1
|
Angel D, Tsutiya A, Hayani H, Madencioglu D, Kul E, Caliskan G, Demiray YE, Dityatev A, Stork O. The Serine/Threonine Kinase NDR2 Regulates Integrin Signaling, Synapse Formation, and Synaptic Plasticity in the Hippocampus. J Neurochem 2025; 169:e70094. [PMID: 40439020 PMCID: PMC12120816 DOI: 10.1111/jnc.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 04/03/2025] [Accepted: 05/11/2025] [Indexed: 06/02/2025]
Abstract
Nuclear Dbf2-related (NDR) kinases are core components of the Hippo pathway, which controls neuronal polarity and neurite growth in the central nervous system (CNS). NDR2 is the principal NDR kinase in the mouse CNS, where it has been shown to regulate integrin-dependent dendritic branching as well as growth and plasticity in hippocampal mossy fibers. Given the well-established involvement of integrins in plasticity, we hypothesized that NDR2 might regulate synapse formation and plasticity through integrin-mediated mechanisms. In this study, using constitutive NDR2 null mutant mice, we demonstrate that Ndr2 deficiency leads to a reduction of T788/789 phosphorylated β1 integrin expression at synaptic sites both in the hippocampal area CA1 and in primary hippocampal neurons in vitro. This reduction is associated with decreased synaptic density in both conditions and accompanied by reduced long-term potentiation in the synapses between Schaffer collaterals/commissural fibers and CA1 pyramidal cells, which could be restored by activation of integrins with an arginine-glycine-aspartate-containing peptide, as well as with mild spatial memory deficits. Together, our results suggest that NDR2 is involved in integrin-dependent synapse formation and plasticity in the mouse hippocampus.
Collapse
Affiliation(s)
- Del Angel
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
| | - Atsuhiro Tsutiya
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
| | - Hussam Hayani
- Molecular Neuroplasticity GroupGerman Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Deniz Madencioglu
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
| | - Emre Kul
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
| | - Gürsel Caliskan
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
- Center for Behavioural Brain SciencesMagdeburgGermany
| | - Yunus Emre Demiray
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
| | - Alexander Dityatev
- Molecular Neuroplasticity GroupGerman Center for Neurodegenerative DiseasesMagdeburgGermany
- Center for Behavioural Brain SciencesMagdeburgGermany
- Medical FacultyOtto‐Von‐Guericke UniversityMagdeburgGermany
| | - Oliver Stork
- Department of Genetics & Molecular NeurobiologyInstitute of Biology, Otto‐Von‐Guericke UniversityMagdeburgGermany
- Center for Behavioural Brain SciencesMagdeburgGermany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)Jena‐Magdeburg‐HalleGermany
- German Center for Mental Health (DZPG)Site Jena‐Magdeburg‐HalleGermany
| |
Collapse
|
2
|
Doliwa M, Kuzniewska B, Nader K, Reniewicz P, Kaczmarek L, Michaluk P, Kalita K. Astrocyte-Secreted Lcn2 Modulates Dendritic Spine Morphology. Cells 2025; 14:159. [PMID: 39936951 PMCID: PMC11817088 DOI: 10.3390/cells14030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Learning and memory formation rely on synaptic plasticity, the process that changes synaptic strength in response to neuronal activity. In the tripartite synapse concept, molecular signals that affect synapse strength and morphology originate not only from the pre- and post-synaptic neuronal terminals but also from astrocytic processes ensheathing many synapses. Despite significant progress made in understanding astrocytic contribution to synaptic plasticity, only a few astrocytic plasticity-related proteins have been identified so far. In this study, we present evidence indicating the role of astrocyte-secreted Lipocalin-2 (Lcn2) in neuronal plasticity. We show that Lcn2 expression is induced in hippocampal astrocytes in a kainate-evoked aberrant plasticity model. Next, we demonstrate that chemically induced long-term potentiation (cLTP) similarly increases Lcn2 expression in astrocytes of neuronal-glial co-cultures, and that glutamate causes the immediate release of Lcn2 from these cultures. Additionally, through experiments in primary astrocytic cultures, we reveal that Lcn2 release is triggered by calcium signaling, and we demonstrate that a brief treatment of neuronal-glial co-cultures with Lcn2 alters the morphology of dendritic spines. Based on these findings, we propose Lcn2 as an activity-dependent molecule released by astrocytes that influences dendritic spine morphology.
Collapse
Affiliation(s)
| | | | | | | | | | - Piotr Michaluk
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders-BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders-BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Alghamdi SA, Alissa M, Alghamdi A, Alshehri MA, Albelasi A, Alzahrani KJ, Safhi AY. Interplays Between Matrix Metalloproteinases and Neurotropic Viruses: An Overview. Rev Med Virol 2024; 34:e2585. [PMID: 39349731 DOI: 10.1002/rmv.2585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 11/08/2024]
Abstract
Matrix metalloproteinases (MMPs) are a diverse group of proteases involved in various physiological and pathological processes through modulation of extracellular matrix (ECM) components, cytokines, and growth factors. In the central nervous system (CNS), MMPs play a major role in CNS development, plasticity, repair, and reorganisation contributing to learning, memory, and neuroimmune response to injury. MMPs are also linked to various neurological disorders such as Alzheimer's disease, Parkinson's disease, cerebral aneurysm, stroke, epilepsy, multiple sclerosis, and brain cancer suggesting these proteases as key regulatory factors in the nervous system. Moreover, MMPs have been involved in the pathogenesis of neurotropic viral infections via dysregulation of various cellular processes, which may highlight these factors as potential targets for the treatment and control of neurological complications associated with viral pathogens. This review provides an overview of the roles of MMPs in various physiological processes of the CNS and their interactions with neurotropic viral pathogens.
Collapse
Affiliation(s)
- Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Albelasi
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
4
|
Rydzanicz M, Kuzniewska B, Magnowska M, Wójtowicz T, Stawikowska A, Hojka A, Borsuk E, Meyza K, Gewartowska O, Gruchota J, Miłek J, Wardaszka P, Chojnicka I, Kondrakiewicz L, Dymkowska D, Puścian A, Knapska E, Dziembowski A, Płoski R, Dziembowska M. Mutation in the mitochondrial chaperone TRAP1 leads to autism with more severe symptoms in males. EMBO Mol Med 2024; 16:2976-3004. [PMID: 39333440 PMCID: PMC11554806 DOI: 10.1038/s44321-024-00147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
There is increasing evidence of mitochondrial dysfunction in autism spectrum disorders (ASD), but the causal relationships are unclear. In an ASD patient whose identical twin was unaffected, we identified a postzygotic mosaic mutation p.Q639* in the TRAP1 gene, which encodes a mitochondrial chaperone of the HSP90 family. Additional screening of 176 unrelated ASD probands revealed an identical TRAP1 variant in a male patient who had inherited it from a healthy mother. Notably, newly generated knock-in Trap1 p.Q641* mice display ASD-related behavioral abnormalities that are more pronounced in males than in females. Accordingly, Trap1 p.Q641* mutation also resulted in sex-specific changes in synaptic plasticity, the number of presynaptic mitochondria, and mitochondrial respiration. Thus, the TRAP1 p.Q639* mutation is the first example of a monogenic ASD caused by impaired mitochondrial protein homeostasis.
Collapse
Affiliation(s)
| | - Bozena Kuzniewska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marta Magnowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Aleksandra Stawikowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Hojka
- Bioinformatics Core Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewa Borsuk
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ksenia Meyza
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Olga Gewartowska
- Genome Engineering Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jakub Gruchota
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jacek Miłek
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Patrycja Wardaszka
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Izabela Chojnicka
- Department of Health and Rehabilitation Psychology, Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Ludwika Kondrakiewicz
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Alicja Puścian
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.
| | - Magdalena Dziembowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
6
|
Włodarczyk L, Cichon N, Karbownik MS, Saluk J, Miller E. Exploring the Role of MMP-9 and MMP-9/TIMP-1 Ratio in Subacute Stroke Recovery: A Prospective Observational Study. Int J Mol Sci 2024; 25:5745. [PMID: 38891934 PMCID: PMC11172289 DOI: 10.3390/ijms25115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Despite the significant changes that unfold during the subacute phase of stroke, few studies have examined recovery abilities during this critical period. As neuroinflammation subsides and tissue degradation diminishes, the processes of neuroplasticity and angiogenesis intensify. An important factor in brain physiology and pathology, particularly neuroplasticity, is matrix metalloproteinase 9 (MMP-9). Its activity is modulated by tissue inhibitors of metalloproteinases (TIMPs), which impede substrate binding and activity by binding to its active sites. Notably, TIMP-1 specifically targets MMP-9 among other matrix metalloproteinases (MMPs). Our present study examines whether MMP-9 may play a beneficial role in psychological functions, particularly in alleviating depressive symptoms and enhancing specific cognitive domains, such as calculation. It appears that improvements in depressive symptoms during rehabilitation were notably linked with baseline MMP-9 plasma levels (r = -0.36, p = 0.025), and particularly so with the ratio of MMP-9 to TIMP-1, indicative of active MMP-9 (r = -0.42, p = 0.008). Furthermore, our findings support previous research demonstrating an inverse relationship between pre-rehabilitation MMP-9 serum levels and post-rehabilitation motor function. Crucially, our study emphasizes a positive correlation between cognition and motor function, highlighting the necessity of integrating both aspects into rehabilitation planning. These findings demonstrate the potential utility of MMP-9 as a prognostic biomarker for delineating recovery trajectories and guiding personalized treatment strategies for stroke patients during the subacute phase.
Collapse
Affiliation(s)
- Lidia Włodarczyk
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (L.W.); (E.M.)
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (L.W.); (E.M.)
| |
Collapse
|
7
|
Legutko D, Kuźniewska B, Kalita K, Yasuda R, Kaczmarek L, Michaluk P. BDNF signaling requires Matrix Metalloproteinase-9 during structural synaptic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.569797. [PMID: 38106209 PMCID: PMC10723398 DOI: 10.1101/2023.12.08.569797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synaptic plasticity underlies learning and memory processes as well as contributes, in its aberrant form, to neuropsychiatric disorders. One of its major forms is structural long-term potentiation (sLTP), an activity-dependent growth of dendritic spines that harbor excitatory synapses. The process depends on the release of brain-derived neurotrophic factor (BDNF), and activation of its receptor, TrkB. Matrix metalloproteinase-9 (MMP-9), an extracellular protease is essential for many forms of neuronal plasticity engaged in physiological as well as pathological processes. Here, we utilized two-photon microscopy and two-photon glutamate uncaging to demonstrate that MMP-9 activity is essential for sLTP and is rapidly (~seconds) released from dendritic spines in response to synaptic stimulation. Moreover, we show that either chemical or genetic inhibition of MMP-9 impairs TrkB activation, as measured by fluorescence lifetime imaging microscopy of FRET sensor. Furthermore, we provide evidence for a cell-free cleavage of proBDNF into mature BDNF by MMP-9. Our findings point to the autocrine mechanism of action of MMP-9 through BDNF maturation and TrkB activation during sLTP.
Collapse
Affiliation(s)
- Diana Legutko
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, Florida 33458, USA
| | - Bożena Kuźniewska
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
- Current address: Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katarzyna Kalita
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, Florida 33458, USA
| | - Leszek Kaczmarek
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| | - Piotr Michaluk
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| |
Collapse
|
8
|
Dziembowska M. How dendritic spines shape is determined by MMP-9 activity in FXS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:171-185. [PMID: 37993177 DOI: 10.1016/bs.irn.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) belongs to the family of endopeptidases expressed in neurons and secreted at the synapse in response to neuronal activity. It regulates the pericellular environment by cleaving its protein components. MMP9 is involved in activity-dependent reorganization of spine architecture. In the mouse model of fragile X syndrome (FXS), the most common inherited intellectual disability and the most common single-gene cause of autism, increased synaptic expression of MMP-9 is responsible for the observed dendritic spine abnormalities. In this chapter, I summarize the current data on the molecular regulatory pathways responsible for synaptic MMP-9 expression and discuss the fact that MMP-9 is extracellularly localized, making it a particularly attractive potential target for therapeutic pharmacological intervention in FXS.
Collapse
|
9
|
Matusiak M, Oziębło D, Ołdak M, Rejmak E, Kaczmarek L, Dobek D, Skarżyński H. MMP-9 plasma level as biomarker of cochlear implantation outcome in cohort study of deaf children. Eur Arch Otorhinolaryngol 2023; 280:4361-4369. [PMID: 37004521 PMCID: PMC10497633 DOI: 10.1007/s00405-023-07924-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023]
Abstract
PURPOSE If before cochlear implantation it was possible to assay biomarkers of neuroplasticity, we might be able to identify those children with congenital deafness who, later on, were at risk of poor speech and language rehabilitation outcomes. METHODS A group of 40 children aged up to 2 years with DFNB1-related congenital deafness was observed in this prospective cohort study over three follow-up intervals (0, 8, and 18 months) after cochlear implant (CI) activation. Children were assessed for auditory development using the LittlEARS Questionnaire (LEAQ) score, and at the same time, measurements were made of matrix metalloproteinase-9 (MMP-9) plasma levels. RESULTS There were significant negative correlations between plasma levels of MMP-9 at 8-month follow-up and LEAQ score at cochlear implantation (p = 0.04) and LEAQ score at 18-month follow-up (p = 0.02) and between MMP-9 plasma levels at 18-month follow-up and LEAQ score at cochlear implantation (p = 0.04). As already reported, we confirmed a significant negative correlation between MMP-9 plasma level at cochlear implantation and LEAQ score at 18-month follow-up (p = 0.005). Based on this latter correlation, two clusters of good and poor CI performers could be isolated. CONCLUSIONS The study shows that children born deaf who have an MMP-9 plasma level of less than 150 ng/ml at cochlear implantation have a good chance of attaining a high LEAQ score after 18 months of speech and language rehabilitation. This indicates that MMP-9 plasma level at cochlear implantation is a good prognostic marker for CI outcome.
Collapse
Affiliation(s)
- Monika Matusiak
- Oto-Rhino-Laryngosurgery Clinic, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042, Warsaw, Poland.
- World Hearing Centre, Mokra 17, 05-830, Nadarzyn, Poland.
| | - Dominika Oziębło
- World Hearing Centre, Mokra 17, 05-830, Nadarzyn, Poland
- Department of Genetics, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042, Warsaw, Poland
| | - Monika Ołdak
- World Hearing Centre, Mokra 17, 05-830, Nadarzyn, Poland
- Department of Genetics, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042, Warsaw, Poland
| | - Emilia Rejmak
- BRAINCITY, Nencki Institute of Experimental Biology, L Pasteura 3, 02-093, Warsaw, Poland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, L Pasteura 3, 02-093, Warsaw, Poland
| | - Dominik Dobek
- Transition Technologies Science, Pawia 55, 01-030, Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngosurgery Clinic, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042, Warsaw, Poland
- World Hearing Centre, Mokra 17, 05-830, Nadarzyn, Poland
| |
Collapse
|
10
|
Dumbuya JS, Chen X, Du J, Li S, Liang L, Xie H, Zeng Q. Hydrogen-rich saline regulates NLRP3 inflammasome activation in sepsis-associated encephalopathy rat model. Int Immunopharmacol 2023; 123:110758. [PMID: 37556997 DOI: 10.1016/j.intimp.2023.110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is characterised by long-term cognitive impairment and psychiatric illness in sepsis survivors, associated with increased morbidity and mortality. There is a lack of effective therapeutics for SAE. Molecular hydrogen (H2) plays multiple roles in septic diseases by regulating neuroinflammation, reducing oxidative stress parameters, regulating signalling pathways, improving mitochondrial dysfunction, and regulating astrocyte and microglia activation. Here we report the protective effect of hydrogen-rich saline in the juvenile SAE rat model and its possible underlying mechanisms. Rats were injected intraperitoneally with lipopolysaccharide at a dose of 5 mg/kg to induce sepsis; Hydrogen-rich saline (HRS) was administered 1 h after LPS induction at a dose of 5 ml/kg and nigericin at 1 mg/kg 1 h before LPS injection. H&E staining for neuronal damage, TUNEL assay for detection of apoptotic cells, immunofluorescence, ELISA protocol for inflammatory cytokines and 8-OHdG determination and western blot analysis to determine the effect of HRS in LPS-induced septic rats. Rats treated with HRS showed decreased TNF-α and IL-1β expression levels. HRS treatment enhanced the activities of antioxidant enzymes (SOD, CAT and GPX) and decreased MDA and MPO activities. The number of MMP-9 and NLRP3 positive immunoreactivity cells decreased in the HRS-treated group. Subsequently, GFAP, IBA-1 and CD86 immunoreactivity were reduced, and CD206 increased after HRS treatment. 8-OHdG expression was decreased in the HRS-treated rats. Western blot analysis showed decreased NLRP3, ASC, caspase-1, MMP-2/9, TLR4 and Bax protein levels after HRS treatment, while Bcl-2 expression increased after HRS treatment. These data demonstrated that HRS attenuated neuroinflammation, NLRP3 inflammasome activation, neuronal injury, and mitochondrial damage via NLRP3/Caspase-1/TLR4 signalling in the juvenile rat model, making it a potential therapeutic agent in the treatment of paediatric SAE.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Xinxin Chen
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Jiang Du
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Siqi Li
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Lili Liang
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Hairui Xie
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China.
| | - Qiyi Zeng
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China.
| |
Collapse
|
11
|
Drulis‐Fajdasz D, Krzystyniak A, Puścian A, Pytyś A, Gostomska‐Pampuch K, Pudełko‐Malik N, Wiśniewski JŁ, Młynarz P, Miazek A, Wójtowicz T, Włodarczyk J, Duś‐Szachniewicz K, Gizak A, Wiśniewski JR, Rakus D. Glycogen phosphorylase inhibition improves cognitive function of aged mice. Aging Cell 2023; 22:e13928. [PMID: 37522798 PMCID: PMC10497847 DOI: 10.1111/acel.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/31/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Inhibition of glycogen breakdown blocks memory formation in young animals, but it stimulates the maintenance of the long-term potentiation, a cellular mechanism of memory formation, in hippocampal slices of old animals. Here, we report that a 2-week treatment with glycogen phosphorylase inhibitor BAY U6751 alleviated memory deficits and stimulated neuroplasticity in old mice. Using the 2-Novel Object Recognition and Novel Object Location tests, we discovered that the prolonged intraperitoneal administration of BAY U6751 improved memory formation in old mice. This was accompanied by changes in morphology of dendritic spines in hippocampal neurons, and by "rejuvenation" of hippocampal proteome. In contrast, in young animals, inhibition of glycogen degradation impaired memory formation; however, as in old mice, it did not alter significantly the morphology and density of cortical dendritic spines. Our findings provide evidence that prolonged inhibition of glycogen phosphorolysis improves memory formation of old animals. This could lead to the development of new strategies for treatment of age-related memory deficits.
Collapse
Affiliation(s)
| | - Adam Krzystyniak
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Alicja Puścian
- Nencki‐EMBL Partnership for Neural Plasticity and Brain Disorders – BRAINCITYNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Agata Pytyś
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Kinga Gostomska‐Pampuch
- Department of Biochemistry and ImmunochemistryWroclaw Medical UniversityWroclawPoland
- Biochemical Proteomics Group, Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Natalia Pudełko‐Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Jerzy Ł. Wiśniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Arkadiusz Miazek
- Laboratory of Tumor ImmunologyHirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
| | - Tomasz Wójtowicz
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Jakub Włodarczyk
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Kamila Duś‐Szachniewicz
- Department of Clinical and Experimental PathologyInstitute of General and Experimental Pathology, Wroclaw Medical UniversityWroclawPoland
| | - Agnieszka Gizak
- Department of Molecular Physiology and NeurobiologyUniversity of WroclawWroclawPoland
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Dariusz Rakus
- Department of Molecular Physiology and NeurobiologyUniversity of WroclawWroclawPoland
| |
Collapse
|
12
|
Włodarczyk L, Cichoń N, Karbownik MS, Saso L, Saluk J, Miller E. Circulating Serum VEGF, IGF-1 and MMP-9 and Expression of Their Genes as Potential Prognostic Markers of Recovery in Post-Stroke Rehabilitation-A Prospective Observational Study. Brain Sci 2023; 13:846. [PMID: 37371326 DOI: 10.3390/brainsci13060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The key period in post-stroke recovery is the first three months due to the high activity of spontaneous and therapeutic-induced processes related to neuroplasticity, angiogenesis and reperfusion. Therefore, the present study examines the expression of VEGF, IGF-1 and MMP-9 proteins and their genes to identify biomarkers that can prognose brain repair ability and thus estimate the outcome of stroke. It also identifies possible associations with clinical scales, including cognitive assessment and depression scales. The study group comprised 32 patients with moderate ischemic stroke severity, three to four weeks after incident. The results obtained after three-week hospitalization indicate a statistically significant change in clinical parameter estimations, as well as in MMP9 and VEGF protein and mRNA expression, over the rehabilitation process. Our findings indicate that combined MMP9 protein and mRNA expression might be a useful biomarker for cognitive improvement in post-stroke patients, demonstrating 87% sensitivity and 71% specificity (p < 0.0001).
Collapse
Affiliation(s)
- Lidia Włodarczyk
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland
| | - Natalia Cichoń
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Elżbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland
| |
Collapse
|
13
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
14
|
Yin LT, Feng RR, Xie XY, Yang XR, Yang ZF, Hu JJ, Wu SF, Zhang C. Matrix metalloproteinase-9 overexpression in the hippocampus reduces alcohol-induced conditioned-place preference by regulating synaptic plasticity in mice. Behav Brain Res 2023; 442:114330. [PMID: 36746309 DOI: 10.1016/j.bbr.2023.114330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Extracellular matrix proteins appear to be necessary for the synaptic plasticity that underlies addiction memory. In the brain, matrix metalloproteinases (MMPs), especially matrix metalloproteinase-9 (MMP-9), have been recently implicated in processes involving alcohol reward and memory. Here, we showed for the first time, the positive effects of MMP-9 on alcohol-induced conditioned place preference (CPP) behavior and hippocampal neuron plasticity in C57BL/6 mice. Using recombinant adeno-associated viruses to overexpress MMP-9 in the hippocampus, we investigated the NMDAR, PSD-95, and cellular cytoskeleton proteins F-actin/G-actin in the modulation of alcohol reward behavior in mice exposed to CPP. We found that hippocampal infusions of MMP-9 decreased alcohol-induced place preference suggesting a reduction in alcohol reward. Western blot analysis demonstrated that protein expression of NMDA receptors (GluN1, GluN2A and GluN2B) in the hippocampus of alcohol-exposed mice were higher than that of the saline group. Further, the expression of these proteins was decreased in MMP-9 overexpressing mice. MMP-9 also regulated the ratio of F-actin/G-actin (dendritic spines cytoskeleton proteins), which might be the key mediator for behavioral changes in mice. Consequently, our results highlight new evidence that MMP-9 may play an important role in the molecular mechanism underlying alcohol reward and preference.
Collapse
Affiliation(s)
- Li-Tian Yin
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Rui-Rui Feng
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiao-Yan Xie
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiao-Rong Yang
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhuan-Fang Yang
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jia-Jia Hu
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Shu-Fen Wu
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ce Zhang
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
15
|
Mice deficient in synaptic protease neurotrypsin show impaired spaced long-term potentiation and blunted learning-induced modulation of dendritic spines. Cell Mol Life Sci 2023; 80:82. [PMID: 36871239 PMCID: PMC9986217 DOI: 10.1007/s00018-023-04720-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Neurotrypsin (NT) is a neuronal trypsin-like serine protease whose mutations cause severe mental retardation in humans. NT is activated in vitro by Hebbian-like conjunction of pre- and postsynaptic activities, which promotes the formation of dendritic filopodia via proteolytic cleavage of the proteoglycan agrin. Here, we investigated the functional importance of this mechanism for synaptic plasticity, learning, and extinction of memory. We report that juvenile neurotrypsin-deficient (NT-/-) mice exhibit impaired long-term potentiation induced by a spaced stimulation protocol designed to probe the generation of new filopodia and their conversion into functional synapses. Behaviorally, juvenile NT-/- mice show impaired contextual fear memory and have a sociability deficit. The latter persists in aged NT-/- mice, which, unlike juvenile mice, show normal recall but impaired extinction of contextual fear memories. Structurally, juvenile mutants exhibit reduced spine density in the CA1 region, fewer thin spines, and no modulation in the density of dendritic spines following fear conditioning and extinction in contrast to wild-type littermates. The head width of thin spines is reduced in both juvenile and aged NT-/- mice. In vivo delivery of adeno-associated virus expressing an NT-generated fragment of agrin, agrin-22, but not a shorter agrin-15, elevates the spine density in NT-/- mice. Moreover, agrin-22 co-aggregates with pre- and postsynaptic markers and increases the density and size of presynaptic boutons and presynaptic puncta, corroborating the view that agrin-22 supports the synaptic growth.
Collapse
|
16
|
Bronisz E, Cudna A, Wierzbicka A, Kurkowska-Jastrzębska I. Blood-Brain Barrier-Associated Proteins Are Elevated in Serum of Epilepsy Patients. Cells 2023; 12:cells12030368. [PMID: 36766708 PMCID: PMC9913812 DOI: 10.3390/cells12030368] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction emerges as one of the mechanisms underlying the induction of seizures and epileptogenesis. There is growing evidence that seizures also affect BBB, yet only scarce data is available regarding serum levels of BBB-associated proteins in chronic epilepsy. In this study, we aimed to assess serum levels of molecules associated with BBB in patients with epilepsy in the interictal period. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2, S100B, CCL-2, ICAM-1, P-selectin, and TSP-2 were examined in a group of 100 patients who were seizure-free for a minimum of seven days and analyzed by ELISA. The results were compared with an age- and sex-matched control group. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2 and S100B were higher in patients with epilepsy in comparison to control group (p < 0.0001; <0.0001; 0.001; <0.0001; <0.0001, respectively). Levels of CCL-2, ICAM-1, P-selectin and TSP-2 did not differ between the two groups. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2 and S100B are elevated in patients with epilepsy in the interictal period, which suggests chronic processes of BBB disruption and restoration. The pathological process initiating epilepsy, in addition to seizures, is probably the factor contributing to the elevation of serum levels of the examined molecules.
Collapse
Affiliation(s)
- Elżbieta Bronisz
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Correspondence:
| | - Agnieszka Cudna
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Aleksandra Wierzbicka
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Iwona Kurkowska-Jastrzębska
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
17
|
Cakir A, Ocalan Esmerce B, Aydin B, Koc C, Cansev M, Gulec Suyen G, Kahveci N. Effects of uridine administration on hippocampal matrix metalloproteinases and their endogenous inhibitors in REM sleep-deprived rats. Brain Res 2022; 1793:148039. [PMID: 35932811 DOI: 10.1016/j.brainres.2022.148039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
Rapid eye movement (REM) sleep is associated with synaptic plasticity which is considered essential for long-term potentiation (LTP). The composition of extracellular matrix (ECM), in part, plays a role in REM sleep-associated synaptic functioning. The objective of this study was to investigate the effects of uridine administration on levels of matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) in rats subjected to REM sleep deprivation (REMSD). REMSD was induced by modified multiple platform method for 96-hour. Rats were randomized to receive either saline or uridine (1 mmol/kg) intraperitoneally twice a day for four days. Rats were then decapitated and their hippocampi were dissected for analyzing the levels of MMP-2, MMP-3, MMP-9, TIMP-1, TIMP-2 and TIMP-3 by Western-blotting and the activities of MMP-2 and MMP-9 by Gelatin zymography. REMSD resulted in reduced levels of MMP-3, MMP-9, TIMP-3 and activity of MMP-9 in saline-treated rats, while uridine treatment significantly enhanced their impairment. TIMP-1 was enhanced following REMSD but uridine treatment had no significant effect on TIMP-1 levels. MMP-2, TIMP-2 levels and MMP-2 activity were not affected by either REMSD or uridine administration. These data show that REMSD significantly affects ECM composition which is ameliorated by uridine administration suggesting a possible use of uridine in sleep disorders.
Collapse
Affiliation(s)
- Aysen Cakir
- Bursa Uludag University School of Medicine, Department of Physiology, Bursa, Turkey.
| | - Busra Ocalan Esmerce
- Bursa Uludag University School of Medicine, Department of Physiology, Bursa, Turkey
| | | | - Cansu Koc
- Bursa Uludag University School of Medicine, Department of Pharmacology, Bursa, Turkey
| | - Mehmet Cansev
- Bursa Uludag University School of Medicine, Department of Pharmacology, Bursa, Turkey
| | - Guldal Gulec Suyen
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Department of Physiology, Istanbul, Turkey
| | - Nevzat Kahveci
- Bursa Uludag University School of Medicine, Department of Physiology, Bursa, Turkey
| |
Collapse
|
18
|
Pochwat B, Misztak P, Masternak J, Bączyńska E, Bijata K, Roszkowska M, Bijata M, Włodarczyk J, Szafarz M, Wyska E, Muszyńska B, Krakowska A, Opoka W, Nowak G, Szewczyk B. Combined hyperforin and lanicemine treatment instead of ketamine or imipramine restores behavioral deficits induced by chronic restraint stress and dietary zinc restriction in mice. Front Pharmacol 2022; 13:933364. [PMID: 36091748 PMCID: PMC9448861 DOI: 10.3389/fphar.2022.933364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical and preclinical studies show evidence that chronic stress or nutritional deficits in dietary zinc (Zn) intake may be risk factors for developing major depressive disorder (MDD). Furthermore, there may be possible links between low serum Zn levels and development of treatment-resistant depression. In the present work, we combined chronic restraint stress (CRS) and a low-zinc diet (ZnD) in mice and carried out a set of behavioral and biochemical studies. The mice were treated with four different antidepressant compounds, namely, ketamine, Ro 25–6981 (Ro), hyperforin and lanicemine (Hyp + Lan), and imipramine (IMI). We show that CRS or ZnD alone or a combination of CRS and ZnD (CRS + ZnD) induces anhedonia observed in the sucrose preference test (SPT). The behavioral effects of CRS were restored by ketamine or IMI. However, only Hyp + Lan restored the deficits in behavioral phenotype in mice subjected to CRS + ZnD. We also showed that the antidepressant-like effects observed in Hyp + Lan-treated CRS + ZnD mice were associated with changes in the morphology of the dendritic spines (restored physiological level) in the hippocampus (Hp). Finally, we studied the metabolism of ketamine and its brain absorption in CRS and CRS + ZnD mice. Our results suggest that CRS + ZnD does not alter the metabolism of ketamine to (2R,6R;2S,6S)-HNK; however, CRS + ZnD can induce altered bioavailability and distribution of ketamine in the Hp and frontal cortex (FC) in CRS + ZnD animals compared to the control and CRS groups.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
- *Correspondence: Bartłomiej Pochwat, ; Bernadeta Szewczyk,
| | - Paulina Misztak
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Julia Masternak
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Ewa Bączyńska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Krystian Bijata
- Faculty of Chemistry, University of Warsaw, Warszawa, Poland
| | - Matylda Roszkowska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Krakowska
- Department of Inorganic and Analitycal Chemistry, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Włodzimierz Opoka
- Department of Inorganic and Analitycal Chemistry, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Gabriel Nowak
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
- *Correspondence: Bartłomiej Pochwat, ; Bernadeta Szewczyk,
| |
Collapse
|
19
|
Kuzniewska B, Rejmak K, Nowacka A, Ziółkowska M, Milek J, Magnowska M, Gruchota J, Gewartowska O, Borsuk E, Salamian A, Dziembowski A, Radwanska K, Dziembowska M. Disrupting interaction between miR-132 and Mmp9 3'UTR improves synaptic plasticity and memory in mice. Front Mol Neurosci 2022; 15:924534. [PMID: 35992198 PMCID: PMC9389266 DOI: 10.3389/fnmol.2022.924534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
As microRNAs have emerged to be important regulators of molecular events occurring at the synapses, the new questions about their regulatory effect on the behavior have araised. In the present study, we show for the first time that the dysregulated specific targeting of miR132 to Mmp9 mRNA in the mouse brain results in the increased level of Mmp9 protein, which affects synaptic plasticity and has an effect on memory formation. Our data points at the importance of complex and precise regulation of the Mmp9 level by miR132 in the brain.
Collapse
Affiliation(s)
- Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Karolina Rejmak
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Agata Nowacka
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Milek
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marta Magnowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jakub Gruchota
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewa Borsuk
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Gross KS, Lincoln CM, Anderson MM, Geiger GE, Frick KM. Extracellular matrix metalloproteinase-9 (MMP-9) is required in female mice for 17β-estradiol enhancement of hippocampal memory consolidation. Psychoneuroendocrinology 2022; 141:105773. [PMID: 35490640 PMCID: PMC9173600 DOI: 10.1016/j.psyneuen.2022.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
Hippocampal plasticity and memory are modulated by the potent estrogen 17β-estradiol (E2). Research on the molecular mechanisms of hippocampal E2 signaling has uncovered multiple intracellular pathways that contribute to these effects, but few have questioned the role that extracellular signaling processes may play in E2 action. Modification of the extracellular matrix (ECM) by proteases like matrix metalloproteinase-9 (MMP-9) is critical for activity-dependent remodeling of synapses, and MMP-9 activity is required for hippocampal learning and memory. Yet little is known about the extent to which E2 regulates MMP-9 in the hippocampus, and the influence this interaction may have on hippocampal memory. Here, we examined the effects of hippocampal MMP-9 activity on E2-induced enhancement of spatial and object recognition memory consolidation. Post-training bilateral infusion of an MMP-9 inhibitor into the dorsal hippocampus of ovariectomized female mice blocked the enhancing effects of E2 on object placement and object recognition memory, supporting a role for MMP-9 in estrogenic regulation of memory consolidation. E2 also rapidly increased the activity of dorsal hippocampal MMP-9 without influencing its protein expression, providing further insight into hippocampal E2/MMP-9 interactions. Together, these results provide the first evidence that E2 regulates MMP-9 to modulate hippocampal memory and highlight the need to further study estrogenic regulation of extracellular modification.
Collapse
Affiliation(s)
| | | | | | | | - Karyn M. Frick
- Correspondence to: Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA. (K.M. Frick)
| |
Collapse
|
21
|
Banach E, Jaworski T, Urban-Ciećko J. Early synaptic deficits in GSK-3β overexpressing mice. Neurosci Lett 2022; 784:136744. [PMID: 35718239 DOI: 10.1016/j.neulet.2022.136744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Synaptic dysfunction is the prominent feature of many neuropsychiatric and neurological diseases, in which glycogen synthase kinase 3β (GSK-3β) has been shown to play a role. Overexpression of constitutively active form of GSK-3β (GSK-3β[S9A]) in mice recapitulates the cognitive and structural brain deficits characteristic for manic phase of bipolar disorder (BD). Yet, the mechanisms underlying GSK-3β-induced synaptic dysfunction have not been fully elucidated. The aim of the present study was to dissect the effect of GSK-3β overactivity on synaptic function in adolescent (3-week-old) mice. We found that overactivity of GSK-3β in adolescent transgenic mice leads to an alteration in dendritic spines morphology of granule cells in dentate gyrus (DG) without changes in overall spine density. There was an increase in the number of thin, presumably immature dendritic spines in GSK-3β[S9A] mice. Subsequent electrophysiological analysis showed changes in excitatory synaptic transmission manifested by an increase of inter-event intervals of miniature excitatory postsynaptic currents (mEPSCs) in DG granule cells and an increase in the number of silent (unfunctional) synapses at the perforant path-DG pathway in GSK-3β[S9A] mice. Altogether, our data indicate that GSK-3β overactivity leads to synaptic deficits in adolescent, GSK-3β[S9A] mice. These data might provide potential mechanisms underlying GSK-3β-induced synaptic dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Ewa Banach
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Animal Models, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland; Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland
| | - Joanna Urban-Ciećko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
22
|
Ray MH, Williams BR, Kuppe MK, Bryant CD, Logan RW. A Glitch in the Matrix: The Role of Extracellular Matrix Remodeling in Opioid Use Disorder. Front Integr Neurosci 2022; 16:899637. [PMID: 35757099 PMCID: PMC9218427 DOI: 10.3389/fnint.2022.899637] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Opioid use disorder (OUD) and deaths from drug overdoses have reached unprecedented levels. Given the enormous impact of the opioid crisis on public health, a more thorough, in-depth understanding of the consequences of opioids on the brain is required to develop novel interventions and pharmacological therapeutics. In the brain, the effects of opioids are far reaching, from genes to cells, synapses, circuits, and ultimately behavior. Accumulating evidence implicates a primary role for the extracellular matrix (ECM) in opioid-induced plasticity of synapses and circuits, and the development of dependence and addiction to opioids. As a network of proteins and polysaccharides, including cell adhesion molecules, proteases, and perineuronal nets, the ECM is intimately involved in both the formation and structural support of synapses. In the human brain, recent findings support an association between altered ECM signaling and OUD, particularly within the cortical and striatal circuits involved in cognition, reward, and craving. Furthermore, the ECM signaling proteins, including matrix metalloproteinases and proteoglycans, are directly involved in opioid seeking, craving, and relapse behaviors in rodent opioid models. Both the impact of opioids on the ECM and the role of ECM signaling proteins in opioid use disorder, may, in part, depend on biological sex. Here, we highlight the current evidence supporting sex-specific roles for ECM signaling proteins in the brain and their associations with OUD. We emphasize knowledge gaps and future directions to further investigate the potential of the ECM as a therapeutic target for the treatment of OUD.
Collapse
Affiliation(s)
- Madelyn H. Ray
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin R. Williams
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Madeline K. Kuppe
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Camron D. Bryant
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Ryan W. Logan
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
23
|
Mignogna ML, Ficarella R, Gelmini S, Marzulli L, Ponzi E, Gabellone A, Peschechera A, Alessio M, Margari L, Gentile M, D’Adamo P. Clinical characterization of a novel RAB39B nonstop mutation in a family with ASD and severe ID causing RAB39B downregulation and study of a Rab39b knock down mouse model. Hum Mol Genet 2022; 31:1389-1406. [PMID: 34761259 PMCID: PMC9071400 DOI: 10.1093/hmg/ddab320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) often exist together in patients. The RAB39B gene has been reported to be mutated in ID patients with additional clinical features ranging from ASD, macrocephaly, seizures and/or early-onset parkinsonism. Here, we describe a novel RAB39B nonstop mutation [Xq28; c.640 T > C; p.(*214Glnext*21)] in a family with ASD, severe ID and poor motor coordination, and we assessed the pathogenicity of the mutation. A heterologous cell system and a Rab39b knockdown (KD) murine model, which mimic the nonstop mutation, were used to validate the deleterious effect of the RAB39B mutation. The mutation led to RAB39B protein instability, resulting in its increased degradation and consequent downregulation. Using a Rab39b KD mouse model, we demonstrated that the downregulation of RAB39B led to increased GluA2 lacking Ca2+-permeable AMPAR composition at the hippocampal neuronal surface and increased dendritic spine density that remained in an immature filopodia-like state. These phenotypes affected behavioural performance in a disease-specific manner. Rab39b KD mice revealed impaired social behaviour but intact social recognition. They also showed normal anxiety-like, exploratory and motivational behaviours but impaired working and associative memories. In conclusion, we found a novel RAB39B nonstop variant that segregated in a family with a clinical phenotype including ID, ASD and poor motor coordination. The pathogenicity of mutations causing the downregulation of RAB39B proteins, impacting AMPAR trafficking and dendritic spine morphogenesis, reinforced the idea that AMPAR modulation and dendritic spine assets could be considered hallmarks of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria Lidia Mignogna
- Molecular Genetics of Intellectual Disability, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Romina Ficarella
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, 70132, Bari, Italy
| | - Susanna Gelmini
- Molecular Genetics of Intellectual Disability, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Lucia Marzulli
- Child Neuropsychiatry Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70126, Bari, Italy
| | - Emanuela Ponzi
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, 70132, Bari, Italy
| | - Alessandra Gabellone
- Child Neuropsychiatry Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70126, Bari, Italy
| | - Antonia Peschechera
- Child Neuropsychiatry Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70126, Bari, Italy
| | - Massino Alessio
- Proteome Biochemistry, Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Lucia Margari
- Child Neuropsychiatry Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70126, Bari, Italy
| | - Mattia Gentile
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, 70132, Bari, Italy
| | - Patrizia D’Adamo
- Molecular Genetics of Intellectual Disability, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| |
Collapse
|
24
|
Dankovich TM, Rizzoli SO. Extracellular Matrix Recycling as a Novel Plasticity Mechanism With a Potential Role in Disease. Front Cell Neurosci 2022; 16:854897. [PMID: 35431813 PMCID: PMC9008140 DOI: 10.3389/fncel.2022.854897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix (ECM) stabilizes neural circuits and synapses in the healthy brain, while also retaining the ability to be remodeled, to allow synapses to be plastic. A well-described mechanism for ECM remodeling is through the regulated secretion of proteolytic enzymes at the synapse, together with the synthesis of new ECM molecules. The importance of this process is evidenced by the large number of brain disorders that are associated with a dysregulation of ECM-cleaving protease activity. While most of the brain ECM molecules are indeed stable for remarkable time periods, evidence in other cell types, as cancer cells, suggests that at least a proportion of the ECM molecules may be endocytosed regularly, and could even be recycled back to the ECM. In this review, we discuss the involvement of such a mechanism in the brain, under physiological activity conditions and in relation to synapse and brain disease.
Collapse
Affiliation(s)
- Tal M. Dankovich
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
- *Correspondence: Tal M. Dankovich,
| | - Silvio O. Rizzoli
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen, Germany
- Silvio O. Rizzoli,
| |
Collapse
|
25
|
Li H, Sheng Z, Khan S, Zhang R, Liu Y, Zhang Y, Yong VW, Xue M. Matrix Metalloproteinase-9 as an Important Contributor to the Pathophysiology of Depression. Front Neurol 2022; 13:861843. [PMID: 35370878 PMCID: PMC8971905 DOI: 10.3389/fneur.2022.861843] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are physiologically expressed in the central nervous system in neurons, astrocytes and microglia, and their aberrant elevation contributes to a number of diseases. Amongst the MMP members, MMP−9 has generated considerable attention because of its possible involvement in inflammatory responses, blood-brain barrier permeability, the regulation of perineuronal nets, demyelination, and synaptic long-term potentiation. Emerging evidence indicate an association between MMP−9 and the syndrome of depression. This review provides an updated and comprehensive summary of the probable roles of MMP−9 in depression with an emphasis on the mechanisms and potential of MMP−9 as a biomarker of depression.
Collapse
Affiliation(s)
- Hongmin Li
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Zhaofu Sheng
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruiyi Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yan Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: V. Wee Yong
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
- Mengzhou Xue
| |
Collapse
|
26
|
Bijata M, Bączyńska E, Müller FE, Bijata K, Masternak J, Krzystyniak A, Szewczyk B, Siwiec M, Antoniuk S, Roszkowska M, Figiel I, Magnowska M, Olszyński KH, Wardak AD, Hogendorf A, Ruszczycki B, Gorinski N, Labus J, Stępień T, Tarka S, Bojarski AJ, Tokarski K, Filipkowski RK, Ponimaskin E, Wlodarczyk J. Activation of the 5-HT7 receptor and MMP-9 signaling module in the hippocampal CA1 region is necessary for the development of depressive-like behavior. Cell Rep 2022; 38:110532. [PMID: 35294881 DOI: 10.1016/j.celrep.2022.110532] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/31/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder is a complex disease resulting from aberrant synaptic plasticity that may be caused by abnormal serotonergic signaling. Using a combination of behavioral, biochemical, and imaging methods, we analyze 5-HT7R/MMP-9 signaling and dendritic spine plasticity in the hippocampus in mice treated with the selective 5-HT7R agonist (LP-211) and in a model of chronic unpredictable stress (CUS)-induced depressive-like behavior. We show that acute 5-HT7R activation induces depressive-like behavior in mice in an MMP-9-dependent manner and that post mortem brain samples from human individuals with depression reveal increased MMP-9 enzymatic activity in the hippocampus. Both pharmacological activation of 5-HT7R and modulation of its downstream effectors as a result of CUS lead to dendritic spine elongation and decreased spine density in this region. Overall, the 5-HT7R/MMP-9 pathway is specifically activated in the CA1 subregion of the hippocampus during chronic stress and is crucial for inducing depressive-like behavior.
Collapse
Affiliation(s)
- Monika Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland; Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Ewa Bączyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland; The Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Franziska E Müller
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Krystian Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland; Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Julia Masternak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Adam Krzystyniak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Marcin Siwiec
- Maj Institute of Pharmacology, Department of Physiology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Svitlana Antoniuk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland; Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Matylda Roszkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Izabela Figiel
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Marta Magnowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Krzysztof H Olszyński
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Agnieszka D Wardak
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Adam Hogendorf
- Maj Institute of Pharmacology, Department of Medicinal Chemistry, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Błażej Ruszczycki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Nataliya Gorinski
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Josephine Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tomasz Stępień
- Department of Neuropathology, Institute of Psychiatry and Neurology, Jana III Sobieskiego 9, 02-957 Warsaw, Poland
| | - Sylwia Tarka
- Department of Forensic Medicine, Medical University of Warsaw, Oczki 1, 02-007 Warsaw, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Department of Medicinal Chemistry, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Krzysztof Tokarski
- Maj Institute of Pharmacology, Department of Physiology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Robert K Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| |
Collapse
|
27
|
Singh S, Winkelstein BA. Inhibiting the β1integrin subunit increases the strain threshold for neuronal dysfunction under tensile loading in collagen gels mimicking innervated ligaments. Biomech Model Mechanobiol 2022; 21:885-898. [DOI: 10.1007/s10237-022-01565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
|
28
|
Dankovich TM, Rizzoli SO. The Synaptic Extracellular Matrix: Long-Lived, Stable, and Still Remarkably Dynamic. Front Synaptic Neurosci 2022; 14:854956. [PMID: 35350469 PMCID: PMC8957932 DOI: 10.3389/fnsyn.2022.854956] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
In the adult brain, synapses are tightly enwrapped by lattices of the extracellular matrix that consist of extremely long-lived molecules. These lattices are deemed to stabilize synapses, restrict the reorganization of their transmission machinery, and prevent them from undergoing structural or morphological changes. At the same time, they are expected to retain some degree of flexibility to permit occasional events of synaptic plasticity. The recent understanding that structural changes to synapses are significantly more frequent than previously assumed (occurring even on a timescale of minutes) has called for a mechanism that allows continual and energy-efficient remodeling of the extracellular matrix (ECM) at synapses. Here, we review recent evidence for such a process based on the constitutive recycling of synaptic ECM molecules. We discuss the key characteristics of this mechanism, focusing on its roles in mediating synaptic transmission and plasticity, and speculate on additional potential functions in neuronal signaling.
Collapse
Affiliation(s)
- Tal M. Dankovich
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- International Max Planck Research School for Neuroscience, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| | - Silvio O. Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| |
Collapse
|
29
|
The cell adhesion protein dystroglycan affects the structural remodeling of dendritic spines. Sci Rep 2022; 12:2506. [PMID: 35169214 PMCID: PMC8847666 DOI: 10.1038/s41598-022-06462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Dystroglycan (DG) is a cell membrane protein that binds to the extracellular matrix in various mammalian tissues. The function of DG has been well defined in embryonic development as well as in the proper migration of differentiated neuroblasts in the central nervous system (CNS). Although DG is known to be a target for matrix metalloproteinase-9 (MMP-9), cleaved in response to enhanced synaptic activity, the role of DG in the structural remodeling of dendritic spines is still unknown. Here, we report for the first time that the deletion of DG in rat hippocampal cell cultures causes pronounced changes in the density and morphology of dendritic spines. Furthermore, we noted a decrease in laminin, one of the major extracellular partners of DG. We have also observed that the lack of DG evokes alterations in the morphological complexity of astrocytes accompanied by a decrease in the level of aquaporin 4 (AQP4), a protein located within astrocyte endfeet surrounding neuronal dendrites and synapses. Regardless of all of these changes, we did not observe any effect of DG silencing on either excitatory or inhibitory synaptic transmission. Likewise, the knockdown of DG had no effect on Psd-95 protein expression. Our results indicate that DG is involved in dendritic spine remodeling that is not functionally reflected. This may suggest the existence of unknown mechanisms that maintain proper synaptic signaling despite impaired structure of dendritic spines. Presumably, astrocytes are involved in these processes.
Collapse
|
30
|
Cai WT, Kim WY, Kwak MJ, Rim H, Lee SE, Riecken LB, Morrison H, Kim J. Disruption of amphetamine sensitization by alteration of dendritic thin spines in the nucleus accumbens core. J Neurochem 2022; 161:266-280. [DOI: 10.1111/jnc.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Wen Ting Cai
- Department of Physiology Yonsei University College of Medicine Seoul Republic of Korea
| | - Wha Young Kim
- Department of Physiology Yonsei University College of Medicine Seoul Republic of Korea
| | - Myung Ji Kwak
- Department of Medical Sciences Yonsei University College of Medicine Seoul Republic of Korea
| | - Haeun Rim
- Department of Medical Sciences Yonsei University College of Medicine Seoul Republic of Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Source Center Korea Institute of Science and Technology Seoul Republic of Korea
| | | | - Helen Morrison
- Leibniz Institute on Aging Fritz Lipmann Institute Jena Germany
| | - Jeong‐Hoon Kim
- Department of Physiology Yonsei University College of Medicine Seoul Republic of Korea
- Department of Medical Sciences Yonsei University College of Medicine Seoul Republic of Korea
| |
Collapse
|
31
|
Prospective cohort study reveals MMP-9, a neuroplasticity regulator, as a prediction marker of cochlear implantation outcome in prelingual deafness treatment. Mol Neurobiol 2022; 59:2190-2203. [PMID: 35061219 PMCID: PMC9262127 DOI: 10.1007/s12035-022-02732-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
Because of vast variability of cochlear implantation outcomes in
prelingual deafness treatment, identification of good and poor performers remains a
challenging task. To address this issue, we investigated genetic variants of matrix
metalloproteinase 9 (MMP9) and brain-derived
neurotrophic factor (BDNF) and plasma levels of
MMP-9, BDNF, and pro-BDNF that have all been implicated in neuroplasticity after
sensory deprivation in the auditory pathway. We recruited a cohort of prelingually
deaf children, all implanted before the age of 2, and carried out a prospective
observation (N = 61). Next, we analyzed the
association between (i) functional MMP9 (rs20544,
rs3918242, rs2234681) and BDNF (rs6265) gene
variants (and their respective protein levels) and (ii) the child’s auditory
development as measured with the LittlEARS Questionnaire (LEAQ) before cochlear
implant (CI) activation and at 8 and 18 months post-CI activation. Statistical
analyses revealed that the plasma level of MMP-9 measured at implantation in
prelingually deaf children was significantly correlated with the LEAQ score
18 months after CI activation. In the subgroup of DFNB1-related deafness (N = 40), rs3918242 of MMP9 was significantly associated with LEAQ score at 18 months after
CI activation; also, according to a multiple regression model, the ratio of plasma
levels of pro-BDNF/BDNF measured at implantation was a significant predictor of
overall LEAQ score at follow-up. In the subgroup with DFNB1-related deafness, who
had CI activation after 1 year old (N = 22), a
multiple regression model showed that rs3918242 of MMP9 was a significant predictor of overall LEAQ score at
follow-up.
Collapse
|
32
|
Rusakov DA. Obituary for Professor Michael G. Stewart: Life in Neurosciences. Brain Res Bull 2022; 180:147-149. [DOI: 10.1016/j.brainresbull.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Datta G, Miller NM, Du W, Geiger JD, Chang S, Chen X. Endolysosome Localization of ERα Is Involved in the Protective Effect of 17α-Estradiol against HIV-1 gp120-Induced Neuronal Injury. J Neurosci 2021; 41:10365-10381. [PMID: 34764157 PMCID: PMC8672688 DOI: 10.1523/jneurosci.1475-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Neurotoxic HIV-1 viral proteins contribute to the development of HIV-associated neurocognitive disorder (HAND), the prevalence of which remains high (30-50%) with no effective treatment available. Estrogen is a known neuroprotective agent; however, the diverse mechanisms of estrogen action on the different types of estrogen receptors is not completely understood. In this study, we determined the extent to which and mechanisms by which 17α-estradiol (17αE2), a natural less-feminizing estrogen, offers neuroprotection against HIV-1 gp120-induced neuronal injury. Endolysosomes are important for neuronal function, and endolysosomal dysfunction contributes to HAND and other neurodegenerative disorders. In hippocampal neurons, estrogen receptor α (ERα) is localized to endolysosomes and 17αE2 acidifies endolysosomes. ERα knockdown or overexpressing an ERα mutant that is deficient in endolysosome localization prevents 17αE2-induced endolysosome acidification. Furthermore, 17αE2-induced increases in dendritic spine density depend on endolysosome localization of ERα. Pretreatment with 17αE2 protected against HIV-1 gp120-induced endolysosome deacidification and reductions in dendritic spines; such protective effects depended on endolysosome localization of ERα. In male HIV-1 transgenic rats, we show that 17αE2 treatment prevents the development of enlarged endolysosomes and reduction in dendritic spines. Our findings demonstrate a novel endolysosome-dependent pathway that governs the ERα-mediated neuroprotective actions of 17αE2, findings that might lead to the development of novel therapeutic strategies against HAND.SIGNIFICANCE STATEMENT Extranuclear presence of membrane-bound estrogen receptors (ERs) underlie the enhancing effect of estrogen on cognition and synaptic function. The estrogen receptor subtype ERα is present on endolysosomes and plays a critical role in the enhancing effects of 17αE2 on endolysosomes and dendritic spines. These findings provide novel insight into the neuroprotective actions of estrogen. Furthermore, 17αE2 protected against HIV-1 gp120-induced endolysosome dysfunction and reductions in dendritic spines, and these protective effects of 17αE2 were mediated via endolysosome localization of ERα. Such findings provide a rationale for developing 17αE2 as a therapeutic strategy against HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Wenjuan Du
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Sulie Chang
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| |
Collapse
|
34
|
Romagnoli A, Di Marino D. The Use of Peptides in the Treatment of Fragile X Syndrome: Challenges and Opportunities. Front Psychiatry 2021; 12:754485. [PMID: 34803767 PMCID: PMC8599826 DOI: 10.3389/fpsyt.2021.754485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most frequent cause of inherited intellectual disabilities and autism spectrum disorders, characterized by cognitive deficits and autistic behaviors. The silencing of the Fmr1 gene and consequent lack of FMRP protein, is the major contribution to FXS pathophysiology. FMRP is an RNA binding protein involved in the maturation and plasticity of synapses and its absence culminates in a range of morphological, synaptic and behavioral phenotypes. Currently, there are no approved medications for the treatment of FXS, with the approaches under study being fairly specific and unsatisfying in human trials. Here we propose peptides/peptidomimetics as candidates in the pharmacotherapy of FXS; in the last years this class of molecules has catalyzed the attention of pharmaceutical research, being highly selective and well-tolerated. Thanks to their ability to target protein-protein interactions (PPIs), they are already being tested for a wide range of diseases, including cancer, diabetes, inflammation, Alzheimer's disease, but this approach has never been applied to FXS. As FXS is at the forefront of efforts to develop new drugs and approaches, we discuss opportunities, challenges and potential issues of peptides/peptidomimetics in FXS drug design and development.
Collapse
Affiliation(s)
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
35
|
Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses. Cells 2021; 10:cells10082055. [PMID: 34440823 PMCID: PMC8391609 DOI: 10.3390/cells10082055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Long-term synaptic plasticity is shaped by the controlled reorganization of the synaptic proteome. A key component of this process is local proteolysis performed by the family of extracellular matrix metalloproteinases (MMPs). In recent years, considerable progress was achieved in identifying extracellular proteases involved in neuroplasticity phenomena and their protein substrates. Perisynaptic metalloproteinases regulate plastic changes at synapses through the processing of extracellular and membrane proteins. MMP9 was found to play a crucial role in excitatory synapses by controlling the NMDA-dependent LTP component. In addition, MMP3 regulates the L-type calcium channel-dependent form of LTP as well as the plasticity of neuronal excitability. Both MMP9 and MMP3 were implicated in memory and learning. Moreover, altered expression or mutations of different MMPs are associated with learning deficits and psychiatric disorders, including schizophrenia, addiction, or stress response. Contrary to excitatory drive, the investigation into the role of extracellular proteolysis in inhibitory synapses is only just beginning. Herein, we review the principal mechanisms of MMP involvement in the plasticity of excitatory transmission and the recently discovered role of proteolysis in inhibitory synapses. We discuss how different matrix metalloproteinases shape dynamics and turnover of synaptic adhesome and signal transduction pathways in neurons. Finally, we discuss future challenges in exploring synapse- and plasticity-specific functions of different metalloproteinases.
Collapse
|
36
|
Gore SV, James EJ, Huang LC, Park JJ, Berghella A, Thompson AC, Cline HT, Aizenman CD. Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis. eLife 2021; 10:62147. [PMID: 34282726 PMCID: PMC8315794 DOI: 10.7554/elife.62147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is a secreted endopeptidase targeting extracellular matrix proteins, creating permissive environments for neuronal development and plasticity. Developmental dysregulation of MMP-9 may also lead to neurodevelopmental disorders (ND). Here, we test the hypothesis that chronically elevated MMP-9 activity during early neurodevelopment is responsible for neural circuit hyperconnectivity observed in Xenopus tadpoles after early exposure to valproic acid (VPA), a known teratogen associated with ND in humans. In Xenopus tadpoles, VPA exposure results in excess local synaptic connectivity, disrupted social behavior and increased seizure susceptibility. We found that overexpressing MMP-9 in the brain copies effects of VPA on synaptic connectivity, and blocking MMP-9 activity pharmacologically or genetically reverses effects of VPA on physiology and behavior. We further show that during normal neurodevelopment MMP-9 levels are tightly regulated by neuronal activity and required for structural plasticity. These studies show a critical role for MMP-9 in both normal and abnormal development.
Collapse
Affiliation(s)
- Sayali V Gore
- Department of Neuroscience, Brown University, Providence, United States
| | - Eric J James
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Jenn J Park
- Department of Neuroscience, Brown University, Providence, United States
| | - Andrea Berghella
- Department of Neuroscience, Brown University, Providence, United States
| | - Adrian C Thompson
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
37
|
Dionne O, Corbin F. An "Omic" Overview of Fragile X Syndrome. BIOLOGY 2021; 10:433. [PMID: 34068266 PMCID: PMC8153138 DOI: 10.3390/biology10050433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder associated with a wide range of cognitive, behavioral and medical problems. It arises from the silencing of the fragile X mental retardation 1 (FMR1) gene and, consequently, in the absence of its encoded protein, FMRP (fragile X mental retardation protein). FMRP is a ubiquitously expressed and multifunctional RNA-binding protein, primarily considered as a translational regulator. Pre-clinical studies of the past two decades have therefore focused on this function to relate FMRP's absence to the molecular mechanisms underlying FXS physiopathology. Based on these data, successful pharmacological strategies were developed to rescue fragile X phenotype in animal models. Unfortunately, these results did not translate into humans as clinical trials using same therapeutic approaches did not reach the expected outcomes. These failures highlight the need to put into perspective the different functions of FMRP in order to get a more comprehensive understanding of FXS pathophysiology. This work presents a review of FMRP's involvement on noteworthy molecular mechanisms that may ultimately contribute to various biochemical alterations composing the fragile X phenotype.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC J1H 5H4, Canada;
| | | |
Collapse
|
38
|
Bączyńska E, Pels KK, Basu S, Włodarczyk J, Ruszczycki B. Quantification of Dendritic Spines Remodeling under Physiological Stimuli and in Pathological Conditions. Int J Mol Sci 2021; 22:4053. [PMID: 33919977 PMCID: PMC8070910 DOI: 10.3390/ijms22084053] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Numerous brain diseases are associated with abnormalities in morphology and density of dendritic spines, small membranous protrusions whose structural geometry correlates with the strength of synaptic connections. Thus, the quantitative analysis of dendritic spines remodeling in microscopic images is one of the key elements towards understanding mechanisms of structural neuronal plasticity and bases of brain pathology. In the following article, we review experimental approaches designed to assess quantitative features of dendritic spines under physiological stimuli and in pathological conditions. We compare various methodological pipelines of biological models, sample preparation, data analysis, image acquisition, sample size, and statistical analysis. The methodology and results of relevant experiments are systematically summarized in a tabular form. In particular, we focus on quantitative data regarding the number of animals, cells, dendritic spines, types of studied parameters, size of observed changes, and their statistical significance.
Collapse
Affiliation(s)
- Ewa Bączyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.B.); (K.K.P.); (J.W.)
| | - Katarzyna Karolina Pels
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.B.); (K.K.P.); (J.W.)
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India;
| | - Jakub Włodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.B.); (K.K.P.); (J.W.)
| | - Błażej Ruszczycki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.B.); (K.K.P.); (J.W.)
| |
Collapse
|
39
|
Keshri N, Nandeesha H, Rajappa M, Menon V. Matrix metalloproteinase-9 increases the risk of cognitive impairment in schizophrenia. Nord J Psychiatry 2021; 75:130-134. [PMID: 32815771 DOI: 10.1080/08039488.2020.1808901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF THE ARTICLE Synaptic plasticity is known to play role in pathogenesis of schizophrenia. Cognitive impairment is one of the complications of schizophrenia, leading to poor quality of life. Matrix metalloprotease-9 (MMP-9) and neurotrophin-3 (NT-3) are markers of synaptic plasticity, widely investigated in neuropsychiatric disorders. The objective of the study was to investigate the levels of MMP-9 and NT-3 and their association with cognitive impairment in schizophrenia. MATERIAL AND METHODS 124 schizophrenia patients and 124 controls were enrolled in the study. MMP-9 and NT-3 were estimated in both the groups using ELISA. Cognition was assessed using Addenbrooke cognitive examination-III (ACE-III) and disease severity was assessed using PANSS. RESULTS MMP-9 (p = .003) and NT -3 (p < .001) were found to be elevated in schizophrenia cases compared to controls. There was significant association of MMP-9 with fluency (r = -0.195, p = .030), language (r = -0.196, p = .029) and total ACE-III scores (r = -0.197, p = .029). Also we observed that MMP-9 increases the risk of cognitive impairment in schizophrenia patients (OR = 2.509, CI= 1.215 - 5.18, p = .013). CONCLUSION MMP-9 and NT-3 are elevated in schizophrenia. MMP-9 was associated with fluency and language component of cognition and increases the risk of cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Neha Keshri
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, India
| | | | - Medha Rajappa
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, India
| | - Vikas Menon
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, India
| |
Collapse
|
40
|
Pekala M, Doliwa M, Kalita K. Impact of maternal immune activation on dendritic spine development. Dev Neurobiol 2021; 81:524-545. [PMID: 33382515 DOI: 10.1002/dneu.22804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
Dendritic spines are small dendritic protrusions that harbor most excitatory synapses in the brain. The proper generation and maturation of dendritic spines are crucial for the regulation of synaptic transmission and formation of neuronal circuits. Abnormalities in dendritic spine density and morphology are common pathologies in autism and schizophrenia. According to epidemiological studies, one risk factor for these neurodevelopmental disorders is maternal infection during pregnancy. This review discusses spine alterations in animal models of maternal immune activation in the context of neurodevelopmental disorders. We describe potential mechanisms that might be responsible for prenatal infection-induced changes in the dendritic spine phenotype and behavior in offspring.
Collapse
Affiliation(s)
- Martyna Pekala
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Doliwa
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
41
|
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity. Cells 2021; 10:cells10010166. [PMID: 33467671 PMCID: PMC7830260 DOI: 10.3390/cells10010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) has been identified as a critical factor affecting synaptic function. It forms a functional scaffold that provides both the structural support and the reservoir of signaling molecules necessary for communication between cellular constituents of the central nervous system (CNS). Among numerous ECM components and modifiers that play a role in the physiological and pathological synaptic plasticity, matrix metalloproteinase 9 (MMP-9) has recently emerged as a key molecule. MMP-9 may contribute to the dynamic remodeling of structural and functional plasticity by cleaving ECM components and cell adhesion molecules. Notably, MMP-9 signaling was shown to be indispensable for long-term memory formation that requires synaptic remodeling. The core regulators of the dynamic reorganization of the actin cytoskeleton and cell adhesion are the Rho family of GTPases. These proteins have been implicated in the control of a wide range of cellular processes occurring in brain physiology and pathology. Here, we discuss the contribution of Rho GTPases to MMP-9-dependent signaling pathways in the brain. We also describe how the regulation of Rho GTPases by post-translational modifications (PTMs) can influence these processes.
Collapse
|
42
|
Grochecki P, Smaga I, Lopatynska-Mazurek M, Gibula-Tarlowska E, Kedzierska E, Listos J, Talarek S, Marszalek-Grabska M, Hubalewska-Mazgaj M, Korga-Plewko A, Dudka J, Marzec Z, Filip M, Kotlinska JH. Effects of Mephedrone and Amphetamine Exposure during Adolescence on Spatial Memory in Adulthood: Behavioral and Neurochemical Analysis. Int J Mol Sci 2021; 22:E589. [PMID: 33435576 PMCID: PMC7827725 DOI: 10.3390/ijms22020589] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
A synthetic cathinone, mephedrone is widely abused by adolescents and young adults. Despite its widespread use, little is known regarding its long-term effects on cognitive function. Therefore, we assessed, for the first time, whether (A) repeated mephedrone (30 mg/kg, i.p., 10 days, once a day) exposure during adolescence (PND 40) induces deleterious effects on spatial memory and reversal learning (Barnes maze task) in adult (PND 71-84) rats and whether (B) these effects were comparable to amphetamine (2.5 mg/kg, i.p.). Furthermore, the influence of these drugs on MMP-9, NMDA receptor subunits (GluN1, GluN2A/2B) and PSD-95 protein expression were assessed in adult rats. The drug effects were evaluated at doses that per se induce rewarding/reinforcing effects in rats. Our results showed deficits in spatial memory (delayed effect of amphetamine) and reversal learning in adult rats that received mephedrone/amphetamine in adolescence. However, the reversal learning impairment may actually have been due to spatial learning rather than cognitive flexibility impairments. Furthermore, mephedrone, but not amphetamine, enhanced with delayed onset, MMP-9 levels in the prefrontal cortex and the hippocampus. Mephedrone given during adolescence induced changes in MMP-9 level and up-regulation of the GluN2B-containing NMDA receptor (prefrontal cortex and hippocampus) in young adult (PND 63) and adult (PND 87) rats. Finally, in adult rats, PSD-95 expression was increased in the prefrontal cortex and decreased in the hippocampus. In contrast, in adult rats exposed to amphetamine in adolescence, GluN2A subunit and PSD-95 expression were decreased (down-regulated) in the hippocampus. Thus, in mephedrone-but not amphetamine-treated rats, the deleterious effects on spatial memory were associated with changes in MMP-9 level. Because the GluN2B-containing NMDA receptor dominates in adolescence, mephedrone seems to induce more harmful effects on cognition than amphetamine does during this period of life.
Collapse
Affiliation(s)
- Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | - Malgorzata Lopatynska-Mazurek
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Ewa Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, 20-090 Lublin, Poland;
| | - Magdalena Hubalewska-Mazgaj
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | | | - Jaroslaw Dudka
- Department of Toxicology, Medical University, 20-090 Lublin, Poland;
| | - Zbigniew Marzec
- Department of Food and Nutrition, Medical University, 20-093 Lublin, Poland;
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| |
Collapse
|
43
|
Puścian A, Winiarski M, Łęski S, Charzewski Ł, Nikolaev T, Borowska J, Dzik JM, Bijata M, Lipp HP, Dziembowska M, Knapska E. Chronic fluoxetine treatment impairs motivation and reward learning by affecting neuronal plasticity in the central amygdala. Br J Pharmacol 2021; 178:672-688. [PMID: 33171527 DOI: 10.1111/bph.15319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The therapeutic effects of fluoxetine are believed to be due to increasing neuronal plasticity and reversing some learning deficits. Nevertheless, a growing amount of evidence shows adverse effects of this drug on cognition and some forms of neuronal plasticity. EXPERIMENTAL APPROACH To study the effects of chronic fluoxetine treatment, we combine an automated assessment of motivation and learning in mice with an investigation of neuronal plasticity in the central amygdala and basolateral amygdala. We use immunohistochemistry to visualize neuronal types and perineuronal nets, along with DI staining to assess dendritic spine morphology. Gel zymography is used to test fluoxetine's impact on matrix metalloproteinase-9, an enzyme involved in synaptic plasticity. KEY RESULTS We show that chronic fluoxetine treatment in non-stressed mice increases perineuronal nets-dependent plasticity in the basolateral amygdala, while impairing MMP-9-dependent plasticity in the central amygdala. Further, we illustrate how the latter contributes to anhedonia and deficits of reward learning. Behavioural impairments are accompanied by alterations in morphology of dendritic spines in the central amygdala towards an immature state, most likely reflecting animals' inability to adapt. We strengthen the link between the adverse effects of fluoxetine and its influence on MMP-9 by showing that behaviour of MMP-9 knockout animals remains unaffected by the drug. CONCLUSION AND IMPLICATIONS Chronic fluoxetine treatment differentially affects various forms of neuronal plasticity, possibly explaining its opposing effects on brain and behaviour. These findings are of immediate clinical relevance since reported side effects of fluoxetine pose a potential threat to patients.
Collapse
Affiliation(s)
- Alicja Puścian
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Winiarski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Szymon Łęski
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Charzewski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Nikolaev
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Borowska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub M Dzik
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Evolutionary Medicine, University of Zurich, Zurich, CH-8057, Switzerland
| | | | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
44
|
Abstract
Proteases comprise a variety of enzymes defined by their ability to catalytically hydrolyze the peptide bonds of other proteins, resulting in protein lysis. Cathepsins, specifically, encompass a class of at least twenty proteases with potent endopeptidase activity. They are located subcellularly in lysosomes, organelles responsible for the cell’s degradative and autophagic processes, and are vital for normal lysosomal function. Although cathepsins are involved in a multitude of cell signaling activities, this chapter will focus on the role of cathepsins (with a special emphasis on Cathepsin B) in neuronal plasticity. We will broadly define what is known about regulation of cathepsins in the central nervous system and compare this with their dysregulation after injury or disease. Importantly, we will delineate what is currently known about the role of cathepsins in axon regeneration and plasticity after spinal cord injury. It is well established that normal cathepsin activity is integral to the function of lysosomes. Without normal lysosomal function, autophagy and other homeostatic cellular processes become dysregulated resulting in axon dystrophy. Furthermore, controlled activation of cathepsins at specialized neuronal structures such as axonal growth cones and dendritic spines have been positively implicated in their plasticity. This chapter will end with a perspective on the consequences of cathepsin dysregulation versus controlled, localized regulation to clarify how cathepsins can contribute to both neuronal plasticity and neurodegeneration.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
45
|
RAB39B-mediated trafficking of the GluA2-AMPAR subunit controls dendritic spine maturation and intellectual disability-related behaviour. Mol Psychiatry 2021; 26:6531-6549. [PMID: 34035473 PMCID: PMC8760075 DOI: 10.1038/s41380-021-01155-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Mutations in the RAB39B gene cause X-linked intellectual disability (XLID), comorbid with autism spectrum disorders or early Parkinson's disease. One of the functions of the neuronal small GTPase RAB39B is to drive GluA2/GluA3 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) maturation and trafficking, determining AMPAR subunit composition at glutamatergic postsynaptic neuronal terminals. Taking advantage of the Rab39b knockout murine model, we show that a lack of RAB39B affects neuronal dendritic spine refinement, prompting a more Ca2+-permeable and excitable synaptic network, which correlates with an immature spine arrangement and behavioural and cognitive alterations in adult mice. The persistence of immature circuits is triggered by increased hypermobility of the spine, which is restored by the Ca2+-permeable AMPAR antagonist NASPM. Together, these data confirm that RAB39B controls AMPAR trafficking, which in turn plays a pivotal role in neuronal dendritic spine remodelling and that targeting Ca2+-permeable AMPARs may highlight future pharmaceutical interventions for RAB39B-associated disease conditions.
Collapse
|
46
|
Sánchez K, Maguire-Zeiss K. MMP13 Expression Is Increased Following Mutant α-Synuclein Exposure and Promotes Inflammatory Responses in Microglia. Front Neurosci 2020; 14:585544. [PMID: 33343280 PMCID: PMC7738560 DOI: 10.3389/fnins.2020.585544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
α-Synuclein is a 140-amino acid protein that readily misfolds and is associated with the Lewy body pathology found in sporadic and genetic forms of Parkinson's disease. We and others have shown that wild-type α-synuclein is a damage-associated molecular pattern that directly elicits a proinflammatory response in microglia through toll-like receptor activation. Here we investigated the direct effect of oligomeric mutant α-synuclein (A53T) on microglia morphology and activation. We found that misfolded A53T increased quantitative measures of amoeboid cell morphology, NFκB nuclear translocation and the expression of prototypical proinflammatory molecules. We also demonstrated that A53T increased expression of MMP13, a matrix metalloproteinase that remodels the extracellular matrix. To better understand the role of MMP13 in synucleinopathies, we further characterized the role of MMP13 in microglial signaling. We showed exposure of microglia to MMP13 induced a change in morphology and promoted the release of TNFα and MMP9. Notably, IL1β was not released indicating that the pathway involved in MMP13 activation of microglia may be different than the A53T pathway. Lastly, MMP13 increased the expression of CD68 suggesting that the lysosomal pathway might be altered by this MMP. Taken together this study shows that mutant α-synuclein directly induces a proinflammatory phenotype in microglia, which includes the expression of MMP13. In turn, MMP13 directly alters microglia supporting the need for multi-target therapies to treat Parkinson's disease patients.
Collapse
Affiliation(s)
- Kathryn Sánchez
- Department of Biology, Georgetown University, Washington, DC, United States
| | - Kathleen Maguire-Zeiss
- Department of Biology, Georgetown University, Washington, DC, United States.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
47
|
Sadowska M, Mehlhorn C, Średniawa W, Szewczyk ŁM, Szlachcic A, Urban P, Winiarski M, Jabłonka JA. Spreading Depressions and Periinfarct Spreading Depolarizations in the Context of Cortical Plasticity. Neuroscience 2020; 453:81-101. [PMID: 33227236 DOI: 10.1016/j.neuroscience.2020.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
Studies of cortical function-recovery require a comparison between normal and post-stroke conditions that lead to changes in cortical metaplasticity. Focal cortical stroke impairs experience-dependent plasticity in the neighboring somatosensory cortex and usually evokes periinfarct depolarizations (PiDs) - spreading depression-like waves. Experimentally induced spreading depressions (SDs) affect gene expression and some of these changes persist for at least 30 days. In this study we compare the effects of non-stroke depolarizations that impair cortical experience-dependent plasticity to the effects of stroke, by inducing experience-dependent plasticity in rats with SDs or PiDs by a month of contralateral partial whiskers deprivation. We found that whiskers' deprivation after SDs resulted in normal cortical representation enlargement suggesting that SDs and PiDs depolarization have no influence on experience-dependent plasticity cortical map reorganization. PiDs and the MMP-9, -3, -2 or COX-2 proteins, which are assumed to influence metaplasticity in rats after stroke were compared between SDs induced by high osmolarity KCl solution and the PiDs that followed cortical photothrombotic stroke (PtS). We found that none of these factors directly caused cortical post-stroke metaplasticity changes. The only significant difference between stoke and induced SD was a greater imbalance in interhemispheric activity equilibrium after stroke. The interhemispheric interactions that were modified by stroke may therefore be promising targets for future studies of post-stroke experience-dependent plasticity and of recuperation studies.
Collapse
Affiliation(s)
- Maria Sadowska
- Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Władysław Średniawa
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of PAS, Warsaw, Poland; Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Łukasz M Szewczyk
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Aleksandra Szlachcic
- Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paulina Urban
- Laboratory of Functional and Structural Genomics, Center of New Technologies, University of Warsaw, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Maciej Winiarski
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Jan A Jabłonka
- Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
48
|
Ganguly K, Trigun SK. Mapping Connectome in Mammalian Brain: A Novel Approach by Bioengineering Neuro-Glia specific Vectors. J Theor Biol 2020; 496:110244. [PMID: 32171712 DOI: 10.1016/j.jtbi.2020.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
The connectome is the comprehensive map of the brain represented by wiring diagram of the full set of neuro-glia and synapses within entire brain of an organism. Some recent scientific efforts have successfully been made to visualize such map at neuro-glial networking level, however, capturing it as one unit of the entire brain have never been elucidated. Moreover, in order to derive structure-function relationship of different brain regions in response to a defined stimulus, there is a need to elucidate the connectome at single neuro-glial ensemble level after brain is challenged with the known memory function. This needs developing molecular approaches to tag neuro-glial activities in response to a conditioned brain function. Such approaches of using specific molecular tags have been tried to visualize independently neuron and glial specific events in response to a memory function, however, they could not tag the connectome together at single neuro-glia ensemble level. Therefore, there is a need to develop new methods for mapping entire connectome up to a single neuro-glial precision and resolution, with a purpose of tagging specific brain region accountable to execute a special memory formation process. The present hypothetical paper aims to propose a novel molecular method to generate the structural connectome at neuro-glial level in mice brain. Herein, we propose to tag the entire connectome at neuro-glia precision by generating a transgenic mice via transposing and recombining engineered novel "Neuro-Glia specific Vectors" (NGVs: specific to excitatory neurons, inhibitory neurons and glial cells) vis a vis "Transcriptional/ Translational Messenger (TMs: specific to metalloproteinases, MMP-9) coupled with different color protein tags, followed by the Clarity. Herein, the NGVs will be translated via Neuro-glia specific promoters, while TMs will be translated via endogenous MMP-9 promoter in all neuro-glial cells. The viability of all constructs will be verified in cortical/ hippocampal culture by inducing them to undergo chemically induced long term potentionation (cLTP) following visualization of different colored pattern. This will be further confirmed by Immunostaning, Western Blot and RT-PCR analysis. Additionally, in this approach, one can decipher the dynamics of molecular and cellular events associated with MMP-9 seretome by monitoring the trafficking of tagged endogenous MMP-9 protein after neuronal stimulation by cLTP in vitro. However, for visualizing complete connectome, the adult transgenic mice will be challenged with fear consolidation (Fear context and contextual cue) tests followed by Clarity coupled Light Sheet Microscopy to analyze neuro-glia ensemble following whole brain imaging.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Surendra Kumar Trigun
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India.
| |
Collapse
|
49
|
PCDH7 interacts with GluN1 and regulates dendritic spine morphology and synaptic function. Sci Rep 2020; 10:10951. [PMID: 32616769 PMCID: PMC7331671 DOI: 10.1038/s41598-020-67831-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/12/2020] [Indexed: 01/28/2023] Open
Abstract
The N-terminal domain (NTD) of the GluN1 subunit (GluN1-NTD) is important for NMDA receptor structure and function, but the interacting proteins of the GluN1-NTD are not well understood. Starting with an unbiased screen of ~ 1,500 transmembrane proteins using the purified GluN1-NTD protein as a bait, we identify Protocadherin 7 (PCDH7) as a potential interacting protein. PCDH7 is highly expressed in the brain and has been linked to CNS disorders, including epilepsy. Using primary neurons and brain slice cultures, we find that overexpression and knockdown of PCDH7 induce opposing morphological changes of dendritic structures. We also find that PCDH7 overexpression reduces synaptic NMDA receptor currents. These data show that PCDH7 can regulate dendritic spine morphology and synaptic function, possibly via interaction with the GluN1 subunit.
Collapse
|
50
|
Matrix Metalloproteinase-9 Overexpression Regulates Hippocampal Synaptic Plasticity and Decreases Alcohol Consumption and Preference in Mice. Neurochem Res 2020; 45:1902-1912. [PMID: 32415404 DOI: 10.1007/s11064-020-03053-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Brain matrix metalloproteinases (MMPs) have been recently implicated in alcohol addiction; however, the molecular mechanisms remain poorly understood. Matrix metalloproteinase-9 (MMP-9), an extrasynaptic protease, is the best described MMP that is thought to regulate addictive behavior. In the present study, the effect of MMP-9 overexpression on hippocampal neuron plasticity and alcoholic behavior was assessed in spontaneous alcohol drinking mice. Two-bottle choice model showed that the overexpression of MMP-9 in the hippocampus developed by adeno-associated virus (AAV) could decrease alcohol consumption and preference, but did not affect taste preference, which was tested using saccharin or quinine solutions. Dendritic spines number of hippocampal neurons was observed by Golgi staining. Compared with the alcohol treatment group, the density of dendritic spines in the hippocampus of alcohol drinking mice was decreased in alcohol + MMP-9 group. Western blot analysis indicated that GluN1 expression in the hippocampus of alcohol drinking group was lower than that in the control group, while the expression of GluN1 was increased in MMP-9 overexpressing mice. MMP-9 also regulated the depolymerization of actin filaments, which induced behavioral changes in mice. Taken together, overexpression of MMP-9 in the hippocampal neurons of mice resulted in decreased dendritic spine density and F-actin/G-actin ratio, which might be the crucial reason for the significant decrease in alcohol consumption in alcohol drinking mice. MMP-9 might be considered as a novel target studying the molecular mechanism of alcohol drinking.
Collapse
|