1
|
Pandey SK, Paul A, Shteinfer-Kuzmine A, Zalk R, Bunz U, Shoshan-Barmatz V. SMAC/Diablo controls proliferation of cancer cells by regulating phosphatidylethanolamine synthesis. Mol Oncol 2021; 15:3037-3061. [PMID: 33794068 PMCID: PMC8564633 DOI: 10.1002/1878-0261.12959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/26/2021] [Accepted: 03/31/2021] [Indexed: 01/13/2023] Open
Abstract
SMAC/Diablo, a pro-apoptotic protein, yet it is overexpressed in several cancer types. We have described a noncanonical function for SMAC/Diablo as a regulator of lipid synthesis during cancer cell proliferation and development. Here, we explore the molecular mechanism through which SMAC/Diablo regulates phospholipid synthesis. We showed that SMAC/Diablo directly interacts with mitochondrial phosphatidylserine decarboxylase (PSD) and inhibits its catalytic activity during synthesis of phosphatidylethanolamine (PE) from phosphatidylserine (PS). Unlike other phospholipids (PLs), PE is synthesized not only in the endoplasmic reticulum but also in mitochondria. As a result, PSD activity and mitochondrial PE levels were increased in the mitochondria of SMAC/Diablo-deficient cancer cells, with the total amount of cellular PLs and phosphatidylcholine (PC) being lower as compared to SMAC-expressing cancer cells. Moreover, in the absence of SMAC/Diablo, PSD inhibited cancer cell proliferation by catalysing the overproduction of mitochondrial PE and depleting the cellular levels of PC, PE and PS. Additionally, we demonstrated that both SMAC/Diablo and PSD colocalization in the nucleus resulted in increased levels of nuclear PE, that acts as a signalling molecule in regulating several nuclear activities. By using a peptide array composed of 768-peptides derived from 11 SMAC-interacting proteins, we identified six nuclear proteins ARNT, BIRC2, MAML2, NR4A1, BIRC5 and HTRA2 Five of them also interacted with PSD through motifs that are not involved in SMAC binding. Synthetic peptides carrying the PSD-interacting motifs of these proteins could bind purified PSD and inhibit the PSD catalytic activity. When targeted specifically to the mitochondria or the nucleus, these synthetic peptides inhibited cancer cell proliferation. To our knowledge, these are the first reported inhibitors of PSD acting also as inhibitors of cancer cell proliferation. Altogether, we demonstrated that phospholipid metabolism and PE synthesis regulated by the SMAC-PSD interaction are essential for cancer cell proliferation and may be potentially targeted for treating cancer.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avijit Paul
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uwe Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
2
|
Phospholipids and inositol phosphates linked to the epigenome. Histochem Cell Biol 2018; 150:245-253. [DOI: 10.1007/s00418-018-1690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
|
3
|
Paul A, Krelin Y, Arif T, Jeger R, Shoshan-Barmatz V. A New Role for the Mitochondrial Pro-apoptotic Protein SMAC/Diablo in Phospholipid Synthesis Associated with Tumorigenesis. Mol Ther 2017; 26:680-694. [PMID: 29396267 DOI: 10.1016/j.ymthe.2017.12.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/27/2022] Open
Abstract
The mitochondrial pro-apoptotic protein SMAC/Diablo participates in apoptosis by negatively regulating IAPs and activating caspases, thus encouraging apoptosis. Unexpectedly, we found that SMAC/Diablo is overexpressed in cancer. This paradox was addressed here by silencing SMAC/Diablo expression using specific siRNA (si-hSMAC). In cancer cell lines and subcutaneous lung cancer xenografts in mice, such silencing reduced cell and tumor growth. Immunohistochemistry and electron microscopy of the si-hSMAC-treated residual tumor demonstrated morphological changes, including cell differentiation and reorganization into glandular/alveoli-like structures and elimination of lamellar bodies, surfactant-producing organs. Next-generation sequencing of non-targeted or si-hSMAC-treated tumors revealed altered expression of genes associated with the cellular membrane and extracellular matrix, of genes found in the ER and Golgi lumen and in exosomal networks, of genes involved in lipid metabolism, and of lipid, metabolite, and ion transporters. SMAC/Diablo silencing decreased the levels of phospholipids, including phosphatidylcholine. These findings suggest that SMAC/Diablo possesses additional non-apoptotic functions related to regulating lipid synthesis essential for cancer growth and development and that this may explain SMAC/Diablo overexpression in cancer. The new lipid synthesis-related function of the pro-apoptotic protein SMAC/Diablo in cancer cells makes SMAC/Diablo a promising therapeutic target.
Collapse
Affiliation(s)
- Avijit Paul
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Rina Jeger
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel.
| |
Collapse
|
4
|
Linde N, Stick R. Intranuclear membranes induced by lipidated proteins are derived from the nuclear envelope. Nucleus 2010; 1:343-53. [PMID: 21327083 DOI: 10.4161/nucl.1.4.12352] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/22/2010] [Accepted: 04/28/2010] [Indexed: 01/12/2023] Open
Abstract
Association of nuclear lamins with the inner nuclear membrane (INM) is mediated by lipid modifications: either by C-terminal isoprenylation or N-terminal myristoylation. Overexpression of lamins or other lipidated nuclear proteins induces the formation of intranuclear membrane-like arrays. Lamin-induced intranuclear array formation has been observed in Xenopus oocytes as well as in mammalian tissue culture cells. With the use of a membrane-specific fluorescence dye we show here that these arrays are made up of typical lipid membranes. While continuity between these intranuclear membranes and the INM has not been observed so far the presence of integral as well as luminal marker proteins of the endoplasmic reticulum (ER) indicates that these membranes are derived from the nuclear membrane/ER compartment. Earlier studies demonstrated that overexpression of integral membrane proteins of the INM can induce formation of intranuclear membranes, which bud from the INM. Integral membrane proteins reach the INM via the pore membranes while lipidated proteins are imported into the nucleoplasm via the classical NLS pathway where they interact with the INM via their lipid moieties. Together with the previously published data our results show that the formation of intranuclear membranes follows similar routes irrespective of whether the proteins triggering membrane formation are integral membrane or lipidated proteins.
Collapse
Affiliation(s)
- Nina Linde
- Department of Cell Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
5
|
Abstract
Sphingolipids are most prominently expressed in the plasma membrane, but recent studies have pointed to important signaling and regulatory roles in the nucleus. The most abundant nuclear sphingolipid is sphingomyelin (SM), which occurs in the nuclear envelope (NE) as well as intranuclear sites. The major metabolic product of SM is ceramide, which is generated by nuclear sphingomyelinase and triggers apoptosis and other metabolic changes. Ceramide is further hydrolyzed to free fatty acid and sphingosine, the latter undergoing conversion to sphingosine phosphate by action of a specific nuclear kinase. Gangliosides are another type of sphingolipid found in the nucleus, members of the a-series of gangliotetraose gangliosides (GM1, GD1a) occurring in the NE and endonuclear compartments. GM1 in the inner membrane of the NE is tightly associated with a Na(+)/Ca(2+) exchanger whose activity it potentiates, thereby contributing to regulation of Ca(2+) homeostasis in the nucleus. This was shown to exert a cytoprotective role as absence or inactivation of this nuclear complex rendered cells vulnerable to apoptosis. This was demonstrated in the greatly enhanced kainite-induced seizure activity in knockout mice lacking gangliotetraose gangliosides. The pathology included apoptotic destruction of neurons in the CA3 region of the hippocampus. Ca(2+) homeostasis was restored in these animals with LIGA-20, a membrane-permeant derivative of GM1 that entered the NE and activated the nuclear Na(+)/Ca(2+) exchanger. Some evidence suggests the presence of uncharged glycosphingolipids in the nucleus.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Neurology & Neurosciences, New Jersey Medical School, The University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| | | |
Collapse
|
6
|
Rausalu K, Karo-Astover L, Kilk A, Ustav M. CuZn-SOD suppresses the bovine papillomavirus-induced proliferation of fibroblasts. APMIS 2008; 115:1415-21. [PMID: 18184412 DOI: 10.1111/j.1600-0463.2007.00779.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic cells continuously produce reactive oxygen species (ROS) and have mechanisms to control ROS levels. ROS have been shown to mediate cell proliferation and transformation. We studied the effect of CuZn-superoxide dismutase (CuZnSOD) on the focus-forming ability of bovine papillomavirus (BPV-1) wtDNA and hypertransforming mutant of its major oncoprotein E5, E5-17S. We found that CuZnSOD suppresses the focus-forming ability of BPV-1 wtDNA and E5 oncoprotein. Significantly fewer foci were detected in pCGCuZnSOD- and BPV-1 DNA-cotransfected cell culture compare to BPV-1 DNA-transfected cell culture (p<0.001). CuZnSOD decreases the rate of cell proliferation in both non-transformed C127 and BPV-1- and E5-transformed cell lines. CuZnSOD decelerates cell entry into the S phase of the cell cycle and has a suppressing effect on the actively dividing cells. As the transformed cells proliferate faster than normal cells when confluent, CuZnSOD inhibits the growth of foci. These results indicate that superoxide radicals may be involved in signaling for cell proliferation and that SOD suppresses cell proliferation.
Collapse
Affiliation(s)
- Kai Rausalu
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
7
|
Ledeen RW, Wu G. Sphingolipids of the nucleus and their role in nuclear signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:588-98. [PMID: 16814200 DOI: 10.1016/j.bbalip.2006.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/17/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Sphingolipids have important signaling and regulatory roles in the nuclei of all vertebrate cells examined to date. Sphingomyelin (SM) is the most abundant of this group and occurs in the nuclear envelope (NE) as well as intranuclear sites. The primary product of SM metabolism is ceramide, whose release by nuclear sphingomyelinase triggers apoptosis and other metabolic changes in the nucleus. Further catabolism results in free fatty acid and sphingosine formation, the latter being capable of conversion to sphingosine phosphate by action of a specific nuclear kinase. Finally, glycosphingolipids such as gangliosides occur in the NE where GM1, one member of the gangliotetraose family, influences Ca(2+) flux by activation of a Na(+)/Ca(2+) exchanger located in the inner membrane of the NE. The tightly associated GM1/exchanger complex was shown to exert a cytoprotective role in neurons and other cell types, as absence of this nuclear complex rendered cells vulnerable to apoptosis. A striking example of this mode of Ca(2+) regulation is the greatly enhanced seizure activity in knockout mice lacking gangliotetraose gangliosides, involving programmed cell death in the CA3 region of the hippocampus. In this model, Ca(2+) homeostasis was restored most effectively with LIGA-20, a membrane-permeant derivative of GM1 that entered the NE and activated the nuclear Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Neurology and Neurosciences, New Jersey Medical School, The University of Medicine and Dentistry of New Jersey, 185v South Orange Avenue, Newark, NJ 07103, USA.
| | | |
Collapse
|
8
|
Hunt AN. Completing the cycles; the dynamics of endonuclear lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:577-87. [PMID: 16581290 DOI: 10.1016/j.bbalip.2006.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 12/29/2022]
Abstract
Signal transductions via periodic generation and mobilisation of lipid second messengers within the nuclear matrix of eukaryotic cells have focused renewed attention on their precursor phospholipids' location, structure, form and function. The nuclear matrix contains and supports dynamic pools of phosphatidylcholine and phosphatidylinositol which serve as parent molecules of lipid second messengers but also of other phospholipids requiring cyclical replacement as cells proliferate. Applications of new, highly sensitive and specific analytical methodologies based on tandem electrospray ionisation mass spectrometry and the use of stable isotopes have allowed both static and dynamic lipidomic profiling of these endonuclear phospholipid pools. Together with more conventional enzymatic analyses and evaluation of the effect of specific "knock-out" of phospholipid transfer capacity, a number of important principles have been established. Specifically, a compartmental capacity to synthesise and remodel highly saturated phosphatidylcholine exists alongside transport mechanisms that facilitate the nuclear import of phosphatidylinositol and other phospholipids synthesised elsewhere within the cell. Subnuclear fractionation and the use of newly emerging techniques for sensitive lipidomic profiling of polyphosphoinositides, diacylglycerols and phosphatidate molecular species offer the potential for further significant advances in the near future.
Collapse
Affiliation(s)
- Alan N Hunt
- Allergy and Inflammation Research, Division of Infection, Inflammation and Repair, School of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
9
|
Kilk A, Rausalu K, Ustav M. Bovine papillomavirus type 1 oncoprotein E5 stimulates the utilization of superoxide radicals in the mouse fibroblast cell line C127. Chem Biol Interact 2006; 159:205-12. [PMID: 16413007 DOI: 10.1016/j.cbi.2005.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 11/25/2005] [Accepted: 11/25/2005] [Indexed: 10/25/2022]
Abstract
The major transforming protein of bovine papillomavirus type 1 (BPV-1) is a small hydrophobic polypeptide, the E5 gene product, localized in the cellular membranes and modulating various pathways in the cell. Many studies have shown that reactive oxygen species (ROS) are essential in several biological processes, including cell transformation by oncogenes, but unregulated ROS are highly toxic to cells. We studied the effect of the bovine papillomavirus protein E5 and its mutants on the level of the superoxide radicals in the mouse fibroblast cell line C127. The superoxide level in C127 cells transfected with the E5-expressing plasmids were measured by nitroblue tetrazolium reduction. Relative concentrations of intracellular peroxide were determined by using 2,7-dichlorofluorescin diacetate. Our results showed that all transforming mutants of E5 reduced the level of superoxide in C127 cells, besides the activity of superoxide dismutase (SOD) and level of peroxides was not altered. In the presence of neopterin, an inhibitor of the superoxide-producing enzymes, the reduction of superoxide level correlated with the transforming ability of the E5-mutants. The inhibitor of the protein tyrosine kinase, tyrphostin 25 and inhibitors of oxygenases of the arachidonic acid metabolism, aspirin and nordihydroguaiaretic acid, blocked the effect of BPV-1 E5. We conclude that BPV-1 E5 and its transforming mutants are able to modulate the level of superoxide and stimulate the utilization of superoxide through protein tyrosine kinases and oxygenases of the arachidonic acid metabolism.
Collapse
Affiliation(s)
- Ann Kilk
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia.
| | | | | |
Collapse
|
10
|
Abstract
Once nuclear envelope membranes have been removed from isolated nuclei, around 6% of mammalian cell phospholipid is retained within the nuclear matrix, which calculations suggest may occupy 10% of the volume of this subcellular compartment. It is now acknowledged that endonuclear phospholipid, largely ignored for the past 40 years, provides substrate for lipid-mediated signaling events. However, given its abundance, it likely also has other as yet incompletely defined roles. Endonuclear phosphatidylcholine is the predominant phospholipid comprising distinct and highly saturated molecular species compared with that of the whole cell. Moreover, this unusual composition is subject to tight homeostatic maintenance even under conditions of extreme dietary manipulation, presumably reflecting a functional requirement for highly saturated endonuclear phosphatidylcholine. Recent application of new lipidomic technologies exploiting tandem electrospray ionization mass spectrometry in conjunction with deuterium stable isotope labeling have permitted us to probe not just molecular species compositions but endonuclear phospholipid acquisition and turnover with unparalleled sensitivity and specificity. What emerges is a picture of a dynamic pool of endonuclear phospholipid subject to autonomous regulation with respect to bulk cellular phospholipid metabolism. Compartmental biosynthesis de novo of endonuclear phosphatidylcholine contrasts with import of phosphatidylinositol synthesized elsewhere. However, irrespective of the precise temporal-spatial-dynamic relationships underpinning phospholipid acquisition, derangement of endonuclear lipid-mediated signaling from these parental phospholipids halts cell growth and division indicating a pivotal control point. This in turn defines the manipulation of compartmentalized endonuclear phospholipid acquisition and metabolism as intriguing potential targets for the development of future antiproliferative strategies.
Collapse
Affiliation(s)
- Alan N Hunt
- Allergy and Inflammation Research, Division of Infection, Inflammation & Repair, School of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom.
| |
Collapse
|
11
|
Kwok ACM, Wong JTY. Lipid Biosynthesis and its Coordination with Cell Cycle Progression. ACTA ACUST UNITED AC 2005; 46:1973-86. [PMID: 16239308 DOI: 10.1093/pcp/pci213] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The activation of cell cycle regulators at the G1/S boundary has been linked to the cellular protein synthesis rate. It is conceivable that regulatory mechanisms are required to allow cells to coordinate the synthesis of other macromolecules with cell cycle progression. The availability of highly synchronized cells and flow cytometric methods facilitates investigation of the dynamics of lipid synthesis in the entire cell cycle of the heterotrophic dinoflagellate Crypthecodinium cohnii. Flow cytograms of Nile red-stained cells revealed a stepwise increase in the polar lipid content and a continuous increase in neutral lipid content in the dinoflagellate cell cycle. A cell cycle delay at early G1, but not G2/M, was observed upon inhibition of lipid synthesis. However, lipid synthesis continued during cell cycle arrest at the G1/S transition. A cell cycle delay was not observed when inhibitors of cellulose synthesis and fatty acid synthesis were added after the late G1 phase of the cell cycle. This implicates a commitment point that monitors the synthesis of fatty acids at the late G1 phase of the dinoflagellate cell cycle. Reduction of the glucose concentration in the medium down-regulated the G1 cell size with a concomitant forward shift of the commitment point. Inhibition of lipid synthesis up-regulated cellulose synthesis and resulted in an increase in cellulosic contents, while an inhibition of cellulose synthesis had no effects on lipid synthesis. Fatty acid synthesis and cellulose synthesis are apparently coupled to the cell cycle via independent pathways.
Collapse
Affiliation(s)
- Alvin C M Kwok
- Department of Biology, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, PR China
| | | |
Collapse
|
12
|
Hunt AN, Postle AD. Phosphatidylcholine biosynthesis inside the nucleus: is it involved in regulating cell proliferation? ACTA ACUST UNITED AC 2005; 44:173-86. [PMID: 15581489 DOI: 10.1016/j.advenzreg.2003.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Alan N Hunt
- Division of Infection, Inflammation & Repair, School of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | |
Collapse
|
13
|
Hoferová Z, Soucek K, Hofmanová J, Hofer M, Chramostová K, Fedorocko P, Kozubik A. In vitro proliferation of fibrosarcoma cells depends on intact functions of lipoxygenases and cytochrome P-450-monooxygenase. Cancer Invest 2004; 22:234-47. [PMID: 15199606 DOI: 10.1081/cnv-120030212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proliferation of mouse fibrosarcoma cells G:5:113 was studied in vitro after affecting particular pathways of arachidonic acid metabolism by selected inhibitors. After 48 hours of cultivation with nonspecific lipoxygenase inhibitors, nordihydroguaiaretic acid (NDGA) and esculetin; a specific 12-lipoxygenase inhibitor, baicalein; and inhibitor of five-lipoxygenase activating protein, MK-886, markedly suppressed the number of cells and induced significant changes in cell cycle distribution in a dose-dependent manner. While proadifen, an inhibitor of cytochrome P-450-monooxygenase, applied in low concentrations, increased the cell number, at higher concentrations, it inhibited cell proliferation and significantly changed the cell cycle. Cyclooxygenase inhibitors, ibuprofen, flurbiprofen, and diclofenac suppressed cell numbers only moderately without any changes in the cell cycle. The occurrence of apoptosis was not significant for any of the selected drugs in comparison with untreated control cells. Moreover, not even one of the drugs caused the specific cleavage of poly (ADP-ribose) polymerase to the 89-kDa fragment, however, a decrease in total amount of this protein was observed after treatment with NDGA and esculetin. We conclude that the proliferation ability of fibrosarcoma cells G:5:113 in vitro depends on intact functions of 5-lipoxygenase, 12-lipoxygenase, and cytochrome P-450-monooxygenases, and that the effects of inhibitors do not include regulation of apoptosis.
Collapse
Affiliation(s)
- Zuzana Hoferová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
14
|
Delton-Vandenbroucke I, Lemaire P, Lagarde M, Laugier C. Hydrolysis of nuclear phospholipids in relation with proliferative state in uterine stromal cells. Biochimie 2004; 86:269-74. [PMID: 15194229 DOI: 10.1016/j.biochi.2004.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 04/01/2004] [Indexed: 01/12/2023]
Abstract
The current study examined the metabolism of phospholipid (PL) in the whole cell homogenate and in the nuclear fraction in proliferative and non-proliferative uterine stromal cells (U(III) cells). Growth arrested cells were obtained either from contact-inhibited confluent cells or from proliferative cells treated with aristolochic acid (AR) for 2 days. Fatty acid composition and fatty acid amount of both total and nuclear PL were not significantly different between proliferative, confluent and AR-treated cells. In contrast, marked differences were observed in the incorporation of [(3)H]AA, with greater incorporation in proliferative cells than in confluent or AR-treated cells, particularly in nuclear PL. Considering endogenous level of arachidonic acid (AA) in total and nuclear PL, we found that AA turnover in nuclear PL was especially high compared to that in total PL and that this difference was accentuated in proliferative cells compared to non-proliferative cells. Interestingly, [(3)H]AA incorporation and AA turnover in proliferative, confluent and AR-treated cells vary accordingly to the expression, activity and/or content of pancreatic phospholipase A(2) (PLA(2)-I) in the nuclear compartment of these cells that we reported in previous studies. The changes in metabolism of nuclear PL during cell proliferation are consistent with an enhanced PL hydrolysis that could involve PLA(2)-I.
Collapse
|
15
|
Kolomiytseva IK, Kulagina TP, Markevich LN, Archipov VI, Slozhenikina LV, Fialkovskaya LA, Potekhina NI. Nuclear and chromatin lipids: metabolism in normal and gamma-irradiated rats. Bioelectrochemistry 2002; 58:31-9. [PMID: 12401568 DOI: 10.1016/s1567-5394(02)00126-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The data on nuclear and chromatin lipid metabolism are reviewed. The amount of neutral lipids and phospholipids in nuclei of rat thymus, liver and neocortex neuron as well as the amount of lipids in rat thymus and liver chromatin are described. The metabolic responses of nuclear and chromatin lipids from thymus to different doses and dose rates of gamma-irradiation of rats are discussed. In most cases, the nuclear and chromatin lipid responses are distinct. Changes in nuclear and chromatin lipid metabolism in response to gamma-irradiation are suggested to connect with the signal transduction pathway and the regulation of the transcriptional and replicative chromatin activity. The influence of beta-carotene and picrotoxin on rat liver nuclear lipids and neocortex neuronal nuclear lipids, respectively, was analyzed. The possible involvement of the lipid traffic in the chromatin lipid responses to gamma-irradiation and other agents is suggested.
Collapse
Affiliation(s)
- I K Kolomiytseva
- Institute of Cell Biophysics RAS, 142290 Pushchino, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
16
|
Hunt AN, Clark GT, Neale JR, Postle AD. A comparison of the molecular specificities of whole cell and endonuclear phosphatidylcholine synthesis. FEBS Lett 2002; 530:89-93. [PMID: 12387872 DOI: 10.1016/s0014-5793(02)03429-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deuterated choline-d(9) labelling of IMR-32 cells enabled comparison of the molecular specificities of whole cell and endonuclear phosphatidylcholine synthesis after 96 h polyunsaturated fatty acid supplementation. Surprisingly, while cell phosphatidylcholine synthesis and remodelling reflected a pattern of polyunsaturated fatty acid accretion, the saturated endonuclear phosphatidylcholine pool was only transiently labelled with polyunsaturates. Periodic endonuclear accumulations of the lipid second messenger diacylglycerol, mobilised from unsaturated phosphatidylinositol or saturated phosphatidylcholine, accompany cell proliferation. Non-specific incorporation into endonuclear phosphatidylcholine and selective removal or remodelling of unsaturated molecular species may form part of a single 'off switch' recycling all endonuclear diacylglycerol accumulations.
Collapse
Affiliation(s)
- Alan N Hunt
- Mailpoint 803, Allergy and Inflammation Sciences, Division of Infection, Inflammation and Repair, School of Medicine, University of Southampton, UK.
| | | | | | | |
Collapse
|
17
|
Hunt AN, Clark GT, Attard GS, Postle AD. Highly saturated endonuclear phosphatidylcholine is synthesized in situ and colocated with CDP-choline pathway enzymes. J Biol Chem 2001; 276:8492-9. [PMID: 11121419 DOI: 10.1074/jbc.m009878200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin-associated phospholipids are well recognized. A report that catalytically active endonuclear CTP:choline-phosphate cytidylyltransferase alpha is necessary for cell survival questions whether endonuclear, CDP-choline pathway phosphatidylcholine synthesis may occur in situ. We report that chromatin from human IMR-32 neuroblastoma cells possesses such a biosynthetic pathway. First, membrane-free nuclei retain all three CDP-choline pathway enzymes in proportions comparable with the content of chromatin-associated phosphatidylcholine. Second, following supplementation of cells with deuterated choline and using electrospray ionization mass spectrometry, both the time course and molecular species labeling pattern of newly synthesized endonuclear and whole cell phosphatidylcholine revealed the operation of spatially separate, compositionally distinct biosynthetic routes. Specifically, endogenous and newly synthesized endonuclear phosphatidylcholine species are both characterized by a high degree of diacyl/alkylacyl chain saturation. This unusual species content and synthetic pattern (evident within 10 min of supplementation) are maintained through cell growth arrest by serum depletion and when proliferation is restored, suggesting that endonuclear disaturated phosphatidylcholine enrichment is essential and closely regulated. We propose that endonuclear phosphatidylcholine synthesis may regulate periodic nuclear accumulations of phosphatidylcholine-derived lipid second messengers. Furthermore, our estimates of saturated phosphatidylcholine nuclear volume occupancy of around 10% may imply a significant additional role in regulating chromatin structure.
Collapse
Affiliation(s)
- A N Hunt
- Department of Child Health, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom.
| | | | | | | |
Collapse
|
18
|
Maraldi NM, Zini N, Santi S, Riccio M, Falconi M, Capitani S, Manzoli FA. Nuclear domains involved in inositol lipid signal transductionmaltese cross. ADVANCES IN ENZYME REGULATION 2000; 40:219-53. [PMID: 10828353 DOI: 10.1016/s0065-2571(99)00032-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N M Maraldi
- Institute of Cytomorphology, CNR Chieti and Bologna, c/o IOR, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
An increasing body of evidence shows that many of the key inositol lipids and enzymes responsible for their metabolism reside in nuclei. Moreover, the association of the nuclear phosphoinositide cycle with progression through the cell cycle and commitment toward differentiation has built a wider picture of the implications of phosphoinositides in the control of nuclear functions. This article reviews a central aspect of inositide nuclear signaling, i.e., the spatial organization of the signaling system within the nucleus in relationship to the nuclear organization in functional domains. Most of the evidence obtained with a variety of confocal and electron microscopy immunocytochemical techniques indicates that the phosphoinositides, the enzymes required for their synthesis and hydrolysis, and the targets of the lipid second messengers are localized at ribonucleoprotein structures involved in the transcript processing in the interchromatin domains. These findings demonstrate that nuclear inositol lipids exist in a nonmembranous form, linked to structural nuclear proteins of the inner nuclear matrix. They also suggest that the inositol signaling in the nucleus is completely independent of that at the cell surface and that it probably preceded in evolution the systems that are present at the cytoskeletal and cell membrane level.
Collapse
Affiliation(s)
- N M Maraldi
- Institute of Normal and Pathological Cytomorphology, C.N.R., Laboratory of Cell Biology, IOR, Bologna, Italy.
| | | | | | | |
Collapse
|
20
|
Fraschini A, Biggiogera M, Bottone MG, Martin TE. Nuclear phospholipids in human lymphocytes activated by phytohemagglutinin. Eur J Cell Biol 1999; 78:416-23. [PMID: 10430023 DOI: 10.1016/s0171-9335(99)80084-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Using a specific ultracytochemical technique, the labelling with phospholipase A2-gold complex, we have followed nuclear phospholipids (PL) along the G1 phase in human lymphocytes activated by PHA. Our data point out two main results relating nuclear PL to the transcriptional activity, characteristic of the G1 phase, during which many different molecules necessary both for progression through G1 and for the start of S phase are synthesized. PL quantitative changes parallel those of hnRNPs and snRNPs, which are markers of the levels of transcriptional activity and processing. We found that nuclei of G0 lymphocytes, with a very low transcription level, are poor of PL as well as of RNPs. The amount of PL increases in activated lymphocytes, along all G1, until the beginning of S phase. At the same time, hnRNPs and snRNPs strongly increase and maintain higher levels than in control cells, till the beginning of S phase. PL are localized on nuclear structures where also RNPs involved in transcription and splicing, are located, i. e. perichromatin fibrils, interchromatin granules and the dense fibrillar component of the nucleolus. Since it is known that during S phase nuclear PL decrease, while both the enzyme activities related to their breakdown and their hydrolysis products increase, PL seem to be involved in the generation of signal molecules triggering DNA replication. We suggest that PL in the nucleus can be involved in multiple functions, depending on the phase of the cell cycle.
Collapse
Affiliation(s)
- A Fraschini
- Dipartimento di Biologia Animale dell'Universitá di Pavia, Centro di Studio per l'Istochimica del CNR,Italy
| | | | | | | |
Collapse
|
21
|
D'Santos CS, Clarke JH, Divecha N. Phospholipid signalling in the nucleus. Een DAG uit het leven van de inositide signalering in de nucleus. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:201-32. [PMID: 9838115 DOI: 10.1016/s0005-2760(98)00146-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diverse methodologies, ranging from activity measurements in various nuclear subfractions to electron microscopy, have been used to demonstrate and establish that many of the key lipids and enzymes responsible for the metabolism of inositol lipids are resident in nuclei. PtdIns(4)P, PtdIns(4,5)P2 and PtdOH are all present in nuclei, as well as the corresponding enzyme activities required to synthesise and metabolise these compounds. In addition other non-inositol containing phospholipids such as phosphatidylcholine constitute a significant percentage of the total nuclear phospholipid content. We feel that it is pertinent to include this lipid in our discussion as it provides an alternative source of 1, 2-diacylglycerol (DAG) in addition to the hydrolysis of PtdIns(4, 5)P2. We discuss at length data related to the sources and possible consequences of nuclear DAG production as this lipid appears to be increasingly central to a number of general physiological functions. Data relating to the existence of alternative pathways of inositol phospholipid synthesis, the role of 3-phosphorylated inositol lipids and lipid compartmentalisation and transport are reviewed. The field has also expanded to a point where we can now also begin to address what role these lipids play in cellular proliferation and differentiation and hopefully provide avenues for further research.
Collapse
Affiliation(s)
- C S D'Santos
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
22
|
Ves Losada A, Brenner RR. Incorporation of delta 5 desaturase substrate (dihomogammalinolenic acid, 20:3 n-6) and product (arachidonic acid 20:4 n-6) into rat liver cell nuclei. Prostaglandins Leukot Essent Fatty Acids 1998; 59:39-47. [PMID: 9758206 DOI: 10.1016/s0952-3278(98)90050-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The incorporation of [1-(14)C]20:3 n-6 and its desaturation product, [1-(14)C]20:4 n-6 into nuclear lipids from rat liver cells were investigated during in vitro delta5 desaturation. [1-(14)C]20:3 n-6 activated as 20:3 n-6-CoA by nuclear long chain acyl-CoA synthetase was: (1) incorporated into nuclear lipids mainly esterified to phospholipids and in a lesser proportion, to triglycerides and diglycerides; and (2) desaturated to 20:4 n-6-CoA by the nuclear delta5 desaturase. The amount of [1-(14)C]20:4 n-6 acid synthesized in cell nuclei increased along with time and was stimulated by the cytosol fraction. The major proportion of 20:4 n-6 was found in phospholipids and in a lesser proportion it remained as free fatty acids and was esterified to triglycerides and diglycerides. 20:4 n-6-CoA was incorporated into nuclear lipids and hydrolyzed to free fatty acid. These results indicate that liver cell nuclei possess the necessary enzymes to incorporate the delta5 desaturase substrate (20:3 n-6) as well as the product of desaturation (20:4 n-6) into nuclear TG, DG and PL following an acyl-CoA dependent pathway.
Collapse
Affiliation(s)
- A Ves Losada
- Dto de Cs. Biológicas, Facultad de Cs. Exactas, UNLP, Argentina.
| | | |
Collapse
|
23
|
de Moel MP, Van Emst-De Vries SE, Willems PH, De Pont JJ. Purification and isotype analysis of protein kinase C from rat liver nuclei. Int J Biochem Cell Biol 1998; 30:185-95. [PMID: 9608672 DOI: 10.1016/s1357-2725(97)00122-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The properties and subtype composition of protein kinase C present in rat liver nuclei were studied in a Triton-X-100 extract of isolated purified nuclei. The enzyme activity was dependent on both Ca2+ and phosphatidylserine, but the phorbol ester 12-O-tetradecanoylphorbol 13-acetate gave only a partial stimulation. Both histone and myelin basic protein served as substrate. Purification of the Triton-X-100 extract followed by Q-Sepharose chromatography gave a preparation with a specific activity of 70 pmol/mg protein min. Western blotting of this preparation showed only the presence of the delta and zeta subtypes, but not the alpha-subtype, although the latter was present in rat liver homogenates. The beta, gamma and epsilon subtypes were not found in the homogenate nor in the nuclear extract. The specific activity of protein kinase C could be further increased up to 800 pmol/mg protein min after protamine agarose chromatography. Also in this preparation the presence of the delta and zeta subtypes could be established.
Collapse
Affiliation(s)
- M P de Moel
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
24
|
Fricker M, Hollinshead M, White N, Vaux D. Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol 1997; 136:531-44. [PMID: 9024685 PMCID: PMC2134289 DOI: 10.1083/jcb.136.3.531] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/1996] [Revised: 11/15/1996] [Indexed: 02/07/2023] Open
Abstract
The nuclear envelope consists of a double-membraned extension of the rough endoplasmic reticulum. In this report we describe long, dynamic tubular channels, derived from the nuclear envelope, that extend deep into the nucleoplasm. These channels show cell-type specific morphologies ranging from single short stubs to multiple, complex, branched structures. Some channels transect the nucleus entirely, opening at two separate points on the nuclear surface, while others terminate at or close to nucleoli. These channels are distinct from other topological features of the nuclear envelope, such as lobes or folds. The channel wall consists of two membranes continuous with the nuclear envelope, studded with features indistinguishable from nuclear pore complexes, and decorated on the nucleoplasmic surface with lamins. The enclosed core is continuous with the cytoplasm, and the lumenal space between the membranes contains soluble ER-resident proteins (protein disulphide isomerase and glucose-6-phosphatase). Nuclear channels are also found in live cells labeled with the lipophilic dye DiOC6. Time-lapse imaging of DiOC6-labeled cells shows that the channels undergo changes in morphology and spatial distribution within the interphase nucleus on a timescale of minutes. The presence of a cytoplasmic core and nuclear pore complexes in the channel walls suggests a possible role for these structures in nucleo-cytoplasmic transport. The clear association of a subset of these structures with nucleoli would also be consistent with such a transport role.
Collapse
Affiliation(s)
- M Fricker
- Department of Plant Sciences, Oxford, United Kingdom
| | | | | | | |
Collapse
|
25
|
Zini N, Ognibene A, Bavelloni A, Santi S, Sabatelli P, Baldini N, Scotlandi K, Serra M, Maraldi NM. Cytoplasmic and nuclear localization sites of phosphatidylinositol 3-kinase in human osteosarcoma sensitive and multidrug-resistant Saos-2 cells. Histochem Cell Biol 1996; 106:457-64. [PMID: 8950603 DOI: 10.1007/bf02473307] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The intracellular localization of phosphatidyl-inositol 3-kinase (PI 3-kinase) has been analyzed by western blotting, confocal, and electron microscopy immunocytochemistry in human osteosarcoma Saos-2 cells. By western blotting, the enzyme appears to be present in both the cytoplasmic and nuclear subfractions. By confocal microscope immunocytochemistry, the cytoplasmic fluorescence is localized in the perinuclear region and on a network of filaments, while a diffused signal is present in the nucleus, except for the nucleolar areas. Ultrastructural analyses on whole cells and on in situ matrix preparations reveal that nuclear PI 3-kinase is localized in interchromatin domains, in stable association with inner nuclear matrix components, while the enzyme diffused in the cytosol is partly associated with the cytoskeletal filaments. Quantitative evaluations indicate that, in a multidrug-resistant variant obtained by continuous exposure of Saos-2 cells to doxorubicin, the amount of nuclear and cytoplasmic PI 3-kinase is significantly lower than in the sensitive parental cell line. The nuclear localization of PI 3-kinase and its variation in multidrug-resistant cells, characterized by a reduced mitotic index, are consistent with the data on the existence of a nuclear inositol lipid cycle, which could also utilize 3-phosphorylated inositides to modulate signal transduction for the control of some key functional activities.
Collapse
Affiliation(s)
- N Zini
- Istituto di Citomorfologia Normale e Patologica C.N.R. Chieti-Bologna Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- S Jackowski
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38101, USA
| |
Collapse
|
27
|
Dolbeare F. Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part I: Historical perspectives, histochemical methods and cell kinetics. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf02389022] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Boyko V, Mudrak O, Svetlova M, Negishi Y, Ariga H, Tomilin N. A major cellular substrate for protein kinases, annexin II, is a DNA-binding protein. FEBS Lett 1994; 345:139-42. [PMID: 8200445 DOI: 10.1016/0014-5793(94)00419-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have screened a human cDNA expression library in lambda gt11 for clones encoding Alu-binding proteins using direct binding of labeled Alu DNA to recombinant phage lysates fixed on a membrane, and isolated a clone 98% identical in sequence to the well-known substrate of protein kinases, annexin II, which was suggested earlier to play a role in transduction of mitogenic signals and DNA replication. A diagnostic property of annexins is their binding to phospholipids in the presence of calcium ions, and we have found that the interaction of proteins of human nuclear extracts with Alu subsequences is suppressed by Ca/phosphatidylserine liposomes, suggesting overlapping of Ca/phospholipid- and DNA-binding domains in annexin II.
Collapse
Affiliation(s)
- V Boyko
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg
| | | | | | | | | | | |
Collapse
|
29
|
Previati M, Bertagnolo V, Mazzoni M, Osti F, Borgatti P, Capitani S. Diacylglycerol kinase activity in rat liver nuclei. Cell Signal 1994; 6:393-403. [PMID: 7946964 DOI: 10.1016/0898-6568(94)90086-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Membrane-depleted rat liver nuclei contain diacylglycerol (DAG) kinase showing a specific activity which doubles that of the whole homogenate. In contrast, cytoplasmic and plasma membrane marker enzymes attain a specific activity of 0.4% at the most, when nuclear DAG kinase approaches 4.5% of the total tissue activity. The enzyme shows a Km of 161 and 200 microM for ATP in both nuclei and microsomes whereas the Km for DAG is 75 microM in nuclei and 658 microM in microsomes. Octylglucoside, CHAPS and Triton X-100 behave mainly as inhibitors, while deoxycholate stimulates the enzyme activity in both cellular fractions, increasing specific activity (3.2-fold in nuclei and 29.1-fold in microsomes) and decreasing Km for DAG (39 microM in nuclei and 237 microM in microsomes). Phospholipids and ceramide stimulate the enzyme activity in isolated nuclei, while no effect occurs in the microsomal fraction. At variance, sphingosine behaves as an inhibitor in both cellular fractions. DAG kinase also utilizes endogenous substrates mobilized by Bacillus cereus phospholipase C, which hydrolyses nuclear phosphatidylcholine and phosphatidylethanolamine and by phosphatidylinositol-specific phospholipase C, which hydrolyses nuclear PI and PIP. These data indicate that nuclear DAG can be controlled by converting it into phosphatidic acid by the action of a nuclear enzyme and support the contention that protein kinase C activity can be modulated at the nuclear level by a discrete system involving phospholipase C and DAG kinase that could operate independently from the cytoplasm.
Collapse
Affiliation(s)
- M Previati
- Istituto di Anatomia Umana Normale, Università di Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Maraldi NM, Cocco L, Capitani S, Mazzotti G, Barnabei O, Manzoli FA. Lipid-dependent nuclear signalling: morphological and functional features. ADVANCES IN ENZYME REGULATION 1994; 34:129-43. [PMID: 7942270 DOI: 10.1016/0065-2571(94)90013-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enzymes involved in lipid metabolism exist within the nucleus and are responsive to external stimuli. In particular, the kinases which phosphorylate phosphatidylinositol and phosphatidylinositol-4-monophosphate have been demonstrated in nuclei of both undifferentiated and differentiated Friend cells and of quiescent Swiss 3T3 cells as well as of those exposed to insulin-like growth factor I. Besides the lipid kinases, also the phosphoinositidases C (PIC) are active inside the nucleus. In Swiss 3T3 cells the nuclear PIC beta 1 is activated and its activation by IGF-I temporally precedes the translocation to the nucleus of protein kinase C. In Friend cell nuclei, on the other hand, when erythroid differentiation is induced, the PIC beta 1 activity is reduced. Another aspect of the nuclear signalling transduction system which appears quite interesting is its actual localization at subcellular level. By using electron microscope immunogold labelling, the nuclear PIC isoforms (the beta 1 isoform in Swiss 3T3 cells, the beta 1 and gamma 1 in Friend cells) are localized mainly in the interchromatin domains. This localization has been further confirmed on in situ matrix preparations of 3T3 cells in which PIC beta 1 is associated with the inner nuclear matrix but not with the nuclear pore-lamina complex. Colocalization experiments indicate that nuclear PIC beta 1 is present in sites in which both nuclear phospholipids and PKC can be detected, while the cytoplasmic PIC gamma 1 can be identified in close association with cytoskeletal filaments identified by anti-actin antibodies. The precise localization of the different PIC isoforms strongly indicates that the signal transduction system operating at the nuclear level may be part of a cross-talk between the cytoplasm and the nucleus controlling either cell proliferation or differentiation.
Collapse
Affiliation(s)
- N M Maraldi
- Institute of Cytomorphology, C.N.R., Bologna, Italy
| | | | | | | | | | | |
Collapse
|