1
|
Uribe-Salazar JM, Kaya G, Weyenberg K, Radke B, Hino K, Soto DC, Shiu JL, Zhang W, Ingamells C, Haghani NK, Xu E, Rosas J, Simó S, Miesfeld J, Glaser T, Baraban SC, Jao LE, Dennis MY. Zebrafish models of human-duplicated SRGAP2 reveal novel functions in microglia and visual system development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612570. [PMID: 39314374 PMCID: PMC11418993 DOI: 10.1101/2024.09.11.612570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The expansion of the human SRGAP2 family, resulting in a human-specific paralog SRGAP2C, likely contributed to altered evolutionary brain features. The introduction of SRGAP2C in mouse models is associated with changes in cortical neuronal migration, axon guidance, synaptogenesis, and sensory-task performance. Truncated SRGAP2C heterodimerizes with the full-length ancestral gene product SRGAP2A and antagonizes its functions. However, the significance of SRGAP2 duplication beyond neocortex development has not been elucidated due to the embryonic lethality of complete Srgap2 knockout in mice. Using zebrafish, we show that srgap2 knockout results in viable offspring and that these larvae phenocopy "humanized" SRGAP2C larvae, including altered morphometric features (i.e., reduced body length and inter-eye distance) and differential expression of synapse-, axonogenesis-, and vision-related genes. Through single-cell transcriptome analysis, we demonstrate a skewed balance of excitatory and inhibitory neurons that likely contribute to increased susceptibility to seizures displayed by Srgap2 mutant larvae, a phenotype resembling SRGAP2 loss-of-function in a child with early infantile epileptic encephalopathy. Single-cell data also shows strong endogenous expression of srgap2 in microglia with mutants exhibiting altered membrane dynamics and likely delayed maturation of microglial cells. Microglia cells expressing srgap2 were also detected in the developing eye together with altered expression of genes related to axonogenesis in mutant retinal cells. Consistent with the perturbed gene expression in the retina, we found that SRGAP2 mutant larvae exhibited increased sensitivity to broad and fine visual cues. Finally, comparing the transcriptomes of relevant cell types between human (+SRGAP2C) and non-human primates (-SRGAP2C) revealed significant overlaps of gene alterations with mutant cells in our zebrafish models; this suggests that SRGAP2C plays a similar role altering microglia and the visual system in modern humans. Together, our functional characterization of conserved ortholog Srgap2 and human SRGAP2C in zebrafish uncovered novel gene functions and highlights the strength of cross-species analysis in understanding the development of human-specific features.
Collapse
Affiliation(s)
- José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Gulhan Kaya
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - KaeChandra Weyenberg
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Brittany Radke
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Jia-Lin Shiu
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Wenzhu Zhang
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Cole Ingamells
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Nicholas K. Haghani
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Emily Xu
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Joseph Rosas
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Joel Miesfeld
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, WI, USA
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Scott C. Baraban
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Sitarska E, Almeida SD, Beckwith MS, Stopp J, Czuchnowski J, Siggel M, Roessner R, Tschanz A, Ejsing C, Schwab Y, Kosinski J, Sixt M, Kreshuk A, Erzberger A, Diz-Muñoz A. Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles. Nat Commun 2023; 14:5644. [PMID: 37704612 PMCID: PMC10499897 DOI: 10.1038/s41467-023-41173-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
To navigate through diverse tissues, migrating cells must balance persistent self-propelled motion with adaptive behaviors to circumvent obstacles. We identify a curvature-sensing mechanism underlying obstacle evasion in immune-like cells. Specifically, we propose that actin polymerization at the advancing edge of migrating cells is inhibited by the curvature-sensitive BAR domain protein Snx33 in regions with inward plasma membrane curvature. The genetic perturbation of this machinery reduces the cells' capacity to evade obstructions combined with faster and more persistent cell migration in obstacle-free environments. Our results show how cells can read out their surface topography and utilize actin and plasma membrane biophysics to interpret their environment, allowing them to adaptively decide if they should move ahead or turn away. On the basis of our findings, we propose that the natural diversity of BAR domain proteins may allow cells to tune their curvature sensing machinery to match the shape characteristics in their environment.
Collapse
Affiliation(s)
- Ewa Sitarska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Silvia Dias Almeida
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | - Julian Stopp
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Jakub Czuchnowski
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Marc Siggel
- EMBL Hamburg, European Molecular Biology Laboratory, 22607, Hamburg, Germany
- Centre for Structural Systems Biology, 22607, Hamburg, Germany
| | - Rita Roessner
- EMBL Hamburg, European Molecular Biology Laboratory, 22607, Hamburg, Germany
- Centre for Structural Systems Biology, 22607, Hamburg, Germany
| | - Aline Tschanz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Christer Ejsing
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Jan Kosinski
- EMBL Hamburg, European Molecular Biology Laboratory, 22607, Hamburg, Germany
- Centre for Structural Systems Biology, 22607, Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Michael Sixt
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Anna Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| |
Collapse
|
3
|
Tholen LE, Schigt H, Kleuskens SGE, Bos C, Spruijt CG, Willemsen B, Vermeulen M, Hoenderop JGJ, de Baaij JHF. HNF1β-associated cyst development and electrolyte disturbances are not explained by BAIAP2L2 expression. FASEB J 2023; 37:e22696. [PMID: 36520027 DOI: 10.1096/fj.202201121r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022]
Abstract
Mutations or deletions in transcription factor hepatocyte nuclear factor 1 homeobox β (HNF1β) cause renal cysts and/or malformation, maturity-onset diabetes of the young and electrolyte disturbances. Here, we applied a comprehensive bioinformatic approach on ChIP-seq, RNA-seq, and gene expression array studies to identify novel transcriptional targets of HNF1β explaining the kidney phenotype of HNF1β patients. We identified BAR/IMD Domain Containing Adaptor Protein 2 Like 2 (BAIAP2L2), as a novel transcriptional target of HNF1β and validated direct transcriptional activation of the BAIAP2L2 promoter by a reporter luciferase assay. Using mass spectrometry analysis, we show that BAIAP2L2 binds to other members of the I-BAR domain-containing family: BAIAP2 and BAIAP2L1. Subsequently, the role of BAIAP2L2 in maintaining epithelial cell integrity in the kidney was assessed using Baiap2l2 knockout cell and mouse models. Kidney epithelial cells lacking functional BAIAP2L2 displayed normal F-actin distribution at cell-cell contacts and formed polarized three-dimensional spheroids with a lumen. In vivo, Baiap2l2 knockout mice displayed normal kidney and colon tissue morphology and serum and urine electrolyte concentrations were not affected. Altogether, our study is the first to characterize the function of BAIAP2L2 in the kidney in vivo and we report that mice lacking BAIAP2L2 exhibit normal electrolyte homeostasis and tissue morphology under physiological conditions.
Collapse
Affiliation(s)
- Lotte E Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heidi Schigt
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne G E Kleuskens
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Serre JM, Lucas B, Martin SCT, Heier JA, Shao X, Hardin J. C. elegans srGAP is an α-catenin M domain-binding protein that strengthens cadherin-dependent adhesion during morphogenesis. Development 2022; 149:dev200775. [PMID: 36125129 PMCID: PMC10655919 DOI: 10.1242/dev.200775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
The cadherin-catenin complex (CCC) is central to embryonic development and tissue repair, yet how CCC binding partners function alongside core CCC components remains poorly understood. Here, we establish a previously unappreciated role for an evolutionarily conserved protein, the slit-robo GTPase-activating protein SRGP-1/srGAP, in cadherin-dependent morphogenetic processes in the Caenorhabditis elegans embryo. SRGP-1 binds to the M domain of the core CCC component, HMP-1/α-catenin, via its C terminus. The SRGP-1 C terminus is sufficient to target it to adherens junctions, but only during later embryonic morphogenesis, when junctional tension is known to increase. Surprisingly, mutations that disrupt stabilizing salt bridges in the M domain block this recruitment. Loss of SRGP-1 leads to an increase in mobility and decrease of junctional HMP-1. In sensitized genetic backgrounds with weakened adherens junctions, loss of SRGP-1 leads to late embryonic failure. Rescue of these phenotypes requires the C terminus of SRGP-1 but also other domains of the protein. Taken together, these data establish a role for an srGAP in stabilizing and organizing the CCC during epithelial morphogenesis by binding to a partially closed conformation of α-catenin at junctions.
Collapse
Affiliation(s)
- Joel M. Serre
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bethany Lucas
- Department of Biology, Regis University, 3333 Regis Blvd., Denver, CO 80221, USA
| | - Sterling C. T. Martin
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jonathon A. Heier
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiangqiang Shao
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Zhai X, Du H, Shen Y, Zhang X, Chen Z, Wang Y, Xu Z. FCHSD2 is required for stereocilia maintenance in mouse cochlear hair cells. J Cell Sci 2022; 135:jcs259912. [PMID: 35892293 DOI: 10.1242/jcs.259912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Stereocilia are F-actin-based protrusions on the apical surface of inner-ear hair cells and are indispensable for hearing and balance perception. The stereocilia of each hair cell are organized into rows of increasing heights, forming a staircase-like pattern. The development and maintenance of stereocilia are tightly regulated, and deficits in these processes lead to stereocilia disorganization and hearing loss. Previously, we showed that the F-BAR protein FCHSD2 is localized along the stereocilia of cochlear hair cells and cooperates with CDC42 to regulate F-actin polymerization and cell protrusion formation in cultured COS-7 cells. In the present work, Fchsd2 knockout mice were established to investigate the role of FCHSD2 in hearing. Our data show that stereocilia maintenance is severely affected in cochlear hair cells of Fchsd2 knockout mice, which leads to progressive hearing loss. Moreover, Fchsd2 knockout mice show increased acoustic vulnerability. Noise exposure causes robust stereocilia degeneration as well as enhanced hearing threshold elevation in Fchsd2 knockout mice. Lastly, Fchsd2/Cdc42 double knockout mice show more severe stereocilia deficits and hearing loss, suggesting that FCHSD2 and CDC42 cooperatively regulate stereocilia maintenance.
Collapse
Affiliation(s)
- Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yuxin Shen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiujuan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology , Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology , Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
6
|
Chatzi C, Westbrook GL. Revisiting I-BAR Proteins at Central Synapses. Front Neural Circuits 2022; 15:787436. [PMID: 34975417 PMCID: PMC8716821 DOI: 10.3389/fncir.2021.787436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 01/30/2023] Open
Abstract
Dendritic spines, the distinctive postsynaptic feature of central nervous system (CNS) excitatory synapses, have been studied extensively as electrical and chemical compartments, as well as scaffolds for receptor cycling and positioning of signaling molecules. The dynamics of the shape, number, and molecular composition of spines, and how they are regulated by neural activity, are critically important in synaptic efficacy, synaptic plasticity, and ultimately learning and memory. Dendritic spines originate as outward protrusions of the cell membrane, but this aspect of spine formation and stabilization has not been a major focus of investigation compared to studies of membrane protrusions in non-neuronal cells. We review here one family of proteins involved in membrane curvature at synapses, the BAR (Bin-Amphiphysin-Rvs) domain proteins. The subfamily of inverse BAR (I-BAR) proteins sense and introduce outward membrane curvature, and serve as bridges between the cell membrane and the cytoskeleton. We focus on three I-BAR domain proteins that are expressed in the central nervous system: Mtss2, MIM, and IRSp53 that promote negative, concave curvature based on their ability to self-associate. Recent studies suggest that each has distinct functions in synapse formation and synaptic plasticity. The action of I-BARs is also shaped by crosstalk with other signaling components, forming signaling platforms that can function in a circuit-dependent manner. We discuss another potentially important feature-the ability of some BAR domain proteins to impact the function of other family members by heterooligomerization. Understanding the spatiotemporal resolution of synaptic I-BAR protein expression and their interactions should provide insights into the interplay between activity-dependent neural plasticity and network rewiring in the CNS.
Collapse
Affiliation(s)
- Christina Chatzi
- Vollum Institute, Oregon Health and Science University, Portland, OR, United States
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
7
|
Khanal P, Hotulainen P. Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins. Cells 2021; 10:cells10092392. [PMID: 34572042 PMCID: PMC8468246 DOI: 10.3390/cells10092392] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2-8 years. Density decreases during adolescence, reaching a stable level in adulthood. The changes in dendritic spines are considered structural correlates for synaptic plasticity as well as the basis of experience-dependent remodeling of neuronal circuits. Alterations in spine density correspond to aberrant brain function observed in various neurodevelopmental and neuropsychiatric disorders. Dendritic spine initiation affects spine density. In this review, we discuss the importance of spine initiation in brain development, learning, and potential complications resulting from altered spine initiation in neurological diseases. Current literature shows that two Bin Amphiphysin Rvs (BAR) domain-containing proteins, MIM/Mtss1 and SrGAP3, are involved in spine initiation. We review existing literature and open databases to discuss whether other BAR-domain proteins could also take part in spine initiation. Finally, we discuss the potential molecular mechanisms on how BAR-domain proteins could regulate spine initiation.
Collapse
Affiliation(s)
- Pushpa Khanal
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- HiLIFE-Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- Correspondence:
| |
Collapse
|
8
|
The state of F-BAR domains as membrane-bound oligomeric platforms. Trends Cell Biol 2021; 31:644-655. [PMID: 33888395 DOI: 10.1016/j.tcb.2021.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Fes/Cip4 homology Bin/amphiphysin/Rvs (F-BAR) domains, like all BAR domains, are dimeric units that oligomerize and bind membranes. F-BAR domains are generally coupled to additional domains that function in protein binding or have enzymatic activity. Because of their crescent shape and ability to oligomerize, F-BAR domains have been traditionally viewed as membrane-deformation modules. However, multiple independent studies have provided no evidence that certain F-BAR domains are able to tubulate membrane. Instead, a growing body of literature featuring structural, biochemical, biophysical, and microscopy-based studies supports the idea that the F-BAR domain family can be unified only by their ability to form oligomeric assemblies on membranes to provide platforms for molecular assembly.
Collapse
|
9
|
Rogg M, Maier JI, Dotzauer R, Artelt N, Kretz O, Helmstädter M, Abed A, Sammarco A, Sigle A, Sellung D, Dinse P, Reiche K, Yasuda-Yamahara M, Biniossek ML, Walz G, Werner M, Endlich N, Schilling O, Huber TB, Schell C. SRGAP1 Controls Small Rho GTPases To Regulate Podocyte Foot Process Maintenance. J Am Soc Nephrol 2021; 32:563-579. [PMID: 33514561 PMCID: PMC7920176 DOI: 10.1681/asn.2020081126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/15/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Previous research demonstrated that small Rho GTPases, modulators of the actin cytoskeleton, are drivers of podocyte foot-process effacement in glomerular diseases, such as FSGS. However, a comprehensive understanding of the regulatory networks of small Rho GTPases in podocytes is lacking. METHODS We conducted an analysis of podocyte transcriptome and proteome datasets for Rho GTPases; mapped in vivo, podocyte-specific Rho GTPase affinity networks; and examined conditional knockout mice and murine disease models targeting Srgap1. To evaluate podocyte foot-process morphology, we used super-resolution microscopy and electron microscopy; in situ proximity ligation assays were used to determine the subcellular localization of the small GTPase-activating protein SRGAP1. We performed functional analysis of CRISPR/Cas9-generated SRGAP1 knockout podocytes in two-dimensional and three-dimensional cultures and quantitative interaction proteomics. RESULTS We demonstrated SRGAP1 localization to podocyte foot processes in vivo and to cellular protrusions in vitro. Srgap1fl/fl*Six2Cre but not Srgap1fl/fl*hNPHS2Cre knockout mice developed an FSGS-like phenotype at adulthood. Podocyte-specific deletion of Srgap1 by hNPHS2Cre resulted in increased susceptibility to doxorubicin-induced nephropathy. Detailed analysis demonstrated significant effacement of podocyte foot processes. Furthermore, SRGAP1-knockout podocytes showed excessive protrusion formation and disinhibition of the small Rho GTPase machinery in vitro. Evaluation of a SRGAP1-dependent interactome revealed the involvement of SRGAP1 with protrusive and contractile actin networks. Analysis of glomerular biopsy specimens translated these findings toward human disease by displaying a pronounced redistribution of SRGAP1 in FSGS. CONCLUSIONS SRGAP1, a podocyte-specific RhoGAP, controls podocyte foot-process architecture by limiting the activity of protrusive, branched actin networks. Therefore, elucidating the complex regulatory small Rho GTPase affinity network points to novel targets for potentially precise intervention in glomerular diseases.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Jasmin I. Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Robert Dotzauer
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Ahmed Abed
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - August Sigle
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Urology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Dominik Sellung
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Dinse
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Karoline Reiche
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Mako Yasuda-Yamahara
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Berta-Ottenstein Program, Medical Faculty, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Sculpting Dendritic Spines during Initiation and Maintenance of Neuropathic Pain. J Neurosci 2021; 40:7578-7589. [PMID: 32998955 DOI: 10.1523/jneurosci.1664-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has established a firm role for synaptic plasticity in the pathogenesis of neuropathic pain. Recent advances have highlighted the importance of dendritic spine remodeling in driving synaptic plasticity within the CNS. Identifying the molecular players underlying neuropathic pain induced structural and functional maladaptation is therefore critical to understanding its pathophysiology. This process of dynamic reorganization happens in unique phases that have diverse pathologic underpinnings in the initiation and maintenance of neuropathic pain. Recent evidence suggests that pharmacological targeting of specific proteins during distinct phases of neuropathic pain development produces enhanced antinociception. These findings outline a potential new paradigm for targeted treatment and the development of novel therapies for neuropathic pain. We present a concise review of the role of dendritic spines in neuropathic pain and outline the potential for modulation of spine dynamics by targeting two proteins, srGAP3 and Rac1, critically involved in the regulation of the actin cytoskeleton.
Collapse
|
11
|
Gonda Y, Namba T, Hanashima C. Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation. Front Cell Dev Biol 2020; 8:607415. [PMID: 33425915 PMCID: PMC7785817 DOI: 10.3389/fcell.2020.607415] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The formation of the neocortex relies on intracellular and extracellular signaling molecules that are involved in the sequential steps of corticogenesis, ranging from the proliferation and differentiation of neural progenitor cells to the migration and dendrite formation of neocortical neurons. Abnormalities in these steps lead to disruption of the cortical structure and circuit, and underly various neurodevelopmental diseases, including dyslexia and autism spectrum disorder (ASD). In this review, we focus on the axon guidance signaling Slit-Robo, and address the multifaceted roles of Slit-Robo signaling in neocortical development. Recent studies have clarified the roles of Slit-Robo signaling not only in axon guidance but also in progenitor cell proliferation and migration, and the maturation of neocortical neurons. We further discuss the etiology of neurodevelopmental diseases, which are caused by defects in Slit-Robo signaling during neocortical formation.
Collapse
Affiliation(s)
- Yuko Gonda
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Neuroscience Center, HiLIFE – Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Carina Hanashima
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
12
|
Chen PW, Billington N, Maron BY, Sload JA, Chinthalapudi K, Heissler SM. The BAR domain of the Arf GTPase-activating protein ASAP1 directly binds actin filaments. J Biol Chem 2020; 295:11303-11315. [PMID: 32444496 DOI: 10.1074/jbc.ra119.009903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
The Arf GTPase-activating protein (Arf GAP) with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1) establishes a connection between the cell membrane and the cortical actin cytoskeleton. The formation, maintenance, and turnover of actin filaments and bundles in the actin cortex are important for cell adhesion, invasion, and migration. Here, using actin cosedimentation, polymerization, and depolymerization assays, along with total internal reflection fluorescence (TIRF), confocal, and EM analyses, we show that the N-terminal N-BAR domain of ASAP1 directly binds to F-actin. We found that ASAP1 homodimerization aligns F-actin in predominantly unipolar bundles and stabilizes them against depolymerization. Furthermore, the ASAP1 N-BAR domain moderately reduced the spontaneous polymerization of G-actin. The overexpression of the ASAP1 BAR-PH tandem domain in fibroblasts induced the formation of actin-filled projections more effectively than did full-length ASAP1. An ASAP1 construct that lacked the N-BAR domain failed to induce cellular projections. Our results suggest that ASAP1 regulates the dynamics and the formation of higher-order actin structures, possibly through direct binding to F-actin via its N-BAR domain. We propose that ASAP1 is a hub protein for dynamic protein-protein interactions in mechanosensitive structures, such as focal adhesions, invadopodia, and podosomes, that are directly implicated in oncogenic events. The effect of ASAP1 on actin dynamics puts a spotlight on its function as a central signaling molecule that regulates the dynamics of the actin cytoskeleton by transmitting signals from the plasma membrane.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Ben Y Maron
- Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Jeffrey A Sload
- Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
13
|
Fossati M, Assendorp N, Gemin O, Colasse S, Dingli F, Arras G, Loew D, Charrier C. Trans-Synaptic Signaling through the Glutamate Receptor Delta-1 Mediates Inhibitory Synapse Formation in Cortical Pyramidal Neurons. Neuron 2019; 104:1081-1094.e7. [PMID: 31704028 PMCID: PMC6926483 DOI: 10.1016/j.neuron.2019.09.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/11/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Fine orchestration of excitatory and inhibitory synaptic development is required for normal brain function, and alterations may cause neurodevelopmental disorders. Using sparse molecular manipulations in intact brain circuits, we show that the glutamate receptor delta-1 (GluD1), a member of ionotropic glutamate receptors (iGluRs), is a postsynaptic organizer of inhibitory synapses in cortical pyramidal neurons. GluD1 is selectively required for the formation of inhibitory synapses and regulates GABAergic synaptic transmission accordingly. At inhibitory synapses, GluD1 interacts with cerebellin-4, an extracellular scaffolding protein secreted by somatostatin-expressing interneurons, which bridges postsynaptic GluD1 and presynaptic neurexins. When binding to its agonist glycine or D-serine, GluD1 elicits non-ionotropic postsynaptic signaling involving the guanine nucleotide exchange factor ARHGEF12 and the regulatory subunit of protein phosphatase 1 PPP1R12A. Thus, GluD1 defines a trans-synaptic interaction regulating postsynaptic signaling pathways for the proper establishment of cortical inhibitory connectivity and challenges the dichotomy between iGluRs and inhibitory synaptic molecules.
Collapse
Affiliation(s)
- Matteo Fossati
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Nora Assendorp
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Olivier Gemin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sabrina Colasse
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Cécile Charrier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
14
|
Ebrahimkutty MP, Galic M. Receptor‐Free Signaling at Curved Cellular Membranes. Bioessays 2019; 41:e1900068. [DOI: 10.1002/bies.201900068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Mirsana P. Ebrahimkutty
- DFG Cluster of Excellence “Cells in Motion”University of Muenster Muenster 48149 Germany
- Institute of Medical Physics and BiophysicsUniversity of Muenster Muenster 48149 Germany
- CIM‐IMRPS Graduate School Muenster 48149 Germany
| | - Milos Galic
- DFG Cluster of Excellence “Cells in Motion”University of Muenster Muenster 48149 Germany
- Institute of Medical Physics and BiophysicsUniversity of Muenster Muenster 48149 Germany
| |
Collapse
|
15
|
Taylor KL, Taylor RJ, Richters KE, Huynh B, Carrington J, McDermott ME, Wilson RL, Dent EW. Opposing functions of F-BAR proteins in neuronal membrane protrusion, tubule formation, and neurite outgrowth. Life Sci Alliance 2019; 2:2/3/e201800288. [PMID: 31160379 PMCID: PMC6549137 DOI: 10.26508/lsa.201800288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
Neurite formation is a fundamental antecedent to axon and dendrite formation, but the mechanisms that underlie this important process are poorly characterized. Here, we demonstrate that two F-BAR proteins, CIP4 and FBP17, have opposing functions in early cortical neuron development. The F-BAR family of proteins play important roles in many cellular processes by regulating both membrane and actin dynamics. The CIP4 family of F-BAR proteins is widely recognized to function in endocytosis by elongating endocytosing vesicles. However, in primary cortical neurons, CIP4 concentrates at the tips of extending lamellipodia and filopodia and inhibits neurite outgrowth. Here, we report that the highly homologous CIP4 family member, FBP17, induces tubular structures in primary cortical neurons and results in precocious neurite formation. Through domain swapping and deletion experiments, we demonstrate that a novel polybasic region between the F-BAR and HR1 domains is required for membrane bending. Moreover, the presence of a poly-PxxP region in longer splice isoforms of CIP4 and FBP17 largely reverses the localization and function of these proteins. Thus, CIP4 and FBP17 function as an antagonistic pair to fine-tune membrane protrusion, endocytosis, and neurite formation during early neuronal development.
Collapse
Affiliation(s)
- Kendra L Taylor
- University of Wisconsin-Madison, Neuroscience Training Program, Madison, WI, USA
| | - Russell J Taylor
- University of Wisconsin-Madison, Neuroscience Training Program, Madison, WI, USA
| | - Karl E Richters
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Brandon Huynh
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Justin Carrington
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Maeve E McDermott
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Rebecca L Wilson
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Erik W Dent
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| |
Collapse
|
16
|
Ren C, Yuan Q, Braun M, Zhang X, Petri B, Zhang J, Kim D, Guez-Haddad J, Xue W, Pan W, Fan R, Kubes P, Sun Z, Opatowsky Y, Polleux F, Karatekin E, Tang W, Wu D. Leukocyte Cytoskeleton Polarization Is Initiated by Plasma Membrane Curvature from Cell Attachment. Dev Cell 2019; 49:206-219.e7. [PMID: 30930167 PMCID: PMC6482112 DOI: 10.1016/j.devcel.2019.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/15/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
Abstract
Cell polarization is important for various biological processes. However, its regulation, particularly initiation, is incompletely understood. Here, we investigated mechanisms by which neutrophils break their symmetry and initiate their cytoskeleton polarization from an apolar state in circulation for their extravasation during inflammation. We show here that a local increase in plasma membrane (PM) curvature resulting from cell contact to a surface triggers the initial breakage of the symmetry of an apolar neutrophil and is required for subsequent polarization events induced by chemical stimulation. This local increase in PM curvature recruits SRGAP2 via its F-BAR domain, which in turn activates PI4KA and results in PM PtdIns4P polarization. Polarized PM PtdIns4P is targeted by RPH3A, which directs PIP5K1C90 and subsequent phosphorylated myosin light chain polarization, and this polarization signaling axis regulates neutrophil firm attachment to endothelium. Thus, this study reveals a mechanism for the initiation of cell cytoskeleton polarization.
Collapse
Affiliation(s)
- Chunguang Ren
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA
| | - Qianying Yuan
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA
| | - Martha Braun
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Xia Zhang
- Department of Geriatrics, the First affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Björn Petri
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jiasheng Zhang
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Wenzhi Xue
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Paul Kubes
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, and Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Zhaoxia Sun
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Franck Polleux
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10025, USA
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520, USA; Centre National de la Recherche Scientifique (CNRS), Paris, France.
| | - Wenwen Tang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA.
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Stanishneva-Konovalova TB, Sokolova OS. Effects of PI(4,5)P 2 concentration on the F-BAR domain membrane binding as revealed by coarse-grained simulations. Proteins 2019; 87:561-568. [PMID: 30803020 DOI: 10.1002/prot.25678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/22/2019] [Accepted: 02/20/2019] [Indexed: 11/09/2022]
Abstract
Bin/Amphyphysin/Rvs (BAR) domain proteins form a key link between membrane remodeling and cytoskeleton dynamics. They are dimers that bind to membranes via electrostatic interactions with different preferences toward negatively charged lipids. In the present article, we examine the interactions of the F-BAR domain of nervous wreck (Nwk) with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 )-containing membranes using coarse-grained molecular dynamics. We demonstrated PI(4,5)P2 concentration effects, identified the sequence of events that underlies the protein binding and identified amino acids involved in protein-lipid interactions. Our simulations point out the primary role of the basic stretch at the tips of the dimer, which anchors the protein to the membrane and initiates the binding process. When the PI(4,5)P2 concentration is high, the protein stably associates with the membrane by its concave surface or by the opposite side. At low PI(4,5)P2 concentration, the former orientation becomes more favorable; also a state with only one tip bound is observed, due to the weaker attachment and more pronounced association/dissociation events. Our results provide a theoretical model that describes the lipid-binding behavior of Nwk observed in vitro.
Collapse
Affiliation(s)
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
19
|
A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-Coated Pits. Cell 2018; 174:325-337.e14. [PMID: 29887380 PMCID: PMC6057269 DOI: 10.1016/j.cell.2018.05.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 02/28/2018] [Accepted: 05/09/2018] [Indexed: 02/07/2023]
Abstract
Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME. FCHSD2 deletion leads to decreased ligand uptake caused by slowed pit maturation. FCHSD2 is recruited to endocytic pits by the scaffold protein intersectin via an unusual SH3-SH3 interaction. Here, its flat F-BAR domain binds to the planar region of the plasma membrane surrounding the developing pit forming an annulus. When bound to the membrane, FCHSD2 activates actin polymerization by a mechanism that combines oligomerization and recruitment of N-WASP to PI(4,5)P2, thus promoting pit maturation. Our data therefore describe a molecular mechanism for linking spatiotemporally the plasma membrane to a force-generating actin platform guiding endocytic vesicle maturation. FCHSD2 is a bona fide CME protein recruited to CCPs by intersectin Intersectin recruits FCHSD2 via an SH3-SH3 interaction FCHSD2 is a major activator of actin during CME FCHSD2 binds to the surrounding membrane around CCPs via its flat F-BAR domain
Collapse
|
20
|
Lou HY, Zhao W, Zeng Y, Cui B. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling. Acc Chem Res 2018; 51:1046-1053. [PMID: 29648779 DOI: 10.1021/acs.accounts.7b00594] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies allowing the visualization of membrane deformation at the cell membrane-to-substrate interface with nanometer precision and demonstrate that vertical nanostructures induce local curvatures on the plasma membrane. These local curvatures enhance the process of clathrin-mediated endocytosis and affect actin dynamics. We also present evidence that vertical nanostructures can induce significant deformation of the nuclear membrane, which can affect chromatin distribution and gene expression. Finally, we provide a brief perspective on the curvature hypothesis and the challenges and opportunities for the design of nanotopography for manipulating cell behavior.
Collapse
Affiliation(s)
- Hsin-Ya Lou
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Lawson CD, Ridley AJ. Rho GTPase signaling complexes in cell migration and invasion. J Cell Biol 2018; 217:447-457. [PMID: 29233866 PMCID: PMC5800797 DOI: 10.1083/jcb.201612069] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/23/2017] [Accepted: 11/17/2017] [Indexed: 12/02/2022] Open
Abstract
Cell migration is dependent on the dynamic formation and disassembly of actin filament-based structures, including lamellipodia, filopodia, invadopodia, and membrane blebs, as well as on cell-cell and cell-extracellular matrix adhesions. These processes all involve Rho family small guanosine triphosphatases (GTPases), which are regulated by the opposing actions of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPase activity needs to be precisely tuned at distinct cellular locations to enable cells to move in response to different environments and stimuli. In this review, we focus on the ability of RhoGEFs and RhoGAPs to form complexes with diverse binding partners, and describe how this influences their ability to control localized GTPase activity in the context of migration and invasion.
Collapse
Affiliation(s)
- Campbell D Lawson
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, England, UK
| | - Anne J Ridley
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, England, UK
| |
Collapse
|
22
|
Aspenström P. BAR Domain Proteins Regulate Rho GTPase Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:33-53. [PMID: 30151649 DOI: 10.1007/5584_2018_259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain is a membrane lipid binding domain present in a wide variety of proteins, often proteins with a role in Rho-regulated signaling pathways. BAR domains do not only confer binding to lipid bilayers, they also possess a membrane sculpturing ability and thereby directly control the topology of biomembranes. BAR domain-containing proteins participate in a plethora of physiological processes but the common denominator is their capacity to link membrane dynamics to actin dynamics and thereby integrate processes such as endocytosis, exocytosis, vesicle trafficking, cell morphogenesis and cell migration. The Rho family of small GTPases constitutes an important bridging theme for many BAR domain-containing proteins. This review article will focus predominantly on the role of BAR proteins as regulators or effectors of Rho GTPases and it will only briefly discuss the structural and biophysical function of the BAR domains.
Collapse
Affiliation(s)
- Pontus Aspenström
- Department of Microbiology, and Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
SRGAP1, a crucial target of miR-340 and miR-124, functions as a potential oncogene in gastric tumorigenesis. Oncogene 2017; 37:1159-1174. [PMID: 29234151 PMCID: PMC5861093 DOI: 10.1038/s41388-017-0029-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Slit-Robo GTPase-activating protein 1 (SRGAP1) functions as a GAP for Rho-family GTPases and downstream of Slit-Robo signaling. We aim to investigate the biological function of SRGAP1 and reveal its regulation by deregulated microRNAs (miRNAs) in gastric cancer (GC). mRNA and protein expression of SRGAP1 were examined by quantitative reverse transcription PCR (qRT-PCR) and western blot. The biological role of SRGAP1 was demonstrated through siRNA-mediated knockdown experiments. The regulation of SRGAP1 by miR-340 and miR-124 was confirmed by western blot, dual luciferase activity assays and rescue experiments. SRGAP1 is overexpressed in 9 out of 12 (75.0%) GC cell lines. In primary GC samples from TCGA cohort, SRGAP1 shows gene amplification in 5/258 (1.9%) of cases and its mRNA expression demonstrates a positive correlation with copy number gain. Knockdown of SRGAP1 in GC cells suppressed cell proliferation, reduced colony formation, and significantly inhibited cell invasion and migration. Luciferase reporter assays revealed that SRGAP1 knockdown significantly inhibited Wnt/β-catenin pathway. In addition, SRGAP1 was found to be a direct target of two tumor-suppressive miRNAs, miR-340 and miR-124. Concordantly, these two miRNAs were downregulated in primary gastric tumors and these decreasing levels w5ere associated with poor outcomes. Expression of miR-340 and SRGAP1 displayed a reverse relationship in primary samples and re-expressed SRGAP1, rescued the anti-cancer effects of miR-340. Taken together, these data strongly suggest that, apart from gene amplification and mutation, the activation of SRGAP1 in GC is partly due to the downregulation of tumor-suppressive miRNAs, miR-340 and miR-124. Thus SRGAP1 is overexpressed in gastric carcinogenesis and plays an oncogenic role through activating Wnt/β-catenin pathway.
Collapse
|
24
|
Abstract
The Slit-Robo GTPase-activating proteins (srGAPs) were first identified as potential Slit-Robo effectors that influence growth cone guidance. Given their N-terminal F-BAR, central GAP and C-terminal SH3 domains, srGAPs have the potential to affect membrane dynamics, Rho family GTPase activity and other binding partners. Recent research has clarified how srGAP family members act in distinct ways at the cell membrane, and has expanded our understanding of the roles of srGAPs in neuronal and non-neuronal cells. Gene duplication of the human-specific paralog of srGAP2 has resulted in srGAP2 family proteins that may have increased the density of dendritic spines and promoted neoteny of the human brain during crucial periods of human evolution, underscoring the importance of srGAPs in the unique sculpting of the human brain. Importantly, srGAPs also play roles outside of the nervous system, including during contact inhibition of cell movement and in establishing and maintaining cell adhesions in epithelia. Changes in srGAP expression may contribute to neurodevelopmental disorders, cancer metastasis and inflammation. As discussed in this Review, much remains to be discovered about how this interesting family of proteins functions in a diverse set of processes in metazoans and the functional roles srGAPs play in human disease.
Collapse
Affiliation(s)
- Bethany Lucas
- Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
| |
Collapse
|
25
|
Sporny M, Guez-Haddad J, Kreusch A, Shakartzi S, Neznansky A, Cross A, Isupov MN, Qualmann B, Kessels MM, Opatowsky Y. Structural History of Human SRGAP2 Proteins. Mol Biol Evol 2017; 34:1463-1478. [PMID: 28333212 PMCID: PMC5435084 DOI: 10.1093/molbev/msx094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the development of the human brain, human-specific genes are considered to play key roles, conferring its unique advantages and vulnerabilities. At the time of Homo lineage divergence from Australopithecus, SRGAP2C gradually emerged through a process of serial duplications and mutagenesis from ancestral SRGAP2A (3.4–2.4 Ma). Remarkably, ectopic expression of SRGAP2C endows cultured mouse brain cells, with human-like characteristics, specifically, increased dendritic spine length and density. To understand the molecular mechanisms underlying this change in neuronal morphology, we determined the structure of SRGAP2A and studied the interplay between SRGAP2A and SRGAP2C. We found that: 1) SRGAP2A homo-dimerizes through a large interface that includes an F-BAR domain, a newly identified F-BAR extension (Fx), and RhoGAP-SH3 domains. 2) SRGAP2A has an unusual inverse geometry, enabling associations with lamellipodia and dendritic spine heads in vivo, and scaffolding of membrane protrusions in cell culture. 3) As a result of the initial partial duplication event (∼3.4 Ma), SRGAP2C carries a defective Fx-domain that severely compromises its solubility and membrane-scaffolding ability. Consistently, SRGAP2A:SRAGP2C hetero-dimers form, but are insoluble, inhibiting SRGAP2A activity. 4) Inactivation of SRGAP2A is sensitive to the level of hetero-dimerization with SRGAP2C. 5) The primal form of SRGAP2C (P-SRGAP2C, existing between ∼3.4 and 2.4 Ma) is less effective in hetero-dimerizing with SRGAP2A than the modern SRGAP2C, which carries several substitutions (from ∼2.4 Ma). Thus, the genetic mutagenesis phase contributed to modulation of SRGAP2A’s inhibition of neuronal expansion, by introducing and improving the formation of inactive SRGAP2A:SRGAP2C hetero-dimers, indicating a stepwise involvement of SRGAP2C in human evolutionary history.
Collapse
Affiliation(s)
- Michael Sporny
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Annett Kreusch
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sivan Shakartzi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Avi Neznansky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Alice Cross
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Michail N Isupov
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Michael M Kessels
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
26
|
Yang YR, Xiong XY, Liu J, Wu LR, Zhong Q, Zhou K, Meng ZY, Liu L, Wang FX, Gong QW, Liao MF, Duan CM, Li J, Yang MH, Zhang Q, Gong CX, Yang QW. Mfsd2a (Major Facilitator Superfamily Domain Containing 2a) Attenuates Intracerebral Hemorrhage-Induced Blood-Brain Barrier Disruption by Inhibiting Vesicular Transcytosis. J Am Heart Assoc 2017; 6:JAHA.117.005811. [PMID: 28724654 PMCID: PMC5586300 DOI: 10.1161/jaha.117.005811] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption aggravates brain injury induced by intracerebral hemorrhage (ICH); however, the mechanisms of BBB damage caused by ICH remain elusive. Mfsd2a (major facilitator superfamily domain containing 2a) has been known to play an essential role in BBB formation and function. In this study, we investigated the role and underlying mechanisms of Mfsd2a in BBB permeability regulation after ICH. METHODS AND RESULTS Using ICH models, we found that Mfsd2a protein expression in perihematomal brain tissues was significantly decreased after ICH. Knockdown and knockout of Mfsd2a in mice markedly increased BBB permeability, neurological deficit score, and brain water contents after ICH, and these were rescued by overexpressing Mfsd2a in perihematomas. Moreover, we found that Mfsd2a regulation of BBB permeability after ICH correlated with changes in vesicle number. Expression profiling of tight junction proteins showed no differences in Mfsd2a knockdown, Mfsd2a knockout, and Mfsd2a overexpression mice. However, using electron microscopy following ICH, we observed a significant increase in pinocytotic vesicle number in Mfsd2a knockout mice and decreased the number of pinocytotic vesicles in mouse brains with Mfsd2a overexpression. Finally, using multiple reaction monitoring, we screened out 3 vesicle trafficking-related proteins (Srgap2, Stx7, and Sec22b) from 31 vesicle trafficking-related proteins that were markedly upregulated in Mfsd2a knockout mice compared with controls after ICH. CONCLUSIONS In summary, our results suggest that Mfsd2a may protect against BBB injury by inhibiting vesicular transcytosis following ICH.
Collapse
Affiliation(s)
- Yuan-Rui Yang
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Juan Liu
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Li-Rong Wu
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Qi Zhong
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Kai Zhou
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Zhao-You Meng
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Liang Liu
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Fa-Xiang Wang
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Qiu-Wen Gong
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Mao-Fan Liao
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Chun-Mei Duan
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Jie Li
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Mei-Hua Yang
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Qin Zhang
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Chang-Xiong Gong
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
27
|
Salzer U, Kostan J, Djinović-Carugo K. Deciphering the BAR code of membrane modulators. Cell Mol Life Sci 2017; 74:2413-2438. [PMID: 28243699 PMCID: PMC5487894 DOI: 10.1007/s00018-017-2478-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 01/06/2023]
Abstract
The BAR domain is the eponymous domain of the “BAR-domain protein superfamily”, a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
Collapse
Affiliation(s)
- Ulrich Salzer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Julius Kostan
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Kristina Djinović-Carugo
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 119, 1000, Ljubljana, Slovenia.
| |
Collapse
|
28
|
Huang GH, Sun ZL, Li HJ, Feng DF. Rho GTPase-activating proteins: Regulators of Rho GTPase activity in neuronal development and CNS diseases. Mol Cell Neurosci 2017; 80:18-31. [PMID: 28163190 DOI: 10.1016/j.mcn.2017.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/06/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
The Rho family of small GTPases was considered as molecular switches in regulating multiple cellular events, including cytoskeleton reorganization. The Rho GTPase-activating proteins (RhoGAPs) are one of the major families of Rho GTPase regulators. RhoGAPs were initially considered negative mediators of Rho signaling pathways via their GAP domain. Recent studies have demonstrated that RhoGAPs also regulate numerous aspects of neuronal development and are related to various neurodegenerative diseases in GAP-dependent and GAP-independent manners. Moreover, RhoGAPs are regulated through various mechanisms, such as phosphorylation. To date, approximately 70 RhoGAPs have been identified; however, only a small portion has been thoroughly investigated. Thus, the characterization of important RhoGAPs in the central nervous system is crucial to understand their spatiotemporal role during different stages of neuronal development. In this review, we summarize the current knowledge of RhoGAPs in the brain with an emphasis on their molecular function, regulation mechanism and disease implications in the central nervous system.
Collapse
Affiliation(s)
- Guo-Hui Huang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China; Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
29
|
Marko TA, Shamsan GA, Edwards EN, Hazelton PE, Rathe SK, Cornax I, Overn PR, Varshney J, Diessner BJ, Moriarity BS, O'Sullivan MG, Odde DJ, Largaespada DA. Slit-Robo GTPase-Activating Protein 2 as a metastasis suppressor in osteosarcoma. Sci Rep 2016; 6:39059. [PMID: 27966608 PMCID: PMC5155223 DOI: 10.1038/srep39059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/16/2016] [Indexed: 11/15/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, with metastatic disease responsible for most treatment failure and patient death. A forward genetic screen utilizing Sleeping Beauty mutagenesis in mice previously identified potential genetic drivers of osteosarcoma metastasis, including Slit-Robo GTPase-Activating Protein 2 (Srgap2). This study evaluates the potential role of SRGAP2 in metastases-associated properties of osteosarcoma cell lines through Srgap2 knockout via the CRISPR/Cas9 nuclease system and conditional overexpression in the murine osteosarcoma cell lines K12 and K7M2. Proliferation, migration, and anchorage independent growth were evaluated. RNA sequencing and immunohistochemistry of human osteosarcoma tissue samples were used to further evaluate the potential role of the Slit-Robo pathway in osteosarcoma. The effects of Srgap2 expression modulation in the murine OS cell lines support the hypothesis that SRGAP2 may have a role as a suppressor of metastases in osteosarcoma. Additionally, SRGAP2 and other genes in the Slit-Robo pathway have altered transcript levels in a subset of mouse and human osteosarcoma, and SRGAP2 protein expression is reduced or absent in a subset of primary tumor samples. SRGAP2 and other axon guidance proteins likely play a role in osteosarcoma metastasis, with loss of SRGAP2 potentially contributing to a more aggressive phenotype.
Collapse
Affiliation(s)
- Tracy A Marko
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | - Ghaidan A Shamsan
- Department of Biomedical Engineering University of Minnesota, Minneapolis, MN, USA
| | | | - Paige E Hazelton
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | - Susan K Rathe
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | - Ingrid Cornax
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA
| | - Paula R Overn
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA
| | - Jyotika Varshney
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | | | - Branden S Moriarity
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - M Gerard O'Sullivan
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA.,College of Veterinary Medicine, Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David J Odde
- Department of Biomedical Engineering University of Minnesota, Minneapolis, MN, USA
| | - David A Largaespada
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
30
|
van der Mark VA, Ghiboub M, Marsman C, Zhao J, van Dijk R, Hiralall JK, Ho-Mok KS, Castricum Z, de Jonge WJ, Oude Elferink RPJ, Paulusma CC. Phospholipid flippases attenuate LPS-induced TLR4 signaling by mediating endocytic retrieval of Toll-like receptor 4. Cell Mol Life Sci 2016; 74:715-730. [PMID: 27628304 PMCID: PMC5272906 DOI: 10.1007/s00018-016-2360-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 01/01/2023]
Abstract
P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the β-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.
Collapse
Affiliation(s)
- Vincent A van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Casper Marsman
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Jing Zhao
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Remco van Dijk
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Johan K Hiralall
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Kam S Ho-Mok
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Zoë Castricum
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Saha T, Rathmann I, Viplav A, Panzade S, Begemann I, Rasch C, Klingauf J, Matis M, Galic M. Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking. Mol Biol Cell 2016; 27:3616-3626. [PMID: 27535428 PMCID: PMC5221593 DOI: 10.1091/mbc.e16-06-0406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/11/2016] [Indexed: 12/05/2022] Open
Abstract
A novel approach based on the convex-hull algorithm is used for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Testing of filopodia formation in silico, in vitro, and in vivo validates the robustness and sensitivity of the proposed approach. Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension–retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.
Collapse
Affiliation(s)
- Tanumoy Saha
- DFG Cluster of Excellence Cells in Motion (EXC 1003), University of Münster, 48149 Münster, Germany.,Institute of Medical Physics and Biophysics, University of Münster, 48149 Münster, Germany
| | - Isabel Rathmann
- DFG Cluster of Excellence Cells in Motion (EXC 1003), University of Münster, 48149 Münster, Germany.,Institute of Medical Physics and Biophysics, University of Münster, 48149 Münster, Germany
| | - Abhiyan Viplav
- DFG Cluster of Excellence Cells in Motion (EXC 1003), University of Münster, 48149 Münster, Germany.,Institute of Medical Physics and Biophysics, University of Münster, 48149 Münster, Germany
| | - Sadhana Panzade
- DFG Cluster of Excellence Cells in Motion (EXC 1003), University of Münster, 48149 Münster, Germany.,Institute of Cell Biology, University of Münster, 48149 Münster, Germany
| | - Isabell Begemann
- DFG Cluster of Excellence Cells in Motion (EXC 1003), University of Münster, 48149 Münster, Germany.,Institute of Medical Physics and Biophysics, University of Münster, 48149 Münster, Germany
| | - Christiane Rasch
- Institute of Medical Physics and Biophysics, University of Münster, 48149 Münster, Germany
| | - Jürgen Klingauf
- DFG Cluster of Excellence Cells in Motion (EXC 1003), University of Münster, 48149 Münster, Germany.,Institute of Medical Physics and Biophysics, University of Münster, 48149 Münster, Germany
| | - Maja Matis
- DFG Cluster of Excellence Cells in Motion (EXC 1003), University of Münster, 48149 Münster, Germany.,Institute of Cell Biology, University of Münster, 48149 Münster, Germany
| | - Milos Galic
- DFG Cluster of Excellence Cells in Motion (EXC 1003), University of Münster, 48149 Münster, Germany .,Institute of Medical Physics and Biophysics, University of Münster, 48149 Münster, Germany
| |
Collapse
|
32
|
Abstract
As cells grow, move, and divide, they must reorganize and rearrange their membranes and cytoskeleton. The F-BAR protein family links cellular membranes with actin cytoskeletal rearrangements in processes including endocytosis, cytokinesis, and cell motility. Here we review emerging information on mechanisms of F-BAR domain oligomerization and membrane binding, and how these activities are coordinated with additional domains to accomplish scaffolding and signaling functions.
Collapse
Affiliation(s)
- Nathan A McDonald
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| | - Kathleen L Gould
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
33
|
Zhang Z, Zheng F, You Y, Ma Y, Lu T, Yue W, Zhang D. Growth arrest specific gene 7 is associated with schizophrenia and regulates neuronal migration and morphogenesis. Mol Brain 2016; 9:54. [PMID: 27189492 PMCID: PMC4870797 DOI: 10.1186/s13041-016-0238-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schizophrenia is a highly heritable chronic mental disorder with significant abnormalities in brain function. The neurodevelopmental hypothesis proposes that schizophrenia originates in the prenatal period due to impairments in neuronal developmental processes such as migration and arborization, leading to abnormal brain maturation. Previous studies have identified multiple promising candidate genes that drive functions in neurodevelopment and are associated with schizophrenia. However, the molecular mechanisms of how they exert effects on the pathophysiology of schizophrenia remain largely unknown. RESULTS In our research, we identified growth arrest specific gene 7 (GAS7) as a schizophrenia risk gene in two independent Han Chinese populations using a two-stage association study. Functional experiments were done to further explore the underlying mechanisms of the role of Gas7 in cortical development. In vitro, we discovered that Gas7 contributed to neurite outgrowth through the F-BAR domain. In vivo, overexpression of Gas7 arrested neuronal migration by increasing leading process branching, while suppression of Gas7 could inhibit neuronal migration by lengthening leading processes. Through a series of behavioral tests, we also found that Gas7-deficient mice showed sensorimotor gating deficits. CONCLUSIONS Our results demonstrate GAS7 as a susceptibility gene for schizophrenia. Gas7 might participate in the pathogenesis of schizophrenia by regulating neurite outgrowth and neuronal migration through its C-terminal F-BAR domain. The impaired pre-pulse inhibition (PPI) of Gas7-deficient mice might mirror the disease-related behavior in schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Fanfan Zheng
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhong Guan Cun East Road, Hai Dian District, Beijing, 100190, China.
| | - Yang You
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Yuanlin Ma
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Tianlan Lu
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Weihua Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Winkle CC, Taylor KL, Dent EW, Gallo G, Greif KF, Gupton SL. Beyond the cytoskeleton: The emerging role of organelles and membrane remodeling in the regulation of axon collateral branches. Dev Neurobiol 2016; 76:1293-1307. [PMID: 27112549 DOI: 10.1002/dneu.22398] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Abstract
The generation of axon collateral branches is a fundamental aspect of the development of the nervous system and the response of axons to injury. Although much has been discovered about the signaling pathways and cytoskeletal dynamics underlying branching, additional aspects of the cell biology of axon branching have received less attention. This review summarizes recent advances in our understanding of key factors involved in axon branching. This article focuses on how cytoskeletal mechanisms, intracellular organelles, such as mitochondria and the endoplasmic reticulum, and membrane remodeling (exocytosis and endocytosis) contribute to branch initiation and formation. Together this growing literature provides valuable insight as well as a platform for continued investigation into how multiple aspects of axonal cell biology are spatially and temporally orchestrated to give rise to axon branches. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1293-1307, 2016.
Collapse
Affiliation(s)
- Cortney C Winkle
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Gianluca Gallo
- Lewis Katz School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| | - Karen F Greif
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania, 19010
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
35
|
Pérez C, Sawmiller D, Tan J. The role of heparan sulfate deficiency in autistic phenotype: potential involvement of Slit/Robo/srGAPs-mediated dendritic spine formation. Neural Dev 2016; 11:11. [PMID: 27089953 PMCID: PMC4836088 DOI: 10.1186/s13064-016-0066-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/12/2016] [Indexed: 01/24/2023] Open
Abstract
Autism Spectrum Disorders (ASD) are the second most common developmental cause of disability in the United States. ASDs are accompanied with substantial economic and emotional cost. The brains of ASD patients have marked structural abnormalities, in the form of increased dendritic spines and decreased long distance connections. These structural differences may be due to deficiencies in Heparin Sulfate (HS), a proteoglycan involved in a variety of neurodevelopmental processes. Of particular interest is its role in the Slit/Robo pathway. The Slit/Robo pathway is known to be involved in the regulation of axonal guidance and dendritic spine formation. HS mediates the Slit/Robo interaction; without its presence Slit's repulsive activity is abrogated. Slit/Robo regulates dendritic spine formation through its interaction with srGAPs (slit-robo GTPase Activating Proteins), which leads to downstream signaling, actin cytoskeleton depolymerization and dendritic spine collapse. Through interference with this pathway, HS deficiency can lead to excess spine formation.
Collapse
Affiliation(s)
- Christine Pérez
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 E Fletcher Ave., Tampa, FL 33613 USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 E Fletcher Ave., Tampa, FL 33613 USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 E Fletcher Ave., Tampa, FL 33613 USA
| |
Collapse
|
36
|
Hotulainen P, Saarikangas J. The initiation of post-synaptic protrusions. Commun Integr Biol 2016; 9:e1125053. [PMID: 27489575 PMCID: PMC4951170 DOI: 10.1080/19420889.2015.1125053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 02/02/2023] Open
Abstract
The post-synaptic spines of neuronal dendrites are highly elaborate membrane protrusions. Their anatomy, stability and density are intimately linked to cognitive performance. The morphological transitions of spines are powered by coordinated polymerization of actin filaments against the plasma membrane, but how the membrane-associated polymerization is spatially and temporally regulated has remained ill defined. Here, we discuss our recent findings showing that dendritic spines can be initiated by direct membrane bending by the I-BAR protein MIM/Mtss1. This lipid phosphatidylinositol (PI(4,5)P2) signaling-activated membrane bending coordinated spatial actin assembly and promoted spine formation. From recent advances, we formulate a general model to discuss how spatially concentrated protein-lipid microdomains formed by multivalent interactions between lipids and actin/membrane regulatory proteins might launch cell protrusions.
Collapse
Affiliation(s)
- Pirta Hotulainen
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | |
Collapse
|
37
|
The Neuronal Migration Factor srGAP2 Achieves Specificity in Ligand Binding through a Two-Component Molecular Mechanism. Structure 2015; 23:1989-2000. [DOI: 10.1016/j.str.2015.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 01/26/2023]
|
38
|
Differential Contributions of Nonmuscle Myosin II Isoforms and Functional Domains to Stress Fiber Mechanics. Sci Rep 2015; 5:13736. [PMID: 26336830 PMCID: PMC4559901 DOI: 10.1038/srep13736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/04/2015] [Indexed: 01/14/2023] Open
Abstract
While is widely acknowledged that nonmuscle myosin II (NMMII) enables stress fibers (SFs) to generate traction forces against the extracellular matrix, little is known about how specific NMMII isoforms and functional domains contribute to SF mechanics. Here we combine biophotonic and genetic approaches to address these open questions. First, we suppress the NMMII isoforms MIIA and MIIB and apply femtosecond laser nanosurgery to ablate and investigate the viscoelastic retraction of individual SFs. SF retraction dynamics associated with MIIA and MIIB suppression qualitatively phenocopy our earlier measurements in the setting of Rho kinase (ROCK) and myosin light chain kinase (MLCK) inhibition, respectively. Furthermore, fluorescence imaging and photobleaching recovery reveal that MIIA and MIIB are enriched in and more stably localize to ROCK- and MLCK-controlled central and peripheral SFs, respectively. Additional domain-mapping studies surprisingly reveal that deletion of the head domain speeds SF retraction, which we ascribe to reduced drag from actomyosin crosslinking and frictional losses. We propose a model in which ROCK/MIIA and MLCK/MIIB functionally regulate common pools of SFs, with MIIA crosslinking and motor functions jointly contributing to SF retraction dynamics and cellular traction forces.
Collapse
|
39
|
Kessels MM, Qualmann B. Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses. J Cell Sci 2015; 128:3177-85. [PMID: 26285709 DOI: 10.1242/jcs.174193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions.
Collapse
Affiliation(s)
- Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University, Nonnenplan 2-4, 07743 Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University, Nonnenplan 2-4, 07743 Jena, Germany
| |
Collapse
|
40
|
Abstract
BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.
Collapse
Affiliation(s)
- Pontus Aspenström
- a Department of Microbiology and Tumor and Cell Biology; Karolinska Institutet ; Stockholm , Sweden
| |
Collapse
|
41
|
MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation. Dev Cell 2015; 33:644-59. [PMID: 26051541 DOI: 10.1016/j.devcel.2015.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/28/2015] [Accepted: 04/21/2015] [Indexed: 11/21/2022]
Abstract
Proper morphogenesis of neuronal dendritic spines is essential for the formation of functional synaptic networks. However, it is not known how spines are initiated. Here, we identify the inverse-BAR (I-BAR) protein MIM/MTSS1 as a nucleator of dendritic spines. MIM accumulated to future spine initiation sites in a PIP2-dependent manner and deformed the plasma membrane outward into a proto-protrusion via its I-BAR domain. Unexpectedly, the initial protrusion formation did not involve actin polymerization. However, PIP2-dependent activation of Arp2/3-mediated actin assembly was required for protrusion elongation. Overexpression of MIM increased the density of dendritic protrusions and suppressed spine maturation. In contrast, MIM deficiency led to decreased density of dendritic protrusions and larger spine heads. Moreover, MIM-deficient mice displayed altered glutamatergic synaptic transmission and compatible behavioral defects. Collectively, our data identify an important morphogenetic pathway, which initiates spine protrusions by coupling phosphoinositide signaling, direct membrane bending, and actin assembly to ensure proper synaptogenesis.
Collapse
|
42
|
Wuertenberger S, Groemping Y. A single PXXP motif in the C-terminal region of srGAP3 mediates binding to multiple SH3 domains. FEBS Lett 2015; 589:1156-63. [PMID: 25819436 DOI: 10.1016/j.febslet.2015.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 11/17/2022]
Abstract
The Slit-Robo GTPase-activating protein 3 (srGAP3) has been implicated in different critical aspects of neuronal development. These findings have mainly been based on the characterisation of the three conserved globular N-terminal domains, while the function of the C-terminal region (CTR) is still unknown. We show that this predicted unstructured region acts as an adaptor by binding to the endocytic proteins Amphiphysin, Endophilin-A2, Endophilin-A1, as well as the Ras signalling protein Grb2. All these interactions depend on a single proline-rich motif in the CTR and the Src-homology 3 domains of the binding partners. Via these interactions srGAP3 could link receptor signalling events to the endocytic machinery.
Collapse
Affiliation(s)
- Silvia Wuertenberger
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstr. 35, D-72076 Tübingen, Germany
| | - Yvonne Groemping
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstr. 35, D-72076 Tübingen, Germany.
| |
Collapse
|
43
|
Moravcevic K, Alvarado D, Schmitz KR, Kenniston JA, Mendrola JM, Ferguson KM, Lemmon MA. Comparison of Saccharomyces cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site. Structure 2015; 23:352-63. [PMID: 25620000 DOI: 10.1016/j.str.2014.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 11/29/2014] [Accepted: 12/02/2014] [Indexed: 12/27/2022]
Abstract
F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence.
Collapse
Affiliation(s)
- Katarina Moravcevic
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Diego Alvarado
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Karl R Schmitz
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Jon A Kenniston
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Jeannine M Mendrola
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Kathryn M Ferguson
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA.
| |
Collapse
|
44
|
Gan M, Jiang P, McLean P, Kanekiyo T, Bu G. Low-density lipoprotein receptor-related protein 1 (LRP1) regulates the stability and function of GluA1 α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor in neurons. PLoS One 2014; 9:e113237. [PMID: 25500815 PMCID: PMC4264746 DOI: 10.1371/journal.pone.0113237] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/23/2014] [Indexed: 11/18/2022] Open
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor abundantly expressed in neurons. Increasing evidence demonstrates that LRP1 regulates synaptic integrity and function at the post synapses, at least partially by regulating glutamate receptors. The α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are critical ionotropic glutamate receptors consisting of homotetramer or heterotetramer of GluA1-4 subunits and play an essential role in synaptic transmission and synaptic plasticity. Our previous work has shown that neuronal deletion of the Lrp1 gene in mice leads to decreased level of GluA1 and reduced long-term potentiation. To understand the underlying mechanism, we investigated the cellular and functional consequences of LRP1 deletion in primary neurons. Here, we show that LRP1 interacts with and regulates the cellular distribution and turnover of GluA1. LRP1 knockdown in mouse primary neurons led to accelerated turnover and decreased cell surface distribution of GluA1, which correspond to decreased phosphorylation of GluA1 at S845 and S831 sites. Decreased LRP1 expression also attenuated AMPA-evoked calcium influx and reduced GluA1-regulated neurite outgrowth and filopodia density. Our results reveal a novel mechanism by which LRP1 controls synaptic integrity and function, specifically by regulating GluA1 trafficking, phosphorylation and turnover. They further demonstrate that LRP1-GluA1 pathway may hold promises as a therapeutic target for restoring synaptic functions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming Gan
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Pamela McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
45
|
Suetsugu S, Kurisu S, Takenawa T. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 2014; 94:1219-48. [PMID: 25287863 DOI: 10.1152/physrev.00040.2013] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Shusaku Kurisu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
46
|
An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration. Nat Cell Biol 2014; 16:909-17. [PMID: 25150978 PMCID: PMC4150836 DOI: 10.1038/ncb3026] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/10/2014] [Indexed: 01/01/2023]
|
47
|
Blockus H, Chédotal A. The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases. Curr Opin Neurobiol 2014; 27:82-8. [PMID: 24698714 DOI: 10.1016/j.conb.2014.03.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/17/2014] [Accepted: 03/09/2014] [Indexed: 11/20/2022]
Abstract
Slit repulsion, mediated by Robo receptors, is known to play a major role in axon guidance in the nervous system. However, recent studies have revealed that in the mammalian cortex these molecules are highly versatile and that their function extends far beyond axon guidance. They act at all phases of development to control neurogenesis, neuronal migration, axon patterning, dendritic outgrowth and spinogenesis. The expression of Robo receptors in cortical and thalamocortical axons (TCAs) is tightly regulated by a combination of transcription factors (TFs), proteases and activity. These findings also suggest that Slit and Robos have influenced the evolution of cortical circuits. Last, novel genetic evidence associates various neurological disorders, such as autism, to abnormal Slit/Robo signaling.
Collapse
Affiliation(s)
- Heike Blockus
- INSERM UMR_S968, Institut de la Vision, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la vision, F-75012, France; CNRS, UMR7210, F-75012 Paris, France
| | - Alain Chédotal
- INSERM UMR_S968, Institut de la Vision, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la vision, F-75012, France; CNRS, UMR7210, F-75012 Paris, France.
| |
Collapse
|
48
|
Martín-García R, Coll PM, Pérez P. F-BAR domain protein Rga7 collaborates with Cdc15 and Imp2 to ensure proper cytokinesis in fission yeast. J Cell Sci 2014; 127:4146-58. [PMID: 25052092 DOI: 10.1242/jcs.146233] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
F-BAR domain proteins act as linkers between the cell cortex and cytoskeleton, and are involved in membrane binding and bending. Rga7 is one of the seven F-BAR proteins present in the fission yeast Schizosaccharomyces pombe. In addition to the F-BAR domain in the N-terminal region, Rga7 possesses a Rho GTPase-activating protein (GAP) domain at its C-terminus. We show here that Rga7 is necessary to prevent fragmentation of the contracting ring and incorrect septum synthesis. Accordingly, cultures of cells lacking Rga7 contain a higher percentage of dividing cells and more frequent asymmetric or aberrant septa, which ultimately might cause cell death. The Rga7 F-BAR domain is necessary for the protein localization to the division site and to the cell tips, and also for the Rga7 roles in cytokinesis. In contrast, Rga7 GAP catalytic activity seems to be dispensable. Moreover, we demonstrate that Rga7 cooperates with the two F-BAR proteins Cdc15 and Imp2 to ensure proper cytokinesis. We have also detected association of Rga7 with Imp2, and its binding partners Fic1 and Pxl1. Taken together, our findings suggest that Rga7 forms part of a protein complex that coordinates the late stages of cytokinesis.
Collapse
Affiliation(s)
- Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pedro M Coll
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
49
|
A link between the nuclear-localized srGAP3 and the SWI/SNF chromatin remodeler Brg1. Mol Cell Neurosci 2014; 60:10-25. [PMID: 24561795 DOI: 10.1016/j.mcn.2014.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 11/21/2022] Open
Abstract
The Slit-Robo GTPase activating protein 3 (srGAP3) is an important modulator of actin cytoskeletal dynamics and has an important influence on a variety of neurodevelopmental processes. Mutations in the SRGAP3 gene on chromosome 3p25 have been found in patients with intellectual disability. Genome-wide association studies and behavioral assays of knockout mice had also revealed SRGAP3 as a risk gene for schizophrenia. We have recently shown that srGAP3 protein undergoes regulated shuttling between the cytoplasm and the nucleus during neuronal development. It is shown here that nuclear-localized srGAP3 interacts with the SWI/SNF remodeling factor Brg1. This interaction is mediated by the C-terminal of srGAP3 and the ATPase motif of Brg1. In the primary cultured rat cortical neurons, the levels of nuclear-localized srGAP3 and its interaction with Brg1 have a significant impact on dendrite complexity. Furthermore, the interaction between srGAP3 and Brg1 was also involved in valproic acid (VPA) -induced neuronal differentiation of Neuro2a cells. We then show that GTP-bound Rac1 and GAP-43 may be potential mediators of nuclear srGAP3 and Brg1. Our results not only indicate a novel signaling pathway that contributes to neuronal differentiation and dendrite morphology, but also implicate a novel molecular mechanism underlying srGAP3 regulation of gene expression.
Collapse
|
50
|
Wang H, Zhang Y, Zhang Z, Jin WL, Wu G. Purification, crystallization and preliminary X-ray analysis of the inverse F-BAR domain of the human srGAP2 protein. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:123-6. [PMID: 24419634 DOI: 10.1107/s2053230x13033712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/12/2013] [Indexed: 11/10/2022]
Abstract
Bin-Amphiphysin-Rvs (BAR) domain proteins play essential roles in diverse cellular processes by inducing membrane invaginations or membrane protrusions. Among the BAR superfamily, the `classical' BAR and Fes/CIP4 homology BAR (F-BAR) subfamilies of proteins usually promote membrane invaginations, whereas the inverse BAR (I-BAR) subfamily generally incur membrane protrusions. Despite possessing an N-terminal F-BAR domain, the srGAP2 protein regulates neurite outgrowth and neuronal migration by causing membrane protrusions reminiscent of the activity of I-BAR domain proteins. In this study, the inverse F-BAR (IF-BAR) domain of human srGAP2 was overexpressed, purified and crystallized. The crystals of the srGAP2 IF-BAR domain protein diffracted to 3.50 Å resolution and belonged to space group P2(1). These results will facilitate further structural determination of the srGAP2 IF-BAR domain and the ultimate elucidation of its peculiar behaviour of inducing membrane protrusions rather than membrane invaginations.
Collapse
Affiliation(s)
- Hongpeng Wang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhenyi Zhang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wei Lin Jin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|