1
|
Fu F, Yu Y, Zou B, Long Y, Wu L, Yin J, Zhou Q. Role of actin-binding proteins in prostate cancer. Front Cell Dev Biol 2024; 12:1430386. [PMID: 39055653 PMCID: PMC11269120 DOI: 10.3389/fcell.2024.1430386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The molecular mechanisms driving the onset and metastasis of prostate cancer remain poorly understood. Actin, under the control of actin-binding proteins (ABPs), plays a crucial role in shaping the cellular cytoskeleton, which in turn supports the morphological alterations in normal cells, as well as the invasive spread of tumor cells. Previous research indicates that ABPs of various types serve distinct functions, and any disruptions in their activities could predispose individuals to prostate cancer. These ABPs are intricately implicated in the initiation and advancement of prostate cancer through a complex array of intracellular processes, such as severing, linking, nucleating, inducing branching, assembling, facilitating actin filament elongation, terminating elongation, and promoting actin molecule aggregation. As such, this review synthesizes existing literature on several ABPs linked to prostate cancer, including cofilin, filamin A, and fascin, with the aim of shedding light on the molecular mechanisms through which ABPs influence prostate cancer development and identifying potential therapeutic targets. Ultimately, this comprehensive examination seeks to contribute to the understanding and management of prostate diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Alfano D, Franco P, Stoppelli MP. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front Cell Dev Biol 2022; 10:818616. [PMID: 35493073 PMCID: PMC9045800 DOI: 10.3389/fcell.2022.818616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycosyl-phosphatidyl-inositol anchored (GPI) membrane protein. The uPAR primary ligand is the serine protease urokinase (uPA), converting plasminogen into plasmin, a broad spectrum protease, active on most extracellular matrix components. Besides uPA, the uPAR binds specifically also to the matrix protein vitronectin and, therefore, is regarded also as an adhesion receptor. Complex formation of the uPAR with diverse transmembrane proteins, including integrins, formyl peptide receptors, G protein-coupled receptors and epidermal growth factor receptor results in intracellular signalling. Thus, the uPAR is a multifunctional receptor coordinating surface-associated pericellular proteolysis and signal transduction, thereby affecting physiological and pathological mechanisms. The uPAR-initiated signalling leads to remarkable cellular effects, that include increased cell migration, adhesion, survival, proliferation and invasion. Although this is beyond the scope of this review, the uPA/uPAR system is of great interest to cancer research, as it is associated to aggressive cancers and poor patient survival. Increasing evidence links the uPA/uPAR axis to epithelial to mesenchymal transition, a highly dynamic process, by which epithelial cells can convert into a mesenchymal phenotype. Furthermore, many reports indicate that the uPAR is involved in the maintenance of the stem-like phenotype and in the differentiation process of different cell types. Moreover, the levels of anchor-less, soluble form of uPAR, respond to a variety of inflammatory stimuli, including tumorigenesis and viral infections. Finally, the role of uPAR in virus infection has received increasing attention, in view of the Covid-19 pandemics and new information is becoming available. In this review, we provide a mechanistic perspective, via the detailed examination of consolidated and recent studies on the cellular responses to the multiple uPAR activities.
Collapse
|
3
|
LeBlanc N, Mallette E, Zhang W. Targeted modulation of E3 ligases using engineered ubiquitin variants. FEBS J 2020; 288:2143-2165. [PMID: 32867007 DOI: 10.1111/febs.15536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitination plays an essential role in signal transduction to regulate most if not all cellular processes. Among the enzymes that are involved in the ubiquitin (Ub) signaling cascade, tremendous efforts have been focused on elucidating the roles of E3 Ub ligases as they determine the complexity and specificity of ubiquitination. Not surprisingly, the malfunction of E3 ligases is directly implicated in many human diseases, including cancer. Therefore, there is an urgent need to develop potent and specific molecules to modulate E3 ligase activity as intracellular probes for target validation and as pharmacological agents in preclinical research. Unfortunately, the progress has been hampered by the dynamic regulation mechanisms for different types of E3 ligases. Here, we summarize the progress of using protein engineering to develop Ub variant (UbV) inhibitors for all major families of E3 ligases and UbV activators for homologous with E6-associated protein C terminus E3s and homodimeric RING E3s. We believe that this provides a general strategy and a valuable toolkit for the research community to inhibit or activate E3 ligases and these synthetic molecules have important implications in exploring protein degradation for drug discovery.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Evan Mallette
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada.,CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
4
|
Zhang D, Yang Y, Liang C, Liu J, Wang H, Liu S, Yan Q. poFUT1 promotes uterine angiogenesis and vascular remodeling via enhancing the O-fucosylation on uPA. Cell Death Dis 2019; 10:775. [PMID: 31601791 PMCID: PMC6787057 DOI: 10.1038/s41419-019-2005-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022]
Abstract
Uterine angiogenesis and vascular remodeling play critical roles in determing the normal menstrual cycle and successful pregnancy. Poor uterine angiogenesis usually results in pregnancy failure. Protein O-fucosyltransferase 1 (poFUT1) is the key enzyme responsible for O-fucosylated glycan biosynthesis on glycoproteins. However, the dynamic expression and regulation of poFUT1 on the uterine angiogenesis and vascular remodeling remain unknown. Here, we showed that the enlargement of the vascular lumen in the secretory phase was greater than that in the proliferative phase of the uterine endometrium during menstrual cycle; whereas there was a narrower vessel lumen and fewer blood vessels in the decidua from miscarriage patients than in that from healthy pregnancy women. Additionally, the expression of poFUT1 was increased in the uterine endometrium during the secretory phase compared with that in the proliferation phase, and its expression was decreased in the uterus of miscarriage patients compared with that of the healthy pregnancy women. Using hESCs and a mouse model, we demonstrated that poFUT1 increased the O-fucosylation on uPA, and activated of the RhoA signaling pathway, thus facilitating uterine angiogenesis and vascular remodeling. We also provide evidence that poFUT1 promotes hESCs angiogenesis by the decreased stemness of hESCs. These findings reveal a new insight into the uterine angiogenesis and vascular remodeling. The study suggests that poFUT1 could be seen as a novel potential diagnostic and therapeutic target for miscarriage.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China
| | - Yu Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China
| | - Caixia Liang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China.
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, 116044, Dalian, China.
| |
Collapse
|
5
|
Bery N, Keller L, Soulié M, Gence R, Iscache AL, Cherier J, Cabantous S, Sordet O, Lajoie-Mazenc I, Pedelacq JD, Favre G, Olichon A. A Targeted Protein Degradation Cell-Based Screening for Nanobodies Selective toward the Cellular RHOB GTP-Bound Conformation. Cell Chem Biol 2019; 26:1544-1558.e6. [PMID: 31522999 DOI: 10.1016/j.chembiol.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 11/22/2018] [Accepted: 08/23/2019] [Indexed: 01/10/2023]
Abstract
The selective downregulation of activated intracellular proteins is a key challenge in cell biology. RHO small GTPases switch between a guanosine diphosphate (GDP)-bound and a guanosine triphosphate (GTP)-bound state that drives downstream signaling. At present, no tool is available to study endogenous RHO-GTPinduced conformational changes in live cells. Here, we established a cell-based screen to selectively degrade RHOB-GTP using F-box-intracellular single-domain antibody fusion. We identified one intracellular antibody (intrabody) that shows selective targeting of endogenous RHOB-GTP mediated by interactions between the CDR3 loop of the domain antibody and the GTP-binding pocket of RHOB. Our results suggest that, while RHOB is highly regulated at the expression level, only the GTP-bound pool, but not its global expression, mediates RHOB functions in genomic instability and in cell invasion. The F-box/intrabody-targeted protein degradation represents a unique approach to knock down the active form of small GTPases or other proteins with multiple cellular activities.
Collapse
Affiliation(s)
- Nicolas Bery
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laura Keller
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Marjorie Soulié
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Gence
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne-Laure Iscache
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Julia Cherier
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Sordet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Lajoie-Mazenc
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Gilles Favre
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France.
| | - Aurélien Olichon
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
6
|
Alfano D, Altomonte A, Cortes C, Bilio M, Kelly RG, Baldini A. Tbx1 regulates extracellular matrix-cell interactions in the second heart field. Hum Mol Genet 2019; 28:2295-2308. [DOI: 10.1093/hmg/ddz058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
Tbx1, the major candidate gene for DiGeorge or 22q11.2 deletion syndrome, is required for efficient incorporation of cardiac progenitors of the second heart field (SHF) into the heart. However, the mechanisms by which TBX1 regulates this process are still unclear. Here, we have used two independent models, mouse embryos and cultured cells, to define the role of TBX1 in establishing morphological and dynamic characteristics of SHF in the mouse. We found that loss of TBX1 impairs extracellular matrix (ECM)-integrin-focal adhesion (FA) signaling in both models. Mosaic analysis in embryos suggested that this function is non-cell autonomous, and, in cultured cells, loss of TBX1 impairs cell migration and FAs. Additionally, we found that ECM-mediated integrin signaling is disrupted upon loss of TBX1. Finally, we show that interfering with the ECM-integrin-FA axis between E8.5 and E9.5 in mouse embryos, corresponding to the time window within which TBX1 is required in the SHF, causes outflow tract dysmorphogenesis. Our results demonstrate that TBX1 is required to maintain the integrity of ECM-cell interactions in the SHF and that this interaction is critical for cardiac outflow tract development. More broadly, our data identifies a novel TBX1 downstream pathway as an important player in SHF tissue architecture and cardiac morphogenesis.
Collapse
Affiliation(s)
- Daniela Alfano
- CNR–Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino, Naples, Italy
| | - Alessandra Altomonte
- CNR–Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino, Naples, Italy
| | - Claudio Cortes
- Aix-Marseille Université, CNRS UMR, IBDM, Marseille, France
| | - Marchesa Bilio
- CNR–Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino, Naples, Italy
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR, IBDM, Marseille, France
| | - Antonio Baldini
- CNR–Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Vega FM, Ridley AJ. The RhoB small GTPase in physiology and disease. Small GTPases 2018; 9:384-393. [PMID: 27875099 PMCID: PMC5997158 DOI: 10.1080/21541248.2016.1253528] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/22/2016] [Accepted: 10/23/2016] [Indexed: 12/21/2022] Open
Abstract
RhoB is a Rho family GTPase that is highly similar to RhoA and RhoC, yet has distinct functions in cells. Its unique C-terminal region is subject to specific post-translational modifications that confer different localization and functions to RhoB. Apart from the common role with RhoA and RhoC in actin organization and cell migration, RhoB is also implicated in a variety of other cellular processes including membrane trafficking, cell proliferation, DNA-repair and apoptosis. RhoB is not an essential gene in mice, but it is implicated in several physiological and pathological processes. Its multiple roles will be discussed in this review.
Collapse
Affiliation(s)
- Francisco M. Vega
- Instituto de Biomedicina de Sevilla, IBiS (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Sevilla, Spain
- Department of Medical Physiology and Biophysics, Universidad de Sevilla, Sevilla, Spain
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| |
Collapse
|
8
|
Li Santi A, Gorrasi A, Alfieri M, Montuori N, Ragno P. A novel oncogenic role for urokinase receptor in leukemia cells: molecular sponge for oncosuppressor microRNAs. Oncotarget 2018; 9:27823-27834. [PMID: 29963240 PMCID: PMC6021242 DOI: 10.18632/oncotarget.25597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/19/2018] [Indexed: 01/05/2023] Open
Abstract
Urokinase receptor (uPAR) expression is up-regulated and represents a negative prognostic marker in most cancers. We previously reported that uPAR and CXCR4 can be regulated by common microRNAs in leukemia cells. Transcripts containing response elements for shared microRNAs in their 3’UTR may regulate their availability. We investigated uPAR 3’UTR capability to recruit microRNAs, thus regulating the expression of their targets. uPAR 3’UTR transfection in KG1 leukemia cells up-regulates the expression of endogenous uPAR. Transfection of uPAR 3’UTR, inserted downstream a reporter gene, increases uPAR expression and simultaneously down-regulates the reporter gene expression. Transfection of uPAR 3’UTR also increases CXCR4 expression; accordingly, uPAR silencing induces down-regulation of CXCR4 expression, through a mechanism involving Dicer, the endoribonuclease required for microRNA maturation. Transfection of uPAR 3’UTR also increases the expression of pro-tumoral factors and modulates cell adhesion and migration, consistently with the capability of uPAR3’UTR-recruited microRNAs to target several and different transcripts and, thus, functions. Finally, we found 3’UTR-containing variants of uPAR transcript in U937 leukemia cells, which show higher levels of uPAR expression as compared to KG1 cells, in which these variants are not detected. These results suggest that uPAR mRNA may recruit oncosuppressor microRNAs, allowing the expression of their targets.
Collapse
Affiliation(s)
- Anna Li Santi
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Anna Gorrasi
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | | | - Nunzia Montuori
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| |
Collapse
|
9
|
García-Mariscal A, Li H, Pedersen E, Peyrollier K, Ryan KM, Stanley A, Quondamatteo F, Brakebusch C. Loss of RhoA promotes skin tumor formation and invasion by upregulation of RhoB. Oncogene 2018; 37:847-860. [PMID: 29059167 DOI: 10.1038/onc.2017.333] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/26/2017] [Accepted: 08/12/2017] [Indexed: 02/06/2023]
Abstract
Cellular movement is controlled by small GTPases, such as RhoA. Although migration is crucial for cancer cell invasion, the specific role of RhoA in tumor formation is unclear. Inducing skin tumors in mice with a keratinocyte-restricted loss of RhoA, we observed increased tumor frequency, growth and invasion. In vitro invasion assays revealed that in the absence of RhoA cell invasiveness is increased in a Rho-associated protein kinase (ROCK) activation and cell contraction-dependent manner. Surprisingly, loss of RhoA causes increased Rho signaling via overcompensation by RhoB because of reduced lysosomal degradation of RhoB in Gamma-aminobutyric acid receptor-associated protein (GABARAP)+ autophagosomes and endosomes. In the absence of RhoA, RhoB relocalized to the plasma membrane and functionally replaced RhoA with respect to invasion, clonogenic growth and survival. Our data demonstrate for the first time that RhoA is a tumor suppressor in 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol 13-acetate skin carcinogenesis and identify Rho signaling dependent on RhoA and RhoB as a potent driver of tumor progression.
Collapse
Affiliation(s)
- A García-Mariscal
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - H Li
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - E Pedersen
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - K Peyrollier
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | | | - A Stanley
- Skin and Extracellular Matrix Research Group, Anatomy, NUI, Galway, Ireland
| | - F Quondamatteo
- Skin and Extracellular Matrix Research Group, Anatomy, NUI, Galway, Ireland
| | - C Brakebusch
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Richardson DD, Fernandez-Borja M. Leukocyte adhesion and polarization: Role of glycosylphosphatidylinositol-anchored proteins. BIOARCHITECTURE 2016; 5:61-9. [PMID: 26744925 PMCID: PMC4832445 DOI: 10.1080/19490992.2015.1127466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Leukocyte traffic out of the blood stream is crucial for an adequate immune response. Leukocyte extravasation is critically dependent on the binding of leukocyte integrins to their endothelial counterreceptors. This interaction enables the firm adhesion of leukocytes to the luminal side of the vascular wall and allows for leukocyte polarization, crawling and diapedesis. Leukocyte adhesion, polarization and migration requires the orchestrated regulation of integrin adhesion/de-adhesion dynamics and actin cytoskeleton rearrangements. Adhesion strength depends on conformational changes of integrin molecules (affinity) as well as the number of integrin molecules engaged at adhesion sites (valency). These two processes can be independently regulated and several molecules modulate either one or both processes. Cholesterol-rich membrane domains (lipid rafts) participate in integrin regulation and play an important role in leukocyte adhesion, polarization and motility. In particular, lipid raft-resident glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs) have been reported to regulate leukocyte adhesion, polarization and motility in both integrin-dependent and independent manners. Here, we present our recent discovery concerning the novel role of the GPI-AP prion protein (PrP) in the regulation of β1 integrin-mediated monocyte adhesion, migration and shape polarization in the context of existing literature on GPI-AP-dependent regulation of integrins.
Collapse
Affiliation(s)
- Dion D Richardson
- a Deptartment of Molecular Cell Biology ; Sanquin Research and Landsteiner Laboratory; University of Amsterdam ; Amsterdam , Netherlands
| | - Mar Fernandez-Borja
- a Deptartment of Molecular Cell Biology ; Sanquin Research and Landsteiner Laboratory; University of Amsterdam ; Amsterdam , Netherlands
| |
Collapse
|
11
|
Abstract
Cellular motility is essential for many processes such as embryonic development, wound healing processes, tissue assembly and regeneration, immune cell trafficing and diseases such as cancer. The migration efficiency and the migratory potential depend on the type of migration mode. The previously established migration modes such as epithelial (non-migratory) and mesenchymal (migratory) as well as amoeboid (squeezing motility) relay mainly on phenomenological criteria such as cell morphology and molecular biological criteria such as gene expression. However, the physical view on the migration modes is still not well understood. As the process of malignant cancer progression such as metastasis depends on the migration of single cancer cells and their migration mode, this review focuses on the different migration strategies and discusses which mechanical prerequisites are necessary to perform a special migration mode through a 3-dimensional microenvironment. In particular, this review discusses how cells can distinguish and finally switch between the migration modes and what impact do the physical properties of cells and their microenvironment have on the transition between the novel migration modes such as blebbing and protrusive motility.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- a Faculty of Physics and Earth Science; Institute of Experimental Physics I; Biological Physics Division; University of Leipzig ; Leipzig , Germany
| |
Collapse
|
12
|
Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, Jiang C, Mercredi PY, Murchie R, Hu J, Persaud A, Mukherjee M, Li N, Doye A, Walker JR, Sheng Y, Hao Z, Li Y, Brown KR, Lemichez E, Chen J, Tong Y, Harper JW, Moffat J, Rotin D, Schulman BA, Sidhu SS. System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin Variant Probes. Mol Cell 2016; 62:121-36. [PMID: 26949039 DOI: 10.1016/j.molcel.2016.02.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 11/20/2022]
Abstract
HECT-family E3 ligases ubiquitinate protein substrates to control virtually every eukaryotic process and are misregulated in numerous diseases. Nonetheless, understanding of HECT E3s is limited by a paucity of selective and potent modulators. To overcome this challenge, we systematically developed ubiquitin variants (UbVs) that inhibit or activate HECT E3s. Structural analysis of 6 HECT-UbV complexes revealed UbV inhibitors hijacking the E2-binding site and activators occupying a ubiquitin-binding exosite. Furthermore, UbVs unearthed distinct regulation mechanisms among NEDD4 subfamily HECTs and proved useful for modulating therapeutically relevant targets of HECT E3s in cells and intestinal organoids, and in a genetic screen that identified a role for NEDD4L in regulating cell migration. Our work demonstrates versatility of UbVs for modulating activity across an E3 family, defines mechanisms and provides a toolkit for probing functions of HECT E3s, and establishes a general strategy for systematic development of modulators targeting families of signaling proteins.
Collapse
Affiliation(s)
- Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Kuen-Phon Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maria A Sartori
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Hari B Kamadurai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Jiang
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Peter Y Mercredi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ryan Murchie
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Jicheng Hu
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Avinash Persaud
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Manjeet Mukherjee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Anne Doye
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Equipe Labellisée La Ligue Contre Le Cancer, Université de Nice-Sophia Antipolis, 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France
| | - John R Walker
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Yi Sheng
- Department of Biology, York University, Toronto, Ontario M3J1P3, Canada
| | - Zhenyue Hao
- Campbell Family Cancer Research Institute, University Health Network, Toronto, ON M5G2C1, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Kevin R Brown
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Emmanuel Lemichez
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Equipe Labellisée La Ligue Contre Le Cancer, Université de Nice-Sophia Antipolis, 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G1L7, Canada
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Cir, Toronto, ON M5S1A8, Canada
| | - Daniela Rotin
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Cir, Toronto, ON M5S1A8, Canada.
| |
Collapse
|
13
|
Donnelly SK, Bravo-Cordero JJ, Hodgson L. Rho GTPase isoforms in cell motility: Don't fret, we have FRET. Cell Adh Migr 2015; 8:526-34. [PMID: 25482645 PMCID: PMC4594258 DOI: 10.4161/cam.29712] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Rho-family of p21 small GTPases are directly linked to the regulation of actin-based motile machinery and play a key role in the control of cell migration. Aside from the original and most well-characterized canonical Rho GTPases RhoA, Rac1, and Cdc42, numerous isoforms of these key proteins have been identified and shown to have specific roles in regulating various cellular motility processes. The major difficulty in addressing these isoform-specific effects is that isoforms typically contain highly similar primary amino acid sequences and thus are able to interact with the same upstream regulators and the downstream effector targets. Here, we will introduce the major members of each GTPase subfamily and discuss recent advances in the design and application of fluorescent resonance energy transfer-based probes, which are at the forefront of the technologies available to directly probe the differential, spatiotemporal activation dynamics of these proteins in live single cells. Currently, it is possible to specifically detect the activation status of RhoA vs. RhoC isoforms, as well as Cdc42 vs. TC-10 isoforms in living cells. Clearly, additional efforts are still required to produce biosensor systems capable of detecting other isoforms of Rho GTPases including RhoB, Rac2/3, RhoG, etc. Through such efforts, we will uncover the isoform-specific roles of these near-identical proteins in living cells, clearly an important area of the Rho GTPase biology that is not yet fully appreciated.
Collapse
Affiliation(s)
- Sara K Donnelly
- a Department of Anatomy and Structural Biology ; Albert Einstein College of Medicine of Yeshiva University ; Bronx , NY USA
| | | | | |
Collapse
|
14
|
Alfano D, Gorrasi A, Li Santi A, Ricci P, Montuori N, Selleri C, Ragno P. Urokinase receptor and CXCR4 are regulated by common microRNAs in leukaemia cells. J Cell Mol Med 2015; 19:2262-72. [PMID: 26082201 PMCID: PMC4568930 DOI: 10.1111/jcmm.12617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/15/2015] [Indexed: 12/28/2022] Open
Abstract
The urokinase-type plasminogen activator (uPA) receptor (uPAR) focuses uPA proteolytic activity on the cell membrane, promoting localized degradation of extracellular matrix (ECM), and binds vitronectin (VN), mediating cell adhesion to the ECM. uPAR-bound uPA and VN induce proteolysis-independent intracellular signalling, regulating cell adhesion, migration, survival and proliferation. uPAR cross-talks with CXCR4, the receptor for the stroma-derived factor 1 chemokine. CXCR4 is crucial in the trafficking of hematopoietic stem cells from/to the bone marrow, which involves also uPAR. Both uPAR and CXCR4 are expressed in acute myeloid leukaemia (AML), with a lower expression in undifferentiated and myeloid subsets, and higher expression in myelomonocytic and promyelocytic subsets. We hypothesized a microRNA (miR)-mediated co-regulation of uPAR and CXCR4 expression, which could allow their cross-talk at the cell surface. We identified three miRs, miR-146a, miR-335 and miR-622, regulating the expression of both uPAR and CXCR4 in AML cell lines. Indeed, these miRs directly target the 3'untranslated region of both uPAR- and CXCR4-mRNAs; accordingly, uPAR/CXCR4 expression is reduced by their overexpression in AML cells and increased by their specific inhibitors. Overexpression of all three miRs impairs migration, invasion and proliferation of myelomonocytic cells. Interestingly, we observed an inverse relationship between uPAR/CXCR4 expression and miR-146a and miR-335 levels in AML blasts, suggesting their possible role in the regulation of uPAR/CXCR4 expression also in vivo.
Collapse
Affiliation(s)
- Daniela Alfano
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Anna Gorrasi
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Anna Li Santi
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Patrizia Ricci
- Department of Clinical Medicine and Surgery, "Federico II" University, Naples, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Carmine Selleri
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| |
Collapse
|
15
|
Vega FM, Thomas M, Reymond N, Ridley AJ. The Rho GTPase RhoB regulates cadherin expression and epithelial cell-cell interaction. Cell Commun Signal 2015; 13:6. [PMID: 25630770 PMCID: PMC4334914 DOI: 10.1186/s12964-015-0085-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Rho GTPase RhoB has been proposed to be a tumor suppressor in cancer and is downregulated in various tumors including prostate. RhoB has different effects on cell migration depending on the cell type and conditions, but the molecular basis for this variability is unclear. RhoB regulates trafficking of membrane receptors and integrins. We have previously shown that RhoB depletion alters focal adhesion dynamics and reduces surface levels of β1 integrin in PC3 prostate cancer cells, correlating with increased migration speed. RESULTS Here we show that RhoB depletion reduces cell-cell adhesion and downregulates E-cadherin levels as well as increasing internalized E-cadherin in DU145 prostate cancer cells. This is accompanied by increased migration speed. RhoB localizes to cell-cell junctions together with E-cadherin in DU145 cells. RhoB depletion also reduces N-cadherin levels in PC3 cells, which do not express E-cadherin. CONCLUSIONS These results indicate that RhoB alters migration of cells with cell-cell adhesions by regulating cadherin levels. We propose that the relative contribution of integrins and cadherins to cell migration underlies the variable involvement for RhoB in this process and that the downregulation of RhoB in some epithelial cancers could contribute to the weakening of epithelial cell-cell junction during tumor progression.
Collapse
Affiliation(s)
- Francisco M Vega
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
- Current address: Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Edificio IBiS, E-14013, Seville, Spain.
| | - Mairian Thomas
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| | - Nicolas Reymond
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
16
|
Sadok A, Marshall CJ. Rho GTPases: masters of cell migration. Small GTPases 2014; 5:e29710. [PMID: 24978113 PMCID: PMC4107589 DOI: 10.4161/sgtp.29710] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/06/2014] [Accepted: 06/24/2014] [Indexed: 12/17/2022] Open
Abstract
Since their discovery in the late eighties, the role of Rho GTPases in the regulation of cell migration has been extensively studied and has mainly focused on the hallmark family members Rho, Rac, and Cdc42. Recent technological advances in cell biology, such as Rho-family GTPase activity biosensors, studies in 3D, and unbiased RNAi-based screens, have revealed an increasingly complex role for Rho GTPases during cell migration, with many inter-connected functions and a strong dependency on the physical and chemical properties of the surrounding environment. This review aims to give an overview of recent studies on the role of Rho-family GTPase members in the modulation of cell migration in different environments, and discuss future directions.
Collapse
Affiliation(s)
- Amine Sadok
- The Institute of Cancer Research; Division of Cancer Biology; London, UK
| | - Chris J Marshall
- The Institute of Cancer Research; Division of Cancer Biology; London, UK
| |
Collapse
|
17
|
The urokinase receptor takes control of cell migration by recruiting integrins and FPR1 on the cell surface. PLoS One 2014; 9:e86352. [PMID: 24466048 PMCID: PMC3897705 DOI: 10.1371/journal.pone.0086352] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/09/2013] [Indexed: 12/05/2022] Open
Abstract
The receptor (uPAR) of the urokinase-type plasminogen activator (uPA) is crucial in cell migration since it concentrates uPA proteolytic activity at the cell surface, binds vitronectin and associates to integrins. uPAR cross-talk with receptors for the formylated peptide fMLF (fMLF-Rs) has been reported; however, cell-surface uPAR association to fMLF-Rs on the cell membrane has never been explored in detail. We now show that uPAR co-localizes at the cell-surface and co-immunoprecipitates with the high-affinity fMLF-R, FPR1, in uPAR-transfected HEK-293 (uPAR-293) cells. uPAR/β1 integrin and FPR1/β1 integrin co-localization was also observed. Serum or the WKYMVm peptide (W Pep), a FPR1 ligand, strongly increased all observed co-localizations in uPAR-293 cells, including FPR1/β1 integrin co-localization. By contrast, a low FPR1/β1 integrin co-localization was observed in uPAR-negative vector-transfected HEK-293 (V-293) cells, that was not increased by serum or W Pep stimulations. The role of uPAR interactions in cell migration was then explored. Both uPAR-293 and V-293 control cells efficiently migrated toward serum or purified EGF. However, cell treatments impairing uPAR interactions with fMLF-Rs or integrins, or inhibiting specific cell-signaling mediators abrogated uPAR-293 cell migration, without exerting any effect on V-293 control cells. Accordingly, uPAR depletion by a uPAR-targeting siRNA or uPAR blocking with an anti-uPAR polyclonal antibody in cells constitutively expressing high uPAR levels totally impaired their migration toward serum. Altogether, these results suggest that both uPAR-positive and uPAR-negative cells are able to migrate toward serum; however, uPAR expression renders cell migration totally and irreversibly uPAR-dependent, since it is completely inhibited by uPAR blocking. We propose that uPAR takes control of cell migration by recruiting fMLF-Rs and β1 integrins, thus promoting their co-localization at the cell-surface and driving pro-migratory signaling pathways.
Collapse
|
18
|
Luis-Ravelo D, Antón I, Zandueta C, Valencia K, Pajares MJ, Agorreta J, Montuenga L, Vicent S, Wistuba II, De Las Rivas J, Lecanda F. RHOB influences lung adenocarcinoma metastasis and resistance in a host-sensitive manner. Mol Oncol 2013; 8:196-206. [PMID: 24321314 DOI: 10.1016/j.molonc.2013.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/20/2022] Open
Abstract
Lung adenocarcinoma (ADC) is the most common lung cancer subtype and presents a high mortality rate. Clinical recurrence is often associated with the emergence of metastasis and treatment resistance. The purpose of this study was to identify genes with high prometastatic activity which could potentially account for treatment resistance. Global transcriptomic profiling was performed by robust microarray analysis in highly metastatic subpopulations. Extensive in vitro and in vivo functional studies were achieved by overexpression and by silencing gene expression. We identified the small GTPase RHOB as a gene that promotes early and late stages of metastasis in ADC. Gene silencing of RHOB prevented metastatic activity in a systemic murine model of bone metastasis. These effects were highly dependent on tumor-host interactions. Clinical analysis revealed a marked association between high RHOB levels and poor survival. Consistently, high RHOB levels promote metastasis progression, taxane-chemoresistance, and contribute to the survival advantage to γ-irradiation. We postulate that RHOB belongs to a novel class of "genes of recurrence" that have a dual role in metastasis and treatment resistance.
Collapse
Affiliation(s)
- Diego Luis-Ravelo
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Iker Antón
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carolina Zandueta
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Karmele Valencia
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - María-José Pajares
- Biomarkers Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jackeline Agorreta
- Biomarkers Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Luis Montuenga
- Biomarkers Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Silvestre Vicent
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ignacio I Wistuba
- Department of Pathology, The University of Texas - M. D. Anderson Cancer Center, Houston, TX, USA
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center, University of Salamanca (CSIC/USAL), Salamanca, Spain
| | - Fernando Lecanda
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| |
Collapse
|
19
|
Ridley AJ. RhoA, RhoB and RhoC have different roles in cancer cell migration. J Microsc 2013; 251:242-9. [PMID: 23488932 DOI: 10.1111/jmi.12025] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/07/2013] [Indexed: 12/16/2022]
Abstract
Rho GTPases are well known to regulate cell motility through activation of a variety of downstream effector proteins, including enzymes, adaptor proteins and actin nucleators. The three closely related Rho GTPases RhoA, RhoB and RhoC all have the potential to interact with the same downstream effectors, yet they have substantially different effects on cell shape and migratory properties. Here I review the different ways in which RhoA, RhoB and RhoC expression is regulated in cancer and how they play distinct roles in cancer progression. I describe their main effectors known to contribute to cell motility. Recent results from our laboratory and others indicate that RhoA, RhoB and RhoC can be activated by specific stimuli and act through different effectors to control distinct aspects of cancer cell migration and invasion. This suggests that they each make unique contributions to cancer by participating in different protein complexes.
Collapse
Affiliation(s)
- A J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK.
| |
Collapse
|
20
|
Franco P, Carotenuto A, Marcozzi C, Votta G, Sarno C, Iaccarino I, Brancaccio D, De Vincenzo A, Novellino E, Grieco P, Stoppelli MP. Opposite modulation of cell migration by distinct subregions of urokinase connecting peptide. Chembiochem 2013; 14:882-9. [PMID: 23520074 DOI: 10.1002/cbic.201200774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Indexed: 11/07/2022]
Abstract
Functional analysis of isolated protein domains may uncover cryptic activities otherwise missed. The serine protease urokinase (uPA) has a clear-cut motogen activity that is catalytically independent and resides in its amino-terminal growth factor domain (GFD, residues 1-49) and connecting peptide region (CP, residues 132-158). To functionally dissect the CP region, we analysed the biological activity of two synthetic peptides corresponding to the N-terminal [uPA-(135-143), residues 135-143] and C-terminal [uPA-(144-158), residues 144-158] CP subregions. Most of the chemotactic activity of connecting peptide-derived peptide (CPp, [uPA-(135-158)]) for embryonic kidney HEK293/uPAR-25 cells is retained by uPA-(144-158) at nanomolar concentrations. In contrast, uPA-(135-143) inhibits basal, CPp -, vitronectin- and fibronectin-induced cell migration. Radioreceptor binding assays on intact HEK293 cells revealed that uPA-(135-143) and uPA-(144-158) are both able to compete with [(125)I]-CPp, albeit with different binding affinities. The consequences of phospho-mimicking, S138E substitution, were studied using [138E]uPA-(135-158) and [138E]uPA-(135-143) peptides. Unlike CPp, [138E]uPA-(135-158) and [138E]uPA-(135-143) exhibit remarkable inhibitory properties. Finally, analysis of the conformational preferences of the peptides allowed to identify secondary structure elements exclusively characterising the stimulatory CPp and uPA-(144-158) versus the inhibitory uPA-(135-143), [138E]uPA-(135-158) and [138E]uPA-(135-143) peptides. In conclusion, these data shed light on the cryptic activities of uPA connecting peptide, revealing the occurrence of two adjacent regions, both competing for binding to cell surface but conveying opposite signalling on cell migration.
Collapse
Affiliation(s)
- Paola Franco
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council, Via Castellino 111, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
HDL drug carriers for targeted therapy. Clin Chim Acta 2012; 415:94-100. [PMID: 23063777 DOI: 10.1016/j.cca.2012.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 10/06/2012] [Accepted: 10/07/2012] [Indexed: 01/08/2023]
Abstract
Plasma concentrations of high-density lipoprotein cholesterol (HDL-C) are strongly and inversely associated with cardiovascular risk. HDL is not a simple lipid transporter, but possesses multiple anti-atherosclerosis activities because it contains special proteins, signaling lipid, and microRNAs. Natural or recombinant HDLs have emerged as potential carriers for delivering a drug to a specified target. However, HDL function also depends on enzymes that alter its structure and composition, as well as cellular receptors and membrane micro-domains that facilitate interactions with the microenvironment. In this review, four mechanisms predicted to enhance functions or targeted therapy of HDL in vivo are discussed. The first involves caveolae-mediated recruitment of HDL signal to bind their receptors. The second involves scavenger receptor class B type I (SR-BI) mediating anchoring and fluidity for signal-lipid of HDL. The third involves lecithin-cholesterol acyltransferase (LCAT) concentrating the signaling lipid at the surface of the HDL particle. The fourth involves microRNAs (miRNAs) being delivered in the blood to special targets by HDL. Exploitation of these four mechanisms will promote HDL to carry targeted drugs and increase HDL's clinical value.
Collapse
|