1
|
Komilova NR, Angelova PR, Cali E, Scardamaglia A, Mirkhodjaev UZ, Houlden H, Esteras N, Abramov AY. Charcot Marie Tooth disease pathology is associated with mitochondrial dysfunction and lower glutathione production. Cell Mol Life Sci 2025; 82:72. [PMID: 39918771 PMCID: PMC11806186 DOI: 10.1007/s00018-025-05612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Charcot Marie Tooth (CMT) or hereditary motor and sensory neuropathy is a heterogeneous neurological disorder leading to nerve damage and muscle weakness. Although multiple mutations associated with CMT were identified, the cellular and molecular mechanisms of this pathology are still unclear, although most of the subtype of this disease involve mitochondrial dysfunction and oxidative stress in the mechanism of pathology. Using patients' fibroblasts of autosomal recessive, predominantly demyelinating form of CMT-CMT4B3 subtype, we studied the effect of these mutations on mitochondrial metabolism and redox balance. We have found that CMT4B3-associated mutations decrease mitochondrial membrane potential and mitochondrial NADH redox index suggesting an increase rate of mitochondrial respiration in these cells. However, mitochondrial dysfunction had no profound effect on the overall levels of ATP and on the energy capacity of these cells. Although the rate of reactive oxygen species production in mitochondria and cytosol in fibroblasts with CMT4B3 pathology was not significantly higher than in control, the level of GSH was significantly lower. Lower level of glutathione was most likely induced by the lower level of NADPH production, which was used for a GSH cycling, however, expression levels and activity of the major NADPH producing enzyme Glucose-6-Phosphate Dehydrogenase (G6PDH) was not altered. Low level of GSH renders the fibroblast with CMT4B3 pathology more sensitive to oxidative stress and further treatment of cells with hydroperoxide increases CMT patients' fibroblast death rates compared to control. Thus, CMT4B3 pathology makes cells vulnerable to oxidative stress due to the lack of major endogenous antioxidant GSH.
Collapse
Affiliation(s)
- Nafisa R Komilova
- Department of Biophysics, National University of Uzbekistan, Tashkent, Uzbekistan
- Center for High Technologies, Tashkent, Uzbekistan
| | - Plamena R Angelova
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Elisa Cali
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | | | - Henry Houlden
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Noemi Esteras
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Andrey Y Abramov
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Wang Q, Qin B, Yu H, Zeng J, Fan J, Wu Q, Zeng R, Yu H, Zhang X, Li M, Zhou Y, Diao L. Mitigating effects of Jiawei Chaihu Shugan decoction on necroptosis and inflammation of hippocampal neurons in epileptic mice. Sci Rep 2025; 15:4649. [PMID: 39920301 PMCID: PMC11805973 DOI: 10.1038/s41598-025-89275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
Jiawei Chaihu Shugan decoction (JWCHSGD) is a traditional Chinese medicine well-known for its beneficial effects in treating epilepsy (Xianzheng in ancient Chinese), but the molecular mechanism of its action remains unclear. To investigate the molecular mechanism of JWCHSGD's prevention of epilepsy-mediated neuron from necroptosis and inflammation via the circRNA-Csnk1g3/Csnk1g3-85aa/ CK1γ3/TNF-α signal pathway. In vitro, murine neuronal HT22 cells were treated in six groups: control, model, carbamazepine, and three JWCHSGD doses (high, medium, low). Viability and apoptosis were assessed via CCK-8 and flow cytometry. In vivo, 60 C57BL/6J mice were divided into six groups: control, model, carbamazepine, JWCHSGD, JWCHSGD + Sh Circ_Csnk1g3, and JWCHSGD + Sh NC. An epilepsy model was induced, and treatments were administered for two weeks. Outcomes included EEG, hippocampal histopathology, apoptosis (TUNEL), and mRNA/protein expression of key pathway markers. In HT22 cells, the model group showed reduced viability, increased apoptosis, and elevated mRNA/protein levels of Csnk1g3-85aa, RIP1, RIP3, MLKL, TNF-α, IL-6, and IL-1β (P < 0.05). JWCHSGD and carbamazepine increased viability and decreased apoptosis, reversing these molecular changes (P < 0.05). In mice, the model group had heightened epileptic discharges, neuronal damage, and apoptosis, along with increased expression of the same markers (P < 0.05). JWCHSGD and carbamazepine mitigated these effects (P < 0.05). JWCHSGD reduces epileptic events by regulating the circRNA-Csnk1g3/Csnk1g3-85aa/CK1γ3/TNF-α signaling pathway, impacting necroptosis and inflammation in hippocampal neurons and HT22 cells.
Collapse
Affiliation(s)
- Qin Wang
- The First Clinical School of Medicine, Guangxi University of Chinese Medicine, 179 Mingxiu East Road, Nanning, 530001, Guangxi, China
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Qingxiu District, Nanning, 530023, Guangxi, China
| | - Baijun Qin
- Department of Gastroenterology, Chongqing City Hospital of Traditional Chinese Medicine, No. 6, Panxi seventh branch road, Jiangbei District, Chongqing, 400021, China
| | - Han Yu
- Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jiawei Zeng
- The First Clinical School of Medicine, Guangxi University of Chinese Medicine, 179 Mingxiu East Road, Nanning, 530001, Guangxi, China
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Qingxiu District, Nanning, 530023, Guangxi, China
| | - Jingjing Fan
- The First Clinical School of Medicine, Guangxi University of Chinese Medicine, 179 Mingxiu East Road, Nanning, 530001, Guangxi, China
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Qingxiu District, Nanning, 530023, Guangxi, China
| | - Qiong Wu
- Xinyang Central Hospital, Xinyang, 464000, Henan, China
| | - Rong Zeng
- Qinzhou Maternal and Child Health Hospital (Qinzhou Red Cross Hospital), No.1 Anzhou Avenue, Qinzhou City, Guangxi Zhuang Autonomous Region, China
| | - Haichun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, 530007, Guangxi, China
| | - Xian Zhang
- Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, 545005, Guangxi, China
| | - Mingfen Li
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Qingxiu District, Nanning, 530023, Guangxi, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yanying Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Qingxiu District, Nanning, 530023, Guangxi, China
| | - Limei Diao
- The First Clinical School of Medicine, Guangxi University of Chinese Medicine, 179 Mingxiu East Road, Nanning, 530001, Guangxi, China.
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Qingxiu District, Nanning, 530023, Guangxi, China.
- Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, 545005, Guangxi, China.
| |
Collapse
|
3
|
Bierhansl L, Gola L, Narayanan V, Dik A, Meuth SG, Wiendl H, Kovac S. Neuronal Mitochondrial Calcium Uniporter (MCU) Deficiency Is Neuroprotective in Hyperexcitability by Modulation of Metabolic Pathways and ROS Balance. Mol Neurobiol 2024; 61:9529-9538. [PMID: 38652352 PMCID: PMC11496325 DOI: 10.1007/s12035-024-04148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Epilepsy is one of the most common neurological disorders in the world. Common epileptic drugs generally affect ion channels or neurotransmitters and prevent the emergence of seizures. However, up to a third of the patients suffer from drug-resistant epilepsy, and there is an urgent need to develop new therapeutic strategies that go beyond acute antiepileptic (antiseizure) therapies towards therapeutics that also might have effects on chronic epilepsy comorbidities such as cognitive decline and depression. The mitochondrial calcium uniporter (MCU) mediates rapid mitochondrial Ca2+ transport through the inner mitochondrial membrane. Ca2+ influx is essential for mitochondrial functions, but longer elevations of intracellular Ca2+ levels are closely associated with seizure-induced neuronal damage, which are underlying mechanisms of cognitive decline and depression. Using neuronal-specific MCU knockout mice (MCU-/-ΔN), we demonstrate that neuronal MCU deficiency reduced hippocampal excitability in vivo. Furthermore, in vitro analyses of hippocampal glioneuronal cells reveal no change in total Ca2+ levels but differences in intracellular Ca2+ handling. MCU-/-ΔN reduces ROS production, declines metabolic fluxes, and consequently prevents glioneuronal cell death. This effect was also observed under pathological conditions, such as the low magnesium culture model of seizure-like activity or excitotoxic glutamate stimulation, whereby MCU-/-ΔN reduces ROS levels and suppresses Ca2+ overload seen in WT cells. This study highlights the importance of MCU at the interface of Ca2+ handling and metabolism as a mediator of stress-related mitochondrial dysfunction, which indicates the modulation of MCU as a potential target for future antiepileptogenic therapy.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Lukas Gola
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Venu Narayanan
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
4
|
Xie Y, Zhang W, Peng T, Wang X, Lian X, He J, Wang C, Xie N. TBC1D15-regulated mitochondria-lysosome membrane contact exerts neuroprotective effects by alleviating mitochondrial calcium overload in seizure. Sci Rep 2024; 14:23782. [PMID: 39390030 PMCID: PMC11467349 DOI: 10.1038/s41598-024-74388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Mitochondrial calcium overload plays an important role in the neurological insults in seizure. The Rab7 GTPase-activating protein, Tre-2/Bub2/Cdc16 domain family member 15 (TBC1D15), is involved in the regulation of mitochondrial calcium dynamics by mediating mitochondria-lysosome membrane contact. However, whether TBC1D15-regulated mitochondria-lysosome membrane contact and mitochondrial calcium participate in neuronal injury in seizure is unclear. We aimed to investigate the effect of TBC1D15-regulated mitochondria-lysosome membrane contact on epileptiform discharge-induced neuronal damage and further explore the underlying mechanism. Lentiviral vectors (Lv) infection and stereotaxic adeno-associated virus (AAV) injection were used to regulate TBC1D15 expression before establishing in vitro epileptiform discharge and in vivo status epilepticus (SE) models. TBC1D15's effect on inter-organellar interactions, mitochondrial calcium levels and neuronal injury in seizure was evaluated. The results showed that abnormalities in mitochondria-lysosome membrane contact, mitochondrial calcium overload, mitochondrial dysfunction, increased levels of reactive oxygen species, and prominent neuronal damage were partly relieved by TBC1D15 overexpression, whereas TBC1D15 knockdown markedly deteriorated these phenomena. Further examination revealed that epileptiform discharge-induced mitochondrial calcium overload in primary hippocampal neurons was closely associated with abnormal mitochondria-lysosome membrane contact. This study highlights the crucial role played by TBC1D15-regulated mitochondria-lysosome membrane contact in epileptiform discharge-induced neuronal injury by alleviating mitochondrial calcium overload.
Collapse
Affiliation(s)
- Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wanwan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyi Wang
- Institutes of Biological and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaolei Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiao He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cui Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Vinokurov AY, Pogonyalova MY, Andreeva L, Abramov AY, Angelova PR. Energy substrate supplementation increases ATP levels and is protective to PD neurons. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100187. [PMID: 38841052 PMCID: PMC11150967 DOI: 10.1016/j.crphar.2024.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Alteration of mitochondrial metabolism by various mutations or toxins leads to various neurological conditions. Age-related changes in energy metabolism could also play the role of a trigger for neurodegenerative disorders. Nonetheless, it is not clear if restoration of ATP production or supplementation of brain cells with substrates for energy production could be neuroprotective. Using primary neurons and astrocytes, and neurons with familial forms of neurodegenerative disorders we studied whether various substrates of energy metabolism could improve mitochondrial metabolism and stimulate ATP production, and whether increased ATP levels could protect cells against glutamate excitotoxicity and neurodegeneration. We found that supplementation of neurons with several substrates, or combination thereof, for the TCA cycle and cellular respiration, and oxidative phosphorylation resulted in an increase in mitochondrial NADH level and in mitochondrial membrane potential and led to an increased level of ATP in neurons and astrocytes. Subsequently, these cells were protected against energy deprivation during ischemia or glutamate excitotoxicity. Provision of substrates for energy metabolism to cells with familial forms of Parkinson's disease also prevented triggering of cell death. Thus, restoration of energy metabolism and increase of ATP production can play neuroprotective role in neurodegeneration. A combination of a succinate salt of choline and nicotinamide provided the best results.
Collapse
Affiliation(s)
- Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | | | | | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| |
Collapse
|
6
|
Mohseni-Moghaddam P, Khaleghzadeh-Ahangar H, Atabaki R. Role of Necroptosis, a Regulated Cell Death, in Seizure and Epilepsy. Neurochem Res 2024; 49:1-13. [PMID: 37646959 DOI: 10.1007/s11064-023-04010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Epilepsy is a chronic neurological disease that is characterized by spontaneous and recurrent seizures. Regulated cell death is a controlled process and has been shown to be involved in neurodegenerative diseases. Necroptosis is a type of regulated cell death, and its association with epilepsy has been documented. Necroptosis signaling can be divided into two pathways: canonical and non-canonical pathways. Inhibition of caspase-8, dimerization of receptor-interacting protein kinase 1 (RIP1) and RIP3, activation of mixed-lineage kinase domain-like protein (MLKL), movement of MLKL to the plasma membrane, and cell rupture occurred in these pathways. Through literature review, it has been revealed that there is a relationship between seizure, neuroinflammation, and oxidative stress. The seizure activity triggers the activation of various pathways within the central nervous system, including TNF-α/matrix metalloproteases, Neogenin and Calpain/ Jun N-terminal Kinase 1, which result in distinct responses in the brain. These responses involve the activation of neurons and astrocytes, consequently leading to an increase in the expression levels of proteins and genes such as RIP1, RIP3, and MLKL in a time-dependent manner in regions such as the hippocampus (CA1, CA3, dentate gyrus, and hilus), piriform cortex, and amygdala. Furthermore, the imbalance in calcium ions, depletion of adenosine triphosphate, and elevation of extracellular glutamate and potassium within these pathways lead to the progression of necroptosis, a reduction in seizure threshold, and increased susceptibility to epilepsy. Therefore, it is plausible that therapeutic targeting of these pathways could potentially provide a promising approach for managing seizures and epilepsy.
Collapse
Affiliation(s)
- Parvaneh Mohseni-Moghaddam
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Rabi Atabaki
- Shahid Fakouri High School, Department of Biology Education, Department of Education, Jouybar, Iran.
| |
Collapse
|
7
|
Liang Y, Zhao L, Dai C, Liu G, Zhong Y, Liu H, Mo L, Tan C, Liu X, Chen L. Epileptiform Discharges Reduce Neuronal ATP Production by Inhibiting F0F1-ATP Synthase Activity via A Zinc-α2-Glycoprotein-Dependent Mechanism. Mol Neurobiol 2023; 60:6627-6641. [PMID: 37468739 DOI: 10.1007/s12035-023-03508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Neuronal energy metabolism dysfunction, especially adenosine triphosphate (ATP) supply decrease, is observed in epilepsy and associated with epileptogenesis and prognosis. Zinc-α2-glycoprotein (ZAG) is known as an important modulator of energy metabolism and involved in neuronal glucose metabolism, fatty acid metabolism, and ketogenesis impairment in seizures, but its effect on neuronal ATP synthesis in seizures and the specific mechanism are unclear. In this study, we verified the localization of ZAG in primary cultured neuronal mitochondria by using double-labeling immunofluorescence, immune electron microscopy, and western blot. ZAG level in neuronal mitochondria was modulated by lentiviruses and detected by western blot. The F0F1-ATP synthase activity, ATP level, and acetyl-CoA level were measured. The binding between ZAG and F0F1-ATP synthase was determined by coimmunoprecipitation. We found that both ZAG and F0F1-ATP synthase existed in neuronal mitochondria, and there was mutual binding between them. Epileptiform discharge-induced decrease of mitochondrial ZAG level was reversed by ZAG overexpression. Epileptiform discharge or ZAG knockdown decreased F0F1-ATP synthase activity and ATP level in neurons, which were reversed by ZAG overexpression, while overexpression of ZAG along only increased F0F1-ATP synthase activity but not increased ATP level. Meanwhile, neither epileptiform discharges nor changes of ZAG level can alter the acetyl-CoA level. Moreover, epileptiform discharge did not alter F0F1-ATP synthase level. In conclusion, epileptiform discharge-induced ZAG decrease in neuronal mitochondria is correlated to F0F1-ATP synthase activity inhibition, which may possibly lead to ATP supply impairments. ZAG may be a potential therapeutic target for treating neuronal energy metabolism dysfunction in seizures with further researches.
Collapse
Affiliation(s)
- Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
8
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Dogra D, Meza-Santoscoy PL, Gavrilovici C, Rehak R, de la Hoz CLR, Ibhazehiebo K, Rho JM, Kurrasch DM. kcna1a mutant zebrafish model episodic ataxia type 1 (EA1) with epilepsy and show response to first-line therapy carbamazepine. Epilepsia 2023; 64:2186-2199. [PMID: 37209379 DOI: 10.1111/epi.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE KCNA1 mutations are associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1), and epilepsy is a common comorbidity. Current medications provide only partial relief for ataxia and/or seizures, making new drugs needed. Here, we characterized zebrafish kcna1a-/- as a model of EA1 with epilepsy and compared the efficacy of the first-line therapy carbamazepine in kcna1a-/- zebrafish to Kcna1-/- rodents. METHODS CRISPR/Cas9 mutagenesis was used to introduce a mutation in the sixth transmembrane segment of the zebrafish Kcna1 protein. Behavioral and electrophysiological assays were performed on kcna1a-/- larvae to assess ataxia- and epilepsy-related phenotypes. Real-time quantitative polymerase chain reaction (qPCR) was conducted to measure mRNA levels of brain hyperexcitability markers in kcna1a-/- larvae, followed by bioenergetics profiling to evaluate metabolic function. Drug efficacies were tested using behavioral and electrophysiological assessments, as well as seizure frequency in kcna1a-/- zebrafish and Kcna1-/- mice, respectively. RESULTS Zebrafish kcna1a-/- larvae showed uncoordinated movements and locomotor deficits, along with scoliosis and increased mortality. The mutants also exhibited impaired startle responses when exposed to light-dark flashes and acoustic stimulation as well as hyperexcitability as measured by extracellular field recordings and upregulated fosab transcripts. Neural vglut2a and gad1b transcript levels were disrupted in kcna1a-/- larvae, indicative of a neuronal excitatory/inhibitory imbalance, as well as a significant reduction in cellular respiration in kcna1a-/- , consistent with dysregulation of neurometabolism. Notably, carbamazepine suppressed the impaired startle response and brain hyperexcitability in kcna1a-/- zebrafish but had no effect on the seizure frequency in Kcna1-/- mice, suggesting that this EA1 zebrafish model might better translate to humans than rodents. SIGNIFICANCE We conclude that zebrafish kcna1a-/- show ataxia and epilepsy-related phenotypes and are responsive to carbamazepine treatment, consistent with EA1 patients. These findings suggest that kcna1-/- zebrafish are a useful model for drug screening as well as studying the underlying disease biology.
Collapse
Affiliation(s)
- Deepika Dogra
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paola L Meza-Santoscoy
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Neurosciences, Pediatrics, and Pharmacology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Renata Rehak
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cristiane L R de la Hoz
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kingsley Ibhazehiebo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Neurosciences, Pediatrics, and Pharmacology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Alraddadi EA, Khojah AM, Alamri FF, Kecheck HK, Altaf WF, Khouqeer Y. Potential role of creatine as an anticonvulsant agent: evidence from preclinical studies. Front Neurosci 2023; 17:1201971. [PMID: 37456992 PMCID: PMC10339234 DOI: 10.3389/fnins.2023.1201971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders affecting people of all ages representing a significant social and public health burden. Current therapeutic options for epilepsy are not effective in a significant proportion of patients suggesting a need for identifying novel targets for the development of more effective therapeutics. There is growing evidence from animal and human studies suggesting a role of impaired brain energy metabolism and mitochondrial dysfunction in the development of epilepsy. Candidate compounds with the potential to target brain energetics have promising future in the management of epilepsy and other related neurological disorders. Creatine is a naturally occurring organic compound that serves as an energy buffer and energy shuttle in tissues, such as brain and skeletal muscle, that exhibit dynamic energy requirements. In this review, applications of creatine supplements in neurological conditions in which mitochondrial dysfunction is a central component in its pathology will be discussed. Currently, limited evidence mainly from preclinical animal studies suggest anticonvulsant properties of creatine; however, the exact mechanism remain to be elucidated. Future work should involve larger clinical trials of creatine used as an add-on therapy, followed by large clinical trials of creatine as monotherapy.
Collapse
Affiliation(s)
- Eman A. Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman M. Khojah
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Faisal F. Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Husun K. Kecheck
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Wid F. Altaf
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Yousef Khouqeer
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Song C, Zhao J, Hao J, Mi D, Zhang J, Liu Y, Wu S, Gao F, Jiang W. Aminoprocalcitonin protects against hippocampal neuronal death via preserving oxidative phosphorylation in refractory status epilepticus. Cell Death Discov 2023; 9:144. [PMID: 37142587 PMCID: PMC10160063 DOI: 10.1038/s41420-023-01445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Refractory status epilepticus (RSE) is a neurological emergency where sustaining seizure causes severe neuronal death. Currently, there is no available neuroprotectant effective in RSE. Aminoprocalcitonin (NPCT) is a conserved peptide cleaved from procalcitonin, but its distribution and function in the brain remain enigmatic. Survival of neurons relies on sufficient energy supply. Recently, we found that NPCT was extensively distributed in the brain and had potent modulations on neuronal oxidative phosphorylation (OXPHOS), suggesting that NPCT might be involved in neuronal death by regulating energy status. In the present study, combining biochemical and histological methods, high-throughput RNA-sequence, Seahorse XFe analyser, an array of mitochondria function assays, and behavior-electroencephalogram (EEG) monitoring, we investigated the roles and translational values of NPCT in neuronal death after RSE. We found that NPCT was extensively distributed throughout gray matters in rat brain while RSE triggered NPCT overexpression in hippocampal CA3 pyramidal neurons. High-throughput RNA-sequence demonstrated that the influences of NPCT on primary hippocampal neurons were enriched in OXPHOS. Further function assays verified that NPCT facilitated ATP production, enhanced the activities of mitochondrial respiratory chain complexes I, IV, V, and increased neuronal maximal respiration capacity. NPCT exerted multiple neurotrophic effects including facilitating synaptogenesis, neuritogenesis, spinogenesis, and suppression of caspase-3. A polyclonal NPCT immunoneutralization antibody was developed to antagonize NPCT. In the in vitro 0-Mg2+ seizure model, immunoneutralization of NPCT caused more neuronal death, while exogenous NPCT supplementation, though did not reverse death outcomes, preserved mitochondrial membrane potential. In rat RSE model, both peripheral and intracerebroventricular immunoneutralization of NPCT exacerbated hippocampal neuronal death and peripheral immunoneutralization increased mortality. Intracerebroventricular immunoneutralization of NPCT further led to more serious hippocampal ATP depletion, and significant EEG power exhaustion. We conclude that NPCT is a neuropeptide regulating neuronal OXPHOS. During RSE, NPCT was overexpressed to protect hippocampal neuronal survival via facilitating energy supply.
Collapse
Affiliation(s)
- Changgeng Song
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jingjing Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jianmin Hao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Dan Mi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jiajia Zhang
- National Translational Science Centre for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Yingying Liu
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
12
|
Gola L, Bierhansl L, Csatári J, Schroeter CB, Korn L, Narayanan V, Cerina M, Abdolahi S, Speicher A, Hermann AM, König S, Dinkova-Kostova AT, Shekh-Ahmad T, Meuth SG, Wiendl H, Gorji A, Pawlowski M, Kovac S. NOX4-derived ROS are neuroprotective by balancing intracellular calcium stores. Cell Mol Life Sci 2023; 80:127. [PMID: 37081190 PMCID: PMC10119225 DOI: 10.1007/s00018-023-04758-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Hyperexcitability is associated with neuronal dysfunction, cellular death, and consequently neurodegeneration. Redox disbalance can contribute to hyperexcitation and increased reactive oxygen species (ROS) levels are observed in various neurological diseases. NOX4 is an NADPH oxidase known to produce ROS and might have a regulating function during oxidative stress. We, therefore, aimed to determine the role of NOX4 on neuronal firing, hyperexcitability, and hyperexcitability-induced changes in neural network function. Using a multidimensional approach of an in vivo model of hyperexcitability, proteomic analysis, and cellular function analysis of ROS, mitochondrial integrity, and calcium levels, we demonstrate that NOX4 is neuroprotective by regulating ROS and calcium homeostasis and thereby preventing hyperexcitability and consequently neuronal death. These results implicate NOX4 as a potential redox regulator that is beneficial in hyperexcitability and thereby might have an important role in neurodegeneration.
Collapse
Affiliation(s)
- Lukas Gola
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Laura Bierhansl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Júlia Csatári
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Venu Narayanan
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Anna Speicher
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Alexander M Hermann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, 48149, Münster, Germany
| | | | - Tawfeeq Shekh-Ahmad
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Matthias Pawlowski
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
13
|
Zhang SN, Li HM, Liu Q, Li XZ, Yang WD, Zhou Y. Eucommiae Folium and Active Compounds Protect Against Mitochondrial Dysfunction-Calcium Overload in Epileptic Hippocampal Neurons Through the Hypertrophic Cardiomyopathy Pathway. Neurochem Res 2023:10.1007/s11064-023-03937-5. [PMID: 37067737 DOI: 10.1007/s11064-023-03937-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Epilepsy is a chronic brain disease and often occurs suddenly for no reason. Eucommiae folium (EF), an edible herb, can be used in the treatment of various kinds of brain diseases in clinic. From the perspective of safety and efficacy, EF is especially suitable for the treatment of chronic brain diseases. With the help of biolabels, this study was aimed to explore the value and feasibility of EF in the treatment of epilepsy. Proteomics and metabolomics were used to explore the biolabels of EF intervention in brain tissues. Bioinformatics was then applied to topologically analyze its neuroprotective effects and mechanisms and material basis based on biolabels, which were validated in an animal model. The biolabel-led research revealed that EF may exert the therapeutic potential to treat brain diseases through the interaction between multiple compounds and multiple targets, among which its therapeutic potential for epilepsy is particularly prominent. In the pentylenetetrazole-induction model, EF and four active compounds (oleamide, catechol, chlorogenic acid, and kaempferol) protected epileptic hippocampal neurons (Nissl and FJB staining) against mitochondrial dysfunction (MYH6, MYL3, and MYBPC3, etc.) and calcium overload (TNNI3, TNNC1, and TNNT2, etc.) through the hypertrophic cardiomyopathy pathway. This study provides new evidence and insights for the neuroprotective effects of EF, in which four active compounds may be potential drug candidates for the treatment of epilepsy.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China
| | - Hong-Mei Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China.
| | - Wu-de Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China.
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guian New Area, 550025, People's Republic of China.
| |
Collapse
|
14
|
Joshi SN, Joshi AN, Joshi ND. Interplay between biochemical processes and network properties generates neuronal up and down states at the tripartite synapse. Phys Rev E 2023; 107:024415. [PMID: 36932559 DOI: 10.1103/physreve.107.024415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Neuronal up and down states have long been known to exist both in vitro and in vivo. A variety of functions and mechanisms have been proposed for their generation, but there has not been a clear connection between the functions and mechanisms. We explore the potential contribution of cellular-level biochemistry to the network-level mechanisms thought to underlie the generation of up and down states. We develop a neurochemical model of a single tripartite synapse, assumed to be within a network of similar tripartite synapses, to investigate possible function-mechanism links for the appearance of up and down states. We characterize the behavior of our model in different regions of parameter space and show that resource limitation at the tripartite synapse affects its ability to faithfully transmit input signals, leading to extinction-down states. Recovery of resources allows for "reignition" into up states. The tripartite synapse exhibits distinctive "regimes" of operation depending on whether ATP, neurotransmitter (glutamate), both, or neither, is limiting. Our model qualitatively matches the behavior of six disparate experimental systems, including both in vitro and in vivo models, without changing any model parameters except those related to the experimental conditions. We also explore the effects of varying different critical parameters within the model. Here we show that availability of energy, represented by ATP, and glutamate for neurotransmission at the cellular level are intimately related, and are capable of promoting state transitions at the network level as ignition and extinction phenomena. Our model is complementary to existing models of neuronal up and down states in that it focuses on cellular-level dynamics while still retaining essential network-level processes. Our model predicts the existence of a "final common pathway" of behavior at the tripartite synapse arising from scarcity of resources and may explain use dependence in the phenomenon of "local sleep." Ultimately, sleeplike behavior may be a fundamental property of networks of tripartite synapses.
Collapse
Affiliation(s)
- Shubhada N Joshi
- National Center for Adaptive Neurotechnologies (NCAN), David Axelrod Institute, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, New York 12208, USA
| | - Aditya N Joshi
- Stanford University School of Medicine, 300 Pasteur Dr., Stanford, California 94305, USA
| | - Narendra D Joshi
- General Electric Global Research, 1 Research Circle, Niskayuna, New York 12309, USA
| |
Collapse
|
15
|
Singh PK, Saadi A, Sheeni Y, Shekh-Ahmad T. Specific inhibition of NADPH oxidase 2 modifies chronic epilepsy. Redox Biol 2022; 58:102549. [PMID: 36459714 PMCID: PMC9712695 DOI: 10.1016/j.redox.2022.102549] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Recent work by us and others has implicated NADPH oxidase (NOX) enzymes as main producers of reactive oxygen species (ROS) following a brain insult such as status epilepticus, contributing to neuronal damage and development of epilepsy. Although several NOX isoforms have been examined in the context of epilepsy, most attention has focused on NOX2. In this present study, we demonstrate the effect of gp91ds-tat, a specific competitive inhibitor of NOX2, in in vitro epileptiform activity model as well as in temporal lobe epilepsy (TLE) model in rats. We showed that in in vitro seizure model, gp91ds-tat modulated Ca2+ oscillation, prevented epileptiform activity-induced ROS generation, mitochondrial depolarization, and neuronal death. Administration of gp91ds-tat 1 h after kainic acid-induced status epilepticus significantly decreased the expression of NOX2, as well as the overall NOX activity in the cortex and the hippocampus. Finally, we showed that upon continuous intracerebroventricular administration to epileptic rats, gp91ds-tat significantly reduced the seizure frequency and the total number of seizures post-treatment compared to the scrambled peptide-treated animals. The results of the study suggest that NOX2 may have an important effect on modulation of epileptiform activity and has a critical role in mediating seizure-induced NOX activation, ROS generation and oxidative stress in the brain, and thus significantly contributes to development of epilepsy following a brain insult.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- Corresponding author. The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
16
|
Lee SH, Choi BY, Kho AR, Hong DK, Kang BS, Park MK, Lee SH, Choi HC, Song HK, Suh SW. Combined Treatment of Dichloroacetic Acid and Pyruvate Increased Neuronal Survival after Seizure. Nutrients 2022; 14:4804. [PMID: 36432491 PMCID: PMC9698956 DOI: 10.3390/nu14224804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
During seizure activity, glucose and Adenosine triphosphate (ATP) levels are significantly decreased in the brain, which is a contributing factor to seizure-induced neuronal death. Dichloroacetic acid (DCA) has been shown to prevent cell death. DCA is also known to be involved in adenosine triphosphate (ATP) production by activating pyruvate dehydrogenase (PDH), a gatekeeper of glucose oxidation, as a pyruvate dehydrogenase kinase (PDK) inhibitor. To confirm these findings, in this study, rats were given a per oral (P.O.) injection of DCA (100 mg/kg) with pyruvate (50 mg/kg) once per day for 1 week starting 2 h after the onset of seizures induced by pilocarpine administration. Neuronal death and oxidative stress were assessed 1 week after seizure to determine if the combined treatment of pyruvate and DCA increased neuronal survival and reduced oxidative damage in the hippocampus. We found that the combined treatment of pyruvate and DCA showed protective effects against seizure-associated hippocampal neuronal cell death compared to the vehicle-treated group. Treatment with combined pyruvate and DCA after seizure may have a therapeutic effect by increasing the proportion of pyruvate converted to ATP. Thus, the current research demonstrates that the combined treatment of pyruvate and DCA may have therapeutic potential in seizure-induced neuronal death.
Collapse
Affiliation(s)
- Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
- Institute of Sports Science, Hallym University, Chuncheon 24252, Korea
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Si Hyun Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hui Chul Choi
- College of Medicine, Neurology, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| | - Hong Ki Song
- College of Medicine, Neurology, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
17
|
Research progress on oxidative stress regulating different types of neuronal death caused by epileptic seizures. Neurol Sci 2022; 43:6279-6298. [DOI: 10.1007/s10072-022-06302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022]
|
18
|
Bayrak G, Turkyilmaz IB, Yanardag R. The protective effect of vitamin U on pentylenetetrazole-induced brain damage in rats. J Biochem Mol Toxicol 2022; 36:e23169. [PMID: 35833322 DOI: 10.1002/jbt.23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022]
Abstract
Pentylenetetrazole (PTZ) is preferred for experimental epilepsy induction. PTZ damages brain and other organs by elevating oxidative substances. Vitamin U (Vit U) is sulfur derivative substance that proved to be an excellent antioxidant. The current study was intended to determine the protective role of Vit U on PTZ-induced brain damage. Male Sprague-Dawley rats were separated into four groups. The Control group (Group I), was given saline for 7 days intraperitoneally (i.p); Vit U (Group II) was given as 50 mg/kg/day for 7 days by gavage; PTZ was injected into animals (Group III) at a single dose of 60 mg/kg, by i.p; PTZ + Vit U group (Group IV) was administered PTZ and Vit U in same dose and time as aforementioned. After the experiment was terminated, brain tissues were taken for the preparation of homogenates. In the PTZ group, glutathione and lipid peroxidation levels, alkaline phosphatase, myeloperoxidase, xanthine oxidase, acetylcholine esterase, antioxidant enzyme activities, total oxidant status, oxidative stress index, reactive oxygen species, and nitric oxide levels were increased. However, total antioxidant capacity was decreased in the PTZ group. Vit U ameliorated these effects in the PTZ-induced brain damage. Consequently, we can suggest that Vit U protected brain tissue via its antioxidant feature against PTZ kindling epilepsy.
Collapse
Affiliation(s)
- Gamze Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| |
Collapse
|
19
|
Fedotova EI, Dolgacheva LP, Abramov AY, Berezhnov AV. Lactate and Pyruvate Activate Autophagy and Mitophagy that Protect Cells in Toxic Model of Parkinson's Disease. Mol Neurobiol 2021; 59:177-190. [PMID: 34642892 DOI: 10.1007/s12035-021-02583-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022]
Abstract
Intracellular quality control regulated by autophagy process is important for maintenance of cellular homeostasis. Deregulation of autophagy and more specifically mitophagy leads to accumulation of the misfolded proteins and damaged mitochondria that in turn leads to the cell loss. Alteration of autophagy and mitophagy has shown to be involved in the number of disorders including neurodegenerative diseases. Autophagy and mitophagy could be activated by short-time acidification of the cytosol; however, most of the compounds which can induce it are toxic. Here, we tested several organic compounds which are involved in cellular metabolism on their ability to change intracellular pH and induce mitophagy/autophagy. We have found that lactate and pyruvate are able to reduce intracellular pH in non-toxic concentrations. Short-term (2 h) and long-term (24 h) incubation of the cells with lactate and pyruvateinduced mitophagy and autophagy. Incubation of the SH-SY5Y cells or primary neurons and astrocytes with lactate or pyruvate also activated mitophagy and autophagy after MPP + treatment that led to recovery of mitochondrial function and protection of these cells against apoptotic and necrotic death. Thus, pyruvate- or lactate-induced acidification of cytosol activates cell protective mitophagy and autophagy.
Collapse
Affiliation(s)
- Evgeniya I Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290, Pushchino, Russia.,Cell Physiology and Pathology Laboratory, Orel State University, 29 Naugorskoe Highway, 302020, Orel, Russia
| | - Ludmila P Dolgacheva
- Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290, Pushchino, Russia
| | - Andrey Y Abramov
- Cell Physiology and Pathology Laboratory, Orel State University, 29 Naugorskoe Highway, 302020, Orel, Russia.,Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexey V Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290, Pushchino, Russia. .,Cell Physiology and Pathology Laboratory, Orel State University, 29 Naugorskoe Highway, 302020, Orel, Russia.
| |
Collapse
|
20
|
Kamynina A, Esteras N, Koroev DO, Angelova PR, Volpina OM, Abramov AY. Activation of RAGE leads to the release of glutamate from astrocytes and stimulates calcium signal in neurons. J Cell Physiol 2021; 236:6496-6506. [PMID: 33570767 PMCID: PMC8651009 DOI: 10.1002/jcp.30324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/30/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is a signal receptor first shown to be activated by advanced glycation end products, but also by a variety of signal molecules, including pathological advanced oxidation protein products and β-amyloid. However, most of the RAGE activators have multiple intracellular targets, making it difficult to unravel the exact pathway of RAGE activation. Here, we show that the cell-impermeable RAGE fragment sequence (60-76) of the V-domain of the receptor is able to activate RAGE present on the plasma membrane of neurons and, preferentially, astrocytes. This leads to the exocytosis of vesicular glutamate transporter vesicles and the release of glutamate from astrocytes, which stimulate NMDA and AMPA/kainate receptors, resulting in calcium signals predominantly in neurons. Thus, we show a specific mechanism of RAGE activation by the RAGE fragment and propose a mechanism by which RAGE activation can contribute to the neuronal-astrocytic communication in physiology and pathology.
Collapse
Affiliation(s)
- Anna Kamynina
- Research Center for Molecular Mechanisms of Aging and Age Related DiseasesMoscow Institute of Physics and Technology (National Research University)DolgoprudnyRussia
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussia
| | - Noemi Esteras
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, Queen SquareLondonUK
| | - Dmitry O. Koroev
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussia
| | - Plamena R. Angelova
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, Queen SquareLondonUK
| | - Olga M. Volpina
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussia
| | - Andrey Y. Abramov
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, Queen SquareLondonUK
| |
Collapse
|
21
|
Han FY, Conboy‐Schmidt L, Rybachuk G, Volk HA, Zanghi B, Pan Y, Borges K. Dietary medium chain triglycerides for management of epilepsy: New data from human, dog, and rodent studies. Epilepsia 2021; 62:1790-1806. [PMID: 34169513 PMCID: PMC8453917 DOI: 10.1111/epi.16972] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Many studies show that glucose metabolism in epileptic brain areas can be impaired. Energy is crucial to maintain normal brain function, including ion and neurotransmitter balances. Energy deficits can lead to disruption of ion gradients, which can trigger neuronal depolarization and generation of seizures. Thus, perturbed metabolic processing of glucose in epileptogenic brain areas indicates a specific nutritional need for people and animals with epilepsy, as they are likely to benefit from auxiliary brain fuels other than glucose. Ketogenic diets provide the ketone bodies acetoacetate and β-hydroxybutyrate, which can be used as auxiliary fuel by the brain. In approximately 50% children and adults with certain types of epilepsy, who can tolerate and maintain these dietary regimens, seizure frequency can be effectively reduced. More recent data demonstrate that addition of medium chain triglycerides (MCTs), which provide the medium chain fatty acids octanoic and decanoic acid, as well as ketone bodies as auxiliary brain energy, can be beneficial in rodent seizure models, and dogs and humans with epilepsy. Here, this evidence is reviewed, including tolerance in 65% of humans, efficacy studies in dogs, possible anticonvulsant mechanisms of actions of MCTs, and specifically decanoic acid as well as metabolic and antioxidant mechanisms. In conclusion, MCTs are a promising adjunct to standard pharmacological treatment for both humans and dogs with epilepsy, as they lack central nervous system side effects found with current antiepileptic drugs. There is now a need for larger clinical trials in children, adults, and dogs to find the ideal composition and doses of MCTs and the types of epilepsy that respond best.
Collapse
Affiliation(s)
- Felicity Y. Han
- Faculty of MedicineSchool of Biomedical SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
| | | | - Galena Rybachuk
- Technical CommunicationsNestlé Purina PetCare EMENABarcelonaSpain
| | - Holger A. Volk
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary MedicineHanoverGermany
| | - Brian Zanghi
- Research and DevelopmentNestlé Purina PetCareSt. LouisMissouriUSA
| | - Yuanlong Pan
- Research and DevelopmentNestlé Purina PetCareSt. LouisMissouriUSA
| | - Karin Borges
- Faculty of MedicineSchool of Biomedical SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
22
|
Assessment of Mitochondrial Membrane Potential and NADH Redox State in Acute Brain Slices. Methods Mol Biol 2021; 2276:193-202. [PMID: 34060042 DOI: 10.1007/978-1-0716-1266-8_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Brain is one of the most energy-demanding organs. Energy in the form of ATP is produced in brain cells predominantly in oxidative phosphorylation coupled to mitochondrial respiration. Any alteration of the mitochondrial metabolism or prolonged ischemic or anoxic conditions can lead to serious neurological conditions, including neurodegenerative disorders. Assessment of mitochondrial metabolism is important for understanding physiological and pathological processes in the brain. Bioenergetics in central nervous system is dependent on multiple parameters including neuron-glia interactions and considering this, in vivo or ex vivo, the measurements of mitochondrial metabolism should also be complimenting the experiments on isolated mitochondria or cell cultures. To assess the mitochondrial function, there are several key bioenergetic parameters which indicate mitochondrial health. One of the major characteristics of mitochondria is the mitochondrial membrane potential (ΔΨm) which is used as a proton motive force for ATP production and generated by activity of the electron transport chain. Major donor of electrons for the mitochondrial respiratory chain is NADH. Here we demonstrate how to measure mitochondrial NADH/NAD(P)H autofluorescence and ΔΨm in acute brain slices in a time-dependent manner and provide information for the identification of NADH redox index, mitochondrial NADH pool, and the rate of NADH production in the Krebs cycle. Additionally, non-mitochondrial NADH/NADPH autofluorescence can signify the level of activity of the pentose phosphate pathway.
Collapse
|
23
|
Singh S, Singh TG, Rehni AK, Sharma V, Singh M, Kaur R. Reviving mitochondrial bioenergetics: A relevant approach in epilepsy. Mitochondrion 2021; 58:213-226. [PMID: 33775871 DOI: 10.1016/j.mito.2021.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Epileptogenesis is most commonly associated with neurodegeneration and a bioenergetic defect attributing to the fact that mitochondrial dysfunction plays a key precursor for neuronal death. Mitochondria are the essential organelle of neuronal cells necessary for certain neurophysiological processes like neuronal action potential activity and synaptic transmission. The mitochondrial dysfunction disrupts calcium homeostasis leading to inhibitory interneuron dysfunction and increasing the excitatory postsynaptic potential. In epilepsy, the prolonged repetitive neuronal activity increases the excessive demand for energy and acidosis in the brain further increasing the intracellular calcium causing neuronal death. Similarly, the mitochondrial damage also leads to the decline of energy by dysfunction of the electron transport chain and abnormal production of the ROS triggering the apoptotic neuronal death. Thus, the elevated level of cytosolic calcium causes the mitochondria DNA damage coinciding with mtROS and releasing the cytochrome c binding to Apaf protein further initiating the apoptosis resulting in epileptic encephalopathies. The various genetic and mRNA studies of epilepsy have explored the various pathogenic mutations of genes affecting the mitochondria functioning further initiating the neuronal excitotoxicity. Based on the results of previous studies, the recent therapeutic approaches are targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria and hold great promise to attenuate epileptogenesis. Therefore, the current review emphasizes the emerging insights to uncover the relation between mitochondrial dysfunction and ROS generation contributing to mechanisms underlying epileptic seizures.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, FL 33101, USA
| | - Vivek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, 171207, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
24
|
Cheng X, Vinokurov AY, Zherebtsov EA, Stelmashchuk OA, Angelova PR, Esteras N, Abramov AY. Variability of mitochondrial energy balance across brain regions. J Neurochem 2020; 157:1234-1243. [PMID: 33190229 DOI: 10.1111/jnc.15239] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
Brain is not homogenous and neurons from various brain regions are known to have different vulnerabilities to mitochondrial mutations and mitochondrial toxins. However, it is not clear if this vulnerability is connected to different energy metabolism in specific brain regions. Here, using live-cell imaging, we compared mitochondrial membrane potential and nicotinamide adenine dinucleotide (NADH) redox balance in acute rat brain slices in different brain regions and further detailed the mitochondrial metabolism in primary neurons and astrocytes from rat cortex, midbrain and cerebellum. We have found that mitochondrial membrane potential is higher in brain slices from the hippocampus and brain stem. In primary co-cultures, mitochondrial membrane potential in astrocytes was lower than in neurons, whereas in midbrain cells it was higher than in cortex and cerebellum. The rate of NADH production and mitochondrial NADH pool were highest in acute slices from midbrain and midbrain primary neurons and astrocytes. Although the level of adenosine tri phosphate (ATP) was similar among primary neurons and astrocytes from cortex, midbrain and cerebellum, the rate of ATP consumption was highest in midbrain cells that lead to faster neuronal and astrocytic collapse in response to inhibitors of ATP production. Thus, midbrain neurons and astrocytes have a higher metabolic rate and ATP consumption that makes them more vulnerable to energy deprivation.
Collapse
Affiliation(s)
- XinPing Cheng
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Andrey Y Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Evgeniy A Zherebtsov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia.,Optoelectronics and Measurement Techniques Laboratory, University of Oulu, Oulu, Finland
| | - Olga A Stelmashchuk
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| |
Collapse
|
25
|
Rosiglitazone Prevents Autophagy by Regulating Nrf2-Antioxidant Response Element in a Rat Model of Lithium-pilocarpine-induced Status Epilepticus. Neuroscience 2020; 455:212-222. [PMID: 33197503 DOI: 10.1016/j.neuroscience.2020.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022]
Abstract
Status epilepticus (SE) leads to irreversible neuronal damage and consists of a complex pathogenesis that involves oxidative stress and subsequent autophagy. Rosiglitazone has recently been considered as a potential neuroprotective factor in epilepsy because of its antioxidative function. The aim of this study was to assess the effects of rosiglitazone in SE rat models and investigate whether its mechanisms of action involve autophagy via the antioxidant factor, nuclear factor erythroid 2-related factor 2 (Nrf2). The male Sprague-Dawley rats (200-220 g) were used to establish lithium-pilocarpine-induced SE model. We found that rosiglitazone markedly improved neuronal survival at 24-h post-SE as indicated via Hematoxylin-Eosin and Nissl staining. Furthermore, along with a reduction in reactive oxygen species, rosiglitazone pretreatment enhanced the antioxidative activity of superoxide dismutase and the expression level of Nrf2, as detected via chemical assay kits and Western blotting, respectively. In addition, the microtubule-associated protein light chain 3II (LC3II)/LC3I ratio was increased and peaked at 24 h after SE, whereas p62 mRNA levels were sharply elevated at 72 h after SE, both SE-induced increases of which were reversed via rosiglitazone pretreatment. To further test our hypothesis of the key role of Nrf2 in this process, small-interfering RNA for Nrf2 (siNrf2) was then transfected into SE rats to knockdown Nrf2 expression. We found that siNrf2 partially blocked the above effects of rosiglitazone on autophagy-related proteins in SE rats. Taken together, our findings suggest that rosiglitazone attenuates oxidative-stress-induced autophagy via increasing Nrf2 in SE rats and may be used as a promising therapeutic strategy for SE treatment.
Collapse
|
26
|
Nikbakht F, Khanizadeh AM, Golab F, Baluchnejadmojarad T, Vazifehkhah S, Moeinsadat A. Mitochondrial ATP-sensitive potassium channel, MitoKATP, ameliorates mitochondrial dynamic disturbance induced by temporal lobe epilepsy. J Chem Neuroanat 2020; 113:101808. [PMID: 32497687 DOI: 10.1016/j.jchemneu.2020.101808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 01/06/2023]
Abstract
Temporal lobe epilepsy leads to a disturbance in the function and dynamic of the mitochondria. The mitoKATP channel is an important factor in controlling mitochondrial function. In this study, the protective role of mitoKATP was studied in temporal lobe epilepsy through the regulation of mitochondrial dynamic proteins. After induction of epilepsy, 5-HD (the inhibitor of mitoKATP) was administered daily for either 24 or 72 h. The results revealed an imbalance in dynamic proteins after epilepsy, specifically in the first 72 h. The disturbance in the mitochondrial dynamic worsened after blocking mitoKATP. In conclusion, mitoKATP has an important role in balancing mitochondrial dynamic proteins in epilepsy.
Collapse
Affiliation(s)
- Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Khanizadeh
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine Iran University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Golab
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Tourandokht Baluchnejadmojarad
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Vazifehkhah
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moeinsadat
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, Pinto S, Morais TP, Martins RS, Ribeiro FF, Sebastião AM, Crunelli V, Vaz SH. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:90. [PMID: 32390802 PMCID: PMC7194075 DOI: 10.3389/fncel.2020.00090] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Excitotoxicity is a phenomenon that describes the toxic actions of excitatory neurotransmitters, primarily glutamate, where the exacerbated or prolonged activation of glutamate receptors starts a cascade of neurotoxicity that ultimately leads to the loss of neuronal function and cell death. In this process, the shift between normal physiological function and excitotoxicity is largely controlled by astrocytes since they can control the levels of glutamate on the synaptic cleft. This control is achieved through glutamate clearance from the synaptic cleft and its underlying recycling through the glutamate-glutamine cycle. The molecular mechanism that triggers excitotoxicity involves alterations in glutamate and calcium metabolism, dysfunction of glutamate transporters, and malfunction of glutamate receptors, particularly N-methyl-D-aspartic acid receptors (NMDAR). On the other hand, excitotoxicity can be regarded as a consequence of other cellular phenomena, such as mitochondrial dysfunction, physical neuronal damage, and oxidative stress. Regardless, it is known that the excessive activation of NMDAR results in the sustained influx of calcium into neurons and leads to several deleterious consequences, including mitochondrial dysfunction, reactive oxygen species (ROS) overproduction, impairment of calcium buffering, the release of pro-apoptotic factors, among others, that inevitably contribute to neuronal loss. A large body of evidence implicates NMDAR-mediated excitotoxicity as a central mechanism in the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and epilepsy. In this review article, we explore different causes and consequences of excitotoxicity, discuss the involvement of NMDAR-mediated excitotoxicity and its downstream effects on several neurodegenerative disorders, and identify possible strategies to study new aspects of these diseases that may lead to the discovery of new therapeutic approaches. With the understanding that excitotoxicity is a common denominator in neurodegenerative diseases and other disorders, a new perspective on therapy can be considered, where the targets are not specific symptoms, but the underlying cellular phenomena of the disease.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Joana I. Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Campos Pina
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Oksana K. Savchak
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sara Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tatiana P. Morais
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Robertta Silva Martins
- Laboratório de Neurofarmacologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sandra H. Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
28
|
Cellular mechanisms of complex I-associated pathology. Biochem Soc Trans 2020; 47:1963-1969. [PMID: 31769488 DOI: 10.1042/bst20191042] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022]
Abstract
Mitochondria control vitally important functions in cells, including energy production, cell signalling and regulation of cell death. Considering this, any alteration in mitochondrial metabolism would lead to cellular dysfunction and the development of a disease. A large proportion of disorders associated with mitochondria are induced by mutations or chemical inhibition of the mitochondrial complex I - the entry point to the electron transport chain. Subunits of the enzyme NADH: ubiquinone oxidoreductase, are encoded by both nuclear and mitochondrial DNA and mutations in these genes lead to cardio and muscular pathologies and diseases of the central nervous system. Despite such a clear involvement of complex I deficiency in numerous disorders, the molecular and cellular mechanisms leading to the development of pathology are not very clear. In this review, we summarise how lack of activity of complex I could differentially change mitochondrial and cellular functions and how these changes could lead to a pathology, following discrete routes.
Collapse
|
29
|
Morris G, Puri BK, Carvalho A, Maes M, Berk M, Ruusunen A, Olive L. Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought? Int J Neuropsychopharmacol 2020; 23:366-384. [PMID: 32034911 PMCID: PMC7311648 DOI: 10.1093/ijnp/pyaa008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Induced ketosis (or ketone body ingestion) can ameliorate several changes associated with neuroprogressive disorders, including schizophrenia, bipolar disorder, and major depressive disorder. Thus, the effects of glucose hypometabolism can be bypassed through the entry of beta-hydroxybutyrate, providing an alternative source of energy to glucose. The weight of evidence suggests that induced ketosis reduces levels of oxidative stress, mitochondrial dysfunction, and inflammation-core features of the above disorders. There are also data to suggest that induced ketosis may be able to target other molecules and signaling pathways whose levels and/or activity are also known to be abnormal in at least some patients suffering from these illnesses such as peroxisome proliferator-activated receptors, increased activity of the Kelch-like ECH-associated protein/nuclear factor erythroid 2-related factor 2, Sirtuin-1 nuclear factor-κB p65, and nicotinamide adenine dinucleotide (NAD). This review explains the mechanisms by which induced ketosis might reduce mitochondrial dysfunction, inflammation, and oxidative stress in neuropsychiatric disorders and ameliorate abnormal levels of molecules and signaling pathways that also appear to contribute to the pathophysiology of these illnesses. This review also examines safety data relating to induced ketosis over the long term and discusses the design of future studies.
Collapse
Affiliation(s)
- Gerwyn Morris
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Basant K Puri
- C.A.R., Cambridge, United Kingdom,Hammersmith Hospital, London, United Kingdom
| | - Andre Carvalho
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Maes
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Australia,Correspondence: Michael Berk, PO Box 281 Geelong, Victoria 3220 Australia ()
| | - Anu Ruusunen
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Lisa Olive
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| |
Collapse
|
30
|
Tau inhibits mitochondrial calcium efflux and makes neurons vulnerable to calcium-induced cell death. Cell Calcium 2019; 86:102150. [PMID: 31918031 DOI: 10.1016/j.ceca.2019.102150] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022]
Abstract
Aggregation or phosphorylation of the microtubule-associated protein tau is the pathological hallmark in a number of diseases termed tauopathies, which include the most common neurodegenerative disorder, Alzheimer's disease; or frontotemporal dementia, linked to mutations in the gene MAPT encoding tau. Although misfolded tau has strong familial and histopathological (as in intracellular tangles) association with neurodegenerative disorders, the cellular mechanism of tau-induced pathology remains to be controversial. Here we studied the effect of tau on the cytosolic and mitochondrial calcium homeostasis using primary cortical cultures treated with the protein and iPSC-derived neurons bearing the 10 + 16 MAPT mutation linked to frontotemporal dementia. We found that incubation of the primary cortical co-cultures of neurons and astrocytes with tau induced spontaneous Ca2+ oscillations in the neurons, which were also observed in iPSC-neurons with the 10 + 16 MAPT mutation. Importantly, tau inhibited mitochondrial calcium efflux via the mitochondrial Na+/Ca2+ exchanger (NCLX) in both neurons and astrocytes. This inhibition led to mitochondrial depolarisation in response to physiological and pathological calcium stimuli and made these cells vulnerable to calcium-induced caspase 3 activation and cell death. Thus, inhibition of the mitochondrial NCLX in neurons with misfolded or mutated tau can be involved in the mechanism of neurodegeneration.
Collapse
|
31
|
Shekh-Ahmad T, Kovac S, Abramov AY, Walker MC. Reactive oxygen species in status epilepticus. Epilepsy Behav 2019; 101:106410. [PMID: 31378559 DOI: 10.1016/j.yebeh.2019.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/04/2019] [Indexed: 12/30/2022]
Abstract
There has been growing evidence for a critical role of oxidative stress in neurodegenerative disease, providing novel targets for disease modifying treatments. Although antioxidants have been suggested and tried in the treatment of epilepsy, it is only recently that the pivotal role of oxidative stress in the pathophysiology of status epilepticus has been recognized. Although conventionally thought to be generated by mitochondria, reactive oxygen species during status epilepticus and prolonged seizure are generated mainly by NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (stimulated by NMDA receptor activation). Excessive production of reactive oxygen species results in lipid peroxidation, DNA damage, enzyme inhibition, and mitochondrial damage, culminating in neuronal death. Antioxidant therapy has been hampered by poor CNS penetration and rapid consumption by oxidants. However, alternative approaches such as inhibiting NADPH oxidase or increasing endogenous antioxidant defenses through activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) could avoid these problems. Small molecules that increase Nrf2 activation have proven to be not only effective neuroprotectants following status epilepticus, but also potently antiepileptogenic. There are "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".
Collapse
Affiliation(s)
- T Shekh-Ahmad
- Department of Clinical and Experimental Epilepsy, Queen Square UCL Institute of Neurology, University College London, London, UK; Department of Neurology, University of Muenster, Muenster, Germany
| | - S Kovac
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, UK
| | - M C Walker
- Department of Clinical and Experimental Epilepsy, Queen Square UCL Institute of Neurology, University College London, London, UK.
| |
Collapse
|
32
|
von Rüden EL, Zellinger C, Gedon J, Walker A, Bierling V, Deeg CA, Hauck SM, Potschka H. Regulation of Alzheimer's disease-associated proteins during epileptogenesis. Neuroscience 2019; 424:102-120. [PMID: 31705965 DOI: 10.1016/j.neuroscience.2019.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Clinical evidence and pathological studies suggest a bidirectional link between temporal lobe epilepsy and Alzheimer's disease (AD). Data analysis from omic studies offers an excellent opportunity to identify the overlap in molecular alterations between the two pathologies. We have subjected proteomic data sets from a rat model of epileptogenesis to a bioinformatics analysis focused on proteins functionally linked with AD. The data sets have been obtained for hippocampus (HC) and parahippocampal cortex samples collected during the course of epileptogenesis. Our study confirmed a relevant dysregulation of proteins linked with Alzheimer pathogenesis. When comparing the two brain areas, a more prominent regulation was evident in parahippocampal cortex samples as compared to the HC. Dysregulated protein groups comprised those affecting mitochondrial function and calcium homeostasis. Differentially expressed mitochondrial proteins included proteins of the mitochondrial complexes I, III, IV, and V as well as of the accessory subunit of complex I. The analysis also revealed a regulation of the microtubule associated protein Tau in parahippocampal cortex tissue during the latency phase. This was further confirmed by immunohistochemistry. Moreover, we demonstrated a complex epileptogenesis-associated dysregulation of proteins involved in amyloid β processing and its regulation. Among others, the amyloid precursor protein and the α-secretase alpha disintegrin metalloproteinase 17 were included. Our analysis revealed a relevant regulation of key proteins known to be associated with AD pathogenesis. The analysis provides a comprehensive overview of shared molecular alterations characterizing epilepsy development and manifestation as well as AD development and progression.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christina Zellinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Julia Gedon
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Bierling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
33
|
Zhang Y, Zhang M, Zhu W, Yu J, Wang Q, Zhang J, Cui Y, Pan X, Gao X, Sun H. Succinate accumulation induces mitochondrial reactive oxygen species generation and promotes status epilepticus in the kainic acid rat model. Redox Biol 2019; 28:101365. [PMID: 31707354 PMCID: PMC6854095 DOI: 10.1016/j.redox.2019.101365] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022] Open
Abstract
Though succinate accumulation is associated with reactive oxygen species (ROS) production and neuronal injury, which play critical roles in epilepsy, it is unclear whether succinate accumulation contributes to the onset of epilepsy or seizures. We sought to investigate changes in succinate, oxidative stress, and mito-SOX levels, as well as mitophagy and neuronal change, in different status epilepticus (SE) rat models. Our results demonstrate that KA-induced SE was accompanied by increased levels of succinate, oxidative stress, and mito-SOX, as well as mitophagy and neuronal degeneration. The similarly increased levels of succinate, oxidative stress, and mito-SOX were also found in pilocarpine-induced SE. Moreover, the reduction of succinate accumulation by the inhibition of succinate dehydrogenase (SDH), malate/aspartate shuttle (MAS), or purine nucleotide cycle (PNC) served to reduce succinate, oxidative stress, and mito-SOX levels, thereby preventing oxidative stress-related neuronal damage and lessening seizure severity. Interestingly, simulating succinate accumulation with succinic acid dimethyl ester may induce succinate accumulation and increased oxidative stress and mito-SOX levels, as well as behavior and seizures in electroencephalograms similar to those observed in rats exposed to KA. Our results indicate that succinate accumulation may contribute to the increased oxidative stress/mitochondrial ROS levels, neuronal degeneration, and SE induced by KA administration. Furthermore, we found that succinate accumulation was mainly due to the inverse catalysis of SDH from fumarate, which was supplemented by the MAS and PNC pathways. These results reveal new insights into the mechanisms underlying SE and that reducing succinate accumulation may be a clinically useful therapeutic target in SE. KA- or pilocarpine-induced SE was accompanied by succinate accumulation. Succinate accumulation caused elevated ROS/mito-ROS levels and neuronal injury. Inverse catalysis of SDH from fumarate mainly caused succinate accumulation. Inhibiting succinate accumulation relieved oxidative stress level, neuronal injury, and seizure. Simulating succinate accumulation induced elevated oxidative stress level and seizure.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jinjin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
34
|
Yang H, Shan W, Zhu F, Wu J, Wang Q. Ketone Bodies in Neurological Diseases: Focus on Neuroprotection and Underlying Mechanisms. Front Neurol 2019; 10:585. [PMID: 31244753 PMCID: PMC6581710 DOI: 10.3389/fneur.2019.00585] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
There is growing evidence that ketone bodies, which are derived from fatty acid oxidation and usually produced in fasting state or on high-fat diets have broad neuroprotective effects. Although the mechanisms underlying the neuroprotective effects of ketone bodies have not yet been fully elucidated, studies in recent years provided abundant shreds of evidence that ketone bodies exert neuroprotective effects through possible mechanisms of anti-oxidative stress, maintaining energy supply, modulating the activity of deacetylation and inflammatory responses. Based on the neuroprotective effects, the ketogenic diet has been used in the treatment of several neurological diseases such as refractory epilepsy, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. The ketogenic diet has great potential clinically, which should be further explored in future studies. It is necessary to specify the roles of components in ketone bodies and their therapeutic targets and related pathways to optimize the strategy and efficacy of ketogenic diet therapy in the future.
Collapse
Affiliation(s)
- Huajun Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fei Zhu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Zhou Z, Austin GL, Young LEA, Johnson LA, Sun R. Mitochondrial Metabolism in Major Neurological Diseases. Cells 2018; 7:E229. [PMID: 30477120 PMCID: PMC6316877 DOI: 10.3390/cells7120229] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondria are bilayer sub-cellular organelles that are an integral part of normal cellular physiology. They are responsible for producing the majority of a cell's ATP, thus supplying energy for a variety of key cellular processes, especially in the brain. Although energy production is a key aspect of mitochondrial metabolism, its role extends far beyond energy production to cell signaling and epigenetic regulation⁻functions that contribute to cellular proliferation, differentiation, apoptosis, migration, and autophagy. Recent research on neurological disorders suggest a major metabolic component in disease pathophysiology, and mitochondria have been shown to be in the center of metabolic dysregulation and possibly disease manifestation. This review will discuss the basic functions of mitochondria and how alterations in mitochondrial activity lead to neurological disease progression.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Grant L Austin
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lyndsay E A Young
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA.
| | - Ramon Sun
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
36
|
Kovács R, Gerevich Z, Friedman A, Otáhal J, Prager O, Gabriel S, Berndt N. Bioenergetic Mechanisms of Seizure Control. Front Cell Neurosci 2018; 12:335. [PMID: 30349461 PMCID: PMC6187982 DOI: 10.3389/fncel.2018.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Collapse
Affiliation(s)
- Richard Kovács
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Zoltan Gerevich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Siegrun Gabriel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| |
Collapse
|
37
|
McDonald T, Puchowicz M, Borges K. Impairments in Oxidative Glucose Metabolism in Epilepsy and Metabolic Treatments Thereof. Front Cell Neurosci 2018; 12:274. [PMID: 30233320 PMCID: PMC6127311 DOI: 10.3389/fncel.2018.00274] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
There is mounting evidence that oxidative glucose metabolism is impaired in epilepsy and recent work has further characterized the metabolic mechanisms involved. In healthy people eating a traditional diet, including carbohydrates, fats and protein, the major energy substrate in brain is glucose. Cytosolic glucose metabolism generates small amounts of energy, but oxidative glucose metabolism in the mitochondria generates most ATP, in addition to biosynthetic precursors in cells. Energy is crucial for the brain to signal "normally," while loss of energy can contribute to seizure generation by destabilizing membrane potentials and signaling in the chronic epileptic brain. Here we summarize the known biochemical mechanisms that contribute to the disturbance in oxidative glucose metabolism in epilepsy, including decreases in glucose transport, reduced activity of particular steps in the oxidative metabolism of glucose such as pyruvate dehydrogenase activity, and increased anaplerotic need. This knowledge justifies the use of alternative brain fuels as sources of energy, such as ketones, TCA cycle intermediates and precursors as well as even medium chain fatty acids and triheptanoin.
Collapse
Affiliation(s)
- Tanya McDonald
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Gano LB, Liang LP, Ryan K, Michel CR, Gomez J, Vassilopoulos A, Reisdorph N, Fritz KS, Patel M. Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy. Free Radic Biol Med 2018; 123:116-124. [PMID: 29778462 PMCID: PMC6082368 DOI: 10.1016/j.freeradbiomed.2018.05.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
Impaired bioenergetics and oxidative damage in the mitochondria are implicated in the etiology of temporal lobe epilepsy, and hyperacetylation of mitochondrial proteins has recently emerged as a critical negative regulator of mitochondrial functions. However, the roles of mitochondrial acetylation and activity of the primary mitochondrial deacetylase, SIRT3, have not been explored in acquired epilepsy. We investigated changes in mitochondrial acetylation and SIRT3 activity in the development of chronic epilepsy in the kainic acid rat model of TLE. Hippocampal measurements were made at 48 h, 1 week and 12 weeks corresponding to the acute, latent and chronic stages of epileptogenesis. Assessment of hippocampal bioenergetics demonstrated a ≥ 27% decrease in the ATP/ADP ratio at all phases of epileptogenesis (p < 0.05), whereas cellular NAD+ levels were decreased by ≥ 41% in the acute and latent time points (p < 0.05), but not in chronically epileptic rats. In spontaneously epileptic rats, we found decreased protein expression of SIRT3 and a 60% increase in global mitochondrial acetylation, as well as enhanced acetylation of the known SIRT3 substrates MnSOD, Ndufa9 of Complex I and IDH2 (all p < 0.05), suggesting SIRT3 dysfunction in chronic epilepsy. Mass spectrometry-based acetylomics investigation of hippocampal mitochondria demonstrated a 79% increase in unique acetylated proteins from rats in the chronic phase vs. controls. Pathway analysis identified numerous mitochondrial bioenergetic pathways affected by mitochondrial acetylation. These results suggest SIRT3 dysfunction and aberrant protein acetylation may contribute to mitochondrial dysfunction in chronic epilepsy.
Collapse
Affiliation(s)
- Lindsey B Gano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen Ryan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Athanassios Vassilopoulos
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
39
|
Angelova PR, Vinogradova D, Neganova ME, Serkova TP, Sokolov VV, Bachurin SO, Shevtsova EF, Abramov AY. Pharmacological Sequestration of Mitochondrial Calcium Uptake Protects Neurons Against Glutamate Excitotoxicity. Mol Neurobiol 2018; 56:2244-2255. [PMID: 30008072 PMCID: PMC6394642 DOI: 10.1007/s12035-018-1204-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022]
Abstract
Neuronal excitotoxicity which is induced by exposure to excessive extracellular glutamate is shown to be involved in neuronal cell death in acute brain injury and a number of neurological diseases. High concentration of glutamate induces calcium deregulation which results in mitochondrial calcium overload and mitochondrial depolarization that triggers the mechanism of cell death. Inhibition of mitochondrial calcium uptake could be potentially neuroprotective but complete inhibition of mitochondrial calcium uniporter could result in the loss of some physiological processes linked to Ca2+ in mitochondria. Here, we found that a novel compound, TG-2112x, can inhibit only the lower concentrations mitochondrial calcium uptake (induced by 100 nM-5 μM) but not the uptake induced by higher concentrations of calcium (10 μM and higher). This effect was not associated with changes in mitochondrial membrane potential and cellular respiration. However, a pre-treatment of neurons with TG-2112x protected the neurons against calcium overload upon application of toxic concentrations of glutamate. Thus, sequestration of mitochondrial calcium uptake protected the neurons against glutamate-induced mitochondrial depolarization and cell death. In our hands, TG-2112x was also protective against ionomycin-induced cell death. Hence, low rate mitochondrial calcium uptake plays an underestimated role in mitochondrial function, and its inhibition could protect neurons against calcium overload and cell death in glutamate excitotoxicity.
Collapse
Affiliation(s)
- Plamena R Angelova
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Darya Vinogradova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Tatiana P Serkova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Vladimir V Sokolov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Elena F Shevtsova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia.
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
40
|
Erdogan MA, Yusuf D, Christy J, Solmaz V, Erdogan A, Taskiran E, Erbas O. Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol 2018; 18:81. [PMID: 29879920 PMCID: PMC5991447 DOI: 10.1186/s12883-018-1086-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/30/2018] [Indexed: 01/03/2023] Open
Abstract
Background Worldwide, over 10 million individuals suffer from drug-resistant epilepsy. New therapeutic strategies are needed to address this debilitating disease. Inhibition of sodium-glucose linked transporters (SGLTs), which are variably expressed in the brain, has been demonstrated to reduce seizure activity in murine models of epilepsy. Here we investigated the effects of dapagliflozin, a highly competitive SGLT2 inhibitor currently used as a drug for diabetes mellitus, on seizure activity in rats with pentylenetetrazol (PTZ) induced seizures. Methods Laboratory rats (n = 48) were evenly randomized into two experiments, each with four study arms: (1) a vehicle-treated (placebo) arm infused with saline; (2) a control arm infused with PTZ; (3) a treatment arm with PTZ and dapagliflozin at 75 mg/kg, and (4) another treatment arm with PTZ and dapagliflozin at 150 mg/kg. Study subjects were assessed for seizures either via EEG as measured by spike wave percentage (SWP), or clinically via Racine’s scales scores (RSS) and time to first myoclonic jerk (TFMJ). Results Rats treated with dapagliflozin had lower mean SWP on EEG (20.4% versus 75.3% for untreated rats). Behaviorally, treatment with dapagliflozin improved means RSS (2.33 versus 5.5) and mean TFMJ (68.3 versus 196.7 s). All of these findings were statistically significant with p-values of < 0.0001. There was a trend towards even better seizure control with the higher dose of dapagliflozin at 150 mg/kg, however this was not consistently statistically significant. Conclusions Dapagliflozin decreased seizure activity in rats with PTZ–induced seizures. This may be explained by the anti-seizure effects of decreased glucose availability and a reduction in sodium transport across neuronal membranes which can confer a stabilizing effect against excitability and unwanted depolarization. The potential clinical role of dapagliflozin and other SGLT2 inhibitors as anti-seizure medications should be further explored.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Dimas Yusuf
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Volkan Solmaz
- Department of Neurology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Arife Erdogan
- Department of Emergency Medicine, Izmir Bozyaka Training and Research Hospital, Izmir, Turkey
| | - Emin Taskiran
- Department of Internal Medicine, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Bilim University, Istanbul, Turkey
| |
Collapse
|
41
|
Shekh-Ahmad T, Eckel R, Dayalan Naidu S, Higgins M, Yamamoto M, Dinkova-Kostova AT, Kovac S, Abramov AY, Walker MC. KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy. Brain 2018; 141:1390-1403. [PMID: 29538645 DOI: 10.1093/brain/awy071] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/19/2018] [Indexed: 02/11/2024] Open
Abstract
Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.
Collapse
Affiliation(s)
- Tawfeeq Shekh-Ahmad
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| | - Ramona Eckel
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, Scotland, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
- Department of Neurology, University of Muenster, Muenster 48149, Germany
| | - Andrey Y Abramov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| | - Matthew C Walker
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| |
Collapse
|
42
|
Kovac S, Preza E, Houlden H, Walker MC, Abramov AY. Impaired Bioenergetics in Mutant Mitochondrial DNA Determines Cell Fate During Seizure-Like Activity. Mol Neurobiol 2018; 56:321-334. [PMID: 29704197 DOI: 10.1007/s12035-018-1078-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022]
Abstract
Mutations in genes affecting mitochondrial proteins are increasingly recognised in patients with epilepsy, but the factors determining cell fate during seizure activity in these mutations remain unknown. Fluorescent dye imaging techniques were applied to fibroblast cell lines from patients suffering from common mitochondrial mutations and to age-matched controls. Using live cell imaging techniques in fibroblasts, we show that fibroblasts with mutations in the mitochondrial genome had reduced mitochondrial membrane potential and NADH pools and higher redox indices, indicative of respiratory chain dysfunction. Increasing concentrations of ferutinin, a Ca2+ ionophore, led to oscillatory Ca2+ signals in fibroblasts resembling dynamic Ca2+ changes that occur during seizure-like activity. Co-monitoring of mitochondrial membrane potential (ΔΨm) changes induced by ferutinin showed accelerated membrane depolarisation and cell collapse in fibroblasts with mutations in the mitochondrial genome when compared to controls. Ca2+ flash photolysis using caged Ca2+ confirmed impaired Ca2+ handling in fibroblasts with mitochondrial mutations. Findings indicate that intracellular Ca2+ levels cannot be compensated during periods of hyperexcitability, leading to Ca2+ overload and subsequent cell death in mitochondrial diseases.
Collapse
Affiliation(s)
- Stjepana Kovac
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK.
- Department of Neurology, University of Muenster, Muenster, Germany.
| | | | - Henry Houlden
- Department of Molecular Neuroscience, UCL, London, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
43
|
Berezhnaya E, Neginskaya M, Uzdensky AB, Abramov AY. Photo-Induced Oxidative Stress Impairs Mitochondrial Metabolism in Neurons and Astrocytes. Mol Neurobiol 2018; 55:90-95. [PMID: 28840566 PMCID: PMC5808065 DOI: 10.1007/s12035-017-0720-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy is selective destruction of cells stained with a photosensitizer upon irradiation with light at a specific wavelength in the presence of oxygen. Cell death upon photodynamic treatment is known to occur mainly due to free radical production and subsequent development of oxidative stress. During photodynamic therapy of brain tumors, healthy cells are also damaged; considering this, it is important to investigate the effect of the treatment on normal neurons and glia. We employed live-cell imaging technique to investigate the cellular mechanism of photodynamic action of radachlorin (200 nM) on neurons and astrocytes in primary rat cell culture. We found that the photodynamic effect of radachlorin increases production of reactive oxygen species measured by dihydroethidium and significantly decrease mitochondrial membrane potential. Mitochondrial depolarization was independent of opening of mitochondrial permeability transition pore and was insensitive to blocker of this pore cyclosporine A. However, irradiation of cells with radachlorin dramatically decreased NADH autofluorescence and also reduced mitochondrial NADH pool suggesting inhibition of mitochondrial respiration by limitation of substrate. This effect could be prevented by inhibition of poly (ADP-ribose) polymerase (PARP) with DPQ. Thus, irradiation of neurons and astrocytes in the presence of radachlorin leads to activation of PARP and decrease in NADH that leads to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elena Berezhnaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, Rostov-on-Don, 344090, Russia.
| | - Maria Neginskaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - Anatoly B Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
44
|
Kovac S, Dinkova Kostova AT, Herrmann AM, Melzer N, Meuth SG, Gorji A. Metabolic and Homeostatic Changes in Seizures and Acquired Epilepsy-Mitochondria, Calcium Dynamics and Reactive Oxygen Species. Int J Mol Sci 2017; 18:E1935. [PMID: 28885567 PMCID: PMC5618584 DOI: 10.3390/ijms18091935] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Acquired epilepsies can arise as a consequence of brain injury and result in unprovoked seizures that emerge after a latent period of epileptogenesis. These epilepsies pose a major challenge to clinicians as they are present in the majority of patients seen in a common outpatient epilepsy clinic and are prone to pharmacoresistance, highlighting an unmet need for new treatment strategies. Metabolic and homeostatic changes are closely linked to seizures and epilepsy, although, surprisingly, no potential treatment targets to date have been translated into clinical practice. We summarize here the current knowledge about metabolic and homeostatic changes in seizures and acquired epilepsy, maintaining a particular focus on mitochondria, calcium dynamics, reactive oxygen species and key regulators of cellular metabolism such as the Nrf2 pathway. Finally, we highlight research gaps that will need to be addressed in the future which may help to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Stjepana Kovac
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Albena T Dinkova Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
- Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | - Nico Melzer
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Sven G Meuth
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Ali Gorji
- Department of Neurology, University of Münster, 48149 Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996836111, Iran.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- Department of Neurosurgery, University of Münster, 48149 Münster, Germany.
- Epilepsy Research Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
45
|
Neginskaya M, Berezhnaya E, Uzdensky AB, Abramov AY. Reactive Oxygen Species Produced by a Photodynamic Effect Induced Calcium Signal in Neurons and Astrocytes. Mol Neurobiol 2017; 55:96-102. [DOI: 10.1007/s12035-017-0721-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Paleologou E, Ismayilova N, Kinali M. Use of the Ketogenic Diet to Treat Intractable Epilepsy in Mitochondrial Disorders. J Clin Med 2017; 6:E56. [PMID: 28587136 PMCID: PMC5483866 DOI: 10.3390/jcm6060056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial disorders are a clinically heterogeneous group of disorders that are caused by defects in the respiratory chain, the metabolic pathway of the adenosine tri-phosphate (ATP) production system. Epilepsy is a common and important feature of these disorders and its management can be challenging. Epileptic seizures in the context of mitochondrial disease are usually treated with conventional anti-epileptic medication, apart from valproic acid. However, in accordance with the treatment of intractable epilepsy where there are limited treatment options, the ketogenic diet (KD) has been considered as an alternative therapy. The use of the KD and its more palatable formulations has shown promising results. It is especially indicated and effective in the treatment of mitochondrial disorders due to complex I deficiency. Further research into the mechanism of action and the neuroprotective properties of the KD will allow more targeted therapeutic strategies and thus optimize the treatment of both epilepsy in the context of mitochondrial disorders but also in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Eleni Paleologou
- Chelsea and Westmister Hospital, 369 Fulham road, Chelsea, London SW10 9NH, UK.
| | - Naila Ismayilova
- Chelsea and Westmister Hospital, 369 Fulham road, Chelsea, London SW10 9NH, UK.
| | - Maria Kinali
- Chelsea and Westmister Hospital, 369 Fulham road, Chelsea, London SW10 9NH, UK.
| |
Collapse
|
47
|
Venediktova NI, Gorbacheva OS, Belosludtseva NV, Fedotova IB, Surina NM, Poletaeva II, Kolomytkin OV, Mironova GD. Energetic, oxidative and ionic exchange in rat brain and liver mitochondria at experimental audiogenic epilepsy (Krushinsky-Molodkina model). J Bioenerg Biomembr 2017; 49:149-158. [PMID: 28070860 DOI: 10.1007/s10863-016-9693-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/30/2016] [Indexed: 01/02/2023]
Abstract
The role of brain and liver mitochondria at epileptic seizure was studied on Krushinsky-Molodkina (KM) rats which respond to sound with an intensive epileptic seizure (audiogenic epilepsy). We didn't find significant changes in respiration rats of brain and liver mitochondria of KM and control rats; however the efficiency of АТР synthesis in the KM rat mitochondria was 10% lower. In rats with audiogenic epilepsy the concentration of oxidative stress marker malondialdehyde in mitochondria of the brain (but not liver) was 2-fold higher than that in the control rats. The rate of H2O2 generation in brain mitochondria of КМ rats was twofold higher than in the control animals when using NAD-dependent substrates. This difference was less pronounced in liver mitochondria. In KM rats, the activity of mitochondrial ATP-dependent potassium channel was lower than in liver mitochondria of control rats. The comparative study of the mitochondria ability to retain calcium ions revealed that in the case of using the complex I and complex II substrates, permeability transition pore is easier to trigger in brain and liver mitochondria of KM and КМs rats than in the control ones. The role of the changes in the energetic, oxidative, and ionic exchange in the mechanism of audiogenic epilepsy generation in rats and the possible correction of the epilepsy seizures are discussed.
Collapse
Affiliation(s)
- Natalya I Venediktova
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia.
| | - Olga S Gorbacheva
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia
| | - Irina B Fedotova
- Biology Department, Laboratory for Physiology and Genetics of Behavior, Lomonosov Moscow State University, Leninskie Gory, 1, Build. 12, Moscow, 119992, Russia
| | - Natalia M Surina
- Biology Department, Laboratory for Physiology and Genetics of Behavior, Lomonosov Moscow State University, Leninskie Gory, 1, Build. 12, Moscow, 119992, Russia
| | - Inga I Poletaeva
- Biology Department, Laboratory for Physiology and Genetics of Behavior, Lomonosov Moscow State University, Leninskie Gory, 1, Build. 12, Moscow, 119992, Russia
| | - Oleg V Kolomytkin
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia
| | - Galina D Mironova
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
48
|
Engel T, Martinez-Villarreal J, Henke C, Jimenez-Mateos EM, Sanz-Rodriguez A, Alves M, Hernandez-Santana Y, Brennan GP, Kenny A, Campbell A, Lucas JJ, Henshall DC. Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury. Mol Neurodegener 2017; 12:21. [PMID: 28235423 PMCID: PMC5324261 DOI: 10.1186/s13024-017-0163-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/17/2017] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND The ubiquitin-proteasome-system (UPS) is the major intracellular pathway leading to the degradation of unwanted and/or misfolded soluble proteins. This includes proteins regulating cellular survival, synaptic plasticity and neurotransmitter signaling; processes controlling excitability thresholds that are altered by epileptogenic insults. Dysfunction of the UPS has been reported to occur in a brain region- and cell-specific manner and contribute to disease progression in acute and chronic brain diseases. Prolonged seizures, status epilepticus, may alter UPS function but there has been no systematic attempt to map when and where this occurs in vivo or to determine the consequences of proteasome inhibition on seizure-induced brain injury. METHOD To determine whether seizures lead to an impairment of the UPS, we used a mouse model of status epilepticus whereby seizures are triggered by an intra-amygdala injection of kainic acid. Status epilepticus in this model causes cell death in selected brain areas, in particular the ipsilateral CA3 subfield of the hippocampus, and the development of epilepsy after a short latent period. To monitor seizure-induced dysfunction of the UPS we used a UPS inhibition reporter mouse expressing the ubiquitin fusion degradation substrate ubiquitinG76V-green fluorescent protein. Treatment with the specific proteasome inhibitor epoxomicin was used to establish the impact of proteasome inhibition on seizure-induced pathology. RESULTS AND CONCLUSIONS Our studies show that status epilepticus induced by intra-amygdala kainic acid causes select spatio-temporal UPS inhibition which is most evident in damage-resistant regions of the hippocampus, including CA1 pyramidal and dentate granule neurons then appears later in astrocytes. In support of this exerting a beneficial effect, injection of mice with the proteasome inhibitor epoxomicin protected the normally vulnerable hippocampal CA3 subfield from seizure-induced neuronal death in the model. These studies reveal brain region- and cell-specific UPS impairment occurs after seizures and suggest UPS inhibition can protect against seizure-induced brain damage. Identifying networks or pathways regulated through the proteasome after seizures may yield novel target genes for the treatment of seizure-induced cell death and possibly epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 111 St. Stephen's Green, Dublin, 02 YN77, Ireland.
| | - Jaime Martinez-Villarreal
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 111 St. Stephen's Green, Dublin, 02 YN77, Ireland
| | - Christine Henke
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 111 St. Stephen's Green, Dublin, 02 YN77, Ireland.,Medical Clinic III, University Clinic Dresden, TU Dresden, Dresden, Germany
| | - Eva M Jimenez-Mateos
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 111 St. Stephen's Green, Dublin, 02 YN77, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 111 St. Stephen's Green, Dublin, 02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 111 St. Stephen's Green, Dublin, 02 YN77, Ireland
| | - Yasmina Hernandez-Santana
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 111 St. Stephen's Green, Dublin, 02 YN77, Ireland
| | - Gary P Brennan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 111 St. Stephen's Green, Dublin, 02 YN77, Ireland
| | - Aidan Kenny
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 111 St. Stephen's Green, Dublin, 02 YN77, Ireland
| | - Aoife Campbell
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 111 St. Stephen's Green, Dublin, 02 YN77, Ireland
| | - Jose J Lucas
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 111 St. Stephen's Green, Dublin, 02 YN77, Ireland
| |
Collapse
|
49
|
Khalil A, Kovac S, Morris G, Walker MC. Carvacrol after status epilepticus (SE) prevents recurrent SE, early seizures, cell death, and cognitive decline. Epilepsia 2017; 58:263-273. [DOI: 10.1111/epi.13645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Aytakin Khalil
- UCL Institute of Neurology; University College London; London United Kingdom
| | - Stjepana Kovac
- UCL Institute of Neurology; University College London; London United Kingdom
- Department of Neurology; University of Münster; Münster Germany
| | - Gareth Morris
- UCL Institute of Neurology; University College London; London United Kingdom
| | - Matthew C. Walker
- UCL Institute of Neurology; University College London; London United Kingdom
| |
Collapse
|
50
|
Walker MC. Pathophysiology of status epilepticus. Neurosci Lett 2016; 667:84-91. [PMID: 28011391 DOI: 10.1016/j.neulet.2016.12.044] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
Status epilepticus (SE) is the maximal expression of epilepsy with a high morbidity and mortality. It occurs due to the failure of mechanisms that terminate seizures. Both human and animal data indicate that the longer a seizure lasts, the less likely it is to stop. Recent evidence suggests that there is a critical transition from an ictal to a post-ictal state, associated with a transition from a spatio-temporally desynchronized state to a highly synchronized state, respectively. As SE continues, it becomes progressively resistant to drugs, in particular benzodiazepines due partly to NMDA receptor-dependent internalization of GABA(A) receptors. Moreover, excessive calcium entry into neurons through excessive NMDA receptor activation results in activation of nitric oxide synthase, calpains, and NADPH oxidase. The latter enzyme plays a critical part in the generation of seizure-dependent reactive oxygen species. Calcium also accumulates in mitochondria resulting in mitochondrial failure (decreased ATP production), and opening of the mitochondrial permeability transition pore. Together these changes result in status epilepticus-dependent neuronal death via several pathways. Multiple downstream mechanisms including inflammation, break down of the blood-brain barrier, and changes in gene expression can contribute to later pathological processes including chronic epilepsy and cognitive decline.
Collapse
Affiliation(s)
- Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London WC1N 3BG, United Kingdom.
| |
Collapse
|