1
|
Qiu Y, Chien CC, Maroulis B, Bei J, Gaitas A, Gong B. Extending applications of AFM to fluidic AFM in single living cell studies. J Cell Physiol 2022; 237:3222-3238. [PMID: 35696489 PMCID: PMC9378449 DOI: 10.1002/jcp.30809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/30/2022]
Abstract
In this article, a review of a series of applications of atomic force microscopy (AFM) and fluidic Atomic Force Microscopy (fluidic AFM, hereafter fluidFM) in single-cell studies is presented. AFM applications involving single-cell and extracellular vesicle (EV) studies, colloidal force spectroscopy, and single-cell adhesion measurements are discussed. FluidFM is an offshoot of AFM that combines a microfluidic cantilever with AFM and has enabled the research community to conduct biological, pathological, and pharmacological studies on cells at the single-cell level in a liquid environment. In this review, capacities of fluidFM are discussed to illustrate (1) the speed with which sequential measurements of adhesion using coated colloid beads can be done, (2) the ability to assess lateral binding forces of endothelial or epithelial cells in a confluent cell monolayer in an appropriate physiological environment, and (3) the ease of measurement of vertical binding forces of intercellular adhesion between heterogeneous cells. Furthermore, key applications of fluidFM are reviewed regarding to EV absorption, manipulation of a single living cell by intracellular injection, sampling of cellular fluid from a single living cell, patch clamping, and mass measurements of a single living cell.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chen-Chi Chien
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Basile Maroulis
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine, New York City, New York, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Institute for Human Infectious and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Cell Surface Binding and Lipid Interactions behind Chemotherapy-Drug-Induced Ion Pore Formation in Membranes. MEMBRANES 2021; 11:membranes11070501. [PMID: 34209282 PMCID: PMC8304557 DOI: 10.3390/membranes11070501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022]
Abstract
Chemotherapy drugs (CDs) disrupt the lipid membrane’s insulation properties by inducing stable ion pores across bilayer membranes. The underlying molecular mechanisms behind pore formation have been revealed in this study using several methods that confirm molecular interactions and detect associated energetics of drugs on the cell surface in general and in lipid bilayers in particular. Liposome adsorption and cell surface binding of CD colchicine has been demonstrated experimentally. Buffer dissolved CDs were considerably adsorbed in the incubated phospholipid liposomes, measured using the patented ‘direct detection method’. The drug adsorption process is regulated by the membrane environment, demonstrated in cholesterol-containing liposomes. We then detailed the phenomenology and energetics of the low nanoscale dimension cell surface (membrane) drug distribution, using atomic force microscopy (AFM) imaging what addresses the surface morphology and measures adhesion force (reducible to adhesive energy). Liposome adsorption and cell surface binding data helped model the cell surface drug distribution. The underlying molecular interactions behind surface binding energetics of drugs have been addressed in silico numerical computations (NCs) utilizing the screened Coulomb interactions among charges in a drug–drug/lipid cluster. Molecular dynamics (MD) simulations of the CD-lipid complexes detected primarily important CD-lipid electrostatic and van der Waals (vdW) interaction energies. From the energetics point of view, both liposome and cell surface membrane adsorption of drugs are therefore obvious findings. Colchicine treated cell surface AFM images provide a few important phenomenological conclusions, such as drugs bind generally with the cell surface, bind independently as well as in clusters of various sizes in random cell surface locations. The related adhesion energy decreases with increasing drug cluster size before saturating for larger clusters. MD simulation detected electrostatic and vdW and NC-derived charge-based interactions explain molecularly of the cause of cell surface binding of drugs. The membrane binding/association of drugs may help create drug–lipid complexes with specific energetics and statistically lead to the creation of ion channels. We reveal here crucial molecular understanding and features of the pore formation inside lipid membranes that may be applied universally for most of the pore-forming existing agents and novel candidate drugs.
Collapse
|
3
|
Reineck P, Abraham AN, Poddar A, Shukla R, Abe H, Ohshima T, Gibson BC, Dekiwadia C, Conesa JJ, Pereiro E, Gelmi A, Bryant G. Multimodal Imaging and Soft X-Ray Tomography of Fluorescent Nanodiamonds in Cancer Cells. Biotechnol J 2020; 16:e2000289. [PMID: 32975037 DOI: 10.1002/biot.202000289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Multimodal imaging promises to revolutionize the understanding of biological processes across scales in space and time by combining the strengths of multiple imaging techniques. Fluorescent nanodiamonds (FNDs) are biocompatible, chemically inert, provide high contrast in light- and electron-based microscopy, and are versatile optical quantum sensors. Here it is demonstrated that FNDs also provide high absorption contrast in nanoscale 3D soft X-ray tomograms with a resolution of 28 nm in all dimensions. Confocal fluorescence, atomic force, and scanning electron microscopy images of FNDs inside and on the surface of PC3 cancer cells with sub-micrometer precision are correlated. FNDs are found inside ≈1 µm sized vesicles present in the cytoplasm, providing direct evidence of the active uptake of bare FNDs by cancer cells. Imaging artefacts are quantified and separated from changes in cell morphology caused by sample preparation. These results demonstrate the utility of FNDs in multimodal imaging, contribute to the understanding of the fate of FNDs in cells, and open up new possibilities for biological imaging and sensing across the nano- and microscale.
Collapse
Affiliation(s)
- Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Amanda N Abraham
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Arpita Poddar
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Hiroshi Abe
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma, 370-1292, Japan
| | - Takeshi Ohshima
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma, 370-1292, Japan
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria, 3001, Australia
| | - José J Conesa
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments division, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments division, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Amy Gelmi
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
4
|
Shibata T, Furukawa H, Ito Y, Nagahama M, Hayashi T, Ishii-Teshima M, Nagai M. Photocatalytic Nanofabrication and Intracellular Raman Imaging of Living Cells with Functionalized AFM Probes. MICROMACHINES 2020; 11:E495. [PMID: 32414191 PMCID: PMC7281467 DOI: 10.3390/mi11050495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Atomic force microscopy (AFM) is an effective platform for in vitro manipulation and analysis of living cells in medical and biological sciences. To introduce additional new features and functionalities into a conventional AFM system, we investigated the photocatalytic nanofabrication and intracellular Raman imaging of living cells by employing functionalized AFM probes. Herein, we investigated the effect of indentation speed on the cell membrane perforation of living HeLa cells based on highly localized photochemical oxidation with a catalytic titanium dioxide (TiO2)-functionalized AFM probe. On the basis of force-distance curves obtained during the indentation process, the probability of cell membrane perforation, penetration force, and cell viability was determined quantitatively. Moreover, we explored the possibility of intracellular tip-enhanced Raman spectroscopy (TERS) imaging of molecular dynamics in living cells via an AFM probe functionalized with silver nanoparticles in a homemade Raman system integrated with an inverted microscope. We successfully demonstrated that the intracellular TERS imaging has the potential to visualize distinctly different features in Raman spectra between the nucleus and the cytoplasm of a single living cell and to analyze the dynamic behavior of biomolecules inside a living cell.
Collapse
Affiliation(s)
- Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Hiromi Furukawa
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Yasuharu Ito
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Masahiro Nagahama
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Terutake Hayashi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| | - Miho Ishii-Teshima
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| |
Collapse
|
5
|
A multi-scale approach to study biochemical and biophysical aspects of resveratrol on diesel exhaust particle-human primary lung cell interaction. Sci Rep 2019; 9:18178. [PMID: 31796766 PMCID: PMC6890693 DOI: 10.1038/s41598-019-54552-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Diesel exhaust particles (DEPs) are major air pollutants that lead to numerous human disorders, especially pulmonary diseases, partly through the induction of oxidative stress. Resveratrol is a polyphenol that ameliorates the production of reactive oxygen species (ROS) and delays aging-related processes. Herein we studied the cytoprotective effect of resveratrol on DEP-exposed human lung cells in a factorial experimental design. This work investigates biophysical features including cellular compositions and biomechanical properties, which were measured at the single-cell level using confocal Raman microspectroscopy (RM) and atomic force microscopy (AFM), respectively. Principal component analysis (PCA), hierarchical cluster analysis (HCA) and partial least square regression (PLS) analysis were applied to analyze Raman spectra with and without resveratrol protection. The health status of individual cells could be effectively predicted using an index derived from characteristic Raman spectral peak (e.g., 1006 cm−1) based on PLS model. AFM measurements indicated that cellular adhesion force was greatly reduced, while Young’s modulus was highly elevated in resveratrol treated DEP-exposed cells. Anti-oxidant resveratrol reduced DEP-induced ROS production and suppressed releases of several cytokines and chemokines. These findings suggest resveratrol may enhance resistance of human lung cells (e.g., SAEC) to air pollutants (e.g. DEPs).
Collapse
|
6
|
Sarkar A, Sohail A, Dong J, Prunotto M, Shinki K, Fridman R, Hoffmann PM. Live cell measurements of interaction forces and binding kinetics between Discoidin Domain Receptor 1 (DDR1) and collagen I with atomic force microscopy. Biochim Biophys Acta Gen Subj 2019; 1863:129402. [DOI: 10.1016/j.bbagen.2019.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/21/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
|
7
|
Yang TD, Park K, Park JS, Lee JH, Choi E, Lee J, Choi W, Choi Y, Lee KJ. Two distinct actin waves correlated with turns-and-runs of crawling microglia. PLoS One 2019; 14:e0220810. [PMID: 31437196 PMCID: PMC6705860 DOI: 10.1371/journal.pone.0220810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/23/2019] [Indexed: 11/24/2022] Open
Abstract
Freely crawling cells are often viewed as randomly moving Brownian particles but they generally exhibit some directional persistence. This property is often related to their zigzag motile behaviors that can be described as a noisy but temporally structured sequence of "runs" and "turns." However, its underlying biophysical mechanism is largely unexplored. Here, we carefully investigate the collective actin wave dynamics associated with the zigzag-crawling movements of microglia (as primary brain immune cells) employing a number of different quantitative imaging modalities including synthetic aperture microscopy and optical diffraction tomography, as well as conventional fluorescence imaging and scanning electron microscopy. Interestingly, we find that microglia exhibit two distinct types of actin waves working at two quite different time scales and locations, and they seem to serve different purposes. One type of actin waves is fast "peripheral ruffles" arising spontaneously with an oscillating period of about 6 seconds at some portion of the leading edge of crawling microglia, where the vigorously biased peripheral ruffles seem to set the direction of a new turn (in 2-D free space). When the cell turning events are inhibited with a physical confinement (in 1-D track), the peripheral ruffles still exist at the leading edge with no bias but showing phase coherence in the cell crawling direction. The other type is "dorsal actin waves" which also exhibits an oscillatory behavior but with a much longer period of around 2 minutes compared to the fast "peripheral ruffles". Dorsal actin waves (whether the cell turning events are inhibited or not) initiate in the lamellipodium just behind the leading edge, travelling down toward the core region of the cell and disappear. Such dorsal wave propagations seem to be correlated with migration of the cell. Thus, we may view the dorsal actin waves are connected with the "run" stage of cell body, whereas the fast ruffles at the leading front are involved in the "turn" stage.
Collapse
Affiliation(s)
- Taeseok Daniel Yang
- School of Biomedical Engineering, Korea University, Seoul, South Korea
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Kwanjun Park
- Department of Bio-Convergence Engineering, Korea University, Seoul, South Korea
| | - Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul, South Korea
| | - Jang-Hoon Lee
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| | - Jonghwan Lee
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul, South Korea
- Department of Physics, Korea University, Seoul, South Korea
| | - Youngwoon Choi
- School of Biomedical Engineering, Korea University, Seoul, South Korea
- Department of Bio-Convergence Engineering, Korea University, Seoul, South Korea
| | - Kyoung J. Lee
- Department of Physics, Korea University, Seoul, South Korea
| |
Collapse
|
8
|
Ho RXY, Tahboub R, Amraei R, Meyer RD, Varongchayakul N, Grinstaff M, Rahimi N. The cell adhesion molecule IGPR-1 is activated by and regulates responses of endothelial cells to shear stress. J Biol Chem 2019; 294:13671-13680. [PMID: 31341021 DOI: 10.1074/jbc.ra119.008548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial cells respond to blood flow-induced shear stress. However, the mechanisms through which endothelial cells transduce mechanical signals to cellular responses remain poorly understood. In this report, using tensile-force assays, immunofluorescence and atomic force microscopy, we demonstrate that immunoglobulin and proline-rich receptor-1 (IGPR-1) responds to mechanical stimulation and increases the stiffness of endothelial cells. We observed that IGPR-1 is activated by shear stress and tensile force and that flow shear stress-mediated IGPR-1 activation modulates remodeling of endothelial cells. We found that under static conditions, IGPR-1 is present at the cell-cell contacts; however, under shear stress, it redistributes along the cell borders into the flow direction. IGPR-1 activation stimulated actin stress fiber assembly and cross-linking with vinculin. Moreover, we noted that IGPR-1 stabilizes cell-cell junctions of endothelial cells as determined by staining of cells with ZO1. Mechanistically, shear stress stimulated activation of AKT Ser/Thr kinase 1 (AKT1), leading to phosphorylation of IGPR-1 at Ser-220. Inhibition of this phosphorylation prevented shear stress-induced actin fiber assembly and endothelial cell remodeling. Our findings indicate that IGPR-1 is an important player in endothelial cell mechanosensing, insights that have important implications for the pathogenesis of common maladies, including ischemic heart diseases and inflammation.
Collapse
Affiliation(s)
- Rachel Xi-Yeen Ho
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts 02118
| | - Rawan Tahboub
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts 02118
| | - Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts 02118
| | - Rosana D Meyer
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts 02118
| | - Nitinun Varongchayakul
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215
| | - Mark Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215
| | - Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts 02118
| |
Collapse
|
9
|
Nguyen TH, Greinacher A. Distinct Binding Characteristics of Pathogenic Anti-Platelet Factor-4/Polyanion Antibodies to Antigens Coated on Different Substrates: A Perspective on Clinical Application. ACS NANO 2018; 12:12030-12041. [PMID: 30540167 DOI: 10.1021/acsnano.8b04487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The polyanion heparin, which is frequently used in patients, complexes with the platelet-derived cationic chemokine platelet factor (PF4, CXCL4). This results in the formation of anti-PF4/heparin antibodies (anti-PF4/H Abs). Anti-PF4/H Abs are classified into three groups: (i) nonpathogenic Abs (group 1) with no clinical relevance; (ii) pathogenic heparin-dependent Abs (group 2), which activate platelets and can cause the severe adverse drug effect heparin-induced thrombocytopenia (HIT); and (iii) pathogenic autoimmune-HIT Abs (group 3), in which group 3 anti-PF4/H Abs causes a HIT-like autoimmune disease in the absence of heparin. Enzyme immunoassays using PF4/H complexes coated on the solid phase for detection of anti-PF4/H Abs cannot differentiate between pathogenic and nonpathogenic anti-PF4/H Abs. By single-molecule force spectroscopy, we identify a specific feature of pathogenic group 2 and group 3 Abs antibodies that (in contrast to nonpathogenic group 1 Abs) their binding forces to PF4/H complexes coated on platelets were significantly higher compared with those of PF4/H complexes immobilized on a solid phase. Only group 3 Abs showed high binding forces to platelets without the addition of PF4. In the presence of 50 μg/mL PF4, group 2 Abs also showed high binding forces to platelets. In contrast, binding forces of group 1 Abs always remained low (<100 pN). Our findings may have major relevance for the development of clinically applicable solid-phase assays, which allow differentiation of pathogenic platelet-activating from nonpathogenic anti-PF4/H Abs. Membrane-based expression of antigens might also increase the specificity of other assays for the detection of pathogenic (auto)-antibodies in clinical medicine.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine , University Medicine Greifswald , 17475 Greifswald , Germany
- ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases , University of Greifswald , 17489 Greifswald , Germany
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine , University Medicine Greifswald , 17475 Greifswald , Germany
| |
Collapse
|
10
|
Lipke PN. What We Do Not Know about Fungal Cell Adhesion Molecules. J Fungi (Basel) 2018; 4:jof4020059. [PMID: 29772751 PMCID: PMC6023273 DOI: 10.3390/jof4020059] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
There has been extensive research on structure and function of fungal cell adhesion molecules, but the most of the work has been about adhesins in Candida albicans and Saccharomyces cerevisiae. These yeasts are members of a single ascomycete order, and adhesion molecules from the six other fungal phyla are only sparsely described in the literature. In these other phyla, most of the research is at the cellular level, rather than at the molecular level, so there has been little characterization of the adhesion molecules themselves. A catalog of known adhesins shows some common features: high Ser/Thr content, tandem repeats, N- and O-glycosylations, GPI anchors, dibasic sequence motifs, and potential amyloid-forming sequences. However, none of these features is universal. Known ligands include proteins and glycans on homologous cells and host cells. Existing and novel tools can exploit the availability of genome sequences to identify and characterize new fungal adhesins. These include bioinformatics tools and well-established yeast surface display models, which could be coupled with an adhesion substrate array. Thus, new knowledge could be exploited to answer key questions in fungal ecology, animal and plant pathogenesis, and roles of biofilms in infection and biomass turnover.
Collapse
Affiliation(s)
- Peter N Lipke
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
- The Graduate Center, City University of New York, New York, NY 10016, USA.
| |
Collapse
|
11
|
El-Kirat-Chatel S, Beaussart A. Probing Bacterial Adhesion at the Single-Molecule and Single-Cell Levels by AFM-Based Force Spectroscopy. Methods Mol Biol 2018; 1814:403-414. [PMID: 29956246 DOI: 10.1007/978-1-4939-8591-3_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Functionalization of AFM probes with biomolecules or microorganisms allows for a better understanding of the interaction mechanisms driving microbial adhesion. Here we describe the most commonly used protocols to graft molecules and bacteria to AFM cantilevers. The bioprobes obtained that way enable to measure forces down to the single-cell and single-molecule levels.
Collapse
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France.
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME, UMR7564, Nancy, France.
| | - Audrey Beaussart
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, Nancy, France
| |
Collapse
|
12
|
Kang S, Badea A, Rubakhin SS, Sweedler JV, Rogers JA, Nuzzo RG. Quantitative Reflection Imaging for the Morphology and Dynamics of Live Aplysia californica Pedal Ganglion Neurons Cultured on Nanostructured Plasmonic Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8640-8650. [PMID: 28235182 PMCID: PMC5585034 DOI: 10.1021/acs.langmuir.6b04454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe a reflection imaging system that consists of a plasmonic crystal, a common laboratory microscope, and band-pass filters for use in the quantitative imaging and in situ monitoring of live cells and their substrate interactions. Surface plasmon resonance (SPR) provides a highly sensitive method to monitor changes in physicochemical properties occurring at metal-dielectric interfaces. Polyelectrolyte thin films deposited using the layer-by-layer (LBL) self-assembly method provide a reference system for calibrating the reflection contrast changes that occur when the polyelectrolyte film thickness changes and provide insight into the optical responses that originate from the multiple plasmonic features supported by this imaging system. Finite-difference time-domain (FDTD) simulations of the optical responses measured experimentally from the polyelectrolyte reference system are used to provide a calibration of the optical system for subsequent use in quantitative studies investigating live cell dynamics in cultures supported on a plasmonic crystal substrate. Live Aplysia californica pedal ganglion neurons cultured in artificial seawater were used as a model system through which to explore the utility of this plasmonic imaging technique. Here, the morphology of cellular peripheral structures ≲80 nm in thickness were quantitatively analyzed, and the dynamics of their trypsin-induced surface detachment were visualized. These results illustrate the capacities of this system for use in investigations of the dynamics of ultrathin cellular structures within complex bioanalytical environments.
Collapse
Affiliation(s)
- Somi Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Adina Badea
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Stanislav S. Rubakhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - John A. Rogers
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Ralph G. Nuzzo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| |
Collapse
|
13
|
In Situ Atomic Force Microscopy Studies on Nucleation and Self-Assembly of Biogenic and Bio-Inspired Materials. MINERALS 2017. [DOI: 10.3390/min7090158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy. SENSORS 2017; 17:s17010200. [PMID: 28117741 PMCID: PMC5298773 DOI: 10.3390/s17010200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/23/2022]
Abstract
The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed.
Collapse
|
15
|
Hasim S, Allison DP, Retterer ST, Hopke A, Wheeler RT, Doktycz MJ, Reynolds TB. β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity. Infect Immun 2017; 85:e00601-16. [PMID: 27849179 PMCID: PMC5203643 DOI: 10.1128/iai.00601-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/08/2016] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is altered or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system.
Collapse
Affiliation(s)
- Sahar Hasim
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - David P Allison
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Scott T Retterer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alex Hopke
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
16
|
|
17
|
Force Sensitivity in Saccharomyces cerevisiae Flocculins. mSphere 2016; 1:mSphere00128-16. [PMID: 27547825 PMCID: PMC4989244 DOI: 10.1128/msphere.00128-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 12/28/2022] Open
Abstract
The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications. Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca2+, yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications.
Collapse
|
18
|
Rapid recognition and functional analysis of membrane proteins on human cancer cells using atomic force microscopy. J Immunol Methods 2016; 436:41-9. [PMID: 27374866 DOI: 10.1016/j.jim.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/27/2016] [Indexed: 11/23/2022]
Abstract
Understanding the physicochemical properties of cell surface signalling molecules is important for us to uncover the underlying mechanisms that guide the cellular behaviors. Atomic force microscopy (AFM) has become a powerful tool for detecting the molecular interactions on individual cells with nanometer resolution. In this paper, AFM peak force tapping (PFT) imaging mode was applied to rapidly locate and visually map the CD20 molecules on human lymphoma cells using biochemically sensitive tips. First, avidin-biotin system was used to test the effectiveness of using PFT imaging mode to probe the specific molecular interactions. The adhesion images obtained on avidin-coated mica using biotin-tethered tips obviously showed the recognition spots which corresponded to the avidins in the simultaneously obtained topography images. The experiments confirmed the specificity and reproducibility of the recognition results. Then, the established procedure was applied to visualize the nanoscale organization of CD20s on the surface of human lymphoma Raji cells using rituximab (a monoclonal anti-CD20 antibody)-tethered tips. The experiments showed that the recognition spots in the adhesion images corresponded to the specific CD20-rituximab interactions. The cluster sizes of CD20s on lymphoma Raji cells were quantitatively analyzed from the recognition images. Finally, under the guidance of fluorescence recognition, the established procedure was applied to cancer cells from a clinical lymphoma patient. The results showed that there were significant differences between the adhesion images obtained on cancer cells and on normal cells (red blood cell). The CD20 distributions on ten cancer cells from the patient were quantified according to the adhesion images. The experimental results demonstrate the capability of applying PFT imaging to rapidly investigate the nanoscale biophysical properties of native membrane proteins on the cell surface, which is of potential significance in developing novel biomarkers for cancer diagnosis and drug development.
Collapse
|
19
|
Aguayo S, Donos N, Spratt D, Bozec L. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells. NANOTECHNOLOGY 2015; 26:062001. [PMID: 25598514 DOI: 10.1088/0957-4484/26/6/062001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.
Collapse
Affiliation(s)
- S Aguayo
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | | | | | | |
Collapse
|
20
|
Schuberth C, Wedlich-Söldner R. Building a patchwork - The yeast plasma membrane as model to study lateral domain formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:767-74. [PMID: 25541280 DOI: 10.1016/j.bbamcr.2014.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/01/2014] [Accepted: 12/14/2014] [Indexed: 01/03/2023]
Abstract
The plasma membrane (PM) has to fulfill a wide range of biological functions including selective uptake of substances, signal transduction and modulation of cell polarity and cell shape. To allow efficient regulation of these processes many resident proteins and lipids of the PM are laterally segregated into different functional domains. A particularly striking example of lateral segregation has been described for the budding yeast PM, where integral membrane proteins as well as lipids exhibit very slow translational mobility and form a patchwork of many overlapping micron-sized domains. Here we discuss the molecular and physical mechanisms contributing to the formation of a multi-domain membrane and review our current understanding of yeast PM organization. Many of the fundamental principles underlying membrane self-assembly and organization identified in yeast are expected to equally hold true in other organisms, even for the more transient and elusive organization of the PM in mammalian cells. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Christian Schuberth
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany.
| |
Collapse
|
21
|
Abstract
Recent progress in surface science, nanotechnology and biophysics has cast new light on the correlation between the physicochemical properties of biomaterials and the resulting biological response. One experimental tool that promises to generate an increasingly more sophisticated knowledge of how proteins, cells and bacteria interact with nanostructured surfaces is the atomic force microscope (AFM). This unique instrument permits to close in on interfacial events at the scale at which they occur, the nanoscale. This perspective covers recent developments in the exploitation of the AFM, and suggests insights on future opportunities that can arise from the exploitation of this powerful technique.
Collapse
Affiliation(s)
- Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
22
|
Smith MA, Hoffman LM, Beckerle MC. LIM proteins in actin cytoskeleton mechanoresponse. Trends Cell Biol 2014; 24:575-83. [PMID: 24933506 DOI: 10.1016/j.tcb.2014.04.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 01/21/2023]
Abstract
The actin cytoskeleton assembles into branched networks or bundles to generate mechanical force for critical cellular processes such as establishment of polarity, adhesion, and migration. Stress fibers (SFs) are contractile actomyosin structures that physically couple to the extracellular matrix through integrin-based focal adhesions (FAs), thereby transmitting force into and across the cell. Recently, LIN-11, Isl1, and MEC-3 (LIM) domain proteins have been implicated in mediating this cytoskeletal mechanotransduction. Among the more well-studied LIM domain adapter proteins is zyxin, a dynamic component of both FAs and SFs. Here we discuss recent research detailing the mechanisms by which SFs adjust their structure and composition to balance mechanical forces and suggest ways that zyxin and other LIM domain proteins mediate mechanoresponse.
Collapse
Affiliation(s)
- M A Smith
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - L M Hoffman
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - M C Beckerle
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
23
|
Abstract
We tell of a journey that led to discovery of amyloids formed by yeast cell adhesins and their importance in biofilms and host immunity. We begin with the identification of the adhesin functional amyloid-forming sequences that mediate fiber formation in vitro. Atomic force microscopy and confocal microscopy show 2-dimensional amyloid "nanodomains" on the surface of cells that are activated for adhesion. These nanodomains are arrays of adhesin molecules that bind multivalent ligands with high avidity. Nanodomains form when adhesin molecules are stretched in the AFM or under laminar flow. Treatment with antiamyloid perturbants or mutation of the amyloid sequence prevents adhesion nanodomain formation and activation. We are now discovering biological consequences. Adhesin nanodomains promote formation and maintenance of biofilms, which are microbial communities. Also, in abscesses within candidiasis patients, we find adhesin amyloids on the surface of the fungi. In both human infection and a Caenorhabditis elegans infection model, the presence of fungal surface amyloids elicits anti-inflammatory responses. Thus, this is a story of how fungal adhesins respond to extension forces through formation of cell surface amyloid nanodomains, with key consequences for biofilm formation and host responses.
Collapse
|
24
|
Wang C, Yadavalli VK. Investigating biomolecular recognition at the cell surface using atomic force microscopy. Micron 2014; 60:5-17. [PMID: 24602267 DOI: 10.1016/j.micron.2014.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique.
Collapse
Affiliation(s)
- Congzhou Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
25
|
Taatjes DJ, Quinn AS, Rand JH, Jena BP. Atomic force microscopy: High resolution dynamic imaging of cellular and molecular structure in health and disease. J Cell Physiol 2013; 228:1949-55. [PMID: 23526453 DOI: 10.1002/jcp.24363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 12/20/2022]
Abstract
The atomic force microscope (AFM), invented in 1986, and a member of the scanning probe family of microscopes, offers the unprecedented ability to image biological samples unfixed and in a hydrated environment at high resolution. This opens the possibility to investigate biological mechanisms temporally in a heretofore unattainable resolution. We have used AFM to investigate: (1) fundamental issues in cell biology (secretion) and, (2) the pathological basis of a human thrombotic disease, the antiphospholipid syndrome (APS). These studies have incorporated the imaging of live cells at nanometer resolution, leading to discovery of the "porosome," the universal secretory portal in cells, and a molecular understanding of membrane fusion from imaging the interaction and assembly of proteins between opposing lipid membranes. Similarly, the development of an in vitro simulacrum for investigating the molecular interactions between proteins and lipids has helped define an etiological explanation for APS. The prime importance of AFM in the success of these investigations will be presented in this manuscript, as well as a discussion of the limitations of this technique for the study of biomedical samples.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
26
|
Miron-Mendoza M, Koppaka V, Zhou C, Petroll WM. Techniques for assessing 3-D cell-matrix mechanical interactions in vitro and in vivo. Exp Cell Res 2013; 319:2470-80. [PMID: 23819988 PMCID: PMC3826791 DOI: 10.1016/j.yexcr.2013.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/22/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022]
Abstract
Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell-matrix mechanical interactions in 3-D culture models, tissue explants and living animals.
Collapse
Affiliation(s)
- Miguel Miron-Mendoza
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vindhya Koppaka
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Chengxin Zhou
- Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX
| | - W. Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
- Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
27
|
Francois JM, Formosa C, Schiavone M, Pillet F, Martin-Yken H, Dague E. Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae. Curr Genet 2013; 59:187-96. [PMID: 24071902 DOI: 10.1007/s00294-013-0411-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 11/30/2022]
Abstract
Over the past 20 years, the yeast cell wall has been thoroughly investigated by genetic and biochemical methods, leading to remarkable advances in the understanding of its biogenesis and molecular architecture as well as to the mechanisms by which this organelle is remodeled in response to environmental stresses. Being a dynamic structure that constitutes the frontier between the cell interior and its immediate surroundings, imaging cell surface, measuring mechanical properties of cell wall or probing cell surface proteins for localization or interaction with external biomolecules are among the most burning questions that biologists wished to address in order to better understand the structure-function relationships of yeast cell wall in adhesion, flocculation, aggregation, biofilm formation, interaction with antifungal drugs or toxins, as well as response to environmental stresses, such as temperature changes, osmotic pressure, shearing stress, etc. The atomic force microscopy (AFM) is nowadays the most qualified and developed technique that offers the possibilities to address these questions since it allows working directly on living cells to explore and manipulate cell surface properties at nanometer resolution and to analyze cell wall proteins at the single molecule level. In this minireview, we will summarize the most recent contributions made by AFM in the analysis of the biomechanical and biochemical properties of the yeast cell wall and illustrate the power of this tool to unravel unexpected effects caused by environmental stresses and antifungal agents on the surface of living yeast cells.
Collapse
Affiliation(s)
- Jean Marie Francois
- Université de Toulouse, INSA, UPS, INP, 135 avenue de Rangueil, 31077, Toulouse, France,
| | | | | | | | | | | |
Collapse
|
28
|
Atomic force microscopy imaging of live mammalian cells. SCIENCE CHINA-LIFE SCIENCES 2013; 56:811-7. [DOI: 10.1007/s11427-013-4532-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
|
29
|
Li M, Liu L, Xi N, Wang Y, Dong Z, Xiao X, Zhang W. Progress of AFM single-cell and single-molecule morphology imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5906-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Dufrêne YF, Pelling AE. Force nanoscopy of cell mechanics and cell adhesion. NANOSCALE 2013; 5:4094-4104. [PMID: 23535827 DOI: 10.1039/c3nr00340j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
31
|
Bridier A, Chalabaev S, Ghigo JM, Briandet R. Biofilms 5 International Conference: meeting report. Res Microbiol 2013; 164:490-6. [PMID: 23524185 DOI: 10.1016/j.resmic.2013.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Arnaud Bridier
- IRSTEA, HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | | | | | | |
Collapse
|