produce, notably cAMP and Ca2+, are mostly bound to cell proteins that significantly reduce their mobility, allowing the generation of steep concentration gradients. As a result, signals generated by the receptors remain confined to nanometer-sized domains. We propose that such nanometer-sized domains represent the basic signaling units in a cell and a new type of target for drug development.
Collapse
Affiliation(s)
- Martin J Lohse
- ISAR Bioscience Institute, Planegg/Munich, Germany;
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Andreas Bock
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
6
|
Dobi D, Loberto N, Bassi R, Pistocchi A, Lunghi G, Tamanini A, Aureli M. Cross-talk between CFTR and sphingolipids in cystic fibrosis. FEBS Open Bio 2023; 13:1601-1614. [PMID: 37315117 PMCID: PMC10476574 DOI: 10.1002/2211-5463.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023] Open
Abstract
Cystic fibrosis (CF) is the most common inherited, life-limiting disorder in Caucasian populations. It is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which lead to an impairment of protein expression and/or function. CFTR is a chloride/bicarbonate channel expressed at the apical surface of epithelial cells of different organs. Nowadays, more than 2100 CFTR genetic variants have been described, but not all of them cause CF. However, around 80-85% of the patients worldwide are characterized by the presence, at least in one allele, of the mutation F508del. CFTR mutations cause aberrant hydration and secretion of mucus in hollow organs. In the lungs, this condition favors bacterial colonization, allowing the development of chronic infections that lead to the onset of the CF lung disease, which is the main cause of death in patients. In recent years, evidence has reported that CFTR loss of function is responsible for alterations in a particular class of bioactive lipids, called sphingolipids (SL). SL are ubiquitously present in eukaryotic cells and are mainly asymmetrically located within the external leaflet of the plasma membrane, where they organize specific platforms capable of segregating a selected number of proteins. CFTR is associated with these platforms that are fundamental for its functioning. Considering the importance of SL in CFTR homeostasis, we attempt here to provide a critical overview of the literature to determine the role of these lipids in channel stability and activity, and whether their modulation in CF could be a target for new therapeutic approaches.
Collapse
Affiliation(s)
- Dorina Dobi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Anna Tamanini
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and MovementUniversity of VeronaItaly
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| |
Collapse
|
7
|
Liu XJ, Pang H, Long YQ, Wang JQ, Niu Y, Zhang RG. Pro-inflammatory action of formoterol in human bronchial epithelia. Mol Immunol 2023; 160:95-102. [PMID: 37413911 DOI: 10.1016/j.molimm.2023.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Despite the wide usage of β2-adrenoceptor agonists in asthma treatment, they do have side effects such as aggravating inflammation. We previously reported that isoprenaline induced Cl- secretion and IL-6 release via cAMP-dependent pathways in human bronchial epithelia, but the mechanisms underlying the inflammation-aggravation effects of β2-adrenoceptor agonists remain pooly understood. In this study, we investigated formoterol, a more specific β2-adrenoceptor agonist, -mediated signaling pathways involved in the production of IL-6 and IL-8 in 16HBE14o- human bronchial epithelia. The effects of formoterol were detected in the presence of PKA, exchange protein directly activated by cAMP (EPAC), cystic fibrosis transmembrane conductance regulator (CFTR), extracellular signal-regulated protein kinase (ERK)1/2 and Src inhibitors. The involvement of β-arrestin2 was determined using siRNA knockdown. Our results indicate that formoterol can induce IL-6 and IL-8 secretion in concentration-dependent manner. The PKA-specific inhibitor, H89, partially inhibited IL-6 release, but not IL-8. Another intracellular cAMP receptor, EPAC, was not involved in either IL-6 or IL-8 release. PD98059 and U0126, two ERK1/2 inhibitors, blocked IL-8 while attenuated IL-6 secretion induced by formoterol. Furthermore, formoterol-induced IL-6 and IL-8 release was attenuated by Src inhibitors, namely dasatinib and PP1, and CFTRinh172, a CFTR inhibitor. In addition, knockdown of β-arrestin2 by siRNA only suppressed IL-8 release when a high concentration of formoterol (1 μM) was used. Taken together, our results suggest that formoterol stimulates IL-6 and IL-8 release which involves PKA/Src/ERK1/2 and/or β-arrestin2 signaling pathways.
Collapse
Affiliation(s)
- Xing-Jian Liu
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| | - Hao Pang
- First Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Yu-Qian Long
- First Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Ji-Qing Wang
- First Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Ya Niu
- School of Biomedical Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Rui-Gang Zhang
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
8
|
Murabito A, Bhatt J, Ghigo A. It Takes Two to Tango! Protein-Protein Interactions behind cAMP-Mediated CFTR Regulation. Int J Mol Sci 2023; 24:10538. [PMID: 37445715 DOI: 10.3390/ijms241310538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Over the last fifteen years, with the approval of the first molecular treatments, a breakthrough era has begun for patients with cystic fibrosis (CF), the rare genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). These molecules, known as CFTR modulators, have led to unprecedented improvements in the lung function and quality of life of most CF patients. However, the efficacy of these drugs is still suboptimal, and the clinical response is highly variable even among individuals bearing the same mutation. Furthermore, not all patients carrying rare CFTR mutations are eligible for CFTR modulator therapies, indicating the need for alternative and/or add-on therapeutic approaches. Because the second messenger 3',5'-cyclic adenosine monophosphate (cAMP) represents the primary trigger for CFTR activation and a major regulator of different steps of the life cycle of the channel, there is growing interest in devising ways to fine-tune the cAMP signaling pathway for therapeutic purposes. This review article summarizes current knowledge regarding the role of cAMP signalosomes, i.e., multiprotein complexes bringing together key enzymes of the cAMP pathway, in the regulation of CFTR function, and discusses how modulating this signaling cascade could be leveraged for therapeutic intervention in CF.
Collapse
Affiliation(s)
- Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Janki Bhatt
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| |
Collapse
|
9
|
Wong SL, Kardia E, Vijayan A, Umashankar B, Pandzic E, Zhong L, Jaffe A, Waters SA. Molecular and Functional Characteristics of Airway Epithelium under Chronic Hypoxia. Int J Mol Sci 2023; 24:ijms24076475. [PMID: 37047450 PMCID: PMC10095024 DOI: 10.3390/ijms24076475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Localized and chronic hypoxia of airway mucosa is a common feature of progressive respiratory diseases, including cystic fibrosis (CF). However, the impact of prolonged hypoxia on airway stem cell function and differentiated epithelium is not well elucidated. Acute hypoxia alters the transcription and translation of many genes, including the CF transmembrane conductance regulator (CFTR). CFTR-targeted therapies (modulators) have not been investigated in vitro under chronic hypoxic conditions found in CF airways in vivo. Nasal epithelial cells (hNECs) derived from eight CF and three non-CF participants were expanded and differentiated at the air-liquid interface (26-30 days) at ambient and 2% oxygen tension (hypoxia). Morphology, global proteomics (LC-MS/MS) and function (barrier integrity, cilia motility and ion transport) of basal stem cells and differentiated cultures were assessed. hNECs expanded at chronic hypoxia, demonstrating epithelial cobblestone morphology and a similar proliferation rate to hNECs expanded at normoxia. Hypoxia-inducible proteins and pathways in stem cells and differentiated cultures were identified. Despite the stem cells' plasticity and adaptation to chronic hypoxia, the differentiated epithelium was significantly thinner with reduced barrier integrity. Stem cell lineage commitment shifted to a more secretory epithelial phenotype. Motile cilia abundance, length, beat frequency and coordination were significantly negatively modulated. Chronic hypoxia reduces the activity of epithelial sodium and CFTR ion channels. CFTR modulator drug response was diminished. Our findings shed light on the molecular pathophysiology of hypoxia and its implications in CF. Targeting hypoxia can be a strategy to augment mucosal function and may provide a means to enhance the efficacy of CFTR modulators.
Collapse
Affiliation(s)
- Sharon L Wong
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Egi Kardia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Abhishek Vijayan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam Jaffe
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2052, Australia
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Bezzerri V, Gentili V, Api M, Finotti A, Papi C, Tamanini A, Boni C, Baldisseri E, Olioso D, Duca M, Tedesco E, Leo S, Borgatti M, Volpi S, Pinton P, Cabrini G, Gambari R, Blasi F, Lippi G, Rimessi A, Rizzo R, Cipolli M. SARS-CoV-2 viral entry and replication is impaired in Cystic Fibrosis airways due to ACE2 downregulation. Nat Commun 2023; 14:132. [PMID: 36627352 PMCID: PMC9830623 DOI: 10.1038/s41467-023-35862-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
As an inherited disorder characterized by severe pulmonary disease, cystic fibrosis could be considered a comorbidity for coronavirus disease 2019. Instead, current clinical evidence seems to be heading in the opposite direction. To clarify whether host factors expressed by the Cystic Fibrosis epithelia may influence coronavirus disease 2019 progression, here we describe the expression of SARS-CoV-2 receptors in primary airway epithelial cells. We show that angiotensin converting enzyme 2 (ACE2) expression and localization are regulated by Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Consistently, our results indicate that dysfunctional CFTR channels alter susceptibility to SARS-CoV-2 infection, resulting in reduced viral entry and replication in Cystic Fibrosis cells. Depending on the pattern of ACE2 expression, the SARS-CoV-2 spike (S) protein induced high levels of Interleukin 6 in healthy donor-derived primary airway epithelial cells, but a very weak response in primary Cystic Fibrosis cells. Collectively, these data support that Cystic Fibrosis condition may be at least partially protecting from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.,Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Valentina Gentili
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Martina Api
- Cystic Fibrosis Center of Ancona, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Tamanini
- Section of Molecular Pathology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Christian Boni
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Elena Baldisseri
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Debora Olioso
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Martina Duca
- Cystic Fibrosis Center of Ancona, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Erika Tedesco
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Sara Leo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Sonia Volpi
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Paolo Pinton
- Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Francesco Blasi
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy. .,Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
11
|
Absence of EPAC1 Signaling to Stabilize CFTR in Intestinal Organoids. Cells 2022; 11:cells11152295. [PMID: 35892592 PMCID: PMC9332071 DOI: 10.3390/cells11152295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane (PM) stability of the cystic fibrosis transmembrane conductance regulator (CFTR), the protein which when mutated causes Cystic Fibrosis (CF), relies on multiple interaction partners that connect CFTR to signaling pathways, including cAMP signaling. It was previously shown that activation of exchange protein directly activated by cAMP 1 (EPAC1) by cAMP promotes an increase in CFTR PM levels in airway epithelial cells. However, the relevance of this pathway in other tissues, particularly the intestinal tissue, remains uncharacterized. Here, we used Western blot and forskolin-induced swelling assay to demonstrate that the EPAC1 protein is not expressed in the intestinal organoid model, and consequently the EPAC1 stabilization pathway is not in place. On the other hand, using cell surface biotinylation, EPAC1-mediated stabilization of PM CFTR is observed in intestinal cell lines. These results indicate that the EPAC1 stabilization pathway also occurs in intestinal cells and is a potential target for the development of novel combinatorial therapies for treatment of CF.
Collapse
|
12
|
Pankonien I, Quaresma MC, Rodrigues CS, Amaral MD. CFTR, Cell Junctions and the Cytoskeleton. Int J Mol Sci 2022; 23:ijms23052688. [PMID: 35269829 PMCID: PMC8910340 DOI: 10.3390/ijms23052688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
The multi-organ disease cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, a cAMP regulated chloride (Cl−) and bicarbonate (HCO3−) ion channel expressed at the apical plasma membrane (PM) of epithelial cells. Reduced CFTR protein results in decreased Cl− secretion and excessive sodium reabsorption in epithelial cells, which consequently leads to epithelial dehydration and the accumulation of thick mucus within the affected organs, such as the lungs, pancreas, gastrointestinal (GI) tract, reproductive system and sweat glands. However, CFTR has been implicated in other functions besides transporting ions across epithelia. The rising number of references concerning its association to actin cytoskeleton organization, epithelial cell junctions and extracellular matrix (ECM) proteins suggests a role in the formation and maintenance of epithelial apical basolateral polarity. This review will focus on recent literature (the last 10 years) substantiating the role of CFTR in cell junction formation and actin cytoskeleton organization with its connection to the ECM.
Collapse
|
13
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
14
|
Tamanini A, Fabbri E, Jakova T, Gasparello J, Manicardi A, Corradini R, Finotti A, Borgatti M, Lampronti I, Munari S, Dechecchi MC, Cabrini G, Gambari R. A Peptide-Nucleic Acid Targeting miR-335-5p Enhances Expression of Cystic Fibrosis Transmembrane Conductance Regulator ( CFTR) Gene with the Possible Involvement of the CFTR Scaffolding Protein NHERF1. Biomedicines 2021; 9:biomedicines9020117. [PMID: 33530577 PMCID: PMC7911309 DOI: 10.3390/biomedicines9020117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be up-regulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3′-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-335-5p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine.
Collapse
Affiliation(s)
- Anna Tamanini
- Section of Molecular Pathology, Department of Pathology and Diagnostics, University-Hospital of Verona, 37126 Verona, Italy; (A.T.); (S.M.)
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
| | - Tiziana Jakova
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (T.J.); (A.M.); (R.C.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (T.J.); (A.M.); (R.C.)
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (T.J.); (A.M.); (R.C.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
| | - Silvia Munari
- Section of Molecular Pathology, Department of Pathology and Diagnostics, University-Hospital of Verona, 37126 Verona, Italy; (A.T.); (S.M.)
| | - Maria Cristina Dechecchi
- Department of Neurosciences, Biomedicine and Movement, University of Verona, 37100 Verona, Italy;
| | - Giulio Cabrini
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
- Department of Neurosciences, Biomedicine and Movement, University of Verona, 37100 Verona, Italy;
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
- Correspondence: ; Tel.: +39-0532-974443
| |
Collapse
|
15
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Brescia M, Chao YC, Koschinski A, Tomek J, Zaccolo M. Multi-Compartment, Early Disruption of cGMP and cAMP Signalling in Cardiac Myocytes from the mdx Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2020; 21:ijms21197056. [PMID: 32992747 PMCID: PMC7582831 DOI: 10.3390/ijms21197056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most frequent and severe form of muscular dystrophy. The disease presents with progressive body-wide muscle deterioration and, with recent advances in respiratory care, cardiac involvement is an important cause of morbidity and mortality. DMD is caused by mutations in the dystrophin gene resulting in the absence of dystrophin and, consequently, disturbance of other proteins that form the dystrophin-associated protein complex (DAPC), including neuronal nitric oxide synthase (nNOS). The molecular mechanisms that link the absence of dystrophin with the alteration of cardiac function remain poorly understood but disruption of NO-cGMP signalling, mishandling of calcium and mitochondrial disturbances have been hypothesized to play a role. cGMP and cAMP are second messengers that are key in the regulation of cardiac myocyte function and disruption of cyclic nucleotide signalling leads to cardiomyopathy. cGMP and cAMP signals are compartmentalised and local regulation relies on the activity of phosphodiesterases (PDEs). Here, using genetically encoded FRET reporters targeted to distinct subcellular compartments of neonatal cardiac myocytes from the DMD mouse model mdx, we investigate whether lack of dystrophin disrupts local cyclic nucleotide signalling, thus potentially providing an early trigger for the development of cardiomyopathy. Our data show a significant alteration of both basal and stimulated cyclic nucleotide levels in all compartments investigated, as well as a complex reorganization of local PDE activities.
Collapse
|
17
|
Choice of Differentiation Media Significantly Impacts Cell Lineage and Response to CFTR Modulators in Fully Differentiated Primary Cultures of Cystic Fibrosis Human Airway Epithelial Cells. Cells 2020; 9:cells9092137. [PMID: 32967385 PMCID: PMC7565948 DOI: 10.3390/cells9092137] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
In vitro cultures of primary human airway epithelial cells (hAECs) grown at air–liquid interface have become a valuable tool to study airway biology under normal and pathologic conditions, and for drug discovery in lung diseases such as cystic fibrosis (CF). An increasing number of different differentiation media, are now available, making comparison of data between studies difficult. Here, we investigated the impact of two common differentiation media on phenotypic, transcriptomic, and physiological features of CF and non-CF epithelia. Cellular architecture and density were strongly impacted by the choice of medium. RNA-sequencing revealed a shift in airway cell lineage; one medium promoting differentiation into club and goblet cells whilst the other enriched the growth of ionocytes and multiciliated cells. Pathway analysis identified differential expression of genes involved in ion and fluid transport. Physiological assays (intracellular/extracellular pH, Ussing chamber) specifically showed that ATP12A and CFTR function were altered, impacting pH and transepithelial ion transport in CF hAECs. Importantly, the two media differentially affected functional responses to CFTR modulators. We argue that the effect of growth conditions should be appropriately determined depending on the scientific question and that our study can act as a guide for choosing the optimal growth medium for specific applications.
Collapse
|
18
|
Cytoskeleton regulators CAPZA2 and INF2 associate with CFTR to control its plasma membrane levels under EPAC1 activation. Biochem J 2020; 477:2561-2580. [PMID: 32573649 DOI: 10.1042/bcj20200287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Cystic Fibrosis (CF), the most common lethal autosomic recessive disorder among Caucasians, is caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, a cAMP-regulated chloride channel expressed at the apical surface of epithelial cells. Cyclic AMP regulates both CFTR channel gating through a protein kinase A (PKA)-dependent process and plasma membane (PM) stability through activation of the exchange protein directly activated by cAMP1 (EPAC1). This cAMP effector, when activated promotes the NHERF1:CFTR interaction leading to an increase in CFTR at the PM by decreasing its endocytosis. Here, we used protein interaction profiling and bioinformatic analysis to identify proteins that interact with CFTR under EPAC1 activation as possible regulators of this CFTR PM anchoring. We identified an enrichment in cytoskeleton related proteins among which we characterized CAPZA2 and INF2 as regulators of CFTR trafficking to the PM. We found that CAPZA2 promotes wt-CFTR trafficking under EPAC1 activation at the PM whereas reduction of INF2 levels leads to a similar trafficking promotion effect. These results suggest that CAPZA2 is a positive regulator and INF2 a negative one for the increase of CFTR at the PM after an increase of cAMP and concomitant EPAC1 activation. Identifying the specific interactions involving CFTR and elicited by EPAC1 activation provides novel insights into late CFTR trafficking, insertion and/or stabilization at the PM and highlighs new potential therapeutic targets to tackle CF disease.
Collapse
|
19
|
Huang W, Tan M, Wang Y, Liu L, Pan Y, Li J, Ouyang M, Long C, Qu X, Liu H, Liu C, Wang J, Deng L, Xiang Y, Qin X. Increased intracellular Cl - concentration improves airway epithelial migration by activating the RhoA/ROCK Pathway. Theranostics 2020; 10:8528-8540. [PMID: 32754261 PMCID: PMC7392015 DOI: 10.7150/thno.46002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
In the airway, Cl- is the most abundant anion and is critically involved in transepithelial transport. The correlation of the abnormal expression and activation of chloride channels (CLCs), such as cystic fibrosis transmembrane conductance regulators (CFTRs), anoctamin-1, and CLC-2, with cell migration capability suggests a relationship between defective Cl- transport and epithelial wound repair. However, whether a correlation exists between intracellular Cl- and airway wound repair capability has not been explored thus far, and the underlying mechanisms involved in this relationship are not fully defined. Methods: In this work, the alteration of intracellular chloride concentration ([Cl-]i) was measured by using a chloride-sensitive fluorescent probe (N-[ethoxycarbonylmethyl]-6-methoxyquinolium bromide). Results: We found that clamping with high [Cl-]i and 1 h of treatment with the CLC inhibitor CFTR blocker CFTRinh-172 and chloride intracellular channel inhibitor IAA94 increased intracellular Cl- concentration ([Cl-]i) in airway epithelial cells. This effect improved epithelial cell migration. In addition, increased [Cl-]i in cells promoted F-actin reorganization, decreased cell stiffness, and improved RhoA activation and LIMK1/2 phosphorylation. Treatment with the ROCK inhibitor of Y-27632 and ROCK1 siRNA significantly attenuated the effects of increased [Cl-]i on LIMK1/2 activation and cell migration. In addition, intracellular Ca2+ concentration was unaffected by [Cl-]i clamping buffers and CFTRinh-172 and IAA94. Conclusion: Taken together, these results suggested that Cl- accumulation in airway epithelial cells could activate the RhoA/ROCK/LIMK cascade to induce F-actin reorganization, down-regulate cell stiffness, and improve epithelial migration.
Collapse
Affiliation(s)
- Wenjie Huang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
- Affiliated Liutie Central Hospital of Guangxi medical university, Liuzhou, Guangxi 545007, China
| | - Meiling Tan
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yue Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
- School of Nursing, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Mingxing Ouyang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Chunjiao Long
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiangping Qu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Huijun Liu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chi Liu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Jia Wang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Yang Xiang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiaoqun Qin
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
20
|
GM1 as Adjuvant of Innovative Therapies for Cystic Fibrosis Disease. Int J Mol Sci 2020; 21:ijms21124486. [PMID: 32599772 PMCID: PMC7350007 DOI: 10.3390/ijms21124486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/26/2023] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein is expressed at the apical plasma membrane (PM) of different epithelial cells. The most common mutation responsible for the onset of cystic fibrosis (CF), F508del, inhibits the biosynthesis and transport of the protein at PM, and also presents gating and stability defects of the membrane anion channel upon its rescue by the use of correctors and potentiators. This prompted a multiple drug strategy for F508delCFTR aimed simultaneously at its rescue, functional potentiation and PM stabilization. Since ganglioside GM1 is involved in the functional stabilization of transmembrane proteins, we investigated its role as an adjuvant to increase the effectiveness of CFTR modulators. According to our results, we found that GM1 resides in the same PM microenvironment as CFTR. In CF cells, the expression of the mutated channel is accompanied by a decrease in the PM GM1 content. Interestingly, by the exogenous administration of GM1, it becomes a component of the PM, reducing the destabilizing effect of the potentiator VX-770 on rescued CFTR protein expression/function and improving its stabilization. This evidence could represent a starting point for developing innovative therapeutic strategies based on the co-administration of GM1, correctors and potentiators, with the aim of improving F508del CFTR function.
Collapse
|
21
|
Beute J, Ganesh K, Nastiti H, Hoogenboom R, Bos V, Folkerts J, Schreurs MWJ, Hockman S, Hendriks RW, KleinJan A. PDE3 Inhibition Reduces Epithelial Mast Cell Numbers in Allergic Airway Inflammation and Attenuates Degranulation of Basophils and Mast Cells. Front Pharmacol 2020; 11:470. [PMID: 32425769 PMCID: PMC7206980 DOI: 10.3389/fphar.2020.00470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Epithelial mast cells are generally present in the airways of patients with allergic asthma that are inadequately controlled. Airway mast cells (MCs) are critically involved in allergic airway inflammation and contribute directly to the main symptoms of allergic patients. Phosphodiesterase 3 (PDE3) tailors signaling of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are critical intracellular second messenger molecules in various signaling pathways. This paper investigates the pathophysiological role and disease-modifying effects of PDE3 in mouse bone marrow-derived MCs (bmMCs), human LAD2- and HMC1 mast cell lines, human blood basophils, and peripheral blood-derived primary human MCs (HuMCs). In a chronic house dust mite (HDM)-driven allergic airway inflammation mouse model, we observed that PDE3 deficiency or PDE3 inhibition (PDE3i) therapy reduced the numbers of epithelial MCs, when compared to control mice. Mouse bone marrow-derived MCs (bmMCs) and the human HMC1 and LAD2 cell lines predominantly expressed PDE3B and PDE4A. BmMCs from Pde3−/− mice showed reduced loss of the degranulation marker CD107b compared with wild-type BmMCs, when stimulated in an immunoglobulin E (IgE)-dependent manner. Following both IgE-mediated and substance P-mediated activation, PDE3i-pretreated basophils, LAD2 cells, and HuMCs, showed less degranulation than diluent controls, as measured by surface CD63 expression. MCs lacking PDE3 or treated with the PDE3i enoximone exhibited a lower calcium flux upon stimulation with ionomycine. In conclusion PDE3 plays a critical role in basophil and mast cell degranulation and therefore its inhibition may be a treatment option in allergic disease.
Collapse
Affiliation(s)
- Jan Beute
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Keerthana Ganesh
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Hedwika Nastiti
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Robin Hoogenboom
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Vivica Bos
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Jelle Folkerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | | | - Steve Hockman
- Flow Cytometry Core of the National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Alex KleinJan
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
22
|
What Role Does CFTR Play in Development, Differentiation, Regeneration and Cancer? Int J Mol Sci 2020; 21:ijms21093133. [PMID: 32365523 PMCID: PMC7246864 DOI: 10.3390/ijms21093133] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
One of the key features associated with the substantial increase in life expectancy for individuals with CF is an elevated predisposition to cancer, firmly established by recent studies involving large cohorts. With the recent advances in cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies and the increased long-term survival rate of individuals with cystic fibrosis (CF), this is a novel challenge emerging at the forefront of this disease. However, the mechanisms linking dysfunctional CFTR to carcinogenesis have yet to be unravelled. Clues to this challenging open question emerge from key findings in an increasing number of studies showing that CFTR plays a role in fundamental cellular processes such as foetal development, epithelial differentiation/polarization, and regeneration, as well as in epithelial–mesenchymal transition (EMT). Here, we provide state-of-the-art descriptions on the moonlight roles of CFTR in these processes, highlighting how they can contribute to novel therapeutic strategies. However, such roles are still largely unknown, so we need rapid progress in the elucidation of the underlying mechanisms to find the answers and thus tailor the most appropriate therapeutic approaches.
Collapse
|
23
|
Martin ER, Barbieri A, Ford RC, Robinson RC. In vivo crystals reveal critical features of the interaction between cystic fibrosis transmembrane conductance regulator (CFTR) and the PDZ2 domain of Na +/H + exchange cofactor NHERF1. J Biol Chem 2020; 295:4464-4476. [PMID: 32014995 DOI: 10.1074/jbc.ra119.012015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Crystallization of recombinant proteins has been fundamental to our understanding of protein function, dysfunction, and molecular recognition. However, this information has often been gleaned under extremely nonphysiological protein, salt, and H+ concentrations. Here, we describe the development of a robust Inka1-Box (iBox)-PAK4cat system that spontaneously crystallizes in several mammalian cell types. The semi-quantitative assay described here allows the measurement of in vivo protein-protein interactions using a novel GFP-linked reporter system that produces fluorescent readouts from protein crystals. We combined this assay with in vitro X-ray crystallography and molecular dynamics studies to characterize the molecular determinants of the interaction between the PDZ2 domain of Na+/H+ exchange regulatory cofactor NHE-RF1 (NHERF1) and cystic fibrosis transmembrane conductance regulator (CFTR), a protein complex pertinent to the genetic disease cystic fibrosis. These experiments revealed the crystal structure of the extended PDZ domain of NHERF1 and indicated, contrary to what has been previously reported, that residue selection at positions -1 and -3 of the PDZ-binding motif influences the affinity and specificity of the NHERF1 PDZ2-CFTR interaction. Our results suggest that this system could be utilized to screen additional protein-protein interactions, provided they can be accommodated within the spacious iBox-PAK4cat lattice.
Collapse
Affiliation(s)
- Eleanor R Martin
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis 138673, Singapore
| | - Alessandro Barbieri
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom.,Bioinformatics Institute (BII), A*STAR (Agency for Science, Technology and Research), Biopolis 138671, Singapore
| | - Robert C Ford
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis 138673, Singapore .,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.,Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
24
|
Naim N, Reece JM, Zhang X, Altschuler DL. Dual Activation of cAMP Production Through Photostimulation or Chemical Stimulation. Methods Mol Biol 2020; 2173:201-216. [PMID: 32651920 PMCID: PMC7968876 DOI: 10.1007/978-1-0716-0755-8_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
cAMP is a crucial mediator of multiple cell signaling pathways. This cyclic nucleotide requires strict spatiotemporal control for effective function. Light-activated proteins have become a powerful tool to study signaling kinetics due to having quick on/off rates and minimal off-target effects. The photoactivated adenylyl cyclase from Beggiatoa (bPAC) produces cAMP rapidly upon stimulation with blue light. However, light delivery is not always feasible, especially in vivo. Hence, we created a luminescence-activated cyclase by fusing bPAC with nanoluciferase (nLuc) to allow chemical activation of cAMP activity. This dual-activated adenylyl cyclase can be stimulated using short bursts of light or long-term chemical activation with furimazine and other related luciferins. Together these can be used to mimic transient, chronic, and oscillating patterns of cAMP signaling. Moreover, when coupled to compartment-specific targeting domains, these reagents provide a new powerful tool for cAMP spatiotemporal dynamic studies. Here, we describe detailed methods for working with bPAC-nLuc in mammalian cells, stimulating cAMP production with light and luciferins, and measuring total cAMP accumulation.
Collapse
Affiliation(s)
- Nyla Naim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Molecular Pharmacology Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Addgene, Watertown, MA, USA
| | - Jeff M Reece
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Advanced Light Microscopy & Image Analysis Core (ALMIAC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, USA
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Phosphorylation-dependent modulation of CFTR macromolecular signalling complex activity by cigarette smoke condensate in airway epithelia. Sci Rep 2019; 9:12706. [PMID: 31481727 PMCID: PMC6722123 DOI: 10.1038/s41598-019-48971-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and acquired loss-of-function defect of the cystic fibrosis transmembrane conductance regulator (CFTR) compromise airway surface liquid homeostasis and mucociliary clearance (MCC), culminating in recurrent lung inflammation/infection. While chronic cigarette smoke (CS), CS extract (CSE; water-soluble compounds) and CS condensate (CSC; particulate, organic fraction) exposure inhibit CFTR activity at transcriptional, biochemical, and functional levels, the acute impact of CSC remains incompletely understood. We report that CSC transiently activates CFTR chloride secretion in airway epithelia. The comparable CFTR phospho-occupancy after CSC- and forskolin-exposure, determined by affinity-enriched tandem mass spectrometry and pharmacology, suggest that localised cAMP-dependent protein kinase (PKA) stimulation by CSC causes the channel opening. Due to the inhibition of the MRP4/ABCC4, a cAMP-exporter confined to the CFTR macromolecular signalling-complex, PKA activation is accomplished by the subcompartmentalised elevation of cytosolic cAMP. In line, MRP4 inhibition results in CFTR activation and phospho-occupancy similar to that by forskolin. In contrast, acute CSC exposure reversibly inhibits the phosphorylated CFTR both in vivo and in phospholipid bilayers, without altering its cell surface density and phospho-occupancy. We propose that components of CSC elicit both a transient protective CFTR activation, as well as subsequent channel block in airway epithelia, contributing to the subacute MCC defect in acquired CF lung diseases.
Collapse
|
26
|
Pera T, Tompkins E, Katz M, Wang B, Deshpande DA, Weinman EJ, Penn RB. Specificity of NHERF1 regulation of GPCR signaling and function in human airway smooth muscle. FASEB J 2019; 33:9008-9016. [PMID: 31042404 PMCID: PMC6662985 DOI: 10.1096/fj.201900323r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Na+/H+ exchanger regulatory factor 1 (NHERF1; also known as ezrin-radixin-moesin-binding phosphoprotein 50) is a PSD-95, disc large, zona occludens-1 adapter that acts as a scaffold for signaling complexes and cytoskeletal-plasma membrane interactions. NHERF1 is crucial to β-2-adrenoceptor (β2AR)-mediated activation of cystic fibrosis transmembrane conductance regulator (CFTR) in epithelial cells, and NHERF1 has been proposed to mediate the recycling of internalized β2AR back to the cell membrane. In the current study, we assessed the role of NHERF1 in regulating cAMP-mediated signaling and immunomodulatory functions in airway smooth muscle (ASM). NHERF1 knockdown attenuated the induction of (protein kinase A) phospho-vasodilator-stimulated phosphoprotein (p-VASP) by isoproterenol (ISO), prostaglandin E2 (PGE2), or forskolin (FSK) as well as the induction of p-heat shock protein 20 after 4 h of stimulation with ISO and FSK. NHERF1 knockdown fully abrogated the ISO-, PGE2-, and FSK-induced IL-6 gene expression and cytokine production without affecting cAMP-mediated phosphodiesterase 4D (PDE4D) gene expression, phospho-cAMP response element-binding protein (p-CREB), and cAMP response element (CRE)-Luc, or PDGF-induced cyclin D1 expression. Interestingly, NHERF1 knockdown prevented ISO-induced chromatin-binding of the transcription factor CCAAT-enhancer-binding protein-β (c/EBPβ). c/EBPβ knockdown almost completely abrogated the cAMP-mediated IL-6 but not PDE4D gene expression. The differential regulation of cAMP-induced signaling and gene expression in our study indicates a role for NHERF1 in the compartmentalization of cAMP signaling in ASM.-Pera, T., Tompkins, E., Katz, M., Wang, B., Deshpande, D. A., Weinman, E. J., Penn, R. B. Specificity of NHERF1 regulation of GPCR signaling and function in human airway smooth muscle.
Collapse
Affiliation(s)
- Tonio Pera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, The Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Eric Tompkins
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, The Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael Katz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, The Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bin Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, The Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Deepak A. Deshpande
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, The Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Edward J. Weinman
- Department of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Raymond B. Penn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Translational Medicine, The Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Liou TG. The Clinical Biology of Cystic Fibrosis Transmembrane Regulator Protein: Its Role and Function in Extrapulmonary Disease. Chest 2018; 155:605-616. [PMID: 30359614 DOI: 10.1016/j.chest.2018.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Normal cystic fibrosis (CF) transmembrane regulator (CFTR) protein has multiple functions in health and disease. Many mutations in the CFTR gene produce abnormal or absent protein. CFTR protein dysfunction underlies the classic CF phenotype of progressive pulmonary and GI pathology but may underlie diseases not usually associated with CF. This review highlights selected extrapulmonary disease that may be associated with abnormal CFTR. Increasing survival in CF is associated with increasing incidence of diseases associated with aging. CFTR dysfunction in older individuals may have novel effects on glucose metabolism, control of insulin release, regulation of circadian rhythm, and cancer cell pathophysiology. In individuals who have cancers with acquired CFTR suppression, their tumors may more likely exhibit rapid expansion, epithelial-to-mesenchymal transformation, abnormally reduced apoptosis, and increased metastatic potential. The new modulators of CFTR protein synthesis could facilitate the additional exploration needed to better understand the unfolding clinical biology of CFTR in human disease, even as they revolutionize treatment of patients with CF.
Collapse
Affiliation(s)
- Theodore G Liou
- Center for Quantitative Biology, The Adult Cystic Fibrosis Center and the Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT.
| |
Collapse
|
28
|
Veit G, Xu H, Dreano E, Avramescu RG, Bagdany M, Beitel LK, Roldan A, Hancock MA, Lay C, Li W, Morin K, Gao S, Mak PA, Ainscow E, Orth AP, McNamara P, Edelman A, Frenkiel S, Matouk E, Sermet-Gaudelus I, Barnes WG, Lukacs GL. Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nat Med 2018; 24:1732-1742. [PMID: 30297908 PMCID: PMC6301090 DOI: 10.1038/s41591-018-0200-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Available corrector drugs are unable to effectively rescue the folding defects of CFTR-ΔF508 (or CFTR-F508del), the most common disease-causing mutation of the cystic fibrosis transmembrane conductance regulator, a plasma membrane (PM) anion channel, and thus to substantially ameliorate clinical phenotypes of cystic fibrosis (CF). To overcome the corrector efficacy ceiling, here we show that compounds targeting distinct structural defects of CFTR can synergistically rescue mutant expression and function at the PM. High-throughput cell-based screens and mechanistic analysis identified three small-molecule series that target defects at nucleotide-binding domain (NBD1), NBD2 and their membrane-spanning domain (MSD) interfaces. Although individually these compounds marginally improve ΔF508-CFTR folding efficiency, function and stability, their combinations lead to ~50-100% of wild-type-level correction in immortalized and primary human airway epithelia and in mouse nasal epithelia. Likewise, corrector combinations were effective against rare missense mutations in various CFTR domains, probably acting via structural allostery, suggesting a mechanistic framework for their broad application.
Collapse
Affiliation(s)
- Guido Veit
- Department of Physiology, McGill University, Montréal, Quebec, Canada.
| | - Haijin Xu
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Elise Dreano
- Institut Necker-Enfants Malades (INEM)-INSERM U1151, Paris, France
| | - Radu G Avramescu
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Miklos Bagdany
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Lenore K Beitel
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Ariel Roldan
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Mark A Hancock
- SPR-MS Facility, McGill University, Montréal, Quebec, Canada
| | - Cecilia Lay
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Wei Li
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Katelin Morin
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Sandra Gao
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Puiying A Mak
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Edward Ainscow
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Anthony P Orth
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Peter McNamara
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | | | - Saul Frenkiel
- Department of Otolaryngology - Head and Neck Surgery, McGill University, Montréal, Quebec, Canada
| | - Elias Matouk
- Adult Cystic Fibrosis Clinic, Montreal Chest Institute, McGill University, Montréal, Quebec, Canada
| | | | - William G Barnes
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montréal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montréal, Quebec, Canada. .,Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
29
|
Dunn VK, Gleason E. Inhibition of endocytosis suppresses the nitric oxide-dependent release of Cl- in retinal amacrine cells. PLoS One 2018; 13:e0201184. [PMID: 30044876 PMCID: PMC6059450 DOI: 10.1371/journal.pone.0201184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/10/2018] [Indexed: 11/18/2022] Open
Abstract
Our lab has previously shown that nitric oxide (NO) can alter the synaptic response properties of amacrine cells by releasing Cl- from internal acidic compartments. This alteration in the Cl- gradient brings about a positive shift in the reversal potential of the GABA-gated current, which can convert inhibitory synapses into excitatory synapses. Recently, we have shown that the cystic fibrosis transmembrane regulator (CFTR) Cl- channel is involved in the Cl- release. Here, we test the hypothesis that (acidic) synaptic vesicles are a source of NO-releasable Cl- in chick retinal amacrine cells. If SVs are a source of Cl-, then depleting synaptic vesicles should decrease the nitric oxide-dependent shift in the reversal potential of the GABA-gated current. The efficacy of four inhibitors of dynamin (dynasore, Dyngo 4a, Dynole 34-2, and MiTMAB) were evaluated. In order to deplete synaptic vesicles, voltage-steps were used to activate V-gated Ca2+ channels and stimulate the synaptic vesicle cycle either under control conditions or after treatment with the dynamin inhibitors. Voltage-ramps were used to measure the NO-dependent shift in the reversal potential of the GABA-gated currents under both conditions. Our results reveal that activating the synaptic vesicle cycle in the presence of dynasore or Dyngo 4a blocked the NO-dependent shift in EGABA. However, we also discovered that some dynamin inhibitors reduced Ca2+ signaling and L-type Ca2+ currents. Conversely, dynasore also increased neurotransmitter release at autaptic sites. To further resolve the mechanism underlying the inhibition of the NO-dependent shift in the reversal potential for the GABA-gated currents, we also tested the effects of the clathrin assembly inhibitor Pitstop 2 and found that this compound also inhibited the shift. These data provide evidence that dynamin inhibitors have multiple effects on amacrine cell synaptic transmission. These data also suggest that inhibition of endocytosis disrupts the ability of NO to elicit Cl- release from internal stores which may in part be due to depletion of synaptic vesicles.
Collapse
Affiliation(s)
- Vernon K. Dunn
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
30
|
Matsuyama N, Shibata S, Matoba A, Kudo TA, Danielsson J, Kohjitani A, Masaki E, Emala CW, Mizuta K. The dopamine D 1 receptor is expressed and induces CREB phosphorylation and MUC5AC expression in human airway epithelium. Respir Res 2018; 19:53. [PMID: 29606146 PMCID: PMC5879645 DOI: 10.1186/s12931-018-0757-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Nao Matsuyama
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Sumire Shibata
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Atsuko Matoba
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Tada-Aki Kudo
- Department of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jennifer Danielsson
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Atsushi Kohjitani
- Department of Dental Anesthesiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Masaki
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Charles W Emala
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Kentaro Mizuta
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan. .,Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA.
| |
Collapse
|
31
|
Lim SH, Legere EA, Snider J, Stagljar I. Recent Progress in CFTR Interactome Mapping and Its Importance for Cystic Fibrosis. Front Pharmacol 2018; 8:997. [PMID: 29403380 PMCID: PMC5785726 DOI: 10.3389/fphar.2017.00997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/26/2017] [Indexed: 12/25/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride channel found in secretory epithelia with a plethora of known interacting proteins. Mutations in the CFTR gene cause cystic fibrosis (CF), a disease that leads to progressive respiratory illness and other complications of phenotypic variance resulting from perturbations of this protein interaction network. Studying the collection of CFTR interacting proteins and the differences between the interactomes of mutant and wild type CFTR provides insight into the molecular machinery of the disease and highlights possible therapeutic targets. This mini review focuses on functional genomics and proteomics approaches used for systematic, high-throughput identification of CFTR-interacting proteins to provide comprehensive insight into CFTR regulation and function.
Collapse
Affiliation(s)
- Sang Hyun Lim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Jamie Snider
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Igor Stagljar
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Gap Junctions Are Involved in the Rescue of CFTR-Dependent Chloride Efflux by Amniotic Mesenchymal Stem Cells in Coculture with Cystic Fibrosis CFBE41o- Cells. Stem Cells Int 2018. [PMID: 29531530 PMCID: PMC5821953 DOI: 10.1155/2018/1203717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We previously found that human amniotic mesenchymal stem cells (hAMSCs) in coculture with CF immortalised airway epithelial cells (CFBE41o- line, CFBE) on Transwell® filters acquired an epithelial phenotype and led to the expression of a mature and functional CFTR protein. In order to explore the role of gap junction- (GJ-) mediated intercellular communication (GJIC) in this rescue, cocultures (hAMSC : CFBE, 1 : 5 ratio) were studied for the formation of GJIC, before and after silencing connexin 43 (Cx43), a major component of GJs. Functional GJs in cocultures were inhibited when the expression of the Cx43 protein was downregulated. Transfection of cocultures with siRNA against Cx43 resulted in the absence of specific CFTR signal on the apical membrane and reduction in the mature form of CFTR (band C), and in parallel, the CFTR-dependent chloride channel activity was significantly decreased. Cx43 downregulation determined also a decrease in transepithelial resistance and an increase in paracellular permeability as compared with control cocultures, implying that GJIC may regulate CFTR expression and function that in turn modulate airway epithelium tightness. These results indicate that GJIC is involved in the correction of CFTR chloride channel activity upon the acquisition of an epithelial phenotype by hAMSCs in coculture with CF cells.
Collapse
|
33
|
Wong FH, AbuArish A, Matthes E, Turner MJ, Greene LE, Cloutier A, Robert R, Thomas DY, Cosa G, Cantin AM, Hanrahan JW. Cigarette smoke activates CFTR through ROS-stimulated cAMP signaling in human bronchial epithelial cells. Am J Physiol Cell Physiol 2018; 314:C118-C134. [PMID: 28978522 PMCID: PMC5866379 DOI: 10.1152/ajpcell.00099.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 11/22/2022]
Abstract
Air pollution stimulates airway epithelial secretion through a cholinergic reflex that is unaffected in cystic fibrosis (CF), yet a strong correlation is observed between passive smoke exposure in the home and impaired lung function in CF children. Our aim was to study the effects of low smoke concentrations on cystic fibrosis transmembrane conductance regulator (CFTR) function in vitro. Cigarette smoke extract stimulated robust anion secretion that was transient, mediated by CFTR, and dependent on cAMP-dependent protein kinase activation. Secretion was initiated by reactive oxygen species (ROS) and mediated by at least two distinct pathways: autocrine activation of EP4 prostanoid receptors and stimulation of Ca2+ store-operated cAMP signaling. The response was absent in cells expressing the most common disease-causing mutant F508del-CFTR. In addition to the initial secretion, prolonged exposure of non-CF bronchial epithelial cells to low levels of smoke also caused a gradual decline in CFTR functional expression. F508del-CFTR channels that had been rescued by the CF drug combination VX-809 (lumacaftor) + VX-770 (ivacaftor) were more sensitive to this downregulation than wild-type CFTR. The results suggest that CFTR-mediated secretion during acute cigarette smoke exposure initially protects the airway epithelium while prolonged exposure reduces CFTR functional expression and reduces the efficacy of CF drugs.
Collapse
Affiliation(s)
- Francis H Wong
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Asmahan AbuArish
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Elizabeth Matthes
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Mark J Turner
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
| | - Lana E Greene
- Department of Chemistry, McGill University , Montreal, Quebec , Canada
| | - Alexandre Cloutier
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke , Sherbrooke, Quebec , Canada
| | - Renaud Robert
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Department of Biochemistry, McGill University , Montreal, Quebec , Canada
| | - David Y Thomas
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Department of Biochemistry, McGill University , Montreal, Quebec , Canada
| | - Gonzalo Cosa
- Department of Chemistry, McGill University , Montreal, Quebec , Canada
| | - André M Cantin
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke , Sherbrooke, Quebec , Canada
| | - John W Hanrahan
- Department of Physiology, McGill University , Montreal, Quebec , Canada
- Cystic Fibrosis Translational Research Centre, McGill University , Montreal, Quebec , Canada
- Research Institute of McGill Univ. Hospital Centre , Montreal, Quebec , Canada
| |
Collapse
|
34
|
Musheshe N, Schmidt M, Zaccolo M. cAMP: From Long-Range Second Messenger to Nanodomain Signalling. Trends Pharmacol Sci 2017; 39:209-222. [PMID: 29289379 DOI: 10.1016/j.tips.2017.11.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
How cAMP generates hormone-specific effects has been debated for many decades. Fluorescence resonance energy transfer (FRET)-based sensors for cAMP allow real-time imaging of the second messenger in intact cells with high spatiotemporal resolution. This technology has made it possible to directly demonstrate that cAMP signals are compartmentalised. The details of such signal compartmentalisation are still being uncovered, and recent findings reveal a previously unsuspected submicroscopic heterogeneity of intracellular cAMP. A model is emerging where specificity depends on compartmentalisation and where the physiologically relevant signals are those that occur within confined nanodomains, rather than bulk changes in cytosolic cAMP. These findings subvert the classical notion of cAMP signalling and provide a new framework for the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Chin S, Hung M, Bear CE. Current insights into the role of PKA phosphorylation in CFTR channel activity and the pharmacological rescue of cystic fibrosis disease-causing mutants. Cell Mol Life Sci 2017; 74:57-66. [PMID: 27722768 PMCID: PMC11107731 DOI: 10.1007/s00018-016-2388-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) channel gating is predominantly regulated by protein kinase A (PKA)-dependent phosphorylation. In addition to regulating CFTR channel activity, PKA phosphorylation is also involved in enhancing CFTR trafficking and mediating conformational changes at the interdomain interfaces of the protein. The major cystic fibrosis (CF)-causing mutation is the deletion of phenylalanine at position 508 (F508del); it causes many defects that affect CFTR trafficking, stability, and gating at the cell surface. Due to the multiple roles of PKA phosphorylation, there is growing interest in targeting PKA-dependent signaling for rescuing the trafficking and functional defects of F508del-CFTR. This review will discuss the effects of PKA phosphorylation on wild-type CFTR, the consequences of CF mutations on PKA phosphorylation, and the development of therapies that target PKA-mediated signaling.
Collapse
Affiliation(s)
- Stephanie Chin
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Maurita Hung
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Christine E Bear
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Canada.
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
36
|
Sharma N, LaRusch J, Sosnay PR, Gottschalk LB, Lopez AP, Pellicore MJ, Evans T, Davis E, Atalar M, Na CH, Rosson GD, Belchis D, Milewski M, Pandey A, Cutting GR. A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1170-L1182. [PMID: 27793802 PMCID: PMC5206395 DOI: 10.1152/ajplung.00363.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/18/2016] [Indexed: 01/10/2023] Open
Abstract
The development of cystic fibrosis transmembrane conductance regulator (CFTR) targeted therapy for cystic fibrosis has generated interest in maximizing membrane residence of mutant forms of CFTR by manipulating interactions with scaffold proteins, such as sodium/hydrogen exchange regulatory factor-1 (NHERF1). In this study, we explored whether COOH-terminal sequences in CFTR beyond the PDZ-binding motif influence its interaction with NHERF1. NHERF1 displayed minimal self-association in blot overlays (NHERF1, Kd = 1,382 ± 61.1 nM) at concentrations well above physiological levels, estimated at 240 nM from RNA-sequencing and 260 nM by liquid chromatography tandem mass spectrometry in sweat gland, a key site of CFTR function in vivo. However, NHERF1 oligomerized at considerably lower concentrations (10 nM) in the presence of the last 111 amino acids of CFTR (20 nM) in blot overlays and cross-linking assays and in coimmunoprecipitations using differently tagged versions of NHERF1. Deletion and alanine mutagenesis revealed that a six-amino acid sequence 1417EENKVR1422 and the terminal 1478TRL1480 (PDZ-binding motif) in the COOH-terminus were essential for the enhanced oligomerization of NHERF1. Full-length CFTR stably expressed in Madin-Darby canine kidney epithelial cells fostered NHERF1 oligomerization that was substantially reduced (∼5-fold) on alanine substitution of EEN, KVR, or EENKVR residues or deletion of the TRL motif. Confocal fluorescent microscopy revealed that the EENKVR and TRL sequences contribute to preferential localization of CFTR to the apical membrane. Together, these results indicate that COOH-terminal sequences mediate enhanced NHERF1 interaction and facilitate the localization of CFTR, a property that could be manipulated to stabilize mutant forms of CFTR at the apical surface to maximize the effect of CFTR-targeted therapeutics.
Collapse
Affiliation(s)
- Neeraj Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica LaRusch
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- ARIEL Precision Medicine, Pittsburgh, Pennsylvania
| | - Patrick R Sosnay
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura B Gottschalk
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea P Lopez
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew J Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Taylor Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emily Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melis Atalar
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chan-Hyun Na
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gedge D Rosson
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Deborah Belchis
- Department of Surgical Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Michal Milewski
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Garry R Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
37
|
Aureli M, Schiumarini D, Loberto N, Bassi R, Tamanini A, Mancini G, Tironi M, Munari S, Cabrini G, Dechecchi MC, Sonnino S. Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chem Phys Lipids 2016; 200:94-103. [DOI: 10.1016/j.chemphyslip.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
38
|
Lasalvia M, Castellani S, D'Antonio P, Perna G, Carbone A, Colia AL, Maffione AB, Capozzi V, Conese M. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology. Exp Cell Res 2016; 348:46-55. [PMID: 27590528 DOI: 10.1016/j.yexcr.2016.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023]
Abstract
The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption.
Collapse
Affiliation(s)
- Maria Lasalvia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Palma D'Antonio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Perna
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Annalucia Carbone
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Laura Colia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Bruna Maffione
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vito Capozzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
39
|
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor. Sci Rep 2016; 6:27390. [PMID: 27278076 PMCID: PMC4899698 DOI: 10.1038/srep27390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.
Collapse
|
40
|
Lobo MJ, Amaral MD, Zaccolo M, Farinha CM. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1. J Cell Sci 2016; 129:2599-612. [PMID: 27206858 DOI: 10.1242/jcs.185629] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/17/2016] [Indexed: 01/14/2023] Open
Abstract
Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Miguel J Lobo
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa 1749-016, Portugal Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa 1749-016, Portugal
| | - Manuela Zaccolo
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Carlos M Farinha
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa 1749-016, Portugal
| |
Collapse
|
41
|
Abbattiscianni AC, Favia M, Mancini MT, Cardone RA, Guerra L, Monterisi S, Castellani S, Laselva O, Di Sole F, Conese M, Zaccolo M, Casavola V. Correctors of mutant CFTR enhance subcortical cAMP-PKA signaling through modulating ezrin phosphorylation and cytoskeleton organization. J Cell Sci 2016; 129:1128-40. [PMID: 26823603 DOI: 10.1242/jcs.177907] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/21/2016] [Indexed: 12/28/2022] Open
Abstract
The most common mutation of the cystic fibrosis transmembrane regulator (CFTR) gene, F508del, produces a misfolded protein resulting in its defective trafficking to the cell surface and an impaired chloride secretion. Pharmacological treatments partially rescue F508del CFTR activity either directly by interacting with the mutant protein and/or indirectly by altering the cellular protein homeostasis. Here, we show that the phosphorylation of ezrin together with its binding to phosphatidylinositol-4,5-bisphosphate (PIP2) tethers the F508del CFTR to the actin cytoskeleton, stabilizing it on the apical membrane and rescuing the sub-membrane compartmentalization of cAMP and activated PKA. Both the small molecules trimethylangelicin (TMA) and VX-809, which act as 'correctors' for F508del CFTR by rescuing F508del-CFTR-dependent chloride secretion, also restore the apical expression of phosphorylated ezrin and actin organization and increase cAMP and activated PKA submembrane compartmentalization in both primary and secondary cystic fibrosis airway cells. Latrunculin B treatment or expression of the inactive ezrin mutant T567A reverse the TMA and VX-809-induced effects highlighting the role of corrector-dependent ezrin activation and actin re-organization in creating the conditions to generate a sub-cortical cAMP pool of adequate amplitude to activate the F508del-CFTR-dependent chloride secretion.
Collapse
Affiliation(s)
- Anna C Abbattiscianni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Maria T Mancini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Rosa A Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Stefania Monterisi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Onofrio Laselva
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Francesca Di Sole
- Physiology and Pharmacology Department, Des Moines University, Des Moines, IA 50312, USA
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| |
Collapse
|
42
|
Turner MJ, Matthes E, Billet A, Ferguson AJ, Thomas DY, Randell SH, Ostrowski LE, Abbott-Banner K, Hanrahan JW. The dual phosphodiesterase 3 and 4 inhibitor RPL554 stimulates CFTR and ciliary beating in primary cultures of bronchial epithelia. Am J Physiol Lung Cell Mol Physiol 2015; 310:L59-70. [PMID: 26545902 DOI: 10.1152/ajplung.00324.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis (CF), a genetic disease caused by mutations in the CFTR gene, is a life-limiting disease characterized by chronic bacterial airway infection and severe inflammation. Some CFTR mutants have reduced responsiveness to cAMP/PKA signaling; hence, pharmacological agents that elevate intracellular cAMP are potentially useful for the treatment of CF. By inhibiting cAMP breakdown, phosphodiesterase (PDE) inhibitors stimulate CFTR in vitro and in vivo. Here, we demonstrate that PDE inhibition by RPL554, a drug that has been shown to cause bronchodilation in asthma and chronic obstructive pulmonary disease (COPD) patients, stimulates CFTR-dependent ion secretion across bronchial epithelial cells isolated from patients carrying the R117H/F508del CF genotype. RPL554-induced CFTR activity was further increased by the potentiator VX-770, suggesting an additional benefit by the drug combination. RPL554 also increased cilia beat frequency in primary human bronchial epithelial cells. The results indicate RPL554 may increase mucociliary clearance through stimulation of CFTR and increasing ciliary beat frequency and thus could provide a novel therapeutic option for CF.
Collapse
Affiliation(s)
- Mark J Turner
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada;
| | - Elizabeth Matthes
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada
| | - Arnaud Billet
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada
| | - Amy J Ferguson
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - David Y Thomas
- McGill CF Translational Research Centre, Montreal, Canada; Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Canada
| | - Scott H Randell
- Department of Cell Biology and Physiology and the Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence E Ostrowski
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | | | - John W Hanrahan
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada; Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
43
|
Farinha CM, Matos P. Repairing the basic defect in cystic fibrosis - one approach is not enough. FEBS J 2015; 283:246-64. [PMID: 26416076 DOI: 10.1111/febs.13531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis has attracted much attention in recent years due to significant advances in the pharmacological targeting of the basic defect underlying this recessive disorder: the deficient functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels at the apical membrane of epithelial cells. However, increasing evidence points to the reduced efficacy of single treatments, thus reinforcing the need to combine several therapeutic strategies to effectively target the multiple basic defect(s). Protein-repair therapies that use potentiators (activating membrane-located CFTR) or correctors (promoting the relocation of intracellular-retained trafficking mutants of CFTR) in frequent mutations such as F508del and G551D have been put forward and made their way to the clinic with moderate to good efficiency. However, alternative (or additional) approaches targeting the membrane stability of mutant proteins, or correcting the cellular phenotype through a direct effect upon other ion channels (affecting the overall electrolyte transport or simply promoting alternative chloride transport) or targeting less frequent mutations (splicing variants, for example), have been proposed and tested in the field of cystic fibrosis (CF). Here, we cover the different strategies that rely on novel findings concerning the CFTR interactome and signalosome through which it might be possible to further influence the cellular trafficking and post-translational modification machinery (to increase rescued CFTR abundance and membrane stability). We also highlight the new data on strategies aiming at the regulation of sodium absorption or to increase chloride transport through alternative channels. The development and implementation of these complementary approaches will pave the way to combinatorial therapeutic strategies with increased benefit to CF patients.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Paulo Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal.,Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisboa, Portugal
| |
Collapse
|
44
|
Chen X, Baumlin N, Buck J, Levin LR, Fregien N, Salathe M. A soluble adenylyl cyclase form targets to axonemes and rescues beat regulation in soluble adenylyl cyclase knockout mice. Am J Respir Cell Mol Biol 2015; 51:750-60. [PMID: 24874272 DOI: 10.1165/rcmb.2013-0542oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ciliary beating is important for effective mucociliary clearance. Soluble adenylyl cyclase (sAC) regulates ciliary beating, and a roughly 50-kD sAC variant is expressed in axonemes. Normal human bronchial epithelial (NHBE) cells express multiple sAC splice variants: full-length sAC; variants with catalytic domain 1 (C1) deletions; and variants with partial C1. One variant, sACex5v2-ex12v2, contains two alternative splices creating new exons 5 (ex5v2) and 12 (ex12v2), encoding a roughly 45-kD protein. It is therefore similar in size to ciliary sAC. The variant increases in expression upon ciliogenesis during differentiation at the air-liquid interface. When expressed in NHBE cells, this variant was targeted to cilia. Exons 5v2-7 were important for ciliary targeting, whereas exons 2-4 prevented it. In vitro, cytoplasmic sACex2-ex12v2 (containing C1 and C2) was the only variant producing cAMP. Ciliary sACex5v2-ex12v2 was not catalytically active. Airway epithelial cells isolated from wild-type mice revealed sAC-dependent ciliary beat frequency (CBF) regulation, analogous to NHBE cells: CBF rescue from HCO3(-)/CO2-mediated intracellular acidification was sensitive to the sAC inhibitor, KH7. Compared with wild type, sAC C2 knockout (KO) mice revealed lower CBF baseline, and the HCO3(-)/CO2-mediated CBF decrease was not inhibited by KH7, confirming lack of functional sAC. Human sACex5v2-ex12v2 was targeted to cilia and sACex2-ex12v2 to the cytoplasm in these KO mice. Introduction of the ciliary sACex5v2-ex12v2 variant, but not the cytoplasmic sACex2-ex12v2, restored functional sAC activity in C2 KO mice. Thus, we show, for the first time, a mammalian axonemal targeting sequence that localizes a sAC variant to cilia to regulate CBF.
Collapse
Affiliation(s)
- Xi Chen
- 1 Division of Pulmonary, Allergy, Critical Care & Sleep Medicine
| | | | | | | | | | | |
Collapse
|
45
|
Vachel L, Norez C, Jayle C, Becq F, Vandebrouck C. The low PLC-δ1 expression in cystic fibrosis bronchial epithelial cells induces upregulation of TRPV6 channel activity. Cell Calcium 2014; 57:38-48. [PMID: 25477137 DOI: 10.1016/j.ceca.2014.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/20/2014] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
Abstract
Increase of Ca(2+) influx in Cystic Fibrosis (CF) cells has been reported to be related to Transient Receptor Potential Canonical (TRPC6) channel, which is implicated in a functional coupling with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Several members of the Transient Receptor Potential Vanilloid (TRPV) channels family have already been described as emerging target for respiratory diseases. Two specific isoforms, TRPV5 and TRPV6 are of particular interest in the context of CF Ca(2+) homeostasis as they are highly selective toward Ca(2+) and constitutively activated. Thus, we investigated the involvement of these channels in Ca(2+) influx in CF and non-CF human bronchial epithelial cell lines. 16HBE14o-, CFBE41o- cell lines, primary human airway epithelial cells (hAEC) and freshly isolated human airway epithelial cells from CF and non-CF individuals were used. We showed that both channels are expressed in CF and non-CF cells and constitutive Ca(2+) influx was significantly higher (85%) in cells from CF individuals compared to cells from non-CF ones. Using the selective inhibitor of TRPV6 channel SOR-C27 and a siRNA strategy, our results revealed that TRPV6 was mostly involved in the increase of Ca(2+) influx. TRPV6 channel is negatively regulated by the PLC-PIP2 pathway. We measured the Ca(2+) influx in the presence of the non-specific PLC inhibitor, U73122, in non-CF human bronchial epithelial cells. Ca(2+) influx was increased by 33% with U73122 and this increase was largely reduced in the presence of SOR-C27. PLC inhibition in CF cells by U73122 had no effect on Ca(2+) influx. These results showed that PLC-PIP2 pathway is dysregulated in CF cells and leads to the increase of TRPV6 activity. The regulation of TRPV6 by PLC-PIP2 pathway implicates the specific PLC isoform, PLC-δ1. Immunoblot experiments revealed that expression of PLC-δ1 was decreased by 70% in CF cells. TRPV6 activity was normalized but not the level of expression of PLC-δ1 protein after F508del-CFTR rescue by low temperature for 48 h or treated for 24 h by 10 μM VX-809 in CF cells. This study revealed TRPV6 and PLC-δ1 as critical actor of Ca(2+) homeostasis in CF human bronchial epithelial cells.
Collapse
Affiliation(s)
- Laura Vachel
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France
| | - Caroline Norez
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France
| | - Christophe Jayle
- Service de Chirurgie Cardiothoracique, CHU Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France.
| |
Collapse
|
46
|
Pfister S, Weber T, Härtig W, Schwerdel C, Elsaesser R, Knuesel I, Fritschy JM. Novel role of cystic fibrosis transmembrane conductance regulator in maintaining adult mouse olfactory neuronal homeostasis. J Comp Neurol 2014; 523:406-30. [PMID: 25271146 DOI: 10.1002/cne.23686] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 02/03/2023]
Abstract
The olfactory epithelium (OE) of mice deficient in cystic fibrosis transmembrane conductance regulator (CFTR) exhibits ion transport deficiencies reported in human CF airways, as well as progressive neuronal loss, suggesting defects in olfactory neuron homeostasis. Microvillar cells, a specialized OE cell-subtype, have been implicated in maintaining tissue homeostasis. These cells are endowed with a PLCβ2/IP3 R3/TRPC6 signal transduction pathway modulating release of neuropeptide Y (NPY), which stimulates OE stem cell activity. It is unknown, however, whether microvillar cells also mediate the deficits observed in CFTR-null mice. Here we show that Cftr mRNA in mouse OE is exclusively localized in microvillar cells and CFTR immunofluorescence is coassociated with the scaffolding protein NHERF-1 and PLCβ2 in microvilli. In CFTR-null mice, PLCβ2 was undetectable, NHERF-1 mislocalized, and IP3 R3 more intensely stained, along with increased levels of NPY, suggesting profound alteration of the PLCβ2/IP3 R3 signaling pathway. In addition, basal olfactory neuron homeostasis was altered, shown by increased progenitor cell proliferation, differentiation, and apoptosis and by reduced regenerative capacity following methimazole-induced neurodegeneration. The importance of CFTR in microvillar cells was further underscored by decreased thickness of the OE mucus layer and increased numbers of immune cells within this tissue in CFTR-KO mice. Finally, we observed enhanced immune responses to an acute viral-like infection, as well as hyper-responsiveness to chemical and physical stimuli applied intranasally. Taken together, these data strengthen the notion that microvillar cells in the OE play a key role in maintaining tissue homeostasis and identify several mechanisms underlying this regulation through the multiple functions of CFTR.
Collapse
Affiliation(s)
- Sandra Pfister
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
47
|
Monterisi S, Casavola V, Zaccolo M. Local modulation of cystic fibrosis conductance regulator: cytoskeleton and compartmentalized cAMP signalling. Br J Pharmacol 2014; 169:1-9. [PMID: 23072488 DOI: 10.1111/bph.12017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/12/2012] [Accepted: 10/05/2012] [Indexed: 11/28/2022] Open
Abstract
The cystic fibrosis conductance regulator (CFTR) is a cAMP-regulated Cl(-) channel expressed predominantly at the apical membrane of secreting epithelial cells. Mutations in the CFTR gene lead to cystic fibrosis, the most frequent genetic disease in the Caucasian population. The most common mutation, a deletion of phenylalanine at position 508 (F508del), impairs CFTR folding and chloride channel function. Although an intense effort is under way to identify compounds that target the F508del CFTR structural defect and promote its expression and stability at the plasma membrane, so far their clinical efficacy has proven to be poor, highlighting the necessity to better understand the molecular mechanism of CFTR regulation and of the pathogenesis of the disease. Accumulating evidence suggests that the inclusion of the CFTR in macromolecular complexes and its interaction with the cortical cytoskeleton may play a key role in fine-tuning the regulation of channel function. Here we review some recent findings that support a critical role for protein-protein interactions involving CFTR and for the cytoskeleton in promoting local control of channel activity. These findings indicate that compounds that rescue and stabilize CFTR at the apical membrane may not be sufficient to restore its function unless the appropriate intracellular milieu is also reconstituted.
Collapse
Affiliation(s)
- Stefania Monterisi
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | | | | |
Collapse
|
48
|
Soluble adenylyl cyclase in health and disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2584-92. [PMID: 25064591 DOI: 10.1016/j.bbadis.2014.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
The second messenger cAMP is integral for many physiological processes. Soluble adenylyl cyclase (sAC) was recently identified as a widely expressed intracellular source of cAMP in mammalian cells. sAC is evolutionary, structurally, and biochemically distinct from the G-protein-responsive transmembranous adenylyl cyclases (tmAC). The structure of the catalytic unit of sAC is similar to tmAC, but sAC does not contain transmembranous domains, allowing localizations independent of the membranous compartment. sAC activity is stimulated by HCO(3)(-), Ca²⁺ and is sensitive to physiologically relevant ATP fluctuations. sAC functions as a physiological sensor for carbon dioxide and bicarbonate, and therefore indirectly for pH. Here we review the physiological role of sAC in different human tissues with a major focus on the lung. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease, guest edited by J. Buck and L.R. Levin.
Collapse
|
49
|
Pranke IM, Sermet-Gaudelus I. Biosynthesis of cystic fibrosis transmembrane conductance regulator. Int J Biochem Cell Biol 2014; 52:26-38. [DOI: 10.1016/j.biocel.2014.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 01/19/2023]
|
50
|
Alshafie W, Chappe FG, Li M, Anini Y, Chappe VM. VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCε-dependent manner. Am J Physiol Cell Physiol 2014; 307:C107-19. [DOI: 10.1152/ajpcell.00296.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a topical airway gland secretagogue regulating fluid secretions, primarily by stimulating cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride secretion that contributes to the airways innate defense mechanism. We previously reported that prolonged VIP stimulation of pituitary adenylate cyclase-activating peptide receptors (VPAC1) in airway cells enhances CFTR function by increasing its membrane stability. In the present study, we identified the key effectors in the VIP signaling cascade in the human bronchial serous cell line Calu-3. Using immunocytochemistry and in situ proximity ligation assays, we found that VIP stimulation increased CFTR membrane localization by promoting its colocalization and interaction with the scaffolding protein Na+/H+ exchange factor 1 (NHERF1), a PDZ protein known as a positive regulator for CFTR membrane localization. VIP stimulation also increased phosphorylation, by protein kinase Cε of the actin-binding protein complex ezrin/radixin/moesin (ERM) and its interaction with NHERF1 and CFTR complex. On the other hand, it reduced intracellular CFTR colocalization and interaction with CFTR associated ligand, another PDZ protein known to compete with NHERF1 for CFTR interaction, inducing cytoplasmic retention and lysosomal degradation. Reducing NHERF1 or ERM expression levels by specific siRNAs prevented the VIP effect on CFTR membrane stability. Furthermore, iodide efflux assays confirmed that NHERF1 and P-ERM are necessary for VIP regulation of the stability and sustained activity of membrane CFTR. This study shows the cellular mechanism by which prolonged VIP stimulation of airway epithelial cells regulates CFTR-dependent secretions.
Collapse
Affiliation(s)
- Walaa Alshafie
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| | - Frederic G. Chappe
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| | - Mansong Li
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
- Obstetrics and Gynecology, Dalhousie University, Nova Scotia, Canada
| | - Valerie M. Chappe
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| |
Collapse
|