1
|
Sparks CR, Cullen JN, Vandewege MW, Leber M, Minor KM, Friedenberg SG, Olby NJ. Genomic analyses in Cavalier King Charles spaniels identify loci associated with clinical signs of Chiari-like malformation and Syringomyelia. BMC Vet Res 2025; 21:317. [PMID: 40319287 PMCID: PMC12048929 DOI: 10.1186/s12917-025-04754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Chiari-like malformations (CM) and syringomyelia (SM) are common in Cavalier King Charles spaniels (CKCS) leading to variable manifestations of pain and scratch. Inheritance studies suggest a polygenic mode of inheritance and association studies have identified loci associated with the presence of SM on MRI. Given the poor correlation of clinical signs of CMSM with MRI findings, we hypothesized that an association study with clinical signs as the phenotype could reveal new loci of interest. The objectives of this study were to perform genome-wide association studies on CKCS using SM and clinical sign phenotypes of pain and scratch and to use whole genome sequencing (WGS) to identify variants in regions of interest. We collected DNA on 174 CKCS. Owners completed questionnaires to establish the clinical pain and scratch phenotype and magnetic resonance imaging (MRI) was used to identify CM and SM (linear T2 hyperintensity greater than 2 mm in height) in all dogs. Dogs were genotyped using the Axiom K9 HD (710,000 snps) array. GWAS analyses were performed using GEMMA and categorical and quantitative approaches were used to define clinical phenotypes. Whole genome sequencing (WGS) was performed on an Illumina HiSeq 4000 high-throughput sequencing system. RESULTS There were no regions associated with SM presence. The presence of signs of pain and scratch was associated with a region on Canis familiaris autosome (CFA) 26 downstream of ZWINT, previously associated with skull changes in CKCS with SM, although genome-wide significance was not reached. Loci were also associated with quantitative pain and scratch scores on CFA 13, 2 and 38. There were 66 variants that segregated with phenotype including 2 missense variants that were predicted to have moderate effects on ZWINT function. CONCLUSIONS The identification of a locus on CFA26 using the clinical phenotype of pain and scratch that coincided with a locus identified in a morphological study provides strong support for this as a region of interest.
Collapse
Affiliation(s)
- Courtney R Sparks
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Michael W Vandewege
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Meghan Leber
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Katie M Minor
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Pun R, North BJ. Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis. Front Cell Dev Biol 2025; 12:1491394. [PMID: 39911185 PMCID: PMC11794522 DOI: 10.3389/fcell.2024.1491394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents uneven segregation of sister chromatids between daughter cells during anaphase. This essential regulatory checkpoint prevents aneuploidy which can lead to various congenital defects observed in newborns. Many studies have been carried out to elucidate the role of proteins involved in the SAC as well as the function of the checkpoint during gametogenesis and embryogenesis. In this review, we discuss the role of SAC proteins in regulating both meiotic and mitotic cell division along with several factors that influence the SAC strength in various species. Finally, we outline the role of SAC proteins and the consequences of their absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
Collapse
Affiliation(s)
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
3
|
Chen YC, Kilic E, Wang E, Rossman W, Suzuki A. CENcyclopedia: Dynamic Landscape of Kinetochore Architecture Throughout the Cell Cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627000. [PMID: 39677682 PMCID: PMC11643120 DOI: 10.1101/2024.12.05.627000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The kinetochore, an intricate macromolecular protein complex located on chromosomes, plays a pivotal role in orchestrating chromosome segregation. It functions as a versatile platform for microtubule assembly, diligently monitors microtubule binding fidelity, and acts as a force coupler. Comprising over 100 distinct proteins, many of which exist in multiple copies, the kinetochore's composition dynamically changes throughout the cell cycle, responding to specific timing and conditions. This dynamicity is important for establishing functional kinetochores, yet the regulatory mechanisms of these dynamics have largely remained elusive. In this study, we employed advanced quantitative immunofluorescence techniques to meticulously chart the dynamics of kinetochore protein levels across the cell cycle. These findings offer a comprehensive view of the dynamic landscape of kinetochore architecture, shedding light on the detailed mechanisms of microtubule interaction and the nuanced characteristics of kinetochore proteins. This study significantly advances our understanding of the molecular coordination underlying chromosome segregation.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ece Kilic
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evelyn Wang
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Will Rossman
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Hockens C, Lorenzi H, Wang TT, Lei EP, Rosin LF. Chromosome segregation during spermatogenesis occurs through a unique center-kinetic mechanism in holocentric moth species. PLoS Genet 2024; 20:e1011329. [PMID: 38913752 PMCID: PMC11226059 DOI: 10.1371/journal.pgen.1011329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/05/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Precise regulation of chromosome dynamics in the germline is essential for reproductive success across species. Yet, the mechanisms underlying meiotic chromosomal events such as homolog pairing and chromosome segregation are not fully understood in many species. Here, we employ Oligopaint DNA FISH to investigate mechanisms of meiotic homolog pairing and chromosome segregation in the holocentric pantry moth, Plodia interpunctella, and compare our findings to new and previous studies in the silkworm moth, Bombyx mori, which diverged from P. interpunctella over 100 million years ago. We find that pairing in both Bombyx and Plodia spermatogenesis is initiated at gene-rich chromosome ends. Additionally, both species form rod shaped cruciform-like bivalents at metaphase I. However, unlike the telomere-oriented chromosome segregation mechanism observed in Bombyx, Plodia can orient bivalents in multiple different ways at metaphase I. Surprisingly, in both species we find that kinetochores consistently assemble at non-telomeric loci toward the center of chromosomes regardless of where chromosome centers are located in the bivalent. Additionally, sister kinetochores do not seem to be paired in these species. Instead, four distinct kinetochores are easily observed at metaphase I. Despite this, we find clear end-on microtubule attachments and not lateral microtubule attachments co-orienting these separated kinetochores. These findings challenge the classical view of segregation where paired, poleward-facing kinetochores are required for accurate homolog separation in meiosis I. Our studies here highlight the importance of exploring fundamental processes in non-model systems, as employing novel organisms can lead to the discovery of novel biology.
Collapse
Affiliation(s)
- Clio Hockens
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hernan Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tricia T. Wang
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leah F. Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Horakova A, Konecna M, Anger M. Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important? Int J Mol Sci 2024; 25:2101. [PMID: 38396778 PMCID: PMC10889803 DOI: 10.3390/ijms25042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
Collapse
Affiliation(s)
- Adela Horakova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Marketa Konecna
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| |
Collapse
|
6
|
Landeros A, Wallace DA, Rahi A, Magdongon CB, Suraneni P, Amin MA, Chakraborty M, Adam SA, Foltz DR, Varma D. Nuclear lamin A-associated proteins are required for centromere assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559341. [PMID: 37808683 PMCID: PMC10557622 DOI: 10.1101/2023.09.25.559341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Many Lamin A-associated proteins (LAAP's) that are key constituents of the nuclear envelope (NE), assemble at the "core" domains of chromosomes during NE reformation and mitotic exit. However, the identity and function of the chromosomal core domains remain ill-defined. Here, we show that a distinct section of the core domain overlaps with the centromeres/kinetochores of chromosomes during mitotic telophase. The core domain can thus be demarcated into a kinetochore proximal core (KPC) on one side of the segregated chromosomes and the kinetochore distal core (KDC) on the opposite side, close to the central spindle. We next tested if centromere assembly is connected to NE re-formation. We find that centromere assembly is markedly perturbed after inhibiting the function of LMNA and the core-localized LAAPs, BANF1 and Emerin. We also find that the LAAPs exhibit multiple biochemical interactions with the centromere and inner kinetochore proteins. Consistent with this, normal mitotic progression and chromosome segregation was severely impeded after inhibiting LAAP function. Intriguingly, the inhibition of centromere function also interferes with the assembly of LAAP components at the core domain, suggesting a mutual dependence of LAAP and centromeres for their assembly at the core domains. Finally, we find that the localization of key proteins involved in the centromeric loading of CENP-A, including the Mis18 complex and HJURP were markedly affected in LAAP-inhibited cells. Our evidence points to a model where LAAP assembly at the core domain serves a key function in loading new copies of centromeric proteins during or immediately after mitotic exit.
Collapse
Affiliation(s)
- Adriana Landeros
- Dept. of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave Chicago, IL 60611
| | - Destiny A. Wallace
- Dept. of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave Chicago, IL 60611
| | - Amit Rahi
- Dept. of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave Chicago, IL 60611
| | - Christine B. Magdongon
- Dept. of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave Chicago, IL 60611
| | - Praveen Suraneni
- Dept. of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave Chicago, IL 60611
| | - Mohammed A. Amin
- Dept. of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave Chicago, IL 60611
| | - Manas Chakraborty
- Dept. of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave Chicago, IL 60611
| | - Stephen A. Adam
- Dept. of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave Chicago, IL 60611
| | - Daniel R. Foltz
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave Chicago, IL 60611
| | - Dileep Varma
- Dept. of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave Chicago, IL 60611
| |
Collapse
|
7
|
Rahi A, Chakraborty M, Agarwal S, Vosberg KM, Agarwal S, Wang AY, McKenney RJ, Varma D. The Ndc80-Cdt1-Ska1 complex is a central processive kinetochore-microtubule coupling unit. J Cell Biol 2023; 222:e202208018. [PMID: 37265445 PMCID: PMC10238862 DOI: 10.1083/jcb.202208018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
It is known that microtubule-binding proteins including the Ska1 complex and the DNA replication licensing factor, Cdt1, enable the kinetochore-localized Ndc80 complex to form robust kinetochore-microtubule attachments. However, it is not clear how the Ndc80 complex is stably coupled to dynamic spindle microtubule plus-ends. Here, we have developed a conditional auxin-inducible degron approach to reveal a function for Cdt1 in chromosome segregation and kinetochore-microtubule interactions that is separable from its role in DNA replication licensing. Further, we demonstrate that a direct interaction between Cdt1 and Ska1 is required for recruiting Cdt1 to kinetochores and spindle microtubules. Cdt1 phosphorylation by Cdk1 kinase is critical for Ska1 binding, kinetochore-microtubule attachments, and mitotic progression. Furthermore, we show that Cdt1 synergizes with Ndc80 and Ska1 for microtubule binding, including forming a diffusive, tripartite Ndc80-Cdt1-Ska1 complex that can processively track dynamic microtubule plus-ends in vitro. Taken together, our data identify the Ndc80-Cdt1-Ska1 complex as a central molecular unit that can promote processive bidirectional tip-tracking of microtubules by kinetochores.
Collapse
Affiliation(s)
- Amit Rahi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Manas Chakraborty
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Kristen M. Vosberg
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Annie Y. Wang
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | - Dileep Varma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Bi YH, Li Z, Zhou ZG. Karyotype analysis of the brown seaweed Saccharina (or Laminaria) japonica. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
9
|
Bunning AR, Gupta Jr. ML. The importance of microtubule-dependent tension in accurate chromosome segregation. Front Cell Dev Biol 2023; 11:1096333. [PMID: 36755973 PMCID: PMC9899852 DOI: 10.3389/fcell.2023.1096333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Accurate chromosome segregation is vital for cell and organismal viability. The mitotic spindle, a bipolar macromolecular machine composed largely of dynamic microtubules, is responsible for chromosome segregation during each cell replication cycle. Prior to anaphase, a bipolar metaphase spindle must be formed in which each pair of chromatids is attached to microtubules from opposite spindle poles. In this bipolar configuration pulling forces from the dynamic microtubules can generate tension across the sister kinetochores. The tension status acts as a signal that can destabilize aberrant kinetochore-microtubule attachments and reinforces correct, bipolar connections. Historically it has been challenging to isolate the specific role of tension in mitotic processes due to the interdependency of attachment and tension status at kinetochores. Recent technical and experimental advances have revealed new insights into how tension functions during mitosis. Here we summarize the evidence that tension serves as a biophysical signal that unifies multiple aspects of kinetochore and centromere function to ensure accurate chromosome segregation.
Collapse
|
10
|
Zhang C, Wang D, Hao Y, Wu S, Luo J, Xue Y, Wang D, Li G, Liu L, Shao C, Li H, Yuan J, Zhu M, Fu XD, Yang X, Chen R, Teng Y. LncRNA CCTT-mediated RNA-DNA and RNA-protein interactions facilitate the recruitment of CENP-C to centromeric DNA during kinetochore assembly. Mol Cell 2022; 82:4018-4032.e9. [PMID: 36332605 PMCID: PMC9648614 DOI: 10.1016/j.molcel.2022.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/10/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly. We show that CCTT highly localizes to all centromeres via the formation of RNA-DNA triplex and specifically interacts with CENP-C to help engage this blueprint protein in centromeres, and consequently, CCTT loss triggers extensive mitotic errors and aneuploidy. These findings uncover a non-centromere-derived lncRNA that recruits CENP-C to centromeres and shed critical lights on the function of centromeric DNA sequences as anchor points for kinetochore assembly.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dongpeng Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Hao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuheng Wu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchao Xue
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Liu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huiyan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Jinfeng Yuan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
11
|
Sucularli C. Identification of BRIP1, NSMCE2, ANAPC7, RAD18 and TTL from chromosome segregation gene set associated with hepatocellular carcinoma. Cancer Genet 2022; 268-269:28-36. [PMID: 36126360 DOI: 10.1016/j.cancergen.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma is one of the most frequent cancers with high mortality rate worldwide. METHODS TCGA LIHC HTseq counts were analyzed. GSEA was performed with GO BP gene sets. GO analysis was performed with differentially expressed genes. The subset of genes contributing most of the enrichment result of GO_BP_CHROMOSOME_SEGREGATION of GSEA were identified. Five genes have been selected in this subset of genes for further analysis. A microarray data set, GSE112790, was analyzed as a validation data set. Survival analysis was performed. RESULTS According to GSEA and GO analysis several gene sets and processes related to chromosome segregation were enriched in LIHC. GO_BP_CHROMOSOME_SEGREGATION gene set from GSEA had the highest size of the genes contributing most of the enrichment. Five genes in this gene set; BRIP1, NSMCE2, ANAPC7, RAD18 and TTL, whose expressions and prognostic values have not been studied in hepatocellular carcinoma in detail, have been selected for further analyses. Expression of these five genes were identified as significantly upregulated in LIHC RNA-seq and HCC microarray data set. Survival analysis showed that high expression of the five genes was associated with poor overall survival in HCC patients. CONCLUSION Selected genes were upregulated and had prognostic value in HCC.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
12
|
Mora-Bermúdez F, Kanis P, Macak D, Peters J, Naumann R, Xing L, Sarov M, Winkler S, Oegema CE, Haffner C, Wimberger P, Riesenberg S, Maricic T, Huttner WB, Pääbo S. Longer metaphase and fewer chromosome segregation errors in modern human than Neanderthal brain development. SCIENCE ADVANCES 2022; 8:eabn7702. [PMID: 35905187 PMCID: PMC9337762 DOI: 10.1126/sciadv.abn7702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Since the ancestors of modern humans separated from those of Neanderthals, around 100 amino acid substitutions spread to essentially all modern humans. The biological significance of these changes is largely unknown. Here, we examine all six such amino acid substitutions in three proteins known to have key roles in kinetochore function and chromosome segregation and to be highly expressed in the stem cells of the developing neocortex. When we introduce these modern human-specific substitutions in mice, three substitutions in two of these proteins, KIF18a and KNL1, cause metaphase prolongation and fewer chromosome segregation errors in apical progenitors of the developing neocortex. Conversely, the ancestral substitutions cause shorter metaphase length and more chromosome segregation errors in human brain organoids, similar to what we find in chimpanzee organoids. These results imply that the fidelity of chromosome segregation during neocortex development improved in modern humans after their divergence from Neanderthals.
Collapse
Affiliation(s)
- Felipe Mora-Bermúdez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Kanis
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dominik Macak
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Technische Universität Dresden, Dresden, Germany
| | | | - Tomislav Maricic
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Okinawa Institute of Science and Technology, Onna-son 904-0495, Japan
| |
Collapse
|
13
|
Allipra S, Anirudhan K, Shivanandan S, Raghunathan A, Maruthachalam R. The kinetochore protein NNF1 has a moonlighting role in the vegetative development of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1064-1085. [PMID: 34850467 DOI: 10.1111/tpj.15614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The kinetochore is a supramolecular protein complex assembled on the chromosomes, essential for faithful segregation of the genome during cell divisions. More than 100 proteins are known to constitute the eukaryotic kinetochore architecture, primarily identified using non-plant organisms. A majority of them are fast evolving and are under positive selection. Thus, functional characterization of the plant kinetochore proteins is limited as only a few conserved orthologs sharing sequence similarity with their animal counterparts have been examined. Here, we report the functional characterization of the Arabidopsis thaliana homolog of the yeast NNF1/human PMF1 outer kinetochore protein and show that it has both kinetochore and non-kinetochore functions in plant growth and development. Knockout of NNF1 causes embryo lethality implying its essential role in cell division. AtNNF1 interacts with MIS12 in Y2H and co-immunoprecipitation assays, confirming it is one of the constituents of the plant MIS12 complex. GFP-NNF1 localizes to the kinetochore, rescuing the embryo lethal nnf1-1-/- phenotype, but the rescued plants (GFP-NNF1nnf1-/- ) are dwarf, displaying hypomorphic phenotypes with no evidence of mitotic or meiotic segregation defects. GFP-NNF1nnf1-/- dwarf plants have reduced levels of endogenous polyamines, which are partially rescued to wild-type levels upon exogenous application of polyamines. Mutations in the putative leucine zipper-like binding motif of NNF1 gave rise to a dominant-negative tall plant phenotype reminiscent of constitutive gibberellic acid (GA) action. These contrasting hypomorphic dwarf and antimorphic tall phenotypes facilitated us to attribute a moonlighting role to Arabidopsis NNF1 affecting polyamine and GA metabolism apart from its primary role in kinetochores.
Collapse
Affiliation(s)
- Sreejith Allipra
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Krishnapriya Anirudhan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Siddharth Shivanandan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Abhishek Raghunathan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
14
|
Yue W, Wang Y, Meng T, Zhang H, Zhang X, Ouyang Y, Hou Y, Schatten H, Wang Z, Sun Q. Kinetochore scaffold 1 regulates SAC function during mouse oocyte meiotic maturation. FASEB J 2022; 36:e22210. [DOI: 10.1096/fj.202101586rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Yue Wang
- College of Animal Science and Technology Nanjing Agricultural University Nanjing China
| | - Tie‐Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Hong‐Yong Zhang
- Department of Reproductive Medicine Peking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center Shenzhen China
| | - Xin‐Ran Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Ying‐Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Heide Schatten
- Department of Veterinary Pathobiology University of Missouri Columbia Missouri USA
| | - Zhen‐Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Qing‐Yuan Sun
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproduction Joint Laboratory Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| |
Collapse
|
15
|
Bolanos-Garcia VM. On the Regulation of Mitosis by the Kinetochore, a Macromolecular Complex and Organising Hub of Eukaryotic Organisms. Subcell Biochem 2022; 99:235-267. [PMID: 36151378 DOI: 10.1007/978-3-031-00793-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The kinetochore is the multiprotein complex of eukaryotic organisms that is assembled on mitotic or meiotic centromeres to connect centromeric DNA with microtubules. Its function involves the coordinated action of more than 100 different proteins. The kinetochore acts as an organiser hub that establishes physical connections with microtubules and centromere-associated proteins and recruits central protein components of the spindle assembly checkpoint (SAC), an evolutionarily conserved surveillance mechanism of eukaryotic organisms that detects unattached kinetochores and destabilises incorrect kinetochore-microtubule attachments. The molecular communication between the kinetochore and the SAC is highly dynamic and tightly regulated to ensure that cells can progress towards anaphase until each chromosome is properly bi-oriented on the mitotic spindle. This is achieved through an interplay of highly cooperative interactions and concerted phosphorylation/dephosphorylation events that are organised in time and space.This contribution discusses our current understanding of the function, structure and regulation of the kinetochore, in particular, how its communication with the SAC results in the amplification of specific signals to exquisitely control the eukaryotic cell cycle. This contribution also addresses recent advances in machine learning approaches, cell imaging and proteomics techniques that have enhanced our understanding of the molecular mechanisms that ensure the high fidelity and timely segregation of the genetic material every time a cell divides as well as the current challenges in the study of this fascinating molecular machine.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
16
|
Sager TM, Umbright CM, Mustafa GM, Roberts JR, Orandle MS, Cumpston JL, McKinney WG, Boots T, Kashon ML, Joseph P. Pulmonary toxicity and gene expression changes in response to whole-body inhalation exposure to multi-walled carbon nanotubes in rats. Inhal Toxicol 2022; 34:200-218. [PMID: 35648795 PMCID: PMC9885491 DOI: 10.1080/08958378.2022.2081386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Purpose: To investigate the molecular mechanisms underlying the pulmonary toxicity induced by exposure to one form of multi-walled carbon nanotubes (MWCNT-7).Materials and methods: Rats were exposed, by whole-body inhalation, to air or an aerosol containing MWCNT-7 particles at target cumulative doses (concentration x time) ranging from 22.5 to 180 (mg/m3)h over a three-day (6 hours/day) period and toxicity and global gene expression profiles were determined in the lungs.Results: MWCNT-7 particles, associated with alveolar macrophages (AMs), were detected in rat lungs following the exposure. Mild to moderate lung pathological changes consisting of increased cellularity, thickening of the alveolar wall, alveolitis, fibrosis, and granuloma formation were detected. Bronchoalveolar lavage (BAL) toxicity parameters such as lactate dehydrogenase activity, number of AMs and polymorphonuclear leukocytes (PMNs), intracellular oxidant generation by phagocytes, and levels of cytokines were significantly (p < 0.05) increased in response to exposure to MWCNT-7. Global gene expression profiling identified several significantly differentially expressed genes (fold change >1.5 and FDR p value <0.05) in all the MWCNT-7 exposed rats. Bioinformatic analysis of the gene expression data identified significant enrichment of several diseases/biological function categories (for example, cancer, leukocyte migration, inflammatory response, mitosis, and movement of phagocytes) and canonical pathways (for example, kinetochore metaphase signaling pathway, granulocyte and agranulocyte adhesion and diapedesis, acute phase response, and LXR/RXR activation). The alterations in the lung toxicity parameters and gene expression changes exhibited a dose-response to the MWCNT exposure.Conclusions: Taken together, the data provided insights into the molecular mechanisms underlying the pulmonary toxicity induced by inhalation exposure of rats to MWCNT-7.
Collapse
Affiliation(s)
- Tina M. Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Christina M. Umbright
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Gul Mehnaz Mustafa
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Jenny R. Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Marlene S. Orandle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Jared L. Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Walter G. McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Theresa Boots
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Michael L. Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
17
|
Gao H, Pan QY, Wang YJ, Chen QF. Impact of KMN network genes on progression and prognosis of non-small cell lung cancer. Anticancer Drugs 2022; 33:e398-e408. [PMID: 34419962 DOI: 10.1097/cad.0000000000001220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Knl1-Mis12-Ndc80 (KMN) network genes (including KNL, MIS12 and NDC80 complexes) encode a highly conserved network of protein complexes that act in cell mitosis. In recent years, multiple studies revealed that KMN network genes also play a vital role in tumor appearance and growth. However, the role of the KMN gene network in non-small cell lung cancer (NSCLC) remains unknown. In this study, we analyzed the effects of KMN genes expression and clinical phenotype in patients with lung adenocarcinoma (LUAD). The expression of KMN network genes and related clinical information was extracted from The Cancer Genome Atlas. The samples were classified into cluster I and II by consistent clustering. We analyzed the gene distribution by principal component analysis, and the potential risk characteristics were analyzed using the least absolute shrinkage and selection operator Cox regression algorithm. Univariate and multivariate Cox regression analyses were used to analyze the clinical information. The Database for Annotation, Visualization, and Integrated Discovery, Gene MANIA and gene set enrichment analysis were used to analyze function and correlation among genes of the KMN network. The expression levels of nine out of ten KMN genes were significantly up-regulated in LUAD and were associated with poor overall survival (OS). Higher expression of NDC80 and KNL1 was related to low OS in both univariate and multivariate analyses. According to two independent prognostic KMN network genes (KNL1 and NDC80), a risk signature was established to predict the prognosis of patients with LUAD. Additionally, the genes NDC80 and KNL1 were considerably enriched in pathways associated with signaling pathways, biological processes, and the cell cycle. The results indicate that KMN network genes are intimately related to lung adenocarcinoma. KMN network genes are involved in the malignant process of LUAD. Assessment of NDC80 and KNL1 might be helpful for prognostic stratification and treatment strategy development.
Collapse
Affiliation(s)
- Han Gao
- Department of Respiratory, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | | | | | | |
Collapse
|
18
|
Afreen S, Rahi A, Landeros AG, Chakraborty M, McKenney RJ, Varma D. In Vitro and In Vivo Approaches to Study Kinetochore-Microtubule Attachments During Mitosis. Methods Mol Biol 2022; 2415:123-138. [PMID: 34972950 DOI: 10.1007/978-1-0716-1904-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The separation of duplicated chromosomes during mitosis is a pivotal step in the process of cellular division. Therefore, the orchestrated events that take place to ensure proper attachment and stabilization of kMTs are keen areas of interest in the mitosis field. Here we describe the methods used to study kMT attachments via in vitro biochemical methods and in vivo cell biological approaches.
Collapse
Affiliation(s)
- Sana Afreen
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amit Rahi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Adriana G Landeros
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Manas Chakraborty
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, USA
| | - Dileep Varma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
19
|
DeLuca KF, Mick JE, Ide AH, Lima WC, Sherman L, Schaller KL, Anderson SM, Zhao N, Stasevich TJ, Varma D, Nilsson J, DeLuca JG. Generation and diversification of recombinant monoclonal antibodies. eLife 2021; 10:72093. [PMID: 34970967 PMCID: PMC8763395 DOI: 10.7554/elife.72093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Antibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitosis and kinetochore function; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.
Collapse
Affiliation(s)
- Keith F DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Jeanne E Mick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Amy Hodges Ide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Wanessa C Lima
- Geneva Antibody Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lori Sherman
- CU Cancer Center Cell Technologies Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Kristin L Schaller
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Steven M Anderson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Dileep Varma
- Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Germany
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| |
Collapse
|
20
|
Iemura K, Yoshizaki Y, Kuniyasu K, Tanaka K. Attenuated Chromosome Oscillation as a Cause of Chromosomal Instability in Cancer Cells. Cancers (Basel) 2021; 13:cancers13184531. [PMID: 34572757 PMCID: PMC8470601 DOI: 10.3390/cancers13184531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chromosomal instability (CIN), a condition in which chromosome missegregation occurs at high rates, is widely seen in cancer cells. Causes of CIN in cancer cells are not fully understood. A recent report suggests that chromosome oscillation, an iterative chromosome motion typically seen in metaphase around the spindle equator, is attenuated in cancer cells, and is associated with CIN. Chromosome oscillation promotes the correction of erroneous kinetochore-microtubule attachments through phosphorylation of Hec1, a kinetochore protein that binds to microtubules, by Aurora A kinase residing on the spindle. In this review, we focused on this unappreciated link between chromosome oscillation and CIN. Abstract Chromosomal instability (CIN) is commonly seen in cancer cells, and related to tumor progression and poor prognosis. Among the causes of CIN, insufficient correction of erroneous kinetochore (KT)-microtubule (MT) attachments plays pivotal roles in various situations. In this review, we focused on the previously unappreciated role of chromosome oscillation in the correction of erroneous KT-MT attachments, and its relevance to the etiology of CIN. First, we provided an overview of the error correction mechanisms for KT-MT attachments, especially the role of Aurora kinases in error correction by phosphorylating Hec1, which connects MT to KT. Next, we explained chromosome oscillation and its underlying mechanisms. Then we introduced how chromosome oscillation is involved in the error correction of KT-MT attachments, based on recent findings. Chromosome oscillation has been shown to promote Hec1 phosphorylation by Aurora A which localizes to the spindle. Finally, we discussed the link between attenuated chromosome oscillation and CIN in cancer cells. This link underscores the role of chromosome dynamics in mitotic fidelity, and the mutual relationship between defective chromosome dynamics and CIN in cancer cells that can be a target for cancer therapy.
Collapse
|
21
|
Protein phosphatase 1 regulates atypical mitotic and meiotic division in Plasmodium sexual stages. Commun Biol 2021; 4:760. [PMID: 34145386 PMCID: PMC8213788 DOI: 10.1038/s42003-021-02273-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
PP1 is a conserved eukaryotic serine/threonine phosphatase that regulates many aspects of mitosis and meiosis, often working in concert with other phosphatases, such as CDC14 and CDC25. The proliferative stages of the malaria parasite life cycle include sexual development within the mosquito vector, with male gamete formation characterized by an atypical rapid mitosis, consisting of three rounds of DNA synthesis, successive spindle formation with clustered kinetochores, and a meiotic stage during zygote to ookinete development following fertilization. It is unclear how PP1 is involved in these unusual processes. Using real-time live-cell and ultrastructural imaging, conditional gene knockdown, RNA-seq and proteomic approaches, we show that Plasmodium PP1 is implicated in both mitotic exit and, potentially, establishing cell polarity during zygote development in the mosquito midgut, suggesting that small molecule inhibitors of PP1 should be explored for blocking parasite transmission.
Collapse
|
22
|
Brusini L, D'Archivio S, McDonald J, Wickstead B. Trypanosome KKIP1 Dynamically Links the Inner Kinetochore to a Kinetoplastid Outer Kinetochore Complex. Front Cell Infect Microbiol 2021; 11:641174. [PMID: 33834005 PMCID: PMC8023272 DOI: 10.3389/fcimb.2021.641174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 02/02/2023] Open
Abstract
Kinetochores perform an essential role in eukaryotes, coupling chromosomes to the mitotic spindle. In model organisms they are composed of a centromere-proximal inner kinetochore and an outer kinetochore network that binds to microtubules. In spite of universal function, the composition of kinetochores in extant eukaryotes differs greatly. In trypanosomes and other Kinetoplastida, kinetochores are extremely divergent, with most components showing no detectable similarity to proteins in other systems. They may also be very different functionally, potentially binding to the spindle directly via an inner-kinetochore protein. However, we do not know the extent of the trypanosome kinetochore, and proteins interacting with a highly divergent Ndc80/Nuf2-like protein (KKIP1) suggest the existence of more centromere-distal complexes. Here we use quantitative proteomics from multiple start-points to define a stable 9-protein kinetoplastid outer kinetochore (KOK) complex. This complex incorporates proteins recruited from other nuclear processes, exemplifying the role of moonlighting proteins in kinetochore evolution. The outer kinetochore complex is physically distinct from inner-kinetochore proteins, but nanometer-scale label separation shows that KKIP1 bridges the two plates in the same orientation as Ndc80. Moreover, KKIP1 exhibits substantial elongation at metaphase, altering kinetochore structure in a manner consistent with pulling at the outer plate. Together, these data suggest that the KKIP1/KOK likely constitute the extent of the trypanosome outer kinetochore and that this assembly binds to the spindle with sufficient strength to stretch the kinetochore, showing design parallels may exist in organisms with very different kinetochore composition.
Collapse
Affiliation(s)
- Lorenzo Brusini
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Simon D'Archivio
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Sygnature Discovery, Nottingham, United Kingdom
| | - Jennifer McDonald
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
23
|
Pontremoli C, Forni D, Pozzoli U, Clerici M, Cagliani R, Sironi M. Kinetochore proteins and microtubule-destabilizing factors are fast evolving in eutherian mammals. Mol Ecol 2021; 30:1505-1515. [PMID: 33476453 DOI: 10.1111/mec.15812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Centromeres have central functions in chromosome segregation, but centromeric DNA and centromere-binding proteins evolve rapidly in most eukaryotes. The selective pressure(s) underlying the fast evolution of centromere-binding proteins are presently unknown. An attractive possibility is that selfish centromeres promote their preferential inclusion in the oocyte and centromeric proteins evolve to suppress meiotic drive (centromere drive hypothesis). We analysed the selective patterns of mammalian genes that encode kinetochore proteins and microtubule (MT)-destabilizing factors. We show that several of these proteins evolve at the same rate or faster than proteins with a role in centromere specification. Elements of the kinetochore that bind MTs or that bridge the interaction between MTs and the centromere represented the major targets of positive selection. These data are in line with the possibility that the genetic conflict fuelled by meiotic drive extends beyond genes involved in centromere specification. However, we cannot exclude that different selective pressures underlie the rapid evolution of MT-destabilizing factors and kinetochore components. Whatever the nature of such pressures, they must have been constant during the evolution of eutherian mammals, as we found a surprisingly good correlation in dN/dS (ratio of the rate of nonsynonymous and synonymous substitutions) across orders/clades. Finally, when phylogenetic relationships were accounted for, we found little evidence that the evolutionary rates of these genes change with testes size, a proxy for sperm competition. Our data indicate that, in analogy to centromeric proteins, kinetochore components are fast evolving in mammals. This observation may imply that centromere drive plays out at multiple levels or that these proteins adapt to lineage-specific centromeric features.
Collapse
Affiliation(s)
- Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| |
Collapse
|
24
|
Sridhar S, Hori T, Nakagawa R, Fukagawa T, Sanyal K. Bridgin connects the outer kinetochore to centromeric chromatin. Nat Commun 2021; 12:146. [PMID: 33420015 PMCID: PMC7794384 DOI: 10.1038/s41467-020-20161-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/10/2020] [Indexed: 11/29/2022] Open
Abstract
The microtubule-binding outer kinetochore is coupled to centromeric chromatin through CENP-CMif2, CENP-TCnn1, and CENP-UAme1 linker pathways originating from the constitutive centromere associated network (CCAN) of the inner kinetochore. Here, we demonstrate the recurrent loss of most CCAN components, including certain kinetochore linkers during the evolution of the fungal phylum of Basidiomycota. By kinetochore interactome analyses in a model basidiomycete and human pathogen Cryptococcus neoformans, a forkhead-associated domain containing protein “bridgin” was identified as a kinetochore component along with other predicted kinetochore proteins. In vivo and in vitro functional analyses of bridgin reveal its ability to connect the outer kinetochore with centromeric chromatin to ensure accurate chromosome segregation. Unlike established CCAN-based linkers, bridgin is recruited at the outer kinetochore establishing its role as a distinct family of kinetochore proteins. Presence of bridgin homologs in non-fungal lineages suggests an ancient divergent strategy exists to bridge the outer kinetochore with centromeric chromatin. The kinetochore is a multi-complex structure that helps attach chromosomes to spindle microtubules, ensuring accurate chromosome segregation during cell division. Kinetochores are thought to be evolutionarily conserved, but which components are conserved is unclear. Here, the authors report that some members of the fungal phylum of Basidomycota lack many conventional kinetochore linker proteins. Instead, they possess a human Ki67-like protein that bridges the outer part of the kinetochore to centromere DNA, which may compensate for the loss of a conventional linker.
Collapse
Affiliation(s)
- Shreyas Sridhar
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR), Bangalore, India, 560064.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsuya Hori
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR), Bangalore, India, 560064. .,Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
25
|
Liang C, Zhang Z, Chen Q, Yan H, Zhang M, Zhou L, Xu J, Lu W, Wang F. Centromere-localized Aurora B kinase is required for the fidelity of chromosome segregation. J Cell Biol 2020; 219:133535. [PMID: 31868888 PMCID: PMC7041694 DOI: 10.1083/jcb.201907092] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
Aurora B kinase plays an essential role in chromosome bi-orientation, which is a prerequisite for equal segregation of chromosomes during mitosis. However, it remains largely unclear whether centromere-localized Aurora B is required for faithful chromosome segregation. Here we show that histone H3 Thr-3 phosphorylation (H3pT3) and H2A Thr-120 phosphorylation (H2ApT120) can independently recruit Aurora B. Disrupting H3pT3-mediated localization of Aurora B at the inner centromere impedes the decline in H2ApT120 during metaphase and causes H2ApT120-dependent accumulation of Aurora B at the kinetochore-proximal centromere. Consequently, silencing of the spindle assembly checkpoint (SAC) is delayed, whereas the fidelity of chromosome segregation is negligibly affected. Further eliminating an H2ApT120-dependent pool of Aurora B restores proper timing for SAC silencing but increases chromosome missegregation. Our data indicate that H2ApT120-mediated localization of Aurora B compensates for the loss of an H3pT3-dependent pool of Aurora B to correct improper kinetochore-microtubule attachments. This study provides important insights into how centromeric Aurora B regulates SAC and kinetochore attachment to microtubules to ensure error-free chromosome segregation.
Collapse
Affiliation(s)
- Cai Liang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenlei Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qinfu Chen
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyan Yan
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Miao Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linli Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junfen Xu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiguo Lu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Women's Reproductive Health Key Research Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Kinetochore-microtubule coupling mechanisms mediated by the Ska1 complex and Cdt1. Essays Biochem 2020; 64:337-347. [PMID: 32844209 DOI: 10.1042/ebc20190075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022]
Abstract
The faithful segregation of duplicated sister chromatids rely on the remarkable ability of kinetochores to sustain stable load bearing attachments with the dynamic plus ends of kinetochore-microtubules (kMTs). The outer layer of the kinetochore recruits several motor and non-motor microtubule-associated proteins (MAPs) that help the kinetochores establish and maintain a load bearing dynamic attachment with kMTs. The primary kMT-binding protein, the Ndc80 complex (Ndc80c), which is highly conserved among diverse organisms from yeast to humans, performs this essential function with assistance from other MAPs. These MAPs are not an integral part of the kinetochore, but they localize to the kinetochore periodically throughout mitosis and regulate the strength of the kinetochore microtubule attachments. Here, we attempt to summarize the recent advances that have been made toward furthering our understanding of this co-operation between the Ndc80c and these MAPs, focusing on the spindle and kinetochore-associated 1 (Ska1) complex (Ska1c) and Cdc10-dependent transcript 1 (Cdt1) in humans.
Collapse
|
27
|
Hara M, Fukagawa T. Dynamics of kinetochore structure and its regulations during mitotic progression. Cell Mol Life Sci 2020; 77:2981-2995. [PMID: 32052088 PMCID: PMC11104943 DOI: 10.1007/s00018-020-03472-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 12/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Faithful chromosome segregation during mitosis in eukaryotes requires attachment of the kinetochore, a large protein complex assembled on the centromere of each chromosome, to the spindle microtubules. The kinetochore is a structural interface for the microtubule attachment and provides molecular surveillance mechanisms that monitor and ensure the precise microtubule attachment as well, including error correction and spindle assembly checkpoint. During mitotic progression, the kinetochore undergoes dynamic morphological changes that are observable through electron microscopy as well as through fluorescence microscopy. These structural changes might be associated with the kinetochore function. In this review, we summarize how the dynamics of kinetochore morphology are associated with its functions and discuss recent findings on the switching of protein interaction networks in the kinetochore during cell cycle progression.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
28
|
Zhang Q, Hu L, Chen Y, Tian W, Liu H. Multisite phosphorylation determines the formation of Ska-Ndc80 macro-complexes that are essential for chromosome segregation during mitosis. Mol Biol Cell 2020; 31:1892-1903. [PMID: 32491969 PMCID: PMC7525821 DOI: 10.1091/mbc.e19-10-0569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human Ska complex (Ska) localizing to both spindle microtubules and kinetochores is essential for proper chromosome segregation during mitosis. Although several mechanisms have been proposed to explain how Ska is recruited to kinetochores, it is still not fully understood. By analyzing Ska3 phosphorylation, we identified six critical Cdk1 sites, including the previously identified Thr358 and Thr360. Mutations of these sites to phospho-deficient alanine (6A) in cells completely abolished Ska3 localization to kinetochores and Ska functions in chromosome segregation. In vitro, Cdk1 phosphorylation on Ska enhanced WT, not phospho-deficient 6A, binding to Ndc80C. Strikingly, the phosphomimetic Ska 6D complex formed a stable macro-complex with Ndc80C, but Ska WT failed to do so. These results suggest that multisite Cdk1 phosphorylation-enabled Ska–Ndc80 binding is decisive for Ska localization to kinetochores and its functions. Moreover, we found that Ska decrease at kinetochores triggered by the microtubule-depolymerizing drug nocodazole is independent of Aurora B but can be overridden by Ska3 overexpression, suggestive of a role of spindle microtubules in promoting Ska kinetochore recruitment. Thus, based on the current and previous results, we propose that multisite Cdk1 phosphorylation is critical for the formation of Ska–Ndc80 macro-complexes that are essential for chromosome segregation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| | - Liqiao Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujue Chen
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| | - Wei Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| |
Collapse
|
29
|
Martins NMC, Cisneros-Soberanis F, Pesenti E, Kochanova NY, Shang WH, Hori T, Nagase T, Kimura H, Larionov V, Masumoto H, Fukagawa T, Earnshaw WC. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory. J Cell Sci 2020; 133:jcs242610. [PMID: 32576667 PMCID: PMC7390644 DOI: 10.1242/jcs.242610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Most eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
| | | | - Elisa Pesenti
- Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| | | | - Wei-Hao Shang
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Vladimir Larionov
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | | | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | |
Collapse
|
30
|
Hertzler JI, Simonovitch SI, Albertson RM, Weiner AT, Nye DMR, Rolls MM. Kinetochore proteins suppress neuronal microtubule dynamics and promote dendrite regeneration. Mol Biol Cell 2020; 31:2125-2138. [PMID: 32673176 PMCID: PMC7530905 DOI: 10.1091/mbc.e20-04-0237-t] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kinetochores connect centromeric chromatin to spindle microtubules during mitosis. Neurons are postmitotic, so it was surprising to identify transcripts of structural kinetochore (KT) proteins and regulatory chromosome passenger complex (CPC) and spindle assembly checkpoint (SAC) proteins in Drosophila neurons after dendrite injury. To test whether these proteins function during dendrite regeneration, postmitotic RNA interference (RNAi) was performed and dendrites or axons were removed using laser microsurgery. Reduction of KT, CPC, and SAC proteins decreased dendrite regeneration without affecting axon regeneration. To understand whether neuronal functions of these proteins rely on microtubules, we analyzed microtubule behavior in uninjured neurons. The number of growing plus, but not minus, ends increased in dendrites with reduced KT, CPC, and SAC proteins, while axonal microtubules were unaffected. Increased dendritic microtubule dynamics was independent of dual leucine zipper kinase (DLK)-mediated stress but was rescued by concurrent reduction of γ-tubulin, the core microtubule nucleation protein. Reduction of γ-tubulin also rescued dendrite regeneration in backgrounds containing kinetochore RNAi transgenes. We conclude that kinetochore proteins function postmitotically in neurons to suppress dendritic microtubule dynamics by inhibiting nucleation.
Collapse
Affiliation(s)
- James I Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Samantha I Simonovitch
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Richard M Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802.,MSTP Program, Milton S. Hershey College of Medicine, Hershey, PA 17033
| | - Alexis T Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Derek M R Nye
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802.,MSTP Program, Milton S. Hershey College of Medicine, Hershey, PA 17033
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
31
|
Wimbish RT, DeLuca KF, Mick JE, Himes J, Jiménez-Sánchez I, Jeyaprakash AA, DeLuca JG. The Hec1/Ndc80 tail domain is required for force generation at kinetochores, but is dispensable for kinetochore-microtubule attachment formation and Ska complex recruitment. Mol Biol Cell 2020; 31:1453-1473. [PMID: 32401635 PMCID: PMC7359571 DOI: 10.1091/mbc.e20-05-0286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
The conserved kinetochore-associated NDC80 complex (composed of Hec1/Ndc80, Nuf2, Spc24, and Spc25) has well-documented roles in mitosis including 1) connecting mitotic chromosomes to spindle microtubules to establish force-transducing kinetochore-microtubule attachments and 2) regulating the binding strength between kinetochores and microtubules such that correct attachments are stabilized and erroneous attachments are released. Although the NDC80 complex plays a central role in forming and regulating attachments to microtubules, additional factors support these processes as well, including the spindle and kinetochore-associated (Ska) complex. Multiple lines of evidence suggest that Ska complexes strengthen attachments by increasing the ability of NDC80 complexes to bind microtubules, especially to depolymerizing microtubule plus ends, but how this is accomplished remains unclear. Using cell-based and in vitro assays, we demonstrate that the Hec1 tail domain is dispensable for Ska complex recruitment to kinetochores and for generation of kinetochore-microtubule attachments in human cells. We further demonstrate that Hec1 tail phosphorylation regulates kinetochore-microtubule attachment stability independently of the Ska complex. Finally, we map the location of the Ska complex in cells to a region near the coiled-coil domain of the NDC80 complex and demonstrate that this region is required for Ska complex recruitment to the NDC80 complex--microtubule interface.
Collapse
Affiliation(s)
- Robert T. Wimbish
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Keith F. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jeanne E. Mick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jack Himes
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | | | | | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
32
|
Long noncoding RNA SAM promotes myoblast proliferation through stabilizing Sugt1 and facilitating kinetochore assembly. Nat Commun 2020; 11:2725. [PMID: 32483152 PMCID: PMC7264179 DOI: 10.1038/s41467-020-16553-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
The functional study of lncRNAs in skeletal muscle satellite cells (SCs) remains at the infancy stage. Here we identify SAM (Sugt1 asssociated muscle) lncRNA that is enriched in the proliferating myoblasts. Global deletion of SAM has no overt effect on mice but impairs adult muscle regeneration following acute damage; it also exacerbates the chronic injury-induced dystrophic phenotype in mdx mice. Consistently, inducible deletion of SAM in SCs leads to deficiency in muscle regeneration. Further examination reveals that SAM loss results in a cell-autonomous defect in the proliferative expansion of myoblasts. Mechanistically, we find SAM interacts and stabilizes Sugt1, a co-chaperon protein key to kinetochore assembly during cell division. Loss of SAM or Sugt1 both disrupts kinetochore assembly in mitotic cells due to the mislocalization of two components: Dsn1 and Hec1. Altogether, our findings identify SAM as a regulator of SC proliferation through facilitating Sugt1 mediated kinetochore assembly during cell division. Long noncoding RNA SAM (Sugt1 associated muscle) is upregulated in the proliferating myoblast cells. Here the authors investigate SAM knockout mice and suggest that SAM binds and stabilizes Sugt1, a co-chaperone protein that regulates kinetochore assembly.
Collapse
|
33
|
Yang L, Han N, Zhang X, Zhou Y, Chen R, Zhang M. ZWINT: A potential therapeutic biomarker in patients with glioblastoma correlates with cell proliferation and invasion. Oncol Rep 2020; 43:1831-1844. [PMID: 32323832 PMCID: PMC7160549 DOI: 10.3892/or.2020.7573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary intracranial tumor in adults. Chemoradiotherapy resistance and recurrence after surgery are the main malignant progression factors, leading to a high mortality rate. Therefore, the exploration of novel biomarkers and molecular mechanisms of GBM is urgent. Differentially expressed genes (DEGs) of GBM were screened in a TCGA dataset. Homo sapiens ZW10 interacting kinetochore protein (ZWINT) was found to be upregulated in GBM, which was confirmed by immunohistochemical staining of a tissue microarray. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. A protein-protein interaction (PPI) network was established by the STRING database, and hub genes were visualized by Cytoscape. The correlation results were verified with the GSE15824 dataset. Bioinformatic analysis confirmed that ZWINT was significantly positively correlated with kinetochore protein NDC80 homolog (NDC80), serine/threonine-protein kinase PLK1 (PLK1) and spindle and kinetochore associated complex subunit 1 (SKA1) and together are involved in regulating mitosis and the cell cycle of GBM. ZWINT expression was knocked down in U251 and U87 MG GBM cells by lentiviral vectors carrying a small hairpin RNA (shRNA) targeting ZWINT. The effect of ZWINT silencing on cell proliferation, invasion and apoptosis was determined by the Celigo assay, MTT assay, Transwell assay, flow cytometry and caspase-3/7 assay in vitro. A subcutaneous xenograft tumor model was established to explore the influence of ZWINT knockdown on GBM growth in vivo. Our preliminary study demonstrated that ZWINT knockdown effectively inhibited proliferation and invasion and induced apoptosis of GBM cells and notably suppressed GBM growth in vivo. Therefore, we speculate that ZWINT may be a potential therapeutic biomarker for GBM, with NDC80 and PLK1 conjointly involved in regulating cell division and the mitotic cell cycle.
Collapse
Affiliation(s)
- Li Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Na Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaoxi Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yangmei Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
34
|
Zhang Y, Zhao C, Cao B, Ye J, Huang H, Hu L, Tian W, He X. Structural insights into the intramolecular interactions of centromere protein CENP-I. J Mol Recognit 2020; 33:e2837. [PMID: 32017295 DOI: 10.1002/jmr.2837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/05/2020] [Accepted: 01/14/2020] [Indexed: 01/04/2023]
Abstract
In mitosis, the accurate segregation of sister chromosomes relies on kinetochore, a multiple subunits complex assembled on centromere of each sister chromosome. As a core component of inner kinetochore, CENP-I plays important functions to mediate kinetochore assembly and supports the faithful chromosome segregation. The structures of the N-terminus and C-terminus of CENP-I homologs in complex with CENP-H/K have been reported, respectively. Unfortunately, the intramolecular interactions of CENP-I are poorly understood, and how CENP-I interacts with CENP-M remains unknown. Here, we verified a unique helix α11, which forms the intramolecular interactions with N-terminal HEAT repeats in fungal CENP-I. Deletion of the helix α11 exposed the hydrophobic surface and resulted in the in vitro protein aggregation of N-terminal HEAT repeats of fungal CENP-I. The corresponding helix and its intramolecular interaction are highly conserved in human CENP-I. Deletion of the corresponding helix in human CENP-I dramatically reduced the functional activity to interact with CENP-H and CENP-M. Mutations of the conserved residues on the helix in human CENP-I significantly weakened the binding to CENP-M, but not CENP-H, in HeLa cells. Therefore, our findings for the first time unveiled a conserved helix of CENP-I, which is important for the intramolecular interaction and function, and would be helpful for understanding the structure basis of how CENP-I mediates the kinetochore assembly during cell cycle and mitosis.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Congcong Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Ye
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liqiao Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Abstract
The goal of mitosis is to form two daughter cells each containing one copy of each mother cell chromosome, replicated in the previous S phase. To achieve this, sister chromatids held together back-to-back at their primary constriction, the centromere, have to interact with microtubules of the mitotic spindle so that each chromatid takes connections with microtubules emanating from opposite spindle poles (we will refer to this condition as bipolar attachment). Only once all replicated chromosomes have reached bipolar attachments can sister chromatids lose cohesion with each other, at the onset of anaphase, and move toward opposite spindle poles, being segregated into what will soon become the daughter cell nucleus. Prevention of errors in chromosome segregation is granted by a safeguard mechanism called Spindle Assembly Checkpoint (SAC). Until all chromosomes are bipolarly oriented at the equator of the mitotic spindle, the SAC prevents loss of sister chromatid cohesion, thus anaphase onset, and maintains the mitotic state by inhibiting inactivation of the major M phase promoting kinase, the cyclin B-cdk1 complex (Cdk1). Here, we review recent mechanistic insights about the circuitry that links Cdk1 to the SAC to ensure correct achievement of the goal of mitosis.
Collapse
Affiliation(s)
- Angela Flavia Serpico
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.,DMMBM, University of Naples "Federico II", Naples, 80131, Italy
| | - Domenico Grieco
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.,Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| |
Collapse
|
36
|
Campbell S, Amin MA, Varma D, Bidone TC. Computational model demonstrates that Ndc80-associated proteins strengthen kinetochore-microtubule attachments in metaphase. Cytoskeleton (Hoboken) 2019; 76:549-561. [PMID: 31525284 DOI: 10.1002/cm.21562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/22/2023]
Abstract
Chromosome segregation is mediated by spindle microtubules that attach to the kinetochore via dynamic protein complexes, such as Ndc80, Ska, Cdt1 and ch-TOG during mitotic metaphase. While experimental studies have previously shown that these proteins and protein complexes are all essential for maintaining a stable kinetochore-microtubule (kMT) interface, their exact roles in the mitotic metaphase remains elusive. In this study, we employed experimental and computational methods in order to characterize how these proteins can strengthen kMT attachments in both nonload-bearing and load-bearing conditions, typical of prometaphase and metaphase, respectively. Immunofluorescence staining of HeLa cells showed that the levels of Ska and Cdt1 significantly increased from prometaphase to metaphase, while levels of the Ndc80 complex remained unchanged. Our new computational model showed that by incorporating binding and unbinding of each protein complex coupled with a biased diffusion mechanism, the displacement of a possible complex formed by Ndc80-Ska-Cdt1 is significantly higher than that of Ndc80 alone or Ndc80-Ska. In addition, when we incorporate Ndc80/ch-TOG in the model, rupture force and time of attachment of the kMT interface increases. These results support the hypothesis that Ndc80-associated proteins strengthen kMT attachments, and that the interplay between kMT protein complexes in metaphase ensures stable attachments.
Collapse
Affiliation(s)
- Samuel Campbell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Mohammed A Amin
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dileep Varma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah.,School of Computing, University of Utah, Salt Lake City, Utah
| |
Collapse
|
37
|
Del Castillo U, Norkett R, Gelfand VI. Unconventional Roles of Cytoskeletal Mitotic Machinery in Neurodevelopment. Trends Cell Biol 2019; 29:901-911. [PMID: 31597609 DOI: 10.1016/j.tcb.2019.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
At first look, cell division and neurite formation seem to be two different, essential biological processes. However, both processes require extensive reorganization of the cytoskeleton, and especially microtubules. Remarkably, in recent years, independent work from several groups has shown that multiple cytoskeletal components previously considered specific for the mitotic machinery play important roles in neurite initiation and extension. In this review article, we describe how several cytoplasmic and mitotic microtubule motors, components of mitotic kinetochores, and cortical actin participate in reorganization of the microtubule network required to form and maintain axons and dendrites. The emerging similarities between these two biological processes will certainly generate new insights into the mechanisms generating the unique morphology of neurons.
Collapse
Affiliation(s)
- Urko Del Castillo
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Rosalind Norkett
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
38
|
Andrews PGP, Popadiuk C, Belbin TJ, Kao KR. Augmentation of Myc-Dependent Mitotic Gene Expression by the Pygopus2 Chromatin Effector. Cell Rep 2019; 23:1516-1529. [PMID: 29719262 DOI: 10.1016/j.celrep.2018.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/14/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Mitotic segregation of chromosomes requires precise coordination of many factors, yet evidence is lacking as to how genes encoding these elements are transcriptionally controlled. Here, we found that the Pygopus (Pygo)2 chromatin effector is indispensable for expression of the MYC-dependent genes that regulate cancer cell division. Depletion of Pygo2 arrested SKOV-3 cells at metaphase, which resulted from the failure of chromosomes to capture spindle microtubules, a critical step for chromosomal biorientation and segregation. This observation was consistent with global chromatin association findings in HeLa S3 cells, revealing the enrichment of Pygo2 and MYC at promoters of biorientation and segmentation genes, at which Pygo2 maintained histone H3K27 acetylation. Immunoprecipitation and proximity ligation assays demonstrated MYC and Pygo2 interacting in nuclei, corroborated in a heterologous MYC-driven prostate cancer model that was distinct from Wnt/β-catenin signaling. Our evidence supports a role for Pygo2 as an essential component of MYC oncogenic activity required for mitosis.
Collapse
Affiliation(s)
- Phillip G P Andrews
- Terry Fox Cancer Research Labs, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's Campus, NL A1B 3V6, Canada
| | - Catherine Popadiuk
- Division of Gynecologic Oncology, Faculty of Medicine, Memorial University, St. John's Campus, NL A1B 3V6, Canada
| | - Thomas J Belbin
- Discipline of Oncology, Faculty of Medicine, Memorial University, St. John's Campus, NL A1B 3V6, Canada
| | - Kenneth R Kao
- Terry Fox Cancer Research Labs, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's Campus, NL A1B 3V6, Canada; Discipline of Oncology, Faculty of Medicine, Memorial University, St. John's Campus, NL A1B 3V6, Canada.
| |
Collapse
|
39
|
Vukušić K, Buđa R, Tolić IM. Force-generating mechanisms of anaphase in human cells. J Cell Sci 2019; 132:132/18/jcs231985. [DOI: 10.1242/jcs.231985] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT
What forces drive chromosome segregation remains one of the most challenging questions in cell division. Even though the duration of anaphase is short, it is of utmost importance for genome fidelity that no mistakes are made. Seminal studies in model organisms have revealed different mechanisms operating during chromosome segregation in anaphase, but the translation of these mechanisms to human cells is not straightforward. Recent work has shown that kinetochore fiber depolymerization during anaphase A is largely motor independent, whereas spindle elongation during anaphase B is coupled to sliding of interpolar microtubules in human cells. In this Review, we discuss the current knowledge on the mechanisms of force generation by kinetochore, interpolar and astral microtubules. By combining results from numerous studies, we propose a comprehensive picture of the role of individual force-producing and -regulating proteins. Finally, by linking key concepts of anaphase to most recent data, we summarize the contribution of all proposed mechanisms to chromosome segregation and argue that sliding of interpolar microtubules and depolymerization at the kinetochore are the main drivers of chromosome segregation during early anaphase in human cells.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Renata Buđa
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M. Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
40
|
Repurposing Kinetochore Microtubule Attachment Machinery in Neurodevelopment. Dev Cell 2019; 48:746-748. [PMID: 30913405 DOI: 10.1016/j.devcel.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kinetochore-microtubule attachments are essential to direct proper chromosome segregation during cell division. In this issue of Developmental Cell, Cheerambathur et al. (2019) and Zhao et al. (2019) uncover an unexpected role in neuronal development, unrelated to cell division, for components of the highly conserved kinetochore-microtubule attachment complex.
Collapse
|
41
|
Amin MA, Agarwal S, Varma D. Mapping the kinetochore MAP functions required for stabilizing microtubule attachments to chromosomes during metaphase. Cytoskeleton (Hoboken) 2019; 76:398-412. [PMID: 31454167 DOI: 10.1002/cm.21559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
In mitosis, faithful chromosome segregation is orchestrated by the dynamic interactions between the spindle microtubules (MTs) emanating from the opposite poles and the kinetochores of the chromosomes. However, the precise mechanism that coordinates the coupling of the kinetochore components to dynamic MTs has been a long-standing question. Microtubule-associated proteins (MAPs) regulate MT nucleation and dynamics, MT-mediated transport and MT cross-linking in cells. During mitosis, MAPs play an essential role not only in determining spindle length, position, and orientation but also in facilitating robust kinetochore-microtubule (kMT) attachments by linking the kinetochores to spindle MTs efficiently. The stability of MTs imparted by the MAPs is critical to ensure accurate chromosome segregation. This review primarily focuses on the specific function of nonmotor kinetochore MAPs, their recruitment to kinetochores and their MT-binding properties. We also attempt to synthesize and strengthen our understanding of how these MAPs work in coordination with the kinetochore-bound Ndc80 complex (the key component at the MT-binding interface in metaphase and anaphase) to establish stable kMT attachments and control accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Mohammed A Amin
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shivangi Agarwal
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dileep Varma
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
42
|
Petsalaki E, Zachos G. Novel ESCRT functions at kinetochores. Aging (Albany NY) 2019; 10:299-300. [PMID: 29562220 PMCID: PMC5892692 DOI: 10.18632/aging.101399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - George Zachos
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| |
Collapse
|
43
|
Abstract
Mistakes in the process of cell division can lead to the loss, gain or rearrangement of chromosomes. Significant chromosomal abnormalities are usually lethal to the cells and cause spontaneous miscarriages. However, in some cases, defects in the spindle assembly checkpoint lead to severe diseases, such as cancer and birth and development defects, including Down's syndrome. The timely and accurate control of chromosome segregation in mitosis relies on the spindle assembly checkpoint (SAC), an evolutionary conserved, self-regulated signalling system present in higher organisms. The spindle assembly checkpoint is orchestrated by dynamic interactions between spindle microtubules and the kinetochore , a multiprotein complex that constitutes the site for attachment of chromosomes to microtubule polymers to pull sister chromatids apart during cell division. This chapter discusses the current molecular understanding of the essential, highly dynamic molecular interactions underpinning spindle assembly checkpoint signalling and how the complex choreography of interactions can be coordinated in time and space to finely regulate the process. The potential of targeting this signalling pathway to interfere with the abnormal segregation of chromosomes, which occurs in diverse malignancies and the new opportunities that recent technological developments are opening up for a deeper understanding of the spindle assembly checkpoint are also discussed.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
44
|
Hara M, Fukagawa T. Where is the right path heading from the centromere to spindle microtubules? Cell Cycle 2019; 18:1199-1211. [PMID: 31075048 DOI: 10.1080/15384101.2019.1617008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The kinetochore is a large protein complex that ensures accurate chromosome segregation during mitosis by connecting the centromere and spindle microtubules. One of the kinetochore sub-complexes, the constitutive centromere-associated network (CCAN), associates with the centromere and recruits another sub-complex, the KMN (KNL1, Mis12, and Ndc80 complexes) network (KMN), which binds to spindle microtubules. The CCAN-KMN interaction is mediated by two parallel pathways (CENP-C- and CENP-T-pathways) in the kinetochore, which bridge the centromere and microtubules. Here, we discuss dynamic protein-interaction changes in the two pathways that couple the centromere with spindle microtubules during mitotic progression.
Collapse
Affiliation(s)
- Masatoshi Hara
- a Graduate School of Frontier Biosciences , Osaka University , Suita , Japan
| | - Tatsuo Fukagawa
- a Graduate School of Frontier Biosciences , Osaka University , Suita , Japan
| |
Collapse
|
45
|
Kinetochore Recruitment of the Spindle and Kinetochore-Associated (Ska) Complex Is Regulated by Centrosomal PP2A in Caenorhabditis elegans. Genetics 2019; 212:509-522. [PMID: 31018924 DOI: 10.1534/genetics.119.302105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/07/2019] [Indexed: 12/31/2022] Open
Abstract
During mitosis, kinetochore-microtubule interactions ensure that chromosomes are accurately segregated to daughter cells. RSA-1 (regulator of spindle assembly-1) is a regulatory B″ subunit of protein phosphatase 2A that was previously proposed to modulate microtubule dynamics during spindle assembly. We have identified a genetic interaction between the centrosomal protein, RSA-1, and the spindle- and kinetochore-associated (Ska) complex in Caenorhabditis elegans In a forward genetic screen for suppressors of rsa-1(or598) embryonic lethality, we identified mutations in ska-1 and ska-3 Loss of SKA-1 and SKA-3, as well as components of the KMN (KNL-1/MIS-12/NDC-80) complex and the microtubule end-binding protein EBP-2, all suppressed the embryonic lethality of rsa-1(or598) These suppressors also disrupted the intracellular localization of the Ska complex, revealing a network of proteins that influence Ska function during mitosis. In rsa-1(or598) embryos, SKA-1 is excessively and prematurely recruited to kinetochores during spindle assembly, but SKA-1 levels return to normal just prior to anaphase onset. Loss of the TPX2 homolog, TPXL-1, also resulted in overrecruitment of SKA-1 to the kinetochores and this correlated with the loss of Aurora A kinase on the spindle microtubules. We propose that rsa-1 regulates the kinetochore localization of the Ska complex, with spindle-associated Aurora A acting as a potential mediator. These data reveal a novel mechanism of protein phosphatase 2A function during mitosis involving a centrosome-based regulatory mechanism for Ska complex recruitment to the kinetochore.
Collapse
|
46
|
Zhao G, Oztan A, Ye Y, Schwarz TL. Kinetochore Proteins Have a Post-Mitotic Function in Neurodevelopment. Dev Cell 2019; 48:873-882.e4. [PMID: 30827899 DOI: 10.1016/j.devcel.2019.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/14/2018] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
Abstract
The kinetochore is a complex of proteins, broadly conserved from yeast to man, that resides at the centromere and is essential for chromosome segregation in dividing cells. There are no known functions of the core complex outside of the centromere. We now show that the proteins of the kinetochore have an essential post-mitotic function in neurodevelopment. At the embryonic neuromuscular junction of Drosophila melanogaster, mutation or knockdown of many kinetochore components cause neurites to overgrow and prevent formation of normal synaptic boutons. Kinetochore proteins were detected in synapses and axons in Drosophila. In post-mitotic cultured hippocampal neurons, knockdown of mis12 increased the filopodia-like protrusions in this region. We conclude that the proteins of the kinetochore are repurposed to sculpt developing synapses and dendrites and thereby contribute to the correct development of neuronal circuits in both invertebrates and mammals.
Collapse
Affiliation(s)
- Guoli Zhao
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Asli Oztan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yingzhi Ye
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas L Schwarz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Pellacani C, Bucciarelli E, Renda F, Hayward D, Palena A, Chen J, Bonaccorsi S, Wakefield JG, Gatti M, Somma MP. Splicing factors Sf3A2 and Prp31 have direct roles in mitotic chromosome segregation. eLife 2018; 7:40325. [PMID: 30475206 PMCID: PMC6287947 DOI: 10.7554/elife.40325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022] Open
Abstract
Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here, we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 min, arguing strongly against a splicing-related mitotic function of these factors. We demonstrate that both SFs bind spindle microtubules (MTs) and the Ndc80 complex, which in Sf3A2- and Prp31-depleted cells is not tightly associated with the kinetochores; in HeLa cells the Ndc80/HEC1-SF interaction is restricted to the M phase. These results indicate that Sf3A2 and Prp31 directly regulate interactions among kinetochores, spindle microtubules and the Ndc80 complex in both Drosophila and human cells.
Collapse
Affiliation(s)
- Claudia Pellacani
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Elisabetta Bucciarelli
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Fioranna Renda
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - Daniel Hayward
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Antonella Palena
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Jack Chen
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - James G Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Maurizio Gatti
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy.,Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - Maria Patrizia Somma
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
48
|
Anedchenko EA, Samel-Pommerencke A, Tran Nguyen TM, Shahnejat-Bushehri S, Pöpsel J, Lauster D, Herrmann A, Rappsilber J, Cuomo A, Bonaldi T, Ehrenhofer-Murray AE. The kinetochore module Okp1 CENP-Q/Ame1 CENP-U is a reader for N-terminal modifications on the centromeric histone Cse4 CENP-A. EMBO J 2018; 38:embj.201898991. [PMID: 30389668 DOI: 10.15252/embj.201898991] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/09/2022] Open
Abstract
Kinetochores are supramolecular assemblies that link centromeres to microtubules for sister chromatid segregation in mitosis. For this, the inner kinetochore CCAN/Ctf19 complex binds to centromeric chromatin containing the histone variant CENP-A, but whether the interaction of kinetochore components to centromeric nucleosomes is regulated by posttranslational modifications is unknown. Here, we investigated how methylation of arginine 37 (R37Me) and acetylation of lysine 49 (K49Ac) on the CENP-A homolog Cse4 from Saccharomyces cerevisiae regulate molecular interactions at the inner kinetochore. Importantly, we found that the Cse4 N-terminus binds with high affinity to the Ctf19 complex subassembly Okp1/Ame1 (CENP-Q/CENP-U in higher eukaryotes), and that this interaction is inhibited by R37Me and K49Ac modification on Cse4. In vivo defects in cse4-R37A were suppressed by mutations in OKP1 and AME1, and biochemical analysis of a mutant version of Okp1 showed increased affinity for Cse4. Altogether, our results demonstrate that the Okp1/Ame1 heterodimer is a reader module for posttranslational modifications on Cse4, thereby targeting the yeast CCAN complex to centromeric chromatin.
Collapse
Affiliation(s)
- Ekaterina A Anedchenko
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anke Samel-Pommerencke
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tra My Tran Nguyen
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Shahnejat-Bushehri
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juliane Pöpsel
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Lauster
- Department of Experimental Biophysics, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Herrmann
- Department of Experimental Biophysics, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Ann E Ehrenhofer-Murray
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
49
|
Agarwal S, Smith KP, Zhou Y, Suzuki A, McKenney RJ, Varma D. Cdt1 stabilizes kinetochore-microtubule attachments via an Aurora B kinase-dependent mechanism. J Cell Biol 2018; 217:3446-3463. [PMID: 30154187 PMCID: PMC6168275 DOI: 10.1083/jcb.201705127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 02/06/2018] [Accepted: 07/17/2018] [Indexed: 12/03/2022] Open
Abstract
Robust kinetochore-microtubule (kMT) attachment is critical for accurate chromosome segregation. G2/M-specific depletion of human Cdt1 that localizes to kinetochores in an Ndc80 complex-dependent manner leads to abnormal kMT attachments and mitotic arrest. This indicates an independent mitotic role for Cdt1 in addition to its prototypic function in DNA replication origin licensing. Here, we show that Cdt1 directly binds to microtubules (MTs). Endogenous or transiently expressed Cdt1 localizes to both mitotic spindle MTs and kinetochores. Deletion mapping of Cdt1 revealed that the regions comprising the middle and C-terminal winged-helix domains but lacking the N-terminal unstructured region were required for efficient MT binding. Mitotic kinase Aurora B interacts with and phosphorylates Cdt1. Aurora B-phosphomimetic Cdt1 exhibited attenuated MT binding, and its cellular expression induced defective kMT attachments with a concomitant delay in mitotic progression. Thus we provide mechanistic insight into how Cdt1 affects overall kMT stability in an Aurora B kinase phosphorylation-dependent manner; which is envisioned to augment the MT-binding of the Ndc80 complex.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kyle Paul Smith
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yizhuo Zhou
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Aussie Suzuki
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Dileep Varma
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
50
|
Petsalaki E, Dandoulaki M, Zachos G. Chmp4c is required for stable kinetochore-microtubule attachments. Chromosoma 2018; 127:461-473. [PMID: 29968190 DOI: 10.1007/s00412-018-0675-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 01/20/2023]
Abstract
Formation of stable kinetochore-microtubule attachments is essential for accurate chromosome segregation in human cells and depends on the NDC80 complex. We recently showed that Chmp4c, an endosomal sorting complex required for transport protein involved in membrane remodelling, localises to prometaphase kinetochores and promotes cold-stable kinetochore microtubules, faithful chromosome alignment and segregation. In the present study, we show that Chmp4c associates with the NDC80 components Hec1 and Nuf2 and is required for optimal NDC80 stability and Hec1-Nuf2 localisation to kinetochores in prometaphase. However, Chmp4c-depletion does not cause a gross disassembly of outer or inner kinetochore complexes. Conversely, Nuf2 is required for Chmp4c kinetochore targeting. Constitutive Chmp4c kinetochore tethering partially rescues cold-stable microtubule polymers in cells depleted of the endogenous Nuf2, showing that Chmp4c also contributes to kinetochore-microtubule stability independently of regulating Hec1 and Nuf2 localisation. Chmp4c interacts with tubulin in cell extracts, and binds and bundles microtubules in vitro through its highly basic N-terminal region (amino acids 1-77). Furthermore, the N-terminal region of Chmp4c is required for cold-stable kinetochore microtubules and efficient chromosome alignment. We propose that Chmp4c promotes stable kinetochore-microtubule attachments by regulating Hec1-Nuf2 localisation to kinetochores in prometaphase and by binding to spindle microtubules. These results identify Chmp4c as a novel protein that regulates kinetochore-microtubule interactions to promote accurate chromosome segregation in human cells.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Maria Dandoulaki
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece.
| |
Collapse
|