1
|
Salazar CJ, Diaz-Balzac CA, Wang Y, Rahman M, Grant BD, Bülow HE. RABR-1, an atypical Rab-related GTPase, cell-nonautonomously restricts somatosensory dendrite branching. Genetics 2024; 228:iyae113. [PMID: 39028768 PMCID: PMC11457943 DOI: 10.1093/genetics/iyae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Neurons are highly polarized cells with dendrites and axons. Dendrites, which receive sensory information or input from other neurons, often display elaborately branched morphologies. While mechanisms that promote dendrite branching have been widely studied, less is known about the mechanisms that restrict branching. Using the nematode Caenorhabditis elegans, we identify rabr-1 (for Rab-related gene 1) as a factor that restricts branching of the elaborately branched dendritic trees of PVD and FLP somatosensory neurons. Animals mutant for rabr-1 show excessively branched dendrites throughout development and into adulthood in areas where the dendrites overlay epidermal tissues. Phylogenetic analyses show that RABR-1 displays similarity to small GTPases of the Rab-type, although based on sequence alone, no clear vertebrate ortholog of RABR-1 can be identified. We find that rabr-1 is expressed and can function in epidermal tissues, suggesting that rabr-1 restricts dendritic branching cell-nonautonomously. Genetic experiments further indicate that for the formation of ectopic branches rabr-1 mutants require the genes of the Menorin pathway, which have been previously shown to mediate dendrite morphogenesis of somatosensory neurons. A translational reporter for RABR-1 reveals a subcellular localization to punctate, perinuclear structures, which correlates with endosomal and autophagosomal markers, but anticorrelates with lysosomal markers suggesting an amphisomal character. Point mutations in rabr-1 analogous to key residues of small GTPases suggest that rabr-1 functions in a GTP-bound form independently of GTPase activity. Taken together, rabr-1 encodes for an atypical small GTPase of the Rab-type that cell-nonautonomously restricts dendritic branching of somatosensory neurons, likely independently of GTPase activity.
Collapse
Affiliation(s)
| | - Carlos A Diaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers Center for Lipid Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Maisha Rahman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers Center for Lipid Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Zhang J, Sun Y, Ma J, Guo X. Deciphering the molecular mechanism of long non-coding RNA HIF1A-AS1 regulating pancreatic cancer cells. Ann Med Surg (Lond) 2024; 86:3367-3377. [PMID: 38846874 PMCID: PMC11152846 DOI: 10.1097/ms9.0000000000002097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/11/2024] [Indexed: 06/09/2024] Open
Abstract
Background HIF1A-AS1, an antisense transcript of HIF1α gene, is a 652-bp LncRNA that is globally expressed in multiple tissues of animals. Recent evidence indicated that HIF1A-AS1 was involved in tumorigenesis of several types of cancer. However, the role of lncRNA in PC has not been reported, and the molecular mechanism remains elusive. Results In order to investigate the role of HIF1A-AS1 in PC, it was overexpressed in some PC cell lines (PANC-1, PATU8988 and SW1990), and a series of experiments including cell viability detection, flow cytometry, transwell migration, clone formation and wound healing were performed. Functionally, the results indicated that overexpression of HIF1A-AS1 could greatly inhibit proliferation and migration and promote apoptosis of PC cells. Moreover, the isobaric tags for relative and absolute quantification (iTRAQ) quantitative proteomics analysis was implemented to explore the underlying mechanism and the results indicated that OE of HIF1A-AS1 globally affected the expression levels of multiple proteins associated with metabolism of cancer. At last, the network analysis revealed that most of these differentially expressed proteins (DEPs) were integrated and severed essential roles in regulatory function. In view of this, we guessed HIF1A-AS1 overexpression induced the dysfunction of metabolism and disordered proteins' translation, which may account for its excellent tumour suppressor effect. Conclusions HIF1A-AS1 altered the cell function of PC cell lines via affecting the expression of numerous proteins. In summary, HIF1A-AS1 may exhibit a potential therapeutic effect on PC, and our study provided useful information in this filed.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Physical Education, Xinxiang Medical University, Xinxiang, Henan
| | - Yifeng Sun
- Department of Occupational Health and Occupational Disease, School of Public Health, Zhengzhou University, Zhengzhou
| | - Jiahui Ma
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiang Guo
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Li X, Ni J, Qing H, Quan Z. The Regulatory Mechanism of Rab21 in Human Diseases. Mol Neurobiol 2023; 60:5944-5953. [PMID: 37369821 DOI: 10.1007/s12035-023-03454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Rab proteins are important components of small GTPases and play crucial roles in regulating intracellular transportation and cargo delivery. Maintaining the proper functions of Rab proteins is essential for normal cellular activities such as cell signaling, division, and survival. Due to their vital and irreplaceable role in regulating intracellular vesicle transportation, accumulated researches have shown that the abnormalities of Rab proteins and their effectors are closely related to human diseases. Here, this review focused on Rab21, a member of the Rab family, and introduced the structures and functions of Rab21, as well as the regulatory mechanisms of Rab21 in human diseases, including neurodegenerative diseases, cancer, and inflammation. In summary, we described in detail the role of Rab21 in human diseases and provide insights into the potential of Rab21 as a therapeutic target for diseases.
Collapse
Affiliation(s)
- Xinjian Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
4
|
Rab22a Promotes Epithelial-Mesenchymal Transition in Papillary Thyroid Carcinoma by Activating PI3K/AKT/mTOR Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1874550. [PMID: 35757470 PMCID: PMC9217539 DOI: 10.1155/2022/1874550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Background Rab22a is a member of the RAS superfamily, involved in early endosome formation and intracellular vesicle transport. Rab22a is significantly upregulated in a variety of malignant tumors. However, its function in thyroid cancer has never been addressed. Methods The expression of Rab22a in paraffin sections of 101 patients was detected by immunohistochemical staining. By upregulating and downregulating the expression of Rab22a in thyroid cancer cell lines, the effect of Rab22a on cell proliferation, invasion, and migration was analyzed. Co-IP was employed, and the interaction between Rab22a and PI3Kp85α was shown. The function of Rab22a on PI3K/AKT/mTOR signaling and epithelial-mesenchymal transition (EMT) was further studied by western blot analysis. Results Immunostaining showed that Rab22a was significantly overexpressed in thyroid cancer tissues but negative in adjacent normal tissues or nodular goiters. The proliferation, migration, invasion, and EMT in papillary thyroid carcinoma cell lines were enhanced upon Rab22a overexpression but inhibited after knocking down Rab22a. The co-IP assay demonstrated an interaction between Rab22a and PI3K85α, an effector of PI3K. We further found that Rab22a can activate the PI3K/AKT/mTOR signaling pathway. However, the ability of Rab22a to promote the proliferation, invasion, migration, and EMT of papillary thyroid carcinoma cells was significantly inhibited after being treated with LY294002, a PI3K inhibitor. Conclusions Rab22a can promote the EMT process and enhance proliferation, migration, and invasion of papillary thyroid carcinoma cells by activating the PI3K/AKT/mTOR signaling pathway. Our study provides new pathological diagnosis clues and clinical treatment targets for thyroid cancer.
Collapse
|
5
|
Larocque G, Royle SJ. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond. Cell Mol Life Sci 2022; 79:335. [PMID: 35657500 PMCID: PMC9166830 DOI: 10.1007/s00018-022-04371-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Membrane traffic controls the movement of proteins and lipids from one cellular compartment to another using a system of transport vesicles. Intracellular nanovesicles (INVs) are a newly described class of transport vesicles. These vesicles are small, carry diverse cargo, and are involved in multiple trafficking steps including anterograde traffic and endosomal recycling. An example of a biological process that they control is cell migration and invasion, due to their role in integrin recycling. In this review, we describe what is known so far about these vesicles. We discuss how INVs may integrate into established membrane trafficking pathways using integrin recycling as an example. We speculate where in the cell INVs have the potential to operate and we identify key questions for future investigation.
Collapse
Affiliation(s)
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
6
|
Deng J, Zhang Q, Lv L, Ma P, Zhang Y, Zhao N, Zhang Y. Identification of an autophagy-related gene signature for predicting prognosis and immune activity in pancreatic adenocarcinoma. Sci Rep 2022; 12:7006. [PMID: 35488119 PMCID: PMC9054801 DOI: 10.1038/s41598-022-11050-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Adenocarcinoma of the pancreas (PAAD) is a cancerous growth that deteriorates rapidly and has a poor prognosis. Researchers are investigating autophagy in PAAD to identify a new biomarker and treatment target. An autophagy-related gene (ARG) model for overall survival (OS) was constructed using multivariate Cox regression analyses. A cohort of the Cancer Genome Atlas (TCGA)-PAAD was used as the training group as a basis for model construction. This prediction model was validated with several external datasets. To evaluate model performance, the analysis with receiver operating characteristic curves (ROC) was performed. The Human Protein Atlas (HPA) and Cancer Cell Line Encyclopedia (CCLE) were investigated to validate the effects of ARGs expression on cancer cells. Comparing the levels of immune infiltration between high-risk and low-risk groups was finished through the use of CIBERSORT. The differentially expressed genes (DEGs) between the low-/high-risk groups were analyzed further via Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, which were used to identify potential small-molecule compounds in Connectivity Map (CMap), followed by half-maximal inhibitory concentration (IC50) examination with PANC-1 cells. The risk score was finally calculated as follows: BAK1 × 0.34 + ITGA3 × 0.38 + BAG3 × 0.35 + APOL1 × 0.26-RAB24 × 0.67519. ITGA3 and RAB24 both emerged as independent prognostic factors in multivariate Cox regression. Each PAAD cohort had a significantly shorter OS in the high-risk group than in the low-risk group. The high-risk group exhibited infiltration of several immune cell types, including naive B cells (p = 0.003), plasma cells (p = 0.044), and CD8 T cells (nearly significant, p = 0.080). Higher infiltration levels of NK cells (p = 0.025), resting macrophages (p = 0.020), and mast cells (p = 0.007) were found in the high-risk group than the low-risk group. The in vitro and in vivo expression of signature ARGs was consistent in the CCLE and HPA databases. The top 3 enriched Gene Ontology biological processes (GO-BPs) were signal release, regulation of transsynaptic signaling, and modulation of chemical synaptic transmission, and the top 3 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were MAPK, cAMP, and cell adhesion molecules. Four potential small-molecule compounds (piperacetazine, vinburnine, withaferin A and hecogenin) that target ARGs were also identified. Taking the results together, our research shows that the ARG signature may serve as a useful prognostic indicator and reveal potential therapeutic targets in patients with PAAD.
Collapse
Affiliation(s)
- Jiang Deng
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Qian Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Yangyang Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Ning Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Yanyu Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China.
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China.
| |
Collapse
|
7
|
Wang J, Luo X, Lu J, Wang X, Miao Y, Li Q, Wang L. Rab22a promotes the proliferation, migration, and invasion of lung adenocarcinoma via up-regulating PI3K/Akt/mTOR signaling pathway. Exp Cell Res 2022; 416:113179. [PMID: 35487271 DOI: 10.1016/j.yexcr.2022.113179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 11/04/2022]
Abstract
Rab22a, a member of the proto-oncogene RAS family, belongs to the Rab5 subfamily. It participates in early endosome formation and regulates vesicle trafficking. The relationship between Rab22a and tumorigenesis remains elusive. In non-small cell lung cancer specimens, immunohistochemical staining showed consistently high expression of Rab22a in lung adenocarcinoma, but not in squamous cell carcinoma. In lung adenocarcinoma cell lines, A549 and H1299, transfection with Rab22a significantly promoted cell proliferation, migration, and invasion, whereas interference with Rab22a specific siRNA significantly inhibited the above capacities. Transfection with Rab22a also up-regulated the phosphorylation levels of core effector proteins on the PI3K/Akt/mTOR pathway. The Co-IP assay further confirmed the interaction between Rab22a and PI3Kp85α, the core regulatory subunit of PI3K. Application of rapamycin, the mTOR inhibitor, significantly reduced the upregulation of the proliferation, migration, and invasion abilities of lung adenocarcinoma cells transfected with Rab22a. These results suggest that Rab22a can promote the malignant phenotype of lung adenocarcinoma by upregulating the PI3K/Akt/mTOR signaling pathway, and may function as a potential anti-tumor therapeutic target.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue Luo
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jinxi Lu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xi Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
8
|
ER residential chaperone GRP78 unconventionally relocalizes to the cell surface via endosomal transport. Cell Mol Life Sci 2021; 78:5179-5195. [PMID: 33974094 DOI: 10.1007/s00018-021-03849-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Despite new advances on the functions of ER chaperones at the cell surface, the translocation mechanisms whereby these chaperones can escape from the ER to the cell surface are just emerging. Previously we reported that in many cancer types, upon ER stress, IRE1α binds to and triggers SRC activation resulting in KDEL receptor dispersion from the Golgi and suppression of retrograde transport. In this study, using a combination of molecular, biochemical, and imaging approaches, we discovered that in colon and lung cancer, upon ER stress, ER chaperones, such as GRP78 bypass the Golgi and unconventionally traffic to the cell surface via endosomal transport mediated by Rab GTPases (Rab4, 11 and 15). Such unconventional transport is driven by membrane fusion between ER-derived vesicles and endosomes requiring the v-SNARE BET1 and t-SNARE Syntaxin 13. Furthermore, GRP78 loading into ER-derived vesicles requires the co-chaperone DNAJC3 that is regulated by ER-stress induced PERK-AKT-mTOR signaling.
Collapse
|
9
|
Huang Y, Tian Y, Zhang W, Liu R, Zhang W. Rab12 Promotes Radioresistance of HPV-Positive Cervical Cancer Cells by Increasing G2/M Arrest. Front Oncol 2021; 11:586771. [PMID: 33718142 PMCID: PMC7947205 DOI: 10.3389/fonc.2021.586771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background HPV-positive (HPV+) cervical cancer cells are more radioresistant compared with HPV-negative (HPV-) cervical cancer cells, but the underlying mechanism is not fully illuminated. Our previous mass spectrometry data showed that Ras-associated binding protein Rab12 was up-regulated by HPV, and this study is to investigate the role of Rab12 in the radioresistance of HPV-positive cervical cancer cells. Methods CCK-8 assay, colony formation assay, flow cytometry, and Western blot were performed to determine cell proliferation, apoptosis, cell cycle distribution, and protein expressions. DNA damage and repair levels were measured by comet assays and detection of γ-H2AX, XRCC4, and pBRCA1 protein expressions. Results Rab12 mRNA and protein expressions were up-regulated in cervical cancer tissues and HPV+ cervical cancer cells. Knockdown of Rab12 enhanced radiosensitivity while overexpression of Rab12 promotes radioresistance. Knockdown of Rab12 alleviated G2/M arrest by decreasing p-Cdc2(Tyr15) after radiation, which was a result of the reduction of p-Cdc25C(Ser216). Rab12 knockdown caused more DNA double-strand breaks (DSBs) and inhibited DNA homologous recombination repair (HRR) after radiation. Instead, overexpression of Rab12 enhanced radioresistance by increasing G2/M arrest, which provided more time for DNA HRR. Conclusions Rab12 may serve as a potential therapeutic target to improve clinical treatment outcome of cervical cancer.
Collapse
Affiliation(s)
- Yujie Huang
- Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yonghao Tian
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhao Zhang
- Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruijuan Liu
- Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weifang Zhang
- Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Vos DY, van de Sluis B. Function of the endolysosomal network in cholesterol homeostasis and metabolic-associated fatty liver disease (MAFLD). Mol Metab 2021; 50:101146. [PMID: 33348067 PMCID: PMC8324686 DOI: 10.1016/j.molmet.2020.101146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease, has become the leading cause of chronic liver disease worldwide. In addition to hepatic accumulation of triglycerides, dysregulated cholesterol metabolism is an important contributor to the pathogenesis of MAFLD. Maintenance of cholesterol homeostasis is highly dependent on cellular cholesterol uptake and, subsequently, cholesterol transport to other membrane compartments, such as the endoplasmic reticulum (ER). Scope of review The endolysosomal network is key for regulating cellular homeostasis and adaptation, and emerging evidence has shown that the endolysosomal network is crucial to maintain metabolic homeostasis. In this review, we will summarize our current understanding of the role of the endolysosomal network in cholesterol homeostasis and its implications in MAFLD pathogenesis. Major conclusions Although multiple endolysosomal proteins have been identified in the regulation of cholesterol uptake, intracellular transport, and degradation, their physiological role is incompletely understood. Further research should elucidate their role in controlling metabolic homeostasis and development of fatty liver disease. The intracellular cholesterol transport is tightly regulated by the endocytic and lysosomal network. Dysfunction of the endolysosomal network affects hepatic lipid homeostasis. The endosomal sorting of lipoprotein receptors is precisely regulated and is not a bulk process.
Collapse
Affiliation(s)
- Dyonne Y Vos
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
11
|
Qiu D, Li S, Guo L, Yuan R, Ou X. Rab24 functions in meiotic apparatus assembly and maturational progression in mouse oocyte. Cell Cycle 2019; 18:2893-2901. [PMID: 31496367 PMCID: PMC6791699 DOI: 10.1080/15384101.2019.1660115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 01/09/2023] Open
Abstract
Rab GTPases have multiple regulatory functions in intracellular vesicle transport. In recent years, there has been an increasing interest in the roles of Rab proteins in mammalian oocytes. In this paper, we show the specific distribution pattern of Rab24 during mouse oocyte meiosis. Furthermore, we find that Rab24 depletion results in the failure of maturational progression in mouse oocytes. Notably, the frequency of meiotic apparatus abnormality is significantly increased in Rab24-depleted oocytes relative to controls. In addition, lagging chromosomes are readily observed in anaphase/telophase oocytes with Rab24 knockdown. In support of this, the depletion of Rab24 disturbs the kinetochore-microtubule attachments in oocytes, and contributes to the production of aneuploid eggs. Taken together, the results of this study identify Rab24 as a novel factor in the modulation of meiotic apparatus assembly and meiotic progression during mouse oocyte maturation.
Collapse
Affiliation(s)
- Danhong Qiu
- Fertility Preservation Laboratory, Human Reproduction Medical Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Sen Li
- Fertility Preservation Laboratory, Human Reproduction Medical Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei Guo
- Fertility Preservation Laboratory, Human Reproduction Medical Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ruiying Yuan
- Fertility Preservation Laboratory, Human Reproduction Medical Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xianghong Ou
- Fertility Preservation Laboratory, Human Reproduction Medical Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
12
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
13
|
Hebert E, Borngräber F, Schmidt A, Rakovic A, Brænne I, Weissbach A, Hampf J, Vollstedt EJ, Größer L, Schaake S, Müller M, Manzoor H, Jabusch HC, Alvarez-Fischer D, Kasten M, Kostic VS, Gasser T, Zeuner KE, Kim HJ, Jeon B, Bauer P, Altenmüller E, Klein C, Lohmann K. Functional Characterization of Rare RAB12 Variants and Their Role in Musician's and Other Dystonias. Genes (Basel) 2017; 8:genes8100276. [PMID: 29057844 PMCID: PMC5664126 DOI: 10.3390/genes8100276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/07/2023] Open
Abstract
Mutations in RAB (member of the Ras superfamily) genes are increasingly recognized as cause of a variety of disorders including neurological conditions. While musician’s dystonia (MD) and writer’s dystonia (WD) are task-specific movement disorders, other dystonias persistently affect postures as in cervical dystonia. Little is known about the underlying etiology. Next-generation sequencing revealed a rare missense variant (c.586A>G; p.Ile196Val) in RAB12 in two of three MD/WD families. Next, we tested 916 additional dystonia patients; 512 Parkinson’s disease patients; and 461 healthy controls for RAB12 variants and identified 10 additional carriers of rare missense changes among dystonia patients (1.1%) but only one carrier in non-dystonic individuals (0.1%; p = 0.005). The detected variants among index patients comprised p.Ile196Val (n = 6); p.Ala174Thr (n = 3); p.Gly13Asp; p.Ala148Thr; and p.Arg181Gln in patients with MD; cervical dystonia; or WD. Two relatives of MD patients with WD also carried p.Ile196Val. The two variants identified in MD patients (p.Ile196Val; p.Gly13Asp) were characterized on endogenous levels in patient-derived fibroblasts and in two RAB12-overexpressing cell models. The ability to hydrolyze guanosine triphosphate (GTP), so called GTPase activity, was increased in mutants compared to wildtype. Furthermore, subcellular distribution of RAB12 in mutants was altered in fibroblasts. Soluble Transferrin receptor 1 levels were reduced in the blood of all three tested p.Ile196Val carriers. In conclusion, we demonstrate an enrichment of missense changes among dystonia patients. Functional characterization revealed altered enzyme activity and lysosomal distribution in mutants suggesting a contribution of RAB12 variants to MD and other dystonias.
Collapse
Affiliation(s)
- Eva Hebert
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany.
| | - Friederike Borngräber
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany.
- Kurt Singer Institute for Music Physiology and Musicians' Health, Hanns Eisler School of Music Berlin, 10595 Berlin, Germany.
- Berlin Center for Musicians' Medicine, Charité-University Medicine Berlin, 10117 Berlin, Germany.
| | - Alexander Schmidt
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany.
- Kurt Singer Institute for Music Physiology and Musicians' Health, Hanns Eisler School of Music Berlin, 10595 Berlin, Germany.
- Berlin Center for Musicians' Medicine, Charité-University Medicine Berlin, 10117 Berlin, Germany.
| | - Aleksandar Rakovic
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany.
| | - Ingrid Brænne
- Institute for Integrative and Experimental Genomics, University of Luebeck, 23538 Luebeck, Germany.
| | - Anne Weissbach
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany.
| | - Jennie Hampf
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany.
| | | | - Leopold Größer
- Department of Dermatology, University of Regensburg, 93053 Regensburg, Germany.
| | - Susen Schaake
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany.
| | - Michaela Müller
- Institute for Integrative and Experimental Genomics, University of Luebeck, 23538 Luebeck, Germany.
| | - Humera Manzoor
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany.
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan.
| | | | | | - Meike Kasten
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany.
- Department of Psychiatry and Psychotherapy, University of Lübeck, 23538 Lubeck, Germany.
| | - Vladimir S Kostic
- Department of Neurodegenerative Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Thomas Gasser
- Department of Neurology, University of Tübingen, 72076 Tubingen, Germany.
| | - Kirsten E Zeuner
- Department of Neurology, University of Kiel, 24105 Kiel, Germany.
| | - Han-Joon Kim
- Department of Neurology, Movement Disorder Center, Seoul National University Hospital, Seoul 03080, Korea.
| | - Beomseok Jeon
- Department of Neurology, Movement Disorder Center, Seoul National University Hospital, Seoul 03080, Korea.
| | | | - Eckart Altenmüller
- Institute of Music Physiology and Musician's Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany.
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany.
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany.
| |
Collapse
|
14
|
Abstract
Macroautophagy is an intracellular pathway used for targeting of cellular components to the lysosome for their degradation and involves sequestration of cytoplasmic material into autophagosomes formed from a double membrane structure called the phagophore. The nucleation and elongation of the phagophore is tightly regulated by several autophagy-related (ATG) proteins, but also involves vesicular trafficking from different subcellular compartments to the forming autophagosome. Such trafficking must be tightly regulated by various intra- and extracellular signals to respond to different cellular stressors and metabolic states, as well as the nature of the cargo to become degraded. We are only starting to understand the interconnections between different membrane trafficking pathways and macroautophagy. This review will focus on the membrane trafficking machinery found to be involved in delivery of membrane, lipids, and proteins to the forming autophagosome and in the subsequent autophagosome fusion with endolysosomal membranes. The role of RAB proteins and their regulators, as well as coat proteins, vesicle tethers, and SNARE proteins in autophagosome biogenesis and maturation will be discussed.
Collapse
|
15
|
KDM4B-mediated epigenetic silencing of miRNA-615-5p augments RAB24 to facilitate malignancy of hepatoma cells. Oncotarget 2017; 8:17712-17725. [PMID: 27487123 PMCID: PMC5392280 DOI: 10.18632/oncotarget.10832] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/17/2016] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence indicates that dysregulation of microRNAs (miRNAs) contributes to hepatocellular carcinoma (HCC) tumorigenesis and development. Here, we found that miR-615-5p was obviously downregulated in HCC. Furthermore, the deficiency of demethylase KDM4B stimulated the CpG methylation of miR-615-5p promoter and then decreased the miR-615-5p expression. The Ras-related protein RAB24 was found to be downregulated by miR-615-5p. The low level of miR-615-5p increased the expression of RAB24 and facilitated HCC growth and metastasis in vitro and in vivo. Moreover, miR-615-5p suppresses HCC cell growth by influencing cell cycle progression and apoptosis. Downregulation of miR-615-5p and upregulation of RAB24 promotes the epithelial-mesenchymal transition (EMT), adhesion and vasculogenic mimicry (VM) of HCC cells, all of which contribute to cell motility and metastasis. Thus, miR-615-5p, who is downregulated by KDM4B-mediated hypermethylation in its promoter, functions as a tumor suppressor by inhibiting RAB24 expression in HCC. In conclusion, our findings characterize miR-615-5p as an important epigenetically silenced miRNA involved in the Rab-Ras pathway in hepatocellular carcinoma and expand our understanding of the molecular mechanism underlying hepatocarcinogenesis and metastasis.
Collapse
|
16
|
Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Sci Immunol 2017; 2:eaal4656. [PMID: 28842433 PMCID: PMC5800877 DOI: 10.1126/sciimmunol.aal4656] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022]
Abstract
Annual influenza vaccinations are currently recommended for all individuals 6 months and older. Antibodies induced by vaccination are an important mechanism of protection against infection. Despite the overall public health success of influenza vaccination, many individuals fail to induce a substantial antibody response. Systems-level immune profiling studies have discerned associations between transcriptional and cell subset signatures with the success of antibody responses. However, existing signatures have relied on small cohorts and have not been validated in large independent studies. We leveraged multiple influenza vaccination cohorts spanning distinct geographical locations and seasons from the Human Immunology Project Consortium (HIPC) and the Center for Human Immunology (CHI) to identify baseline (i.e., before vaccination) predictive transcriptional signatures of influenza vaccination responses. Our multicohort analysis of HIPC data identified nine genes (RAB24, GRB2, DPP3, ACTB, MVP, DPP7, ARPC4, PLEKHB2, and ARRB1) and three gene modules that were significantly associated with the magnitude of the antibody response, and these associations were validated in the independent CHI cohort. These signatures were specific to young individuals, suggesting that distinct mechanisms underlie the lower vaccine response in older individuals. We found an inverse correlation between the effect size of signatures in young and older individuals. Although the presence of an inflammatory gene signature, for example, was associated with better antibody responses in young individuals, it was associated with worse responses in older individuals. These results point to the prospect of predicting antibody responses before vaccination and provide insights into the biological mechanisms underlying successful vaccination responses.
Collapse
|
17
|
Golgi trafficking defects in postnatal microcephaly: The evidence for “Golgipathies”. Prog Neurobiol 2017; 153:46-63. [DOI: 10.1016/j.pneurobio.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
|
18
|
Abstract
Autophagy is an evolutionarily conserved degradation pathway for cells to maintain homeostasis, produce energy, degrade misfolded proteins and damaged organelles, and fight against intracellular pathogens. The process of autophagy entails the isolation of cytoplasmic cargo into double membrane bound autophagosomes that undergo maturation by fusion with endosomes and lysosomes to obtain degradation capacity. RAB proteins regulate intracellular vesicle trafficking events including autophagy. RAB24 is an atypical RAB protein that is required for the clearance of late autophagic vacuoles under basal conditions. RAB24 has also been connected to several diseases including ataxia, cancer and tuberculosis. This review gives a short summary on autophagy and RAB proteins, and an overview on the current knowledge on the roles of RAB24 in autophagy and disease.
Collapse
Affiliation(s)
- Päivi Ylä-Anttila
- a Department of Biosciences , University of Helsinki , Helsinki , Finland
| | | |
Collapse
|
19
|
Maringer K, Yarbrough A, Sims-Lucas S, Saheb E, Jawed S, Bush J. Dictyostelium discoideum RabS and Rab2 colocalize with the Golgi and contractile vacuole system and regulate osmoregulation. J Biosci 2017; 41:205-17. [PMID: 27240981 DOI: 10.1007/s12038-016-9610-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Small-molecular-weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and is required for protein transport from the ER to the Golgi complex; however, Rab2 has yet to be characterized in Dictyostelium discoideum. DdRabS is a Dictyostelium Rab that is 80 percent homologous to DdRab1 which is required for protein transport between the ER and Golgi. Expression of GFP-tagged DdRab2 and DdRabS proteins showed localization to Golgi membranes and to the contractile vacuole system (CV) in Dictyostelium. Microscopic imaging indicates that the DdRab2 and DdRabS proteins localize at, and are essential for, the proper structure of Golgi membranes and the CV system. Dominant negative (DN) forms show fractionation of Golgi membranes, supporting their role in the structure and function of it. DdRab2 and DdRabS proteins, and their dominant negative and constitutively active (CA) forms, affect osmoregulation of the cells, possibly by the influx and discharge of fluids, which suggests a role in the function of the CV system. This is the first evidence of GTPases being localized to both Golgi membranes and the CV system in Dictyostelium.
Collapse
Affiliation(s)
- Katherine Maringer
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | | | | | | | | | | |
Collapse
|
20
|
Amaya C, Militello RD, Calligaris SD, Colombo MI. Rab24 interacts with the Rab7/Rab interacting lysosomal protein complex to regulate endosomal degradation. Traffic 2016; 17:1181-1196. [PMID: 27550070 DOI: 10.1111/tra.12431] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022]
Abstract
Endocytosis is a multistep process engaged in extracellular molecules internalization. Several proteins including the Rab GTPases family coordinate the endocytic pathway. The small GTPase Rab7 is present in late endosome (LE) compartments being a marker of endosome maturation. The Rab interacting lysosomal protein (RILP) is a downstream effector of Rab7 that recruits the functional dynein/dynactin motor complex to late compartments. In the present study, we have found Rab24 as a component of the endosome-lysosome degradative pathway. Rab24 is an atypical protein of the Rab GTPase family, which has been attributed a function in vesicle trafficking and autophagosome maturation. Using a model of transiently expressed proteins in K562 cells, we found that Rab24 co-localizes in vesicular structures labeled with Rab7 and LAMP1. Moreover, using a dominant negative mutant of Rab24 or a siRNA-Rab24 we showed that the distribution of Rab7 in vesicles depends on a functional Rab24 to allow DQ-BSA protein degradation. Additionally, by immunoprecipitation and pull down assays, we have demonstrated that Rab24 interacts with Rab7 and RILP. Interestingly, overexpression of the Vps41 subunit from the homotypic fusion and protein-sorting (HOPS) complex hampered the co-localization of Rab24 with RILP or with the lysosomal GTPase Arl8b, suggesting that Vps41 would affect the Rab24/RILP association. In summary, our data strongly support the hypothesis that Rab24 forms a complex with Rab7 and RILP on the membranes of late compartments. Our work provides new insights into the molecular function of Rab24 in the last steps of the endosomal degradative pathway.
Collapse
Affiliation(s)
- Celina Amaya
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Rodrigo D Militello
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Sebastián D Calligaris
- Centro de Medicina Regenerativa, Facultad de Medicina, Universidad del Desarrollo Clínica Alemana, Santiago, Chile
| | - María I Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
21
|
Ylä-Anttila P, Mikkonen E, Happonen KE, Holland P, Ueno T, Simonsen A, Eskelinen EL. RAB24 facilitates clearance of autophagic compartments during basal conditions. Autophagy 2016; 11:1833-48. [PMID: 26325487 DOI: 10.1080/15548627.2015.1086522] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RAB24 belongs to a family of small GTPases and has been implicated to function in autophagy. Here we confirm the intracellular localization of RAB24 to autophagic vacuoles with immuno electron microscopy and cell fractionation, and show that prenylation and guanine nucleotide binding are necessary for the targeting of RAB24 to autophagic compartments. Further, we show that RAB24 plays a role in the maturation and/or clearance of autophagic compartments under nutrient-rich conditions, but not during short amino acid starvation. Quantitative electron microscopy shows an increase in the numbers of late autophagic compartments in cells silenced for RAB24, and mRFP-GFP-LC3 probe and autophagy flux experiments indicate that this is due to a hindrance in their clearance. Formation of autophagosomes is shown to be unaffected by RAB24-silencing with siRNA. A defect in aggregate clearance in the absence of RAB24 is also shown in cells forming polyglutamine aggregates. This study places RAB24 function in the termination of the autophagic process under nutrient-rich conditions.
Collapse
Affiliation(s)
- Päivi Ylä-Anttila
- a Department of Biosciences, Division of Biochemistry and Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Elisa Mikkonen
- a Department of Biosciences, Division of Biochemistry and Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Kaisa E Happonen
- a Department of Biosciences, Division of Biochemistry and Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Petter Holland
- b Department of Biochemistry, Institute of Basic Medical Sciences; University of Oslo ; Oslo , Norway
| | - Takashi Ueno
- c Laboratory of Proteomics and Biomolecular Science; Research Support Center; Juntendo University Graduate School of Medicine ; Tokyo , Japan
| | - Anne Simonsen
- b Department of Biochemistry, Institute of Basic Medical Sciences; University of Oslo ; Oslo , Norway
| | - Eeva-Liisa Eskelinen
- a Department of Biosciences, Division of Biochemistry and Biotechnology; University of Helsinki ; Helsinki , Finland
| |
Collapse
|
22
|
Abstract
The RAB class of small GTPases includes the major regulators of intracellular communication, which are involved in vesicle generation through fusion and fission, and vesicular trafficking. RAB proteins also play an imperative role in neuronal maintenance and survival. Recent studies in the field of neurodegeneration have also highlighted the process of autophagy as being essential for neuronal maintenance. Here we review the emerging roles of RAB proteins in regulating macroautophagy and its impact in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Navodita Jain
- a Department of Biological Sciences & Bioengineering , Indian Institute of Technology , Kanpur , India
| | - Subramaniam Ganesh
- a Department of Biological Sciences & Bioengineering , Indian Institute of Technology , Kanpur , India
| |
Collapse
|
23
|
Miserey-Lenkei S, Colombo MI. Small RAB GTPases Regulate Multiple Steps of Mitosis. Front Cell Dev Biol 2016; 4:2. [PMID: 26925400 PMCID: PMC4756281 DOI: 10.3389/fcell.2016.00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
GTPases of the RAB family are key regulators of multiple steps of membrane trafficking. Several members of the RAB GTPase family have been implicated in mitotic progression. In this review, we will first focus on the function of endosome-associated RAB GTPases reported in early steps of mitosis, spindle pole maturation, and during cytokinesis. Second, we will discuss the role of Golgi-associated RAB GTPases at the metaphase/anaphase transition and during cytokinesis.
Collapse
Affiliation(s)
- Stéphanie Miserey-Lenkei
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport Group, CNRS UMR 144 Paris, France
| | - María I Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo Mendoza, Argentina
| |
Collapse
|
24
|
Efergan A, Azouz NP, Klein O, Noguchi K, Rothenberg ME, Fukuda M, Sagi-Eisenberg R. Rab12 Regulates Retrograde Transport of Mast Cell Secretory Granules by Interacting with the RILP-Dynein Complex. THE JOURNAL OF IMMUNOLOGY 2016; 196:1091-101. [PMID: 26740112 DOI: 10.4049/jimmunol.1500731] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
Abstract
Secretory granule (SG) transport is a critical step in regulated exocytosis including degranulation of activated mast cells. The latter process results in the release of multiple inflammatory mediators that play key roles in innate immunity, as well as in allergic responses. In this study, we identified the small GTPase Rab12 as a novel regulator of mast cell SG transport, and we provide mechanistic insights into its mode of action. We show that Rab12 is activated in a stimulus-dependent fashion and promotes microtubule-dependent retrograde transport of the SGs in the activated cells. We also show that this minus end transport of the SGs is mediated by the RILP-dynein complex and identify RILP as a novel effector of Rab12. Finally, we show that Rab12 negatively regulates mast cell degranulation. Taken together, our results identify Rab12 as a novel regulator of mast cell responses and disclose for the first time, to our knowledge, the mechanism of retrograde transport of the mast cell SGs.
Collapse
Affiliation(s)
- Adi Efergan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nurit P Azouz
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kenta Noguchi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; and
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; and
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
25
|
Amaya C, Fader CM, Colombo MI. Autophagy and proteins involved in vesicular trafficking. FEBS Lett 2015; 589:3343-53. [PMID: 26450776 DOI: 10.1016/j.febslet.2015.09.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.
Collapse
Affiliation(s)
- Celina Amaya
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - María Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina.
| |
Collapse
|
26
|
Müller AJ, Proikas-Cezanne T. Function of human WIPI proteins in autophagosomal rejuvenation of endomembranes? FEBS Lett 2015; 589:1546-51. [PMID: 25980605 DOI: 10.1016/j.febslet.2015.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/28/2022]
Abstract
Despite the availability of a large pool of experimental approaches and hypothetical considerations, the hunt for the enigmatic membrane origin of autophagosomes is still on. In mammalian cells proposed scenarios for the formation of the autophagosomal membrane include both de novo assembly, and rearrangements plus maturation of pre-existing membrane sections from the endoplasmic reticulum (ER), plasma membrane, Golgi or mitochondria. Earlier, we identified the human WD-repeat protein interacting with phosphoinositides (WIPI) family and showed that WIPI proteins function as essential phosphatidylinositol 3-phosphate (PtdIns3P) effectors at the nascent autophagosome. Interestingly, WIPI proteins localize to both pre-existing endomembranes and nascent autophagosomes. In this context, and on the basis of historical records on the formation of autophagosomes, we discuss with appropriate modesty an alternative perspective on the membrane origin of autophagosomes.
Collapse
Affiliation(s)
- Amelie Johanna Müller
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Tassula Proikas-Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany.
| |
Collapse
|
27
|
Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328:1-19. [PMID: 25088255 DOI: 10.1016/j.yexcr.2014.07.027] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Collapse
|
28
|
Szatmári Z, Sass M. The autophagic roles of Rab small GTPases and their upstream regulators: a review. Autophagy 2014; 10:1154-66. [PMID: 24915298 DOI: 10.4161/auto.29395] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Macroautophagy is an evolutionarily conserved degradative process of eukaryotic cells. Double-membrane vesicles called autophagosomes sequester portions of cytoplasm and undergo fusion with the endolysosomal pathway in order to degrade their content. There is growing evidence that members of the small GTPase RAB protein family-the well-known regulators of membrane trafficking and fusion events-play key roles in the regulation of the autophagic process. Despite numerous studies focusing on the functions of RAB proteins in autophagy, the importance of their upstream regulators in this process emerged only in the past few years. In this review, we summarize recent advances on the effects of RABs and their upstream modulators in the regulation of autophagy. Moreover, we discuss how impairment of these proteins alters the autophagic process leading to several generally known human diseases.
Collapse
Affiliation(s)
- Zsuzsanna Szatmári
- Department of Anatomy, Cell and Developmental Biology; Eötvös Loránd University; Budapest, Hungary
| | - Miklós Sass
- Department of Anatomy, Cell and Developmental Biology; Eötvös Loránd University; Budapest, Hungary
| |
Collapse
|
29
|
Agler C, Nielsen DM, Urkasemsin G, Singleton A, Tonomura N, Sigurdsson S, Tang R, Linder K, Arepalli S, Hernandez D, Lindblad-Toh K, van de Leemput J, Motsinger-Reif A, O'Brien DP, Bell J, Harris T, Steinberg S, Olby NJ. Canine hereditary ataxia in old english sheepdogs and gordon setters is associated with a defect in the autophagy gene encoding RAB24. PLoS Genet 2014; 10:e1003991. [PMID: 24516392 PMCID: PMC3916225 DOI: 10.1371/journal.pgen.1003991] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP) located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia. Neurodegenerative diseases are one of the most important causes of decline in an aging population. An important subset of these diseases are known as the hereditary ataxias, familial neurodegenerative diseases that affect the cerebellum causing progressive gait disturbance in both humans and dogs. We identified a mutation in RAB24, a gene associated with autophagy, in Old English Sheepdogs and Gordon Setters with hereditary ataxia. Autophagy is a process by which cell proteins and organelles are removed and recycled and its critical role in maintenance of the continued health of cells is becoming clear. We evaluated the brains of affected dogs and identified accumulations of autophagosomes within the cerebellum, suggesting a defect in the autophagy pathway. Our results suggest that a defect in the autophagy pathway results in neuronal death in a naturally occurring disease in dogs. The autophagy pathway should be investigated in human hereditary ataxia and may represent a therapeutic target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Caryline Agler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Dahlia M. Nielsen
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ganokon Urkasemsin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Noriko Tonomura
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Snaevar Sigurdsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Ruqi Tang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Keith Linder
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sampath Arepalli
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joyce van de Leemput
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Dennis P. O'Brien
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Jerold Bell
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Tonya Harris
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Steven Steinberg
- VCA Veterinary Referral Associates, Gaithersbrug, Maryland, United States of America
| | - Natasha J. Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
Whereas most of what we know today about the Ras-related small GTPases of the Rab family stems from observations made on Golgi complex, endosome and plasma membrane trafficking, a subset of Rabs localizes in part or predominantly to the ER (endoplasmic reticulum). Here, Rabs such as Rab1, Rab2, Rab6 and Rab33 can regulate the anterograde and retrograde trafficking of vesicles between the Golgi complex, the ERGIC (ER-Golgi intermediate compartment) and the ER itself. However, among the ER-associated Rabs, some Rabs appear to perform roles not directly related to trafficking: these Rabs (e.g. Rab32 or Rab24) could aid proteins of the atlastin and reticulon families in determining the extent and direction of ER tubulation. In so doing, these Rabs regulate not only ER contacts with other organelles such as mitochondria, but also the formation of autophagosomes.
Collapse
|
31
|
Wiesner C, El Azzouzi K, Linder S. A specific subset of RabGTPases controls cell surface exposure of MT1-MMP, extracellular matrix degradation and three-dimensional invasion of macrophages. J Cell Sci 2013; 126:2820-33. [PMID: 23606746 DOI: 10.1242/jcs.122358] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The matrix metalloproteinase MT1-MMP has a major impact on invasive cell migration in both physiological and pathological settings such as immune cell extravasation or metastasis of cancer cells. Surface-associated MT1-MMP is able to cleave components of the extracellular matrix, which is a prerequisite for proteolytic invasive migration. However, current knowledge on the molecular mechanisms that regulate MT1-MMP trafficking to and from the cell surface is limited. We have identified three members of the RabGTPase family, Rab5a, Rab8a and Rab14, as crucial regulators of MT1-MMP trafficking and function in primary human macrophages. Both overexpressed and endogenous forms show prominent colocalisation with MT1-MMP-positive vesicles, whereas expression of mutant constructs, as well as siRNA-induced knockdown, reveal that these RabGTPases are crucial in the regulation of MT1-MMP surface exposure, contact of MT1-MMP-positive vesicles with podosomes, extracellular matrix degradation in two and three dimensions, as well as three-dimensional proteolytic invasion of macrophages. Collectively, our results identify Rab5a, Rab8a and Rab14 as major regulators of MT1-MMP trafficking and invasive migration of primary human macrophages, which could be promising potential targets for manipulation of immune cell invasion.
Collapse
Affiliation(s)
- Christiane Wiesner
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | | | | |
Collapse
|
32
|
Militello RD, Munafó DB, Berón W, López LA, Monier S, Goud B, Colombo MI. Rab24 is required for normal cell division. Traffic 2013; 14:502-18. [PMID: 23387408 DOI: 10.1111/tra.12057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/18/2022]
Abstract
Rab24 is an atypical member of the Rab GTPase family whose distribution in interphase cells has been characterized; however, its function remains largely unknown. In this study, we have analyzed the distribution of Rab24 throughout cell division. We have observed that Rab24 was located at the mitotic spindle in metaphase, at the midbody during telophase and in the furrow during cytokinesis. We have also observed partial co-localization of Rab24 and tubulin and demonstrated its association to microtubules. Interestingly, more than 90% of transiently transfected HeLa cells with Rab24 presented abnormal nuclear connections (i.e., chromatin bridges). Furthermore, in CHO cells stably transfected with GFP-Rab24wt, we observed a large percentage of binucleated and multinucleated cells. In addition, these cells presented an extremely large size and multiple failures in mitosis, as aberrant spindle formation (metaphase), delayed chromosomes (telophase) and multiple cytokinesis. A marked increase in binucleated, multinucleated and multilobulated nucleus formation was observed in HeLa cells depleted of Rab24. We also present evidence that a fraction of Rab24 associates with microtubules. In addition, Rab24 knock down resulted in misalignment of chromosomes and abnormal spindle formation in metaphase leading to the appearance of delayed chromosomes during late telophase and failures in cytokinesis. Our findings suggest that an adequate level of Rab24 is necessary for normal cell division. In summary, Rab24 modulates several mitotic events, including chromosome segregation and cytokinesis, perhaps through the interaction with microtubules.
Collapse
Affiliation(s)
- Rodrigo D Militello
- Laboratorio de Biología Celular y Molecular- Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
33
|
Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 2012; 37:223-34. [PMID: 22921120 DOI: 10.1016/j.immuni.2012.04.015] [Citation(s) in RCA: 521] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 02/04/2012] [Accepted: 04/27/2012] [Indexed: 02/07/2023]
Abstract
Autophagy is a fundamental biological process of the eukaryotic cell contributing to diverse cellular and physiological functions including cell-autonomous defense against intracellular pathogens. Here, we screened the Rab family of membrane trafficking regulators for effects on autophagic elimination of Mycobacterium tuberculosis var. bovis BCG and found that Rab8b and its downstream interacting partner, innate immunity regulator TBK-1, are required for autophagic elimination of mycobacteria in macrophages. TBK-1 was necessary for autophagic maturation. TBK-1 coordinated assembly and function of the autophagic machinery and phosphorylated the autophagic adaptor p62 (sequestosome 1) on Ser-403, a residue essential for its role in autophagic clearance. A key proinflammatory cytokine, IL-1β, induced autophagy leading to autophagic killing of mycobacteria in macrophages, and this IL-1β activity was dependent on TBK-1. Thus, TBK-1 is a key regulator of immunological autophagy and is responsible for the maturation of autophagosomes into lytic bactericidal organelles.
Collapse
Affiliation(s)
- Manohar Pilli
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu S, Storrie B. Are Rab proteins the link between Golgi organization and membrane trafficking? Cell Mol Life Sci 2012; 69:4093-106. [PMID: 22581368 DOI: 10.1007/s00018-012-1021-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 11/25/2022]
Abstract
The fundamental separation of Golgi function between subcompartments termed cisternae is conserved across all eukaryotes. Likewise, Rab proteins, small GTPases of the Ras superfamily, are putative common coordinators of Golgi organization and protein transport. However, despite sequence conservation, e.g., Rab6 and Ypt6 are conserved proteins between humans and yeast, the fundamental organization of the organelle can vary profoundly. In the yeast Saccharomyces cerevisiae, the Golgi cisternae are physically separated from one another, while in mammalian cells, the cisternae are stacked one upon the other. Moreover, in mammalian cells, many Golgi stacks are typically linked together to generate a ribbon structure. Do evolutionarily conserved Rab proteins regulate secretory membrane trafficking and diverse Golgi organization in a common manner? In mammalian cells, some Golgi-associated Rab proteins function in coordination of protein transport and maintenance of Golgi organization. These include Rab6, Rab33B, Rab1, Rab2, Rab18, and Rab43. In yeast, these include Ypt1, Ypt32, and Ypt6. Here, based on evidence from both yeast and mammalian cells, we speculate on the essential role of Rab proteins in Golgi organization and protein transport.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
35
|
Stein M, Pilli M, Bernauer S, Habermann BH, Zerial M, Wade RC. The interaction properties of the human Rab GTPase family--comparative analysis reveals determinants of molecular binding selectivity. PLoS One 2012; 7:e34870. [PMID: 22523562 PMCID: PMC3327705 DOI: 10.1371/journal.pone.0034870] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/06/2012] [Indexed: 01/07/2023] Open
Abstract
Background Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. Methodology/Principal Findings Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. Conclusions/Significance We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity.
Collapse
Affiliation(s)
- Matthias Stein
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- * E-mail: (MS); (RW)
| | - Manohar Pilli
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Sabine Bernauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Bianca H. Habermann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- * E-mail: (MS); (RW)
| |
Collapse
|
36
|
Kajiho H, Sakurai K, Minoda T, Yoshikawa M, Nakagawa S, Fukushima S, Kontani K, Katada T. Characterization of RIN3 as a guanine nucleotide exchange factor for the Rab5 subfamily GTPase Rab31. J Biol Chem 2011; 286:24364-73. [PMID: 21586568 PMCID: PMC3129215 DOI: 10.1074/jbc.m110.172445] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 04/25/2011] [Indexed: 01/02/2023] Open
Abstract
The small GTPase Rab5, which cycles between GDP-bound inactive and GTP-bound active forms, plays essential roles in membrane budding and trafficking in the early endocytic pathway. Rab5 is activated by various vacuolar protein sorting 9 (VPS9) domain-containing guanine nucleotide exchange factors. Rab21, Rab22, and Rab31 (members of the Rab5 subfamily) are also involved in the trafficking of early endosomes. Mechanisms controlling the activation Rab5 subfamily members remain unclear. RIN (Ras and Rab interactor) represents a family of multifunctional proteins that have a VPS9 domain in addition to Src homology 2 (SH2) and Ras association domains. We investigated whether RIN family members act as guanine nucleotide exchange factors (GEFs) for the Rab5 subfamily on biochemical and cell morphological levels. RIN3 stimulated the formation of GTP-bound Rab31 in cell-free and in cell GEF activity assays. RIN3 also formed enlarged vesicles and tubular structures, where it colocalized with Rab31 in HeLa cells. In contrast, RIN3 did not exhibit any apparent effects on Rab21. We also found that serine to alanine substitutions in the sequences between SH2 and RIN family homology domain of RIN3 specifically abolished its GEF action on Rab31 but not Rab5. We examined whether RIN3 affects localization of the cation-dependent mannose 6-phosphate receptor (CD-MPR), which is transported between trans-Golgi network and endocytic compartments. We found that RIN3 partially translocates CD-MPR from the trans-Golgi network to peripheral vesicles and that this is dependent on its Rab31-GEF activity. These results indicate that RIN3 specifically acts as a GEF for Rab31.
Collapse
Affiliation(s)
- Hiroaki Kajiho
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kyoko Sakurai
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Tomohiro Minoda
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Manabu Yoshikawa
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Satoshi Nakagawa
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Shinichi Fukushima
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Kontani
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
37
|
Abstract
The DENN domain is a common, evolutionarily ancient, and conserved protein module, yet it has gone largely unstudied; until recently, little was known regarding its functional roles. New studies reveal that various DENN domains interact directly with members of the Rab family of small GTPases and that DENN domains function enzymatically as Rab-specific guanine nucleotide exchange factors. Thus, DENN domain proteins appear to be generalized regulators of Rab function. Study of these proteins will provide new insights into Rab-mediated membrane trafficking pathways.
Collapse
Affiliation(s)
- Andrea L. Marat
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Hatem Dokainish
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S. McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
38
|
Abstract
Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer.
Collapse
Affiliation(s)
- Alex H Hutagalung
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
39
|
Tong J, Yan X, Yu L. The late stage of autophagy: cellular events and molecular regulation. Protein Cell 2010; 1:907-15. [PMID: 21204017 PMCID: PMC4875124 DOI: 10.1007/s13238-010-0121-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/18/2010] [Indexed: 12/28/2022] Open
Abstract
Autophagy is an intracellular degradation system that delivers cytoplasmic contents to the lysosome for degradation. It is a "self-eating" process and plays a "house-cleaner" role in cells. The complex process consists of several sequential steps-induction, autophagosome formation, fusion of lysosome and autophagosome, degradation, efflux transportation of degradation products, and autophagic lysosome reformation. In this review, the cellular and molecular regulations of late stage of autophagy, including cellular events after fusion step, are summarized.
Collapse
Affiliation(s)
- Jingjing Tong
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Science, Tsinghua University, Beijing, 100084 China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xianghua Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li Yu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Science, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
40
|
Carnegie JR, Robert-Cooperman CE, Wu J, Young RA, Wolf BA, Burkhardt BR. Characterization of the expression, localization, and secretion of PANDER in alpha-cells. Mol Cell Endocrinol 2010; 325:36-45. [PMID: 20638985 PMCID: PMC2908920 DOI: 10.1016/j.mce.2010.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 03/11/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
The novel islet-specific protein PANcreatic DERived Factor (PANDER; FAM3B) has been extensively characterized with respect to the beta-cell, and these studies suggest a potential function for PANDER in the regulation of glucose homeostasis. Little is known regarding PANDER in pancreatic -cells, which are critically involved in maintaining euglycemia. Here we present the first report elucidating the expression and regulation of PANDER within the alpha-cell. Pander mRNA and protein are detected in alpha-cells, with primary localization to a glucagon-negative granular cytosolic compartment. PANDER secretion from alpha-cells is nutritionally and hormonally regulated by l-arginine and insulin, demonstrating similarities and differences with glucagon. Signaling via the insulin receptor (IR) through the PI3K and Akt/PKB node is required for insulin-stimulated PANDER release. The separate localization of PANDER and glucagon is consistent with their differential regulation, and the effect of insulin suggests a paracrine/endocrine effect on PANDER release. This provides further insight into the potential glucose-regulatory role of PANDER.
Collapse
Affiliation(s)
- Jason R Carnegie
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104-4318, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Mehrpour M, Esclatine A, Beau I, Codogno P. Overview of macroautophagy regulation in mammalian cells. Cell Res 2010; 20:748-62. [DOI: 10.1038/cr.2010.82] [Citation(s) in RCA: 382] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
42
|
Marambio P, Toro B, Sanhueza C, Troncoso R, Parra V, Verdejo H, García L, Quiroga C, Munafo D, Díaz-Elizondo J, Bravo R, González MJ, Diaz-Araya G, Pedrozo Z, Chiong M, Colombo MI, Lavandero S. Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochim Biophys Acta Mol Basis Dis 2010; 1802:509-18. [PMID: 20176105 DOI: 10.1016/j.bbadis.2010.02.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 01/20/2010] [Accepted: 02/08/2010] [Indexed: 12/19/2022]
Abstract
Aggresomes are dynamic structures formed when the ubiquitin-proteasome system is overwhelmed with aggregation-prone proteins. In this process, small protein aggregates are actively transported towards the microtubule-organizing center. A functional role for autophagy in the clearance of aggresomes has also been proposed. In the present work we investigated the molecular mechanisms involved on aggresome formation in cultured rat cardiac myocytes exposed to glucose deprivation. Confocal microscopy showed that small aggregates of polyubiquitinated proteins were formed in cells exposed to glucose deprivation for 6 h. However, at longer times (18 h), aggregates formed large perinuclear inclusions (aggresomes) which colocalized with gamma-tubulin (a microtubule-organizing center marker) and Hsp70. The microtubule disrupting agent vinblastine prevented the formation of these inclusions. Both small aggregates and aggresomes colocalized with autophagy markers such as GFP-LC3 and Rab24. Glucose deprivation stimulates reactive oxygen species (ROS) production and decreases intracellular glutathione levels. ROS inhibition by N-acetylcysteine or by the adenoviral overexpression of catalase or superoxide dismutase disrupted aggresome formation and autophagy induced by glucose deprivation. In conclusion, glucose deprivation induces oxidative stress which is associated with aggresome formation and activation of autophagy in cultured cardiac myocytes.
Collapse
Affiliation(s)
- Paola Marambio
- Centro FONDAP Estudios Moleculares de la Celula, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago 838-0492, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Macroautophagy is a vacuolar degradation pathway that terminates in the lysosomal compartment. Macroautophagy is a multistep process involving: (1) signaling events that occur upstream of the molecular machinery of autophagy; (2) molecular machinery involved in the formation of the autophagosome, the initial multimembrane-bound compartment formed in the autophagic pathway; and (3) maturation of autophagosomes, which acquire acidic and degradative capacities. In this chapter we summarize what is known about the regulation of the different steps involved in autophagy, and we also discuss how macroautophagy can be manipulated using drugs or genetic approaches that affect macroautophagy signaling, and the subsequent formation and maturation of the autophagosomes. Modulating autophagy offers a promising new therapeutic approach to human diseases that involve macroautophagy.
Collapse
Affiliation(s)
- Audrey Esclatine
- INSERM U756, Université Paris-Sud 11, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France
| | | | | |
Collapse
|
44
|
Zhu H, Liang Z, Li G. Rabex-5 is a Rab22 effector and mediates a Rab22-Rab5 signaling cascade in endocytosis. Mol Biol Cell 2009; 20:4720-9. [PMID: 19759177 DOI: 10.1091/mbc.e09-06-0453] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rabex-5 targets to early endosomes and functions as a guanine nucleotide exchange factor for Rab5. Membrane targeting is critical for Rabex-5 to activate Rab5 on early endosomes in the cell. Here, we report the identification of Rab22 as a binding site on early endosomes for direct recruitment of Rabex-5 and activation of Rab5, establishing a Rab22-Rab5 signaling relay to promote early endosome fusion. Rab22 in guanosine 5'-O-(3-thio)triphosphate-loaded form, but not guanosine diphosphate-loaded form, binds to the early endosomal targeting domain (residues 81-230) of Rabex-5 in pull-down assays. Rabex-5 targets to Rab22-containing early endosomes, and Rab22 knockdown by short hairpin RNA abrogates the membrane targeting of Rabex-5 in the cell. In addition, coexpression of Rab22 and Rab5 shows synergistic enlargement of early endosomes, and this synergy is dependent on Rabex-5, providing further support for the collaboration of the two Rab GTPases in regulation of endosome dynamics. This novel Rab22-Rabex-5-Rab5 cascade is functionally important for the endocytosis and degradation of epidermal growth factor.
Collapse
Affiliation(s)
- Huaiping Zhu
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
45
|
Dejgaard SY, Murshid A, Erman A, Kızılay O, Verbich D, Lodge R, Dejgaard K, Ly-Hartig TBN, Pepperkok R, Simpson JC, Presley JF. Rab18 and Rab43 have key roles in ER-Golgi trafficking. J Cell Sci 2008; 121:2768-81. [DOI: 10.1242/jcs.021808] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rabs and Arfs/Arls are Ras-related small GTPases of particular relevance to membrane trafficking. It is thought that these proteins regulate specific pathways through interactions with coat, motor, tether and SNARE proteins. We screened a comprehensive list of Arf/Arl/Rab proteins, previously identified on purified Golgi membranes by a proteomics approach (37 in total), for Golgi or intra-Golgi localization, dominant-negative and overexpression phenotypes. Further analysis of two of these proteins, Rab18 and Rab43, strongly indicated roles in ER-Golgi trafficking. Rab43-T32N redistributed Golgi elements to ER exit sites without blocking trafficking of the secretory marker VSVG-GFP from ER to cell surface. Wild-type Rab43 redistributes the p150Glued subunit of dynactin, consistent with a specific role in regulating association of pre-Golgi intermediates with microtubules. Overexpression of wild-type GFP-Rab18 or incubation with any of three siRNAs directed against Rab18 severely disrupts the Golgi complex and reduces secretion of VSVG. Rab18 mutants specifically enhance retrograde Golgi-ER transport of the COPI-independent cargo β-1,4-galactosyltransferase (Galtase)-YFP but not the COPI-dependent cargo p58-YFP from the Golgi to ER in a photobleach assay. Rab18-S22N also potentiated brefeldin-A-induced ER-Golgi fusion. This study is the first comprehensive application of large-scale proteomics to the cell biology of small GTPases of the secretory pathway.
Collapse
Affiliation(s)
- Selma Y. Dejgaard
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 2B2
| | - Ayesha Murshid
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 2B2
| | - Ayşegül Erman
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 2B2
| | - Özge Kızılay
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 2B2
| | - David Verbich
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 2B2
| | - Robert Lodge
- Laboratoire d'Immunoretrovirologie, Centre de Recherche d'Infectiologie – CHUL, Quebec, Canada, G1V 4G2
| | - Kurt Dejgaard
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | | | - Rainer Pepperkok
- Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany
| | | | - John F. Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 2B2
| |
Collapse
|
46
|
Reiner C, Nathanson NM. The internalization of the M2 and M4 muscarinic acetylcholine receptors involves distinct subsets of small G-proteins. Life Sci 2008; 82:718-27. [PMID: 18295803 PMCID: PMC2346611 DOI: 10.1016/j.lfs.2008.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 12/13/2007] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Multiple mechanisms exist for the endocytosis of receptors from the cell surface. While the M1, M3, and M4 subtypes of muscarinic acetylcholine receptor and M4 receptors transduce their signals through the same second messengers but internalize though different pathways, we tested the ability of several small G-proteins to regulate the agonist-induced endocytosis of M2 and M4 in JEG-3 human choriocarcinoma cells. Dominant-negative Rab5 as well as both wild-type and dominant-negative Rab11 inhibited M4 but not M2 endocytosis. In contrast, a dominant-negative Arf6 as well as wild-type Rab22 increased M2 but not M4 endocytosis. We used immunocytochemistry to show that in unstimulated cells, the M2 and M4 receptors co-localize on the cell surface, whereas after stimulation M2 and M4 are in distinct vesicular compartments. In this study, we demonstrate that agonist-induced internalization of the M2 receptor utilizes an Arf6, Rab22 dependent pathway, while the M4 receptor undergoes agonist-induced internalization through a Rab5, Rab11 dependent pathway. Additionally, we show that Rab15 and RhoA are not involved in either pathway in JEG-3 cells.
Collapse
Affiliation(s)
- Cindy Reiner
- Department of Pharmacology, University of Washington, Seattle, WA 98195, United States
| | | |
Collapse
|
47
|
Ng EL, Wang Y, Tang BL. Rab22B’s role in trans-Golgi network membrane dynamics. Biochem Biophys Res Commun 2007; 361:751-7. [PMID: 17678623 DOI: 10.1016/j.bbrc.2007.07.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/14/2007] [Indexed: 01/17/2023]
Abstract
The small GTPase Rab22B (or Rab31) has been suspected to be involved in trafficking at trans-Golgi network. However, its exact cellular localization, tissue expression profile, and functions have not been uncharacterized. Specific antibody raised against Rab22B's protein revealed that Rab22B is brain-enriched, but is also present in substantial levels in spleen and intestine. In HeLa cells, endogenous Rab22B is largely associated with the trans-Golgi network (TGN). Over-expression of a GDP-binding mutant (Rab22BSN), but not wild-type Rab22B, specifically disrupts the TGN localization of TGN46, a dynamic marker which cycles between the TGN and the plasma membrane. The TGN resident membrane protein syntaxin 16, cis-Golgi markers such as GM130 and syntaxin 5, as well as the TGN/late endosome marker mannose 6-phosphate receptor (M6PR) are not affected by Rab22BSN, neither was endosomal-TGN transport of the Shiga toxin B subunit. The disruption of TGN46 staining by Rab22BSN could be specifically attributed to a domain at the C-terminal portion of Rab22B, where its sequence deviates the most from Rab22A. Over-expression of Rab22BSN inhibits the cell surface transport of the vesicular stomatitis virus G protein. Thus, Rab22B may have a role in anterograde exit from the TGN.
Collapse
Affiliation(s)
- Ee Ling Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
48
|
Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 2006; 103:11821-7. [PMID: 16882731 PMCID: PMC1567661 DOI: 10.1073/pnas.0601617103] [Citation(s) in RCA: 797] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rab proteins constitute the largest branch of the Ras GTPase superfamily. Rabs use the guanine nucleotide-dependent switch mechanism common to the superfamily to regulate each of the four major steps in membrane traffic: vesicle budding, vesicle delivery, vesicle tethering, and fusion of the vesicle membrane with that of the target compartment. These different tasks are carried out by a diverse collection of effector molecules that bind to specific Rabs in their GTP-bound state. Recent advances have not only greatly extended the number of known Rab effectors, but have also begun to define the mechanisms underlying their distinct functions. By binding to the guanine nucleotide exchange proteins that activate the Rabs certain effectors act to establish positive feedback loops that help to define and maintain tightly localized domains of activated Rab proteins, which then serve to recruit other effector molecules. Additionally, Rab cascades and Rab conversions appear to confer directionality to membrane traffic and couple each stage of traffic with the next along the pathway.
Collapse
Affiliation(s)
- Bianka L. Grosshans
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Darinel Ortiz
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Peter Novick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Egami Y, Kiryu-Seo S, Yoshimori T, Kiyama H. Induced expressions of Rab24 GTPase and LC3 in nerve-injured motor neurons. Biochem Biophys Res Commun 2005; 337:1206-13. [PMID: 16236257 DOI: 10.1016/j.bbrc.2005.09.171] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/22/2005] [Indexed: 11/30/2022]
Abstract
Rab24 is a member of the Rab GTPase family, but its function is unclear. Here, we demonstrated increase in Rab24 mRNA in nerve-injured hypoglossal motor neurons of rats. Expression of Rab24 mRNA was also induced in differentiated PC12 cells following proteasome inhibitor (MG132) treatment. MG132 treatment further induced expression of microtubule-associated protein light chain 3 (LC3), and accumulation of LC3-II, a processed form of LC3 and the most reliable marker for autophagy. Induction of LC3 mRNA and accumulation of LC3-II were also observed in nerve-injured hypoglossal motor neurons, and partial co-localization of Rab24 and LC3 was demonstrated by immunohistochemistry. The present data suggest that nerve injury promotes autophagy-like events, and this may be an important response for degradation of unnecessary and misfolded proteins to recycle limited amino acids, and synthesize new proteins that are necessary for survival and nerve regeneration responses.
Collapse
Affiliation(s)
- Youhei Egami
- Department of Anatomy and Neurobiology, Osaka City University, Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | |
Collapse
|
50
|
Gutierrez MG, Vázquez CL, Munafó DB, Zoppino FCM, Berón W, Rabinovitch M, Colombo MI. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 2005; 7:981-93. [PMID: 15953030 DOI: 10.1111/j.1462-5822.2005.00527.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pathogens evolved mechanisms to invade host cells and to multiply in the cytosol or in compositionally and functionally customized membrane-bound compartments. Coxiella burnetii, the agent of Q fever in man is a Gram-negative gamma-proteobacterium which multiplies in large, acidified, hydrolase-rich and fusogenic vacuoles with phagolysosomal-like characteristics. We reported previously that C. burnetii phase II replicative compartments are labelled by LC3, a protein specifically localized to autophagic vesicles. We show here that autophagy in Chinese hamster ovary cells, induced by amino acid deprivation prior to infection with Coxiella increased the number of infected cells, the size of the vacuoles, and their bacterial load. Furthermore, overexpression of GFP-LC3 or of GFP-Rab24 - a protein also localized to autophagic vacuoles - likewise accelerated the development of Coxiella-vacuoles at early times after infection. However, overexpression of mutants of those proteins that cannot be targeted to autophagosomes dramatically decreased the number and size of the vacuoles in the first hours of infection, although by 48 h the infection was similar to that of non-transfected controls. Overall, the results suggest that transit through the autophagic pathway increases the infection with Coxiella by providing a niche more favourable to their initial survival and multiplication.
Collapse
Affiliation(s)
- Maximiliano G Gutierrez
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, Mendoza, 5500, Argentina
| | | | | | | | | | | | | |
Collapse
|