1
|
Dharan R, Sorkin R. Tetraspanin proteins in membrane remodeling processes. J Cell Sci 2024; 137:jcs261532. [PMID: 39051897 PMCID: PMC7617763 DOI: 10.1242/jcs.261532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Membrane remodeling is a fundamental cellular process that is crucial for physiological functions such as signaling, membrane fusion and cell migration. Tetraspanins (TSPANs) are transmembrane proteins of central importance to membrane remodeling events. During these events, TSPANs are known to interact with themselves and other proteins and lipids; however, their mechanism of action in controlling membrane dynamics is not fully understood. Since these proteins span the membrane, membrane properties such as rigidity, curvature and tension can influence their behavior. In this Review, we summarize recent studies that explore the roles of TSPANs in membrane remodeling processes and highlight the unique structural features of TSPANs that mediate their interactions and localization. Further, we emphasize the influence of membrane curvature on TSPAN distribution and membrane domain formation and describe how these behaviors affect cellular functions. This Review provides a comprehensive perspective on the multifaceted function of TSPANs in membrane remodeling processes and can help readers to understand the intricate molecular mechanisms that govern cellular membrane dynamics.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
2
|
Huang Y, Yu L. Tetraspanin-enriched microdomains: The building blocks of migrasomes. CELL INSIGHT 2022; 1:100003. [PMID: 37192987 PMCID: PMC10120322 DOI: 10.1016/j.cellin.2021.100003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 05/18/2023]
Abstract
The migrasome is a newly discovered organelle of migrating cells. Migrasomes play diverse physiological roles including mitochondrial quality control, lateral transfer of material between cells, and delivery of signaling molecules to spatially defined locations. The formation of migrasomes is dependent on tetraspanins, a group of membrane proteins containing four transmembrane domains, which form membrane microdomains named tetraspanin-enriched microdomains (TEMs). In this review, we will discuss the mechanisms for migrasome biogenesis, with a focus on the role of TEMs and the organizing principles underlying the formation of TEMs.
Collapse
Affiliation(s)
- Yuwei Huang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Science, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Science, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Cai S, Deng Y, Peng H, Shen J. Role of Tetraspanins in Hepatocellular Carcinoma. Front Oncol 2021; 11:723341. [PMID: 34540692 PMCID: PMC8446639 DOI: 10.3389/fonc.2021.723341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high prevalence, morbidity, and mortality. Liver cancer is the sixth most common cancer worldwide; and its subtype, HCC, accounts for nearly 80% of cases. HCC progresses rapidly, and to date, there is no efficacious treatment for advanced HCC. Tetraspanins belong to a protein family characterized by four transmembrane domains. Thirty-three known tetraspanins are widely expressed on the surface of most nucleated cells and play important roles in different biological processes. In our review, we summarize the functions of tetraspanins and their underlying mechanism in the life cycle of HCC, from its initiation, progression, and finally to treatment. CD9, TSPAN15, and TSPAN31 can promote HCC cell proliferation or suppress apoptosis. CD63, CD151, and TSPAN8 can also facilitate HCC metastasis, while CD82 serves as a suppressor of metastasis. TSPAN1, TSPAN8, and CD151 act as prognosis indicators and are inversely correlated to the overall survival rate of HCC patients. In addition, we discuss the potential of role of the tetraspanin family proteins as novel therapeutic targets and as an approach to overcome drug resistance, and also provide suggestions for further research.
Collapse
Affiliation(s)
- Sicheng Cai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Deng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiming Peng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
CD82 and Gangliosides Tune CD81 Membrane Behavior. Int J Mol Sci 2021; 22:ijms22168459. [PMID: 34445169 PMCID: PMC8395132 DOI: 10.3390/ijms22168459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
Tetraspanins are a family of transmembrane proteins that form a network of protein–protein interactions within the plasma membrane. Within this network, tetraspanin are thought to control the lateral segregation of their partners at the plasma membrane through mechanisms involving specific lipids. Here, we used a single molecule tracking approach to study the membrane behavior of tetraspanins in mammary epithelial cells and demonstrate that despite a common overall behavior, each tetraspanin (CD9, CD81 and CD82) has a specific signature in terms of dynamics. Furthermore, we demonstrated that tetraspanin dynamics on the cell surface are dependent on gangliosides. More specifically, we found that CD82 expression increases the dynamics of CD81 and alters its localization at the plasma membrane, this has no effect on the behavior of CD9. Our results provide new information on the ability of CD82 and gangliosides to differentially modulate the dynamics and organization of tetraspanins at the plasma membrane and highlight that its lipid and protein composition is involved in the dynamical architecture of the tetraspanin web. We predict that CD82 may act as a regulator of the lateral segregation of specific tetraspanins at the plasma membrane while gangliosides could play a crucial role in establishing tetraspanin-enriched areas.
Collapse
|
5
|
Erfani S, Hua H, Pan Y, Zhou BP, Yang XH. The Context-Dependent Impact of Integrin-Associated CD151 and Other Tetraspanins on Cancer Development and Progression: A Class of Versatile Mediators of Cellular Function and Signaling, Tumorigenesis and Metastasis. Cancers (Basel) 2021; 13:cancers13092005. [PMID: 33919420 PMCID: PMC8122392 DOI: 10.3390/cancers13092005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tetraspanins are a family of molecules abundantly expressed on the surface of normal or tumor cells. They have been implicated in recruiting or sequestering key molecular regulators of malignancy of a variety of human cancers, including breast and lung cancers, glioblastoma and leukemia. Yet, how their actions take place remains mysterious due to a lack of traditional platform for molecular interactions. The current review digs into this mystery by examining findings from recent studies of multiple tetraspanins, particularly CD151. The molecular basis for differential impact of tetraspanins on tumor development, progression, and spreading to secondary sites is highlighted, and the complexity and plasticity of their control over tumor cell activities and interaction with their surroundings is discussed. Finally, an outlook is provided regarding tetraspanins as candidate biomarkers and targets for the diagnosis and treatment of human cancer. Abstract As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), and the Wnt/β-catenin pathway, as well as the dynamics of exosome and cellular metabolism. Finally, we discuss the implications of the highly plastic nature and epigenetic susceptibility of CD151 expression, function, and signaling for clinical diagnosis and therapeutic intervention for human cancer.
Collapse
Affiliation(s)
- Sonia Erfani
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Pharmacy Department, St. Elizabeth Healthcare, Edgewood, KY 41017, USA
| | - Hui Hua
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-323-1996
| |
Collapse
|
6
|
Jankovicova J, Frolikova M, Palenikova V, Valaskova E, Cerny J, Secova P, Bartokova M, Horovska L, Manaskova-Postlerova P, Antalikova J, Komrskova K. Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells. Sci Rep 2020; 10:4374. [PMID: 32152440 PMCID: PMC7062741 DOI: 10.1038/s41598-020-61334-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
The physiological importance of CD151 tetraspanin is known from somatic cells and its outside-in signalling through integrins was described. In male germ cells, two tetraspanins, CD9 and CD81, are involved in sperm-egg membrane fusion, and similarly to integrins, they occupy characteristic regions. We report here on a newly discovered presence of CD151 in sperm, and present its expression and distribution during spermatogenesis and sperm transition during the acrosome reaction. We traced CD151 gene and protein expression in testicular cell subpopulations, with strong enrichment in spermatogonia and spermatids. The testicular and epididymal localization pattern is designated to the sperm head primary fusion site called the equatorial segment and when compared to the acrosome vesicle status, CD151 was located into the inner acrosomal membrane overlying the nucleus. Moreover, we show CD151 interaction with α6 integrin subunit, which forms a dimer with β4 as a part of cis-protein interactions within sperm prior to gamete fusion. We used mammalian species with distinct sperm morphology and sperm maturation such as mouse and bull and compared the results with human. In conclusion, the delivered findings characterise CD151 as a novel sperm tetraspanin network member and provide knowledge on its physiology in male germ cells.
Collapse
Affiliation(s)
- J Jankovicova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - M Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - V Palenikova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 40, Prague 2, Czech Republic
| | - E Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - J Cerny
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - P Secova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - M Bartokova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - L Horovska
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - P Manaskova-Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - J Antalikova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - K Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic. .,Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
7
|
Bioinformatics analysis of regulatory elements of the CD151 gene and insilico docking of CD151 with diallyl sulfide. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Goiko M, de Bruyn JR, Heit B. Membrane Diffusion Occurs by Continuous-Time Random Walk Sustained by Vesicular Trafficking. Biophys J 2019; 114:2887-2899. [PMID: 29925025 DOI: 10.1016/j.bpj.2018.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/06/2018] [Accepted: 04/16/2018] [Indexed: 10/28/2022] Open
Abstract
Diffusion in cellular membranes is regulated by processes that occur over a range of spatial and temporal scales. These processes include membrane fluidity, interprotein and interlipid interactions, interactions with membrane microdomains, interactions with the underlying cytoskeleton, and cellular processes that result in net membrane movement. The complex, non-Brownian diffusion that results from these processes has been difficult to characterize, and moreover, the impact of factors such as membrane recycling on membrane diffusion remains largely unexplored. We have used a careful statistical analysis of single-particle tracking data of the single-pass plasma membrane protein CD93 to show that the diffusion of this protein is well described by a continuous-time random walk in parallel with an aging process mediated by membrane corrals. The overall result is an evolution in the diffusion of CD93: proteins initially diffuse freely on the cell surface but over time become increasingly trapped within diffusion-limiting membrane corrals. Stable populations of freely diffusing and corralled CD93 are maintained by an endocytic/exocytic process in which corralled CD93 is selectively endocytosed, whereas freely diffusing CD93 is replenished by exocytosis of newly synthesized and recycled CD93. This trafficking not only maintained CD93 diffusivity but also maintained the heterogeneous distribution of CD93 in the plasma membrane. These results provide insight into the nature of the biological and biophysical processes that can lead to significantly non-Brownian diffusion of membrane proteins and demonstrate that ongoing membrane recycling is critical to maintaining steady-state diffusion and distribution of proteins in the plasma membrane.
Collapse
Affiliation(s)
- Maria Goiko
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada; Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - John R de Bruyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada; Centre for Human Immunology, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
9
|
Zhao K, Wang Z, Hackert T, Pitzer C, Zöller M. Tspan8 and Tspan8/CD151 knockout mice unravel the contribution of tumor and host exosomes to tumor progression. J Exp Clin Cancer Res 2018; 37:312. [PMID: 30541597 PMCID: PMC6292129 DOI: 10.1186/s13046-018-0961-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The tetraspanins Tspan8 and CD151 promote metastasis, exosomes (Exo) being suggested to be important in the crosstalk between tumor and host. The contribution of Tspan8 and CD151 to host versus tumor-derived exosome (TEX) activities being not defined, we approached the questions using 3-methylcholanthrene-induced (MCA) tumors from wt, Tspan8ko, CD151ko and Tspan8/CD151 (db)ko mice, implanted into tetraspanin-competent and deficient hosts. METHODS Tumor growth and dissemination, hematopoiesis and angiogenesis were surveyed in wild type (wt), Tspan8ko, CD151ko and dbko mice bearing tetraspanin-competent and -deficient MCA tumors. In vitro studies using tumor cells, bone marrow cells (BMC) and endothelial cells (EC) elaborated the mechanism of serum (s)Exo- and TEX-induced target modulation. RESULTS Tumors grew in autochthonous and syngeneic hosts differing in Tspan8- and/or CD151-competence. However, Tspan8ko- and/or CD151ko-tumor cell dissemination and settlement in metastatic organs was significantly reduced in the autochthonous host, and less severely in the wt-host. Impaired wt-MCA tumor dissemination in the ko-host confirmed a contribution of host- and tumor-Tspan8/-CD151 to tumor cell dissemination, delivery of sExo and TEX being severely impaired by a Tspan8ko/CD151ko. Coculturing tumor cells, BMC and EC with sExo and TEX revealed minor defects in epithelial mesenchymal transition and apoptosis resistance of ko tumors. Strongly reduced migratory and invasive capacity of Tspan8ko/CD151ko-MCA relies on distorted associations with integrins and CAM and missing Tspan8/CD151-promoted recruitment of proteases. The defects, differing between Tspan8ko- and CD151ko-MCA, were rescued by wt-TEX and, less efficiently Tspan8ko- and CD151ko-TEX. Minor defects in hematopoietic progenitor maturation were based on the missing association of hematopoietic growth factors /- receptors with CD151 and, less pronounced, Tspan8. Rescue of impaired angiogenesis in ko mice by wt-sExo and promotion of angiogenesis by TEX depended on the association of Tspan8 and CD151 with GPCR and RTK in EC and tumor cells. CONCLUSIONS Tspan8-/CD151-TEX play central roles in tumor progression. Tspan8-/CD151-sExo and TEX contribute by stimulating angiogenesis. Tspan8 and CD151 fulfill these tasks by associating with function-relevant proteins, the additive impact of Tspan8 and CD151 relying on differences in preferred associations. The distinct Tspan8 and CD151 contributions suggest a blockade of TEX-Tspan8 and -CD151 promising for therapeutic intervention.
Collapse
Affiliation(s)
- Kun Zhao
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Zhe Wang
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
- Present Address: Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Institute of Pharmacology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|
10
|
Wang Z, Wang C, Zhou Z, Sun M, Zhou C, Chen J, Yin F, Wang H, Lin B, Zuo D, Li S, Feng L, Duan Z, Cai Z, Hua Y. CD151-mediated adhesion is crucial to osteosarcoma pulmonary metastasis. Oncotarget 2018; 7:60623-60638. [PMID: 27556355 PMCID: PMC5312406 DOI: 10.18632/oncotarget.11380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 07/26/2016] [Indexed: 01/28/2023] Open
Abstract
CD151, a tetraspanin family protein involved in cell-cell and cell-extracellular matrix interaction, is differentially expressed in osteosarcoma cell membranes. Thus, this study aimed to investigate the role of CD151 in osteosarcoma metastasis. We analyzed CD151 expression in patient tissue samples using immunohistochemistry. CD151 expression was also silenced with shRNA in osteosarcoma cells of high metastatic potential, and cell adhesion, migration and invasion were evaluated in vitro and pulmonary metastasis was investigated in vivo. Mediators of cell signaling pathways were also examined following suppression of CD151 expression. Overall survival for patients with low versus high CD151 expression level was 94 vs. 41 months (p=0.0451). CD151 expression in osteosarcoma cells with high metastatic potential was significantly higher than in those with low metastatic potential (p<0.001). shRNA-mediated silencing of CD151 did not influence cell viability or proliferation; however, cell adhesion, migration and invasion were all inhibited (all p<0.001). In mice inoculated with shRNA-transduced osteosarcoma cells, the number and size of lung metastatic lesions were reduced compared to the mice inoculated with control-shRNA transduced cells (p<0.001). In addition, CD151 knockdown significantly reduced Akt, p38, and p65 phosphorylation as well as focal adhesion kinase, integrin β1, p70s6, and p-mTOR levels. Taken together, CD151 induced osteosarcoma metastasis likely by regulating cell function through adhesion signaling. Further studies are necessary to fully explore the diagnostic and prognostic value of determining CD151 expression in osteosarcoma patients.
Collapse
Affiliation(s)
- Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chongren Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Mengxiong Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chenghao Zhou
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Jian Chen
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Fei Yin
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Hongsheng Wang
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Binhui Lin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Dongqing Zuo
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Suoyuan Li
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Lijin Feng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Shanghai Bone Tumor Institution, Shanghai, 201620, China
| |
Collapse
|
11
|
Haining EJ, Matthews AL, Noy PJ, Romanska HM, Harris HJ, Pike J, Morowski M, Gavin RL, Yang J, Milhiet PE, Berditchevski F, Nieswandt B, Poulter NS, Watson SP, Tomlinson MG. Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation. Platelets 2017; 28:629-642. [PMID: 28032533 PMCID: PMC5706974 DOI: 10.1080/09537104.2016.1254175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
The tetraspanins are a superfamily of four-transmembrane proteins, which regulate the trafficking, lateral diffusion and clustering of the transmembrane proteins with which they interact. We have previously shown that tetraspanin Tspan9 is expressed on platelets. Here we have characterised gene-trap mice lacking Tspan9. The mice were viable with normal platelet numbers and size. Tspan9-deficient platelets were specifically defective in aggregation and secretion induced by the platelet collagen receptor GPVI, despite normal surface GPVI expression levels. A GPVI activation defect was suggested by partially impaired GPVI-induced protein tyrosine phosphorylation. In mechanistic experiments, Tspan9 and GPVI co-immunoprecipitated and co-localised, but super-resolution imaging revealed no defects in collagen-induced GPVI clustering on Tspan9-deficient platelets. However, single particle tracking using total internal reflection fluorescence microscopy showed that GPVI lateral diffusion was reduced by approximately 50% in the absence of Tspan9. Therefore, Tspan9 plays a fine-tuning role in platelet activation by regulating GPVI membrane dynamics.
Collapse
Affiliation(s)
- Elizabeth J. Haining
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandra L. Matthews
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Peter J. Noy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Helen J. Harris
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy Pike
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- PSIBS Doctoral Training Centre, School of Chemistry, University of Birmingham, Birmingham, UK
| | - Martina Morowski
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Rebecca L. Gavin
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jing Yang
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre-Emmanuel Milhiet
- INSERM U1054, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier University, France
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michael G. Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Zuidscherwoude M, Worah K, van der Schaaf A, Buschow SI, van Spriel AB. Differential expression of tetraspanin superfamily members in dendritic cell subsets. PLoS One 2017; 12:e0184317. [PMID: 28880937 PMCID: PMC5589240 DOI: 10.1371/journal.pone.0184317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs), which are essential for initiating immune responses, are comprised of different subsets. Tetraspanins organize dendritic cell membranes by facilitating protein-protein interactions within the so called tetraspanin web. In this study we analyzed expression of the complete tetraspanin superfamily in primary murine (CD4+, CD8+, pDC) and human DC subsets (CD1c+, CD141+, pDC) at the transcriptome and proteome level. Different RNA and protein expression profiles for the tetraspanin genes across human and murine DC subsets were identified. Although RNA expression levels of CD37 and CD82 were not significantly different between human DC subsets, CD9 RNA was highly expressed in pDCs, while CD9 protein expression was lower. This indicates that relative RNA and protein expression levels are not always in agreement. Both murine CD8α+ DCs and its regarded human counterpart, CD141+ DCs, displayed relatively high protein levels of CD81. CD53 protein was highly expressed on human pDCs in contrast to the relatively low protein expression of most other tetraspanins. This study demonstrates that tetraspanins are differentially expressed by human and murine DC subsets which provides a valuable resource that will aid the understanding of tetraspanin function in DC biology.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kuntal Worah
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alie van der Schaaf
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sonja I. Buschow
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Annemiek B. van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
El Kharbili M, Robert C, Witkowski T, Danty-Berger E, Barbollat-Boutrand L, Masse I, Gadot N, de la Fouchardière A, McDonald PC, Dedhar S, Le Naour F, Degoul F, Berthier-Vergnes O. Tetraspanin 8 is a novel regulator of ILK-driven β1 integrin adhesion and signaling in invasive melanoma cells. Oncotarget 2017; 8:17140-17155. [PMID: 28188308 PMCID: PMC5370029 DOI: 10.18632/oncotarget.15084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/09/2017] [Indexed: 01/31/2023] Open
Abstract
Melanoma is well known for its propensity for lethal metastasis and resistance to most current therapies. Tumor progression and drug resistance depend to a large extent on the interplay between tumor cells and the surrounding matrix. We previously identified Tetraspanin 8 (Tspan8) as a critical mediator of melanoma invasion, whose expression is absent in healthy skin. The present study investigated whether Tspan8 may influence cell-matrix anchorage and regulate downstream molecular pathways leading to an aggressive behavior. Using silencing and ectopic expression strategies, we showed that Tspan8-mediated invasion of melanoma cells resulted from defects in cell-matrix anchorage by interacting with β1 integrins and by interfering with their clustering, without affecting their surface or global expression levels. These effects were associated with impaired phosphorylation of integrin-linked kinase (ILK) and its downstream target Akt-S473, but not FAK. Specific blockade of Akt or ILK activity strongly affected cell-matrix adhesion. Moreover, expression of a dominant-negative form of ILK reduced β1 integrin clustering and cell-matrix adhesion. Finally, we observed a tumor-promoting effect of Tspan8 in vivo and a mutually exclusive expression pattern between Tspan8 and phosphorylated ILK in melanoma xenografts and human melanocytic lesions. Altogether, the in vitro, in vivo and in situ data highlight a novel regulatory role for Tspan8 in melanoma progression by modulating cell-matrix interactions through β1 integrin-ILK axis and establish Tspan8 as a negative regulator of ILK activity. These findings emphasize the importance of targeting Tspan8 as a means of switching from low- to firm-adhesive states, mandatory to prevent tumor dissemination.
Collapse
Affiliation(s)
- Manale El Kharbili
- Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Villeurbanne, France.,Current address: Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Clément Robert
- Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Villeurbanne, France
| | - Tiffany Witkowski
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, Clermont-Ferrand, France.,Inserm, U990, Clermont-Ferrand, France
| | | | - Laetitia Barbollat-Boutrand
- Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Villeurbanne, France
| | - Ingrid Masse
- Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Villeurbanne, France
| | - Nicolas Gadot
- Université Lyon 1, Fédération de Recherche Santé Lyon-Est, ANIPATH, Faculté Laennec, Lyon, France
| | | | - Paul C McDonald
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, Canada
| | - François Le Naour
- INSERM U602, Villejuif, France.,Current address: INSERM U1193, Hôpital Paul Brousse, Villejuif, France
| | - Françoise Degoul
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, Clermont-Ferrand, France.,Inserm, U990, Clermont-Ferrand, France
| | - Odile Berthier-Vergnes
- Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Villeurbanne, France
| |
Collapse
|
14
|
Seipold L, Saftig P. The Emerging Role of Tetraspanins in the Proteolytic Processing of the Amyloid Precursor Protein. Front Mol Neurosci 2016; 9:149. [PMID: 28066176 PMCID: PMC5174118 DOI: 10.3389/fnmol.2016.00149] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Tetraspanins are a family of ubiquitously expressed and conserved proteins, which are characterized by four transmembrane domains and the formation of a short and a large extracellular loop (LEL). Through interaction with other tetraspanins and transmembrane proteins such as growth factors, receptors and integrins, tetraspanins build a wide ranging and membrane spanning protein network. Such tetraspanin-enriched microdomains (TEMs) contribute to the formation and stability of functional signaling complexes involved in cell activation, adhesion, motility, differentiation, and malignancy. There is increasing evidence showing that the tetraspanins also regulate the proteolysis of the amyloid precursor protein (APP) by physically interacting with the APP secretases. CD9, CD63, CD81, Tspan12, Tspan15 are among the tetraspanins involved in the intracellular transport and in the stabilization of the gamma secretase complex or ADAM10 as the major APP alpha secretase. They also directly regulate, most likely in concert with other tetraspanins, the proteolytic function of these membrane embedded enzymes. Despite the knowledge about the interaction of tetraspanins with the secretases not much is known about their physiological role, their importance in Alzheimer's Disease and their exact mode of action. This review aims to summarize the current knowledge and open questions regarding the biology of tetraspanins and the understanding how these proteins interact with APP processing pathways. Ultimately, it will be of interest if tetraspanins are suitable targets for future therapeutical approaches.
Collapse
Affiliation(s)
- Lisa Seipold
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel (CAU) Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel (CAU) Kiel, Germany
| |
Collapse
|
15
|
Zhou P, Erfani S, Liu Z, Jia C, Chen Y, Xu B, Deng X, Alfáro JE, Chen L, Napier D, Lu M, Huang JA, Liu C, Thibault O, Segal R, Zhou BP, Kyprianou N, Horbinski C, Yang XH. CD151-α3β1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion. Oncotarget 2016; 6:29675-93. [PMID: 26377974 PMCID: PMC4745755 DOI: 10.18632/oncotarget.4896] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/03/2015] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma, one of the most aggressive forms of brain cancer, is featured by high tumor cell motility and invasiveness, which not only fuel tumor infiltration, but also enable escape from surgical or other clinical interventions. Thus, better understanding of how these malignant traits are controlled will be key to the discovery of novel biomarkers and therapies against this deadly disease. Tetraspanin CD151 and its associated α3β1 integrin have been implicated in facilitating tumor progression across multiple cancer types. How these adhesion molecules are involved in the progression of glioblastoma, however, remains largely unclear. Here, we examined an in-house tissue microarray-based cohort of 96 patient biopsies and TCGA dataset to evaluate the clinical significance of CD151 and α3β1 integrin. Functional and signaling analyses were also conducted to understand how these molecules promote the aggressiveness of glioblastoma at molecular and cellular levels. Results from our analyses showed that CD151 and α3 integrin were significantly elevated in glioblastomas at both protein and mRNA levels, and exhibited strong inverse correlation with patient survival (p < 0.006). These adhesion molecules also formed tight protein complexes and synergized with EGF/EGFR to accelerate tumor cell motility and invasion. Furthermore, disruption of such complexes enhanced the survival of tumor-bearing mice in a xenograft model, and impaired activation of FAK and small GTPases. Also, knockdown- or pharmacological agent-based attenuation of EGFR, FAK or Graf (ARHGAP26)/small GTPase-mediated pathways markedly mitigated the aggressiveness of glioblastoma cells. Collectively, our findings provide clinical, molecular and cellular evidence of CD151-α3β1 integrin complexes as promising prognostic biomarkers and therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Sonia Erfani
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Zeyi Liu
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA.,Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P. R. China
| | - Changhe Jia
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA.,Department of Gastroenterology, Provincial People's Hospital, Zhengzhou, Henan Province, P. R. China
| | - Yecang Chen
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Bingwei Xu
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Xinyu Deng
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Jose E Alfáro
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Li Chen
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Dana Napier
- Department of Pathology and Laboratory Medicine, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Michael Lu
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Jian-An Huang
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P. R. China
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Rosalind Segal
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Natasha Kyprianou
- Department of Urology, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Craig Horbinski
- Department of Pathology and Laboratory Medicine, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| | - Xiuwei H Yang
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center and University of Kentucky, Lexington, KY, USA
| |
Collapse
|
16
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|
17
|
Mattila PK, Batista FD, Treanor B. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling. J Cell Biol 2016; 212:267-80. [PMID: 26833785 PMCID: PMC4748574 DOI: 10.1083/jcb.201504137] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival.
Collapse
Affiliation(s)
- Pieta K Mattila
- Institute of Biomedicine, MediCity, University of Turku, 20520 Turku, Finland
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Bebhinn Treanor
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M5T 1C6, Canada
| |
Collapse
|
18
|
Matthews AL, Noy PJ, Reyat JS, Tomlinson MG. Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: The emerging role of tetraspanins and rhomboids. Platelets 2016; 28:333-341. [PMID: 27256961 PMCID: PMC5490636 DOI: 10.1080/09537104.2016.1184751] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A disintegrin and metalloprotease (ADAM) 10 and ADAM17 are ubiquitous transmembrane “molecular scissors” which proteolytically cleave, or shed, the extracellular regions of other transmembrane proteins. ADAM10 is essential for development because it cleaves Notch proteins to induce Notch signaling and regulate cell fate decisions. ADAM17 is regarded as a first line of defense against injury and infection, by releasing tumor necrosis factor α (TNFα) to promote inflammation and epidermal growth factor (EGF) receptor ligands to maintain epidermal barrier function. However, the regulation of ADAM10 and ADAM17 trafficking and activation are not fully understood. This review will describe how the TspanC8 subgroup of tetraspanins (Tspan5, 10, 14, 15, 17, and 33) and the iRhom subgroup of protease-inactive rhomboids (iRhom1 and 2) have emerged as important regulators of ADAM10 and ADAM17, respectively. In particular, they are required for the enzymatic maturation and trafficking to the cell surface of the ADAMs, and there is evidence that different TspanC8s and iRhoms target the ADAMs to distinct substrates. The TspanC8s and iRhoms have not been studied functionally on platelets. On these cells, ADAM10 is the principal sheddase for the platelet collagen receptor GPVI, and the regulatory TspanC8s are Tspan14, 15, and 33, as determined from proteomic data. Platelet ADAM17 is the sheddase for the von Willebrand factor (vWF) receptor GPIb, and iRhom2 is the only iRhom that is expressed. Induced shedding of either GPVI or GPIb has therapeutic potential, since inhibition of either receptor is regarded as a promising anti-thrombotic therapy. Targeting of Tspan14, 15, or 33 to activate platelet ADAM10, or iRhom2 to activate ADAM17, may enable such an approach to be realized, without the toxic side effects of activating the ADAMs on every cell in the body.
Collapse
Affiliation(s)
- Alexandra L Matthews
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Peter J Noy
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Jasmeet S Reyat
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Michael G Tomlinson
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| |
Collapse
|
19
|
Levine RM, Dinh CV, Harris MA, Kokkoli E. Targeting HPV-infected cervical cancer cells with PEGylated liposomes encapsulating siRNA and the role of siRNA complexation with polyethylenimine. Bioeng Transl Med 2016; 1:168-180. [PMID: 29313012 PMCID: PMC5675078 DOI: 10.1002/btm2.10022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023] Open
Abstract
The greatest obstacle to clinical application of cancer gene therapy is lack of effective delivery tools. Gene delivery vehicles must protect against degradation, avoid immunogenic effects and prevent off target delivery which can cause harmful side effects. PEGylated liposomes have greatly improved tumor localization of small molecule drugs and are a promising tool for nucleic acid delivery as the polyethylene glycol (PEG) coating protects against immune recognition and blood clearance. In this study, small interfering RNA (siRNA) was fully encapsulated within PEGylated liposomes by complexing the siRNA with a cationic polymer, polyethyleneimine (PEI), before encapsulation. Formation methods and material compositions were then investigated for their effects on encapsulation. This technology was translated for protective delivery of siRNA designed for human papillomavirus (HPV) viral gene silencing and cervical cancer treatment. PEGylated liposomes encapsulating siRNA were functionalized with the AG86 targeting peptide-amphiphile which binds to the α6β4 integrin, a cervical cancer biomarker. It was found that both targeting and polymer complexation before encapsulation were critical components to effective transfection.
Collapse
Affiliation(s)
- Rachel M. Levine
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Christina V. Dinh
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Michael A. Harris
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Efrosini Kokkoli
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| |
Collapse
|
20
|
Rocha-Perugini V, Sánchez-Madrid F, Martínez Del Hoyo G. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation. Front Immunol 2016; 6:653. [PMID: 26793193 PMCID: PMC4707441 DOI: 10.3389/fimmu.2015.00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gloria Martínez Del Hoyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) , Madrid , Spain
| |
Collapse
|
21
|
Jouannet S, Saint-Pol J, Fernandez L, Nguyen V, Charrin S, Boucheix C, Brou C, Milhiet PE, Rubinstein E. TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cell Mol Life Sci 2015; 73:1895-915. [PMID: 26686862 PMCID: PMC4819958 DOI: 10.1007/s00018-015-2111-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023]
Abstract
The metalloprotease ADAM10 mediates the shedding of the ectodomain of various cell membrane proteins, including APP, the precursor of the amyloid peptide Aβ, and Notch receptors following ligand binding. ADAM10 associates with the members of an evolutionary conserved subgroup of tetraspanins, referred to as TspanC8, which regulate its exit from the endoplasmic reticulum. Here we show that 4 of these TspanC8 (Tspan5, Tspan14, Tspan15 and Tspan33) which positively regulate ADAM10 surface expression levels differentially impact ADAM10-dependent Notch activation and the cleavage of several ADAM10 substrates, including APP, N-cadherin and CD44. Sucrose gradient fractionation, single molecule tracking and quantitative mass-spectrometry analysis of the repertoire of molecules co-immunoprecipitated with Tspan5, Tspan15 and ADAM10 show that these two tetraspanins differentially regulate ADAM10 membrane compartmentalization. These data represent a unique example where several tetraspanins differentially regulate the function of a common partner protein through a distinct membrane compartmentalization.
Collapse
Affiliation(s)
- Stéphanie Jouannet
- Inserm, U935, 94807, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France
| | - Julien Saint-Pol
- Inserm, U935, 94807, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France
| | - Laurent Fernandez
- Inserm, U1054, 34090, Montpellier, France.,Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale, Montpellier, France
| | - Viet Nguyen
- Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France
| | - Stéphanie Charrin
- Inserm, U935, 94807, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France
| | - Claude Boucheix
- Inserm, U935, 94807, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France
| | - Christel Brou
- Institut Pasteur, Laboratoire "Signalisation et Pathogenèse", 75015, Paris, France
| | - Pierre-Emmanuel Milhiet
- Inserm, U1054, 34090, Montpellier, France.,Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale, Montpellier, France
| | - Eric Rubinstein
- Inserm, U935, 94807, Villejuif, France. .,Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France.
| |
Collapse
|
22
|
Zuidscherwoude M, Göttfert F, Dunlock VME, Figdor CG, van den Bogaart G, van Spriel AB. The tetraspanin web revisited by super-resolution microscopy. Sci Rep 2015; 5:12201. [PMID: 26183063 PMCID: PMC4505338 DOI: 10.1038/srep12201] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/17/2015] [Indexed: 12/19/2022] Open
Abstract
The spatial organization of membrane proteins in the plasma membrane is critical for signal transduction, cell communication and membrane trafficking. Tetraspanins organize functional higher-order protein complexes called ‘tetraspanin-enriched microdomains (TEMs)’ via interactions with partner molecules and other tetraspanins. Still, the nanoscale organization of TEMs in native plasma membranes has not been resolved. Here, we elucidated the size, density and distribution of TEMs in the plasma membrane of human B cells and dendritic cells using dual color stimulated emission depletion (STED) microscopy. We demonstrate that tetraspanins form individual nanoclusters smaller than 120 nm and quantified that a single tetraspanin CD53 cluster contains less than ten CD53 molecules. CD53 and CD37 domains were adjacent to and displayed only minor overlap with clusters containing tetraspanins CD81 or CD82. Moreover, CD53 and CD81 were found in closer proximity to their partners MHC class II and CD19 than to other tetraspanins. Although these results indicate that tetraspanin domains are adjacently positioned in the plasma membrane, they challenge the current view of the tetraspanin web of multiple tetraspanin species organized into a single domain. This study increases the molecular understanding of TEMs at the nanoscale level which is essential for comprehending tetraspanin function in cell biology.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fabian Göttfert
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vera Marie E Dunlock
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Involvement of activation of C-met signaling pathway in CD151-induced HUVECs angiogenesis. ACTA ACUST UNITED AC 2015; 35:35-41. [PMID: 25673190 DOI: 10.1007/s11596-015-1385-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/27/2014] [Indexed: 12/16/2022]
Abstract
CD151 is a member of the tetraspanin family that is implicated as a promoter of pathological or physiological angiogenesis. C-Met is expressed on a variety of cells including vascular endothelial cells (VECs) and up-regulated during angiogenesis. In this study, we investigated whether CD151 regulated migration, proliferation, tube formation and angiogenesis of human umbilical VECs (HUVECs) with activation of C-Met. Moreover, we studied whether CD151 could affect the angiogenic molecules such as nitric oxide (NO), vascular cell adhesion molecule-1 (VCAM-1) and vascular endothelial growth factor (VEGF). The expression of CD151 was determined by Western blotting. The cell proliferation assay was performed using the cell counting kit-8 (CCK-8) method and cell migration was assessed in microchemotaxis chambers by using fetal bovine serum (FBS) as the chemotactic stimulus. The angiogenic molecules were evaluated using ELISA. The NO level was detected using NO detection kit. The potential involvement of various signaling pathways was explored using relevant antibodies. We found that proliferation, migration and tube formation of HUVECs were promoted by CD151 with activation of C-Met, FAK and CDC42, while they were suppressed with CD151 knockdown by RNAi. Similarly, the levels of NO, VCAM-1 and VEGF in HUVECs were increased by CD151, but they were inhibited with CD151 knockdown by RNAi. These data suggested that CD151 could promote migration, proliferation, tube formation and angiogenesis of HUVECs, which was possibly related to the C-Met signaling pathways.
Collapse
|
24
|
Epidermal cell junctions and their regulation by p63 in health and disease. Cell Tissue Res 2015; 360:513-28. [PMID: 25645146 DOI: 10.1007/s00441-014-2108-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/17/2014] [Indexed: 12/17/2022]
Abstract
As the outermost tissue of the body, the epidermis is the first physical barrier for any pressure, stress or trauma. Several specialized cell-matrix and cell-cell adhesion structures, together with an intracellular network of dedicated intermediate filaments, are required to confer critical resilience to mechanical stress. The transcription factor p63 is a master regulator of gene expression in the epidermis and in other stratified epithelia. It has been extensively demonstrated that p63 positively controls a large number of tissue-specific genes, including those encoding a large fraction of tissue-restricted cell adhesion molecules. Consistent with p63 functions in cell adhesion and in epidermal differentiation, heterozygous mutations clustered mainly in the p63 C-terminus are causative of AEC syndrome, an autosomal dominant disorder characterized by cleft palate, ankyloblepharon and ectodermal dysplasia associated with severe skin erosions, bleeding and infections. The molecular basis of skin erosions in AEC patients is not fully understood, although defects in desmosomes and in other cell junctions are likely to be involved. Here, we provide an extensive review of the different epidermal cell junctions that cooperate to withstand mechanical stress and on the mechanisms by which p63 regulates gene expression of their components in healthy skin and in AEC syndrome. Collectively, advancement in understanding the molecular mechanisms by which epidermal cell junctions precisely exert their functions and how p63 orchestrates their coordinated expression, will ultimately lead to insight into developing future strategies for the treatment of AEC syndrome and more in generally for diseases that share an overlapping phenotype.
Collapse
|
25
|
Hulme RS, Higginbottom A, Palmer J, Partridge LJ, Monk PN. Distinct regions of the large extracellular domain of tetraspanin CD9 are involved in the control of human multinucleated giant cell formation. PLoS One 2014; 9:e116289. [PMID: 25551757 PMCID: PMC4281222 DOI: 10.1371/journal.pone.0116289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/08/2014] [Indexed: 11/19/2022] Open
Abstract
Multinucleated giant cells, formed by the fusion of monocytes/macrophages, are features of chronic granulomatous inflammation associated with infections or the persistent presence of foreign material. The tetraspanins CD9 and CD81 regulate multinucleated giant cell formation: soluble recombinant proteins corresponding to the large extracellular domain (EC2) of human but not mouse CD9 can inhibit multinucleated giant cell formation, whereas human CD81 EC2 can antagonise this effect. Tetraspanin EC2 are all likely to have a conserved three helix sub-domain and a much less well-conserved or hypervariable sub-domain formed by short helices and interconnecting loops stabilised by two or more disulfide bridges. Using CD9/CD81 EC2 chimeras and point mutants we have mapped the specific regions of the CD9 EC2 involved in multinucleated giant cell formation. These were primarily located in two helices, one in each sub-domain. The cysteine residues involved in the formation of the disulfide bridges in CD9 EC2 were all essential for inhibitory activity but a conserved glycine residue in the tetraspanin-defining 'CCG' motif was not. A tyrosine residue in one of the active regions that is not conserved between human and mouse CD9 EC2, predicted to be solvent-exposed, was found to be only peripherally involved in this activity. We have defined two spatially-distinct sites on the CD9 EC2 that are required for inhibitory activity. Agents that target these sites could have therapeutic applications in diseases in which multinucleated giant cells play a pathogenic role.
Collapse
Affiliation(s)
- Rachel S. Hulme
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Adrian Higginbottom
- Department of Neuroscience, University of Sheffield Medical School, Sheffield, United Kingdom
| | - John Palmer
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Lynda J. Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Peter N. Monk
- Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Osmani N, Labouesse M. Remodeling of keratin-coupled cell adhesion complexes. Curr Opin Cell Biol 2014; 32:30-8. [PMID: 25460779 DOI: 10.1016/j.ceb.2014.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/13/2014] [Accepted: 10/18/2014] [Indexed: 12/12/2022]
Abstract
Epithelial cells constitute the main barrier between the inside and outside of organs, acting as gatekeepers of their structure and integrity. Hemidesmosomes and desmosomes are respectively cell-matrix and cell-cell adhesions coupled to the intermediate filament cytoskeleton. These adhesions ensure mechanical integrity of the epithelial barrier. Although desmosomes and hemidesmosomes are essential in maintaining strong cell-cell and cell-matrix adhesions, there is an emerging view that they should be remodeled in order to maintain epithelial homeostasis. Here we review the adhesion properties of desmosomes and hemidesmosomes, as well as the mechanisms driving their remodeling. We also discuss recent data suggesting that keratin-coupled adhesion complexes can sense the biomechanical cellular environment and participate in the cellular response to such external cues.
Collapse
Affiliation(s)
- Naël Osmani
- IGBMC, Development and Stem Cells Program, 67400 Illkirch, France; CNRS (UMR 7104), 67400 Illkirch, France; INSERM (U964), 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| | - Michel Labouesse
- IGBMC, Development and Stem Cells Program, 67400 Illkirch, France; CNRS (UMR 7104), 67400 Illkirch, France; INSERM (U964), 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
27
|
Chalbi M, Barraud-Lange V, Ravaux B, Howan K, Rodriguez N, Soule P, Ndzoudi A, Boucheix C, Rubinstein E, Wolf JP, Ziyyat A, Perez E, Pincet F, Gourier C. Binding of sperm protein Izumo1 and its egg receptor Juno drives Cd9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization. Development 2014; 141:3732-9. [PMID: 25209248 DOI: 10.1242/dev.111534] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Little is known about the molecular mechanisms that induce gamete fusion during mammalian fertilization. After initial contact, adhesion between gametes only leads to fusion in the presence of three membrane proteins that are necessary, but insufficient, for fusion: Izumo1 on sperm, its receptor Juno on egg and Cd9 on egg. What happens during this adhesion phase is a crucial issue. Here, we demonstrate that the intercellular adhesion that Izumo1 creates with Juno is conserved in mouse and human eggs. We show that, along with Izumo1, egg Cd9 concomitantly accumulates in the adhesion area. Without egg Cd9, the recruitment kinetics of Izumo1 are accelerated. Our results suggest that this process is conserved across species, as the adhesion partners, Izumo1 and its receptor, are interchangeable between mouse and human. Our findings suggest that Cd9 is a partner of Juno, and these discoveries allow us to propose a new model of the molecular mechanisms leading to gamete fusion, in which the adhesion-induced membrane organization assembles all key players of the fusion machinery.
Collapse
Affiliation(s)
- Myriam Chalbi
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique UMR8550, 24 rue Lhomond, Paris 75005, France
| | - Virginie Barraud-Lange
- Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale U1016, Génomique, Epigénétique et Physiopathologie de la Reproduction, Service d'Histologie Embryologie Biologie de la Reproduction-CECOS, Hopital Cochin, AP-HP24 rue du Faubourg Saint-Jacques, Paris 75014, France
| | - Benjamin Ravaux
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique UMR8550, 24 rue Lhomond, Paris 75005, France
| | - Kevin Howan
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique UMR8550, 24 rue Lhomond, Paris 75005, France
| | - Nicolas Rodriguez
- Université Pierre et Marie Curie Laboratoire des biomolécules, Paris 75005, France
| | - Pierre Soule
- Université Pierre et Marie Curie Laboratoire des biomolécules, Paris 75005, France
| | - Arnaud Ndzoudi
- Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale U1016, Génomique, Epigénétique et Physiopathologie de la Reproduction, Service d'Histologie Embryologie Biologie de la Reproduction-CECOS, Hopital Cochin, AP-HP24 rue du Faubourg Saint-Jacques, Paris 75014, France
| | - Claude Boucheix
- Institut National de la Santé et de la Recherche Médicale, U1004, 14 avenue Paul Vaillant Couturier, Villejuif 94800, France Université Paris-Sud, Institut André Lwoff, Villejuif 94800, France
| | - Eric Rubinstein
- Institut National de la Santé et de la Recherche Médicale, U1004, 14 avenue Paul Vaillant Couturier, Villejuif 94800, France Université Paris-Sud, Institut André Lwoff, Villejuif 94800, France
| | - Jean Philippe Wolf
- Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale U1016, Génomique, Epigénétique et Physiopathologie de la Reproduction, Service d'Histologie Embryologie Biologie de la Reproduction-CECOS, Hopital Cochin, AP-HP24 rue du Faubourg Saint-Jacques, Paris 75014, France
| | - Ahmed Ziyyat
- Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale U1016, Génomique, Epigénétique et Physiopathologie de la Reproduction, Service d'Histologie Embryologie Biologie de la Reproduction-CECOS, Hopital Cochin, AP-HP24 rue du Faubourg Saint-Jacques, Paris 75014, France
| | - Eric Perez
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique UMR8550, 24 rue Lhomond, Paris 75005, France
| | - Frédéric Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique UMR8550, 24 rue Lhomond, Paris 75005, France
| | - Christine Gourier
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique UMR8550, 24 rue Lhomond, Paris 75005, France
| |
Collapse
|
28
|
Abstract
Tetraspanins are a family of proteins with four transmembrane domains that play a role in many aspects of cell biology and physiology; they are also used by several pathogens for infection and regulate cancer progression. Many tetraspanins associate specifically and directly with a limited number of proteins, and also with other tetraspanins, thereby generating a hierarchical network of interactions. Through these interactions, tetraspanins are believed to have a role in cell and membrane compartmentalization. In this Cell Science at a Glance article and the accompanying poster, we describe the basic principles underlying tetraspanin-based assemblies and highlight examples of how tetraspanins regulate the trafficking and function of their partner proteins that are required for the normal development and function of several organs, including, in humans, the eye, the kidney and the immune system.
Collapse
Affiliation(s)
- Stéphanie Charrin
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Stéphanie Jouannet
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Claude Boucheix
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Eric Rubinstein
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| |
Collapse
|
29
|
Dahmane S, Rubinstein E, Milhiet PE. Viruses and tetraspanins: lessons from single molecule approaches. Viruses 2014; 6:1992-2011. [PMID: 24800676 PMCID: PMC4036545 DOI: 10.3390/v6051992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/24/2014] [Accepted: 04/10/2014] [Indexed: 12/15/2022] Open
Abstract
Tetraspanins are four-span membrane proteins that are widely distributed in multi-cellular organisms and involved in several infectious diseases. They have the unique property to form a network of protein-protein interaction within the plasma membrane, due to the lateral associations with one another and with other membrane proteins. Tracking tetraspanins at the single molecule level using fluorescence microscopy has revealed the membrane behavior of the tetraspanins CD9 and CD81 in epithelial cell lines, providing a first dynamic view of this network. Single molecule tracking highlighted that these 2 proteins can freely diffuse within the plasma membrane but can also be trapped, permanently or transiently, in tetraspanin-enriched areas. More recently, a similar strategy has been used to investigate tetraspanin membrane behavior in the context of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infection. In this review we summarize the main results emphasizing the relationship in terms of membrane partitioning between tetraspanins, some of their partners such as Claudin-1 and EWI-2, and viral proteins during infection. These results will be analyzed in the context of other membrane microdomains, stressing the difference between raft and tetraspanin-enriched microdomains, but also in comparison with virus diffusion at the cell surface. New advanced single molecule techniques that could help to further explore tetraspanin assemblies will be also discussed.
Collapse
Affiliation(s)
- Selma Dahmane
- Inserm, Unité 1054, Single Molecule Biophysics Department, Centre de Biochimie Structurale, 34090, Montpellier, France.
| | | | - Pierre-Emmanuel Milhiet
- Inserm, Unité 1054, Single Molecule Biophysics Department, Centre de Biochimie Structurale, 34090, Montpellier, France.
| |
Collapse
|
30
|
Rocha-Perugini V, González-Granado JM, Tejera E, López-Martín S, Yañez-Mó M, Sánchez-Madrid F. Tetraspanins CD9 and CD151 at the immune synapse support T-cell integrin signaling. Eur J Immunol 2014; 44:1967-75. [PMID: 24723389 DOI: 10.1002/eji.201344235] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/25/2014] [Accepted: 04/02/2014] [Indexed: 11/06/2022]
Abstract
Understanding how the immune response is activated and amplified requires detailed knowledge of the stages in the formation of the immunological synapse (IS) between T lymphocytes and antigen-presenting cells (APCs). We show that tetraspanins CD9 and CD151 congregate at the T-cell side of the IS. Silencing of CD9 or CD151 blunts the IL-2 secretion and expression of the activation marker CD69 by APC-conjugated T lymphocytes, but does not affect the accumulation of CD3 or actin to the IS, or the translocation of the microtubule-organizing center toward the T-B contact area. CD9 or CD151 silencing diminishes the relocalization of α4β1 integrin to the IS and reduces the accumulation of high-affinity β1 integrins at the cell-cell contact. These changes are accompanied by diminished phosphorylation of the integrin downstream targets FAK and ERK1/2. Our results suggest that CD9 and CD151 support integrin-mediated signaling at the IS.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
An abundance of evidence shows supporting roles for tetraspanin proteins in human cancer. Many studies show that the expression of tetraspanins correlates with tumour stage, tumour type and patient outcome. In addition, perturbations of tetraspanins in tumour cell lines can considerably affect cell growth, morphology, invasion, tumour engraftment and metastasis. This Review emphasizes new studies that have used de novo mouse cancer models to show that select tetraspanin proteins have key roles in tumour initiation, promotion and metastasis. This Review also emphasizes how tetraspanin proteins can sometimes participate in tumour angiogenesis. These recent data build an increasingly strong case for tetraspanins as therapeutic targets.
Collapse
|
32
|
Sadej R, Grudowska A, Turczyk L, Kordek R, Romanska HM. CD151 in cancer progression and metastasis: a complex scenario. J Transl Med 2014; 94:41-51. [PMID: 24247563 DOI: 10.1038/labinvest.2013.136] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022] Open
Abstract
Originally identified as a molecular organizer of interacting proteins into tetraspanin-enriched microdomains, the tetraspanin CD151 has now been shown to be involved in tumour progression. Increasing evidence emerging from in vitro, in vivo and clinical analyses implicates this tetraspanin in supporting growth of various types of tumours at different levels. It affects both cell autonomous behavior and communication with neighboring cells and the microenvironment. CD151 regulates post-adhesion events, that is, cell spreading, migration and invasion including subsequent intravasation and formation of metastasis. Present on both neoplastic and endothelial cells, CD151 is engaged in promotion of tumour neovascularization. The molecular mechanism of CD151 in cancer is based on its ability to organize distribution and function of interacting proteins, ie, laminin-binding integrins (α3β1, α6β1 and α6β4), receptors for growth factors (HGFR, EGFR and TGF-β1R) and matrix metalloproteinases (MMP-7, MMP-2 and MMP-9), which indicates its importance in disease development. Results of clinical analyses of CD151 expression in different types of cancer and a large number of in vivo models demonstrate its impact on tumour growth and invasion and implicate CD151 as a valuable diagnostic and prognostic marker as well as a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Alicja Grudowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Turczyk
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Łódź, Łódź, Poland
| | - Hanna M Romanska
- Department of Pathology, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
33
|
Zuidscherwoude M, de Winde CM, Cambi A, van Spriel AB. Microdomains in the membrane landscape shape antigen-presenting cell function. J Leukoc Biol 2013; 95:251-63. [PMID: 24168856 DOI: 10.1189/jlb.0813440] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for coupling to components of intracellular signaling cascades. In the last two decades, specialized membrane microdomains, including lipid rafts and TEMs, have been identified. These domains are preformed structures ("physical entities") that compartmentalize proteins, lipids, and signaling molecules into multimolecular assemblies. In APCs, different microdomains containing immunoreceptors (MHC proteins, PRRs, integrins, among others) have been reported that are imperative for efficient pathogen recognition, the formation of the immunological synapse, and subsequent T cell activation. In addition, recent work has demonstrated that tetraspanin microdomains and lipid rafts are involved in BCR signaling and B cell activation. Research into the molecular mechanisms underlying membrane domain formation is fundamental to a comprehensive understanding of membrane-proximal signaling and APC function. This review will also discuss the advances in the microscopy field for the visualization of the plasma membrane, as well as the recent progress in targeting microdomains as novel, therapeutic approach for infectious and malignant diseases.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- 1.Nijmegen Centre for Molecular Life Sciences/278 TIL, Radboud University Medical Centre, Geert Grooteplein 28, 6525GA, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Yue S, Mu W, Zöller M. Tspan8 and CD151 promote metastasis by distinct mechanisms. Eur J Cancer 2013; 49:2934-48. [PMID: 23683890 DOI: 10.1016/j.ejca.2013.03.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/29/2013] [Accepted: 03/31/2013] [Indexed: 12/12/2022]
Abstract
AIM CD151 and Tspan8 are metastasis-promoting tetraspanins. To define whether Tspan8 and CD151 fulfil redundant or additive activities, Tspan8 and CD151 were stably knocked-down in highly metastatic rat pancreatic adenocarcinoma BSp73ASML cells (ASML(wt), ASML-Tspan8(kd), ASML-CD151(kd)). RESULTS ASML-CD151(kd) and ASML-Tspan8(kd) cells metastasise via the lymphatics to the lung with delay and a 2-3-fold increased survival time compared to ASML(wt) cells. Yet, CD151 and Tspan8 distinctly contribute to metastasis. Pronounced adhesion of ASML-Tspan8(kd) cells is due to CD151 associating with the alpha3 integrin chain, whereas strikingly increased ASML-CD151(kd) cell motility is efficiently inhibited by anti-beta4. These opposing Tspan8 and CD151 activities are due to distinct beta4 recruitment into Tspan8 complexes, accompanied by beta4 phosporylation, src recruitment, focal adhesion kinase (FAK) and Ras activation. On the other hand, CD151 associates more readily with proteases, particularly matrix metalloproteinase (MMP)13 and MMP9, than Tspan8. The stronger CD151-MMP association is accompanied by pronounced collagen I and IV and laminin111 degradation, also seen in metastatic tissue, and strengthens invasiveness. CONCLUSION CD151 and Tspan8 coordinately promote metastasis, where Tspan8 overrides the adhesive features of CD151 by recruiting integrins out of adhesion into motility promoting complexes. CD151 more efficiently than Tspan8 recruiting and activating MMP9 and MMP13 creates a path for migrating tumour cells.
Collapse
Affiliation(s)
- Shijing Yue
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | | | | |
Collapse
|
35
|
Gustafson-Wagner E, Stipp CS. The CD9/CD81 tetraspanin complex and tetraspanin CD151 regulate α3β1 integrin-dependent tumor cell behaviors by overlapping but distinct mechanisms. PLoS One 2013; 8:e61834. [PMID: 23613949 PMCID: PMC3629153 DOI: 10.1371/journal.pone.0061834] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/15/2013] [Indexed: 01/16/2023] Open
Abstract
Integrin α3β1 potently promotes cell motility on its ligands, laminin-332 and laminin-511, and this may help to explain why α3β1 has repeatedly been linked to breast carcinoma progression and metastasis. The pro-migratory functions of α3β1 depend strongly on lateral interactions with cell surface tetraspanin proteins. Tetraspanin CD151 interacts directly with the α3 integrin subunit and links α3β1 integrin to other tetraspanins, including CD9 and CD81. Loss of CD151 disrupts α3β1 association with other tetraspanins and impairs α3β1-dependent motility. However, the extent to which tetraspanins other than CD151 are required for specific α3β1 functions is unclear. To begin to clarify which aspects of α3β1 function require which tetraspanins, we created breast carcinoma cells depleted of both CD9 and CD81 by RNA interference. Silencing both of these closely related tetraspanins was required to uncover their contributions to α3β1 function. We then directly compared our CD9/CD81-silenced cells to CD151-silenced cells. Both CD9/CD81-silenced cells and CD151-silenced cells showed delayed α3β1-dependent cell spreading on laminin-332. Surprisingly, however, once fully spread, CD9/CD81-silenced cells, but not CD151-silenced cells, displayed impaired α3β1-dependent directed motility and altered front-rear cell morphology. Also unexpectedly, the CD9/CD81 complex, but not CD151, was required to promote α3β1 association with PKCα in breast carcinoma cells, and a PKC inhibitor mimicked aspects of the CD9/CD81-silenced cell motility defect. Our data reveal overlapping, but surprisingly distinct contributions of specific tetraspanins to α3β1 integrin function. Importantly, some of CD9/CD81's α3β1 regulatory functions may not require CD9/CD81 to be physically linked to α3β1 by CD151.
Collapse
Affiliation(s)
| | - Christopher S. Stipp
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
36
|
Li Q, Yang XH, Xu F, Sharma C, Wang HX, Knoblich K, Rabinovitz I, Granter SR, Hemler ME. Tetraspanin CD151 plays a key role in skin squamous cell carcinoma. Oncogene 2013; 32:1772-83. [PMID: 22824799 PMCID: PMC3482293 DOI: 10.1038/onc.2012.205] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 03/30/2012] [Accepted: 04/23/2012] [Indexed: 11/23/2022]
Abstract
Here we provide the first evidence that tetraspanin CD151 can support de novo carcinogenesis. During two-stage mouse skin chemical carcinogenesis, CD151 reduces tumor lag time and increases incidence, multiplicity, size and progression to malignant squamous cell carcinoma (SCC), while supporting both cell survival during tumor initiation and cell proliferation during the promotion phase. In human skin SCC, CD151 expression is selectively elevated compared with other skin cancer types. CD151 support of keratinocyte survival and proliferation may depend on activation of transcription factor STAT3 (signal transducers and activators of transcription), a regulator of cell proliferation and apoptosis. CD151 also supports protein kinase C (PKC)α-α6β4 integrin association and PKC-dependent β4 S1424 phosphorylation, while regulating α6β4 distribution. CD151-PKCα effects on integrin β4 phosphorylation and subcellular localization are consistent with epithelial disruption to a less polarized, more invasive state. CD151 ablation, while minimally affecting normal cell and normal mouse functions, markedly sensitized mouse skin and epidermoid cells to chemicals/drugs including 7,12-dimethylbenz[α]anthracene (mutagen) and camptothecin (topoisomerase inhibitor), as well as to agents targeting epidermal growth factor receptor, PKC, Jak2/Tyk2 and STAT3. Hence, CD151 'co-targeting' may be therapeutically beneficial. These findings not only support CD151 as a potential tumor target, but also should apply to other cancers utilizing CD151/laminin-binding integrin complexes.
Collapse
Affiliation(s)
- Qinglin Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| | - Xiuwei H. Yang
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY
| | - Fenghui Xu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| | - Chandan Sharma
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| | - Hong-Xing Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| | - Konstantin Knoblich
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| | - Isaac Rabinovitz
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA
| | - Scott R. Granter
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Martin E. Hemler
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA
| |
Collapse
|
37
|
Integrin-associated CD151 drives ErbB2-evoked mammary tumor onset and metastasis. Neoplasia 2013; 14:678-89. [PMID: 22952421 DOI: 10.1593/neo.12922] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/01/2012] [Accepted: 07/04/2012] [Indexed: 12/14/2022] Open
Abstract
ErbB2+ human breast cancer is a major clinical problem. Prior results have suggested that tetraspanin CD151 might contribute to ErbB2-driven breast cancer growth, survival, and metastasis. In other cancer types, CD151 sometimes supports tumor growth and metastasis. However, a definitive test of CD151 effects on de novo breast cancer initiation, growth, and metastasis has not previously been done. We used CD151 gene-deleted mice expressing the MMTV-ErbB2 transgene to show that CD151 strongly supports ErbB2+ mammary tumor initiation and metastasis. Delayed tumor onset (by 70-100 days) in the absence of CD151 was accompanied by reduced survival of mammary epithelial cells and impaired activation of FAK- and MAPK-dependent pathways. Both primary tumors and metastatic nodules showed smooth, regular borders, consistent with a less invasive phenotype. Furthermore, consistent with impaired oncogenesis and decreased metastasis, CD151-targeted MCF-10A/ErbB2 cells showed substantial decreases in three-dimensional colony formation, EGF-stimulated tumor cell motility, invasion, and transendothelial migration. These CD151-dependent functions were largely mediated through α6β4 integrin. Moreover, CD151 ablation substantially prevented PKC- and EGFR/ERK-dependent α6β4 integrin phosphorylation, consistent with retention of epithelial cell polarity and intermediate filament cytoskeletal connections, which helps to explain diminished metastasis. Finally, clinical data analyses revealed a strong correlation between CD151 and ErbB2 expression and metastasis-free survival of breast cancer patients. In conclusion, we provide strong evidence that CD151 collaborates with LB integrins (particularly α6β4 and ErbB2 (and EGFR) receptors to regulate multiple signaling pathways, thereby driving mammary tumor onset, survival, and metastasis. Consequently, CD151 is a useful therapeutic target in malignant ErbB2+ breast cancer.
Collapse
|
38
|
Kruegel J, Rubel D, Gross O. Alport syndrome--insights from basic and clinical research. Nat Rev Nephrol 2012; 9:170-8. [PMID: 23165304 DOI: 10.1038/nrneph.2012.259] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 1927, Arthur C. Alport first published his description of a triad of symptoms in a family with hereditary congenital haemorrhagic nephritis, deafness and ocular changes. A few years after his death, this group of symptoms was renamed Alport syndrome. To this day, Alport syndrome still inevitably leads to end-stage renal disease and the need for renal replacement therapy, starting in young adulthood. During the past two decades, research into this rare disease has focused on the effects of mutations in collagen type IV and the role of changes in podocytes and the glomerular basement membrane that lead to early kidney fibrosis. Animal models of Alport syndrome also demonstrate the pathogenetic importance of interactions between podocytes and the extracellular matrix. Such models might also help researchers to answer basic questions about podocyte function and the development of fibrosis, and to develop new therapeutic approaches that might be of use in other kidney diseases. In this Review, we discuss the latest basic and clinical research on Alport syndrome, focusing on the roles of podocyte pathology and the extracellular matrix. We also highlight early diagnosis and treatment options for young patients with this disorder.
Collapse
Affiliation(s)
- Jenny Kruegel
- Department of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | | | | |
Collapse
|