1
|
Ifrid E, Ouertatani-Sakouhi H, Zein El Dine H, Jauslin T, Chiriano G, Scapozza L, Lamrabet O, Cosson P. Compound K14 inhibits bacterial killing and protease activity in Dictyostelium discoideum phagosomes. PLoS One 2024; 19:e0309327. [PMID: 39186559 PMCID: PMC11346726 DOI: 10.1371/journal.pone.0309327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Phagocytic cells of the mammalian innate immune system play a critical role in protecting the body from bacterial infections. The multiple facets of this encounter (chemotaxis, phagocytosis, destruction, evasion and pathogenicity) are largely recapitulated in the phagocytic amoeba Dictyostelium discoideum. Here we identified a new chemical compound (K14; ZINC19168591) which inhibited intracellular destruction of ingested K. pneumoniae in D. discoideum cells. Concomitantly, K14 reduced proteolytic activity in D. discoideum phagosomes. In kil1 KO cells, K14 lost its ability to inhibit phagosomal proteolysis and to inhibit intra-phagosomal bacterial destruction, suggesting that K14 inhibits a Kil1-dependent protease involved in bacterial destruction. These observations stress the key role that proteases play in bacterial destruction. They also reveal an unsuspected link between Kil1 and phagosomal proteases. K14 can be used in the future as a tool to probe the role of different proteases in phagosomal physiology and in the destruction of ingested bacteria.
Collapse
Affiliation(s)
- Estelle Ifrid
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hajer Ouertatani-Sakouhi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hiba Zein El Dine
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tania Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gianpaolo Chiriano
- Pharmaceutical biochemistry, School of pharmaceutical sciences, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical biochemistry, School of pharmaceutical sciences, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Storey CL, Williams RSB, Fisher PR, Annesley SJ. Dictyostelium discoideum: A Model System for Neurological Disorders. Cells 2022; 11:cells11030463. [PMID: 35159273 PMCID: PMC8833889 DOI: 10.3390/cells11030463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The incidence of neurological disorders is increasing due to population growth and extended life expectancy. Despite advances in the understanding of these disorders, curative strategies for treatment have not yet eventuated. In part, this is due to the complexities of the disorders and a lack of identification of their specific underlying pathologies. Dictyostelium discoideum has provided a useful, simple model to aid in unraveling the complex pathological characteristics of neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, neuronal ceroid lipofuscinoses and lissencephaly. In addition, D. discoideum has proven to be an innovative model for pharmaceutical research in the neurological field. Scope of review: This review describes the contributions of D. discoideum in the field of neurological research. The continued exploration of proteins implicated in neurological disorders in D. discoideum may elucidate their pathological roles and fast-track curative therapeutics.
Collapse
Affiliation(s)
- Claire Louise Storey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Robin Simon Brooke Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394-791-412
| |
Collapse
|
3
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
4
|
Cegarra L, Colins A, Gerdtzen ZP, Nuñez MT, Salgado JC. Mathematical modeling of the relocation of the divalent metal transporter DMT1 in the intestinal iron absorption process. PLoS One 2019; 14:e0218123. [PMID: 31181103 PMCID: PMC6557526 DOI: 10.1371/journal.pone.0218123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022] Open
Abstract
Iron is essential for the normal development of cellular processes. This metal has a high redox potential that can damage cells and its overload or deficiency is related to several diseases, therefore it is crucial for its absorption to be highly regulated. A fast-response regulatory mechanism has been reported known as mucosal block, which allows to regulate iron absorption after an initial iron challenge. In this mechanism, the internalization of the DMT1 transporters in enterocytes would be a key factor. Two phenomenological models are proposed for the iron absorption process: DMT1's binary switching mechanism model and DMT1's swinging-mechanism model, which represent the absorption mechanism for iron uptake in intestinal cells. The first model considers mutually excluding processes for endocytosis and exocytosis of DMT1. The second model considers a Ball's oscillator to represent the oscillatory behavior of DMT1's internalization. Both models are capable of capturing the kinetics of iron absorption and represent empirical observations, but the DMT1's swinging-mechanism model exhibits a better correlation with experimental data and is able to capture the regulatory phenomenon of mucosal block. The DMT1 swinging-mechanism model is the first phenomenological model reported to effectively represent the complexity of the iron absorption process, as it can predict the behavior of iron absorption fluxes after challenging cells with an initial dose of iron, and the reduction in iron uptake observed as a result of mucosal block after a second iron dose.
Collapse
Affiliation(s)
- Layimar Cegarra
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - Andrea Colins
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - Ziomara P. Gerdtzen
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - Marco T. Nuñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - J. Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| |
Collapse
|
5
|
Journet A, Klein G, Brugière S, Vandenbrouck Y, Chapel A, Kieffer S, Bruley C, Masselon C, Aubry L. Investigating the macropinocytic proteome of Dictyostelium amoebae by high-resolution mass spectrometry. Proteomics 2011; 12:241-5. [PMID: 22120990 DOI: 10.1002/pmic.201100313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/22/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
Abstract
The cellular slime mold Dictyostelium discoideum is a soil-living eukaryote, which feeds on microorganisms engulfed by phagocytosis. Axenic laboratory strains have been produced that are able to use liquid growth medium internalized by macropinocytosis as the source of food. To better define the macropinocytosis process, we established the inventory of proteins associated with this pathway using mass spectrometry-based proteomics. Using a magnetic purification procedure and high-performance LC-MS/MS proteome analysis, a list of 2108 non-redundant proteins was established, of which 24% featured membrane-spanning domains. Bioinformatics analyses indicated that the most abundant proteins were linked to signaling, vesicular trafficking and the cytoskeleton. The present repertoire validates our purification method and paves the way for a future proteomics approach to study the dynamics of macropinocytosis.
Collapse
Affiliation(s)
- Agnès Journet
- CEA, IRTSV, Laboratoire Biologie à Grande Echelle, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
FYVE-dependent endosomal targeting of an arrestin-related protein in amoeba. PLoS One 2010; 5:e15249. [PMID: 21179207 PMCID: PMC3001460 DOI: 10.1371/journal.pone.0015249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/06/2010] [Indexed: 01/04/2023] Open
Abstract
Background Visual and β-arrestins are scaffolding proteins involved in the regulation of receptor-dependent intracellular signaling and their trafficking. The arrestin superfamilly includes several arrestin domain-containing proteins and the structurally related protein Vps26. In Dictyostelium discoideum, the arrestin-domain containing proteins form a family of six members, namely AdcA to -F. In contrast to canonical arrestins, Dictyostelium Adc proteins show a more complex architecture, as they possess, in addition to the arrestin core, other domains, such as C2, FYVE, LIM, MIT and SAM, which potentially mediate selective interactions with either lipids or proteins. Methodology and Principal Findings A detailed analysis of AdcA has been performed. AdcA extends on both sides of the arrestin core, in particular by a FYVE domain which mediates selective interactions with PI(3)P, as disclosed by intrinsic fluorescence measurements and lipid overlay assays. Localization studies showed an enrichment of tagged- and endogenous AdcA on the rim of early macropinosomes and phagosomes. This vesicular distribution relies on a functional FYVE domain. Our data also show that the arrestin core binds the ADP-ribosylation factor ArfA, the unique amoebal Arf member, in its GDP-bound conformation. Significance This work describes one of the 6 arrestin domain-containing proteins of Dictyostelium, a novel and atypical member of the arrestin clan. It provides the basis for a better understanding of arrestin-related protein involvement in trafficking processes and for further studies on the expanding roles of arrestins in eukaryotes.
Collapse
|
7
|
Endocytosis and the Actin Cytoskeleton in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:343-97. [DOI: 10.1016/s1937-6448(08)00633-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Mercanti V, Blanc C, Lefkir Y, Cosson P, Letourneur F. Acidic clusters target transmembrane proteins to the contractile vacuole in Dictyostelium cells. J Cell Sci 2006; 119:837-45. [PMID: 16478785 DOI: 10.1242/jcs.02808] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms responsible for the targeting of transmembrane integral proteins to the contractile vacuole (CV) network in Dictyostelium discoideum are unknown. Here we show that the transfer of the cytoplasmic domain of a CV-resident protein (Rh50) to a reporter transmembrane protein (CsA) is sufficient to address the chimera (CsA-Rh50) to the CV. We identified two clusters of acidic residues responsible for this targeting, and these motifs interacted with the gamma-adaptin AP-1 subunit in a yeast protein-protein interaction assay. For the first time we report the existence of an indirect transport pathway from the plasma membrane to the CV via endosomes. Upon internalization, the small fraction of CsA-Rh50 present at the cell surface was first concentrated in endosomes distinct from early and late p80-positive endosomes and then slowly transported to the CV. Together our results suggest the existence of an AP-1-dependent selective transport to the contractile vacuole in Dictyostelium.
Collapse
Affiliation(s)
- Valentina Mercanti
- Université de Genève, Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, CH-1211 Genève 4, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Sultana H, Rivero F, Blau-Wasser R, Schwager S, Balbo A, Bozzaro S, Schleicher M, Noegel AA. Cyclase-Associated Protein is Essential for the Functioning of the Endo-Lysosomal System and Provides a Link to the Actin Cytoskeleton. Traffic 2005; 6:930-46. [PMID: 16138906 DOI: 10.1111/j.1600-0854.2005.00330.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Data from mutant analysis in yeast and Dictyostelium indicate a role for the cyclase-associated protein (CAP) in endocytosis and vesicle transport. We have used genetic and biochemical approaches to identify novel interacting partners of Dictyostelium CAP to help explain its molecular interactions in these processes. Cyclase-associated protein associates and interacts with subunits of the highly conserved vacuolar H(+)-ATPase (V-ATPase) and co-localizes to some extent with the V-ATPase. Furthermore, CAP is essential for maintaining the structural organization, integrity and functioning of the endo-lysosomal system, as distribution and morphology of V-ATPase- and Nramp1-decorated membranes were disturbed in a CAP mutant (CAP bsr) accompanied by an increased endosomal pH. Moreover, concanamycin A (CMA), a specific inhibitor of the V-ATPase, had a more severe effect on CAP bsr than on wild-type cells, and the mutant did not show adaptation to the drug. Also, the distribution of green fluorescent protein-CAP was affected upon CMA treatment in the wildtype and recovered after adaptation. Distribution of the V-ATPase in CAP bsr was drastically altered upon hypo-osmotic shock, and growth was slower and reached lower saturation densities in the mutant under hyper-osmotic conditions. Taken together, our data unravel a link of CAP with the actin cytoskeleton and endocytosis and suggest that CAP is an essential component of the endo-lysosomal system in Dictyostelium.
Collapse
Affiliation(s)
- Hameeda Sultana
- Center for Biochemistry and Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, 50931 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
von Löhneysen K, Pawolleck N, Rühling H, Maniak M. A Dictyostelium long chain fatty acyl coenzyme A-synthetase mediates fatty acid retrieval from endosomes. Eur J Cell Biol 2003; 82:505-14. [PMID: 14629118 DOI: 10.1078/0171-9335-00342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified a subset of Dictyostelium endosomes that carry a long chain fatty acyl coenzyme A-synthetase (LC-FACS 1) on their cytosolic surface. Immunofluorescence studies and observations using GFP-fusion proteins collectively suggest that LC-FACS 1 associates with endosomes a few minutes after their formation, remains bound through the acidic phase of endocytic maturation and dissociates early in the phase where the endosomal content is neutralised prior to exocytosis. Mutants in the fcsA gene, encoding the LC-FACS 1 protein, were constructed by homologous recombination. These cells show a strong defect in the intracellular accumulation of fatty acids, either taken up together with the liquid medium or bound to the surface of particles. Because the mutant cells are otherwise fully competent for macropinocytosis and phagocytosis, we conclude that the LC-FACS 1 protein mediates the retrieval of fatty acids from the lumen of endosomes into the cytoplasm.
Collapse
|
11
|
Abstract
Endocytosis in protozoa is often regarded as largely different from the pathways operating in mammalian cells. Experiments in the amoeba Dictyostelium, one of the genetically tractable single-celled organisms, have allowed us to manipulate the flow through endocytic compartments and to study the dynamic distribution of molecules by means of green fluorescent protein fusions. This review attempts to compile the molecular data available from Dictyostelium and assign them to specific steps of internalization by phagocytosis or macropinocytosis and to subsequent stages of the endocytic pathway. Parallels to phagocytes of the mammalian immune system are emphasized. The major distinctive feature between mammalian phagocytes and free-living cells is the need for osmoregulation. Therefore Dictyostelium cells possess a contractile vacuole that has occasionally obscured analysis of endocytosis but is now found to be entirely separate from endocytic organelles. In conclusion, the potential of Dictyostelium amoebas to provide a model system of mammalian phagocytes is ever increasing.
Collapse
Affiliation(s)
- Markus Maniak
- Department of Cell Biology, Universitaet Kassel, 34109 Kassel, Germany
| |
Collapse
|
12
|
Clarke M, Köhler J, Heuser J, Gerisch G. Endosome fusion and microtubule-based dynamics in the early endocytic pathway of dictyostelium. Traffic 2002; 3:791-800. [PMID: 12383345 DOI: 10.1034/j.1600-0854.2002.31104.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dictyostelium amoebae, like mammalian macrophages, take up fluid by macropinocytosis. The present study used fluorescent fluid-phase markers and GFP-labeled microtubules to visualize the uptake, dynamics, and fusion of early endosomes in Dictyostelium. Consecutive labeling with two fluorescent fluid-phase markers demonstrated that within the first few minutes after uptake, new macropinosomes underwent fusion with pre-existing endosomes. The fusing endosomes, which represent the mixing compartment, displayed extreme shape changes and rapid transport about the cell in association with microtubules. The great plasticity of endosomes at this stage of maturation was also evident by electron microscopy. The constant undulatory motion of microtubules was implemental in establishing contact with endosomes. Treatment of cells with agents that selectively disrupted either actin filaments or microtubules confirmed that endosome dynamics were microtubule based. Further maturation of endosomes led to loss of pleiomorphy in favor of a spherical shape, inability to fuse with new macropinosomes, and diminished motility.
Collapse
Affiliation(s)
- Margaret Clarke
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | |
Collapse
|
13
|
Clarke M, Köhler J, Arana Q, Liu T, Heuser J, Gerisch G. Dynamics of the vacuolar H+-ATPase in the contractile vacuole complex and the endosomal pathway ofDictyosteliumcells. J Cell Sci 2002; 115:2893-905. [PMID: 12082150 DOI: 10.1242/jcs.115.14.2893] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is a multi-subunit enzyme that plays important roles in eukaryotic cells. In Dictyostelium, it is found primarily in membranes of the contractile vacuole complex, where it energizes fluid accumulation by this osmoregulatory organelle and also in membranes of endolysosomes, where it serves to acidify the endosomal lumen. In the present study, a fusion was created between vatM, the gene encoding the 100 kDa transmembrane subunit of the V-ATPase, and the gene encoding Green Fluorescent Protein (GFP). When expressed in Dictyostelium cells, this fusion protein, VatM-GFP, was correctly targeted to contractile vacuole and endolysosomal membranes and was competent to direct assembly of the V-ATPase enzyme complex. Protease treatment of isolated endosomes indicated that the GFP moiety, located on the C-terminus of VatM, was exposed to the cytoplasmic side of the endosomal membrane rather than to the lumenal side. VatM-GFP labeling of the contractile vacuole complex revealed clearly the dynamics of this pleiomorphic vesiculotubular organelle. VatM-GFP labeling of endosomes allowed direct visualization of the trafficking of vacuolar proton pumps in this pathway, which appeared to be entirely independent from the contractile vacuole membrane system. In cells whose endosomes were pre-labeled with TRITC-dextran and then fed yeast particles,VatM-GFP was delivered to newly formed yeast phagosomes with the same time course as TRITC-dextran, consistent with transfer via a direct fusion of endosomes with phagosomes. Several minutes were required before the intensity of the VatM-GFP labeling of new phagosomes reached the level observed in older phagosomes, suggesting that this fusion process was progressive and continuous. VatM-GFP was retrieved from the phagosome membrane prior to exocytosis of the indigestible remnants of the yeast particle. These data suggest that vacuolar proton pumps are recycled by fusion of advanced with newly formed endosomes.
Collapse
|
14
|
Liu T, Mirschberger C, Chooback L, Arana Q, Dal Sacco Z, MacWilliams H, Clarke M. Altered expression of the 100 kDa subunit of the Dictyosteliumvacuolar proton pump impairs enzyme assembly, endocytic function and cytosolic pH regulation. J Cell Sci 2002; 115:1907-18. [PMID: 11956322 DOI: 10.1242/jcs.115.9.1907] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar proton pump (V-ATPase) appears to be essential for viability of Dictyostelium cells. To investigate the function of VatM, the 100 kDa transmembrane V-ATPase subunit, we altered its level. By means of homologous recombination, the promoter for the chromosomal vatM gene was replaced with the promoter for the act6 gene, yielding the mutant strain VatMpr. The act6 promoter is much more active in cells growing axenically than on bacteria. Thus, transformants were selected under axenic growth conditions, then shifted to bacteria to determine the consequences of reduced vatM expression. When VatMpr cells were grown on bacteria,the level of the 100 kDa V-ATPase subunit dropped, cell growth slowed, and the A subunit, a component of the peripheral catalytic domain of the V-ATPase,became mislocalized. These defects were complemented by transformation of the mutant cells with a plasmid expressing vatM under the control of its own promoter. Although the principal locus of vacuolar proton pumps in Dictyostelium is membranes of the contractile vacuole system, mutant cells did not manifest osmoregulatory defects. However, bacterially grown VatMpr cells did exhibit substantially reduced rates of phagocytosis and a prolonged endosomal transit time. In addition, mutant cells manifested alterations in the dynamic regulation of cytosolic pH that are characteristic of normal cells grown in acid media, which suggested that the V-ATPase also plays a role in cytosolic pH regulation.
Collapse
Affiliation(s)
- Tongyao Liu
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Yuan A, Siu CH, Chia CP. Calcium requirement for efficient phagocytosis by Dictyostelium discoideum. Cell Calcium 2001; 29:229-38. [PMID: 11243931 DOI: 10.1054/ceca.2000.0184] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracellular EDTA suppressed in a dose-dependent manner the phagocytosis of yeast particles by Dictyostelium discoideum cells. Activity was restored fully by the addition of Ca(2+), and partially by the addition of Mn(2+)or Zn(2+), but Mg(2+)was ineffective. The pH-sensitive, Ca(2+)-specific chelator EGTA also inhibited phagocytosis at pH 7.5, but not at pH 5, and Ca(2+)restored the inhibited phagocytosis. In contrast, pinocytosis was unaffected by EDTA. Consistent with the idea that Ca(2+)was required for phagocytosis, D. discoideum growth on bacteria was inhibited by EDTA, which was then restored by the addition of Ca(2+). It is concluded that Ca(2+)was needed for efficient phagocytosis by D. discoideum amoebae. A search for Ca(2+)-dependent membrane proteins enriched in phagosomes revealed the presence of p24, a Ca(2+)-dependent cell-cell adhesion molecule-1 (DdCAD-1) that could be the target of the observed EDTA and EGTA inhibition. DdCAD-1-minus cells, however, had normal phagocytic activity. Furthermore, phagocytosis was inhibited by EDTA and rescued by Ca(2+)in the mutant just as in wild type. Thus, DdCAD-1 was not responsible for the observed Ca(2+)-dependence of phagocytosis, indicating that one or more different Ca(2+)-dependent molecule(s) was involved in the process.
Collapse
Affiliation(s)
- A Yuan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA.
| | | | | |
Collapse
|
16
|
Yuan A, Chia CP. Role of esterase gp70 and its influence on growth and development of Dictyostelium discoideum. Exp Cell Res 2000; 261:336-47. [PMID: 11112340 DOI: 10.1006/excr.2000.5055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gp70 is an esterase originally called crystal protein because of its presence in crystalline structures in aggregation-competent Dictyostelium discoideum cells. Although postulated to break down spore coats, the function of gp70 in vivo was incompletely investigated. Our immunolocalization and biochemical studies of vegetative D. discoideum amoebae show that gp70 was recruited to phagosomes and found in lysosomes. Purified gp70 was effective at hydrolyzing naphthyl substrates with acyl chains typical of lipids and lipopolysaccharides, indicating that the gp70 was involved in digesting endocytosed molecules. The activity of purified gp70 was inhibited by reductants that retarded its electrophoretic mobility and verified the presence of intramolecular disulfide bonds predicted by its amino acid sequence. Compared to wild-type cells, cells overexpressing gp70 were more phagocytically active, had shorter generation times, and produced more fruiting bodies per unit area, while cells lacking gp70 were phagocytically less active with longer doubling times, developed more slowly, and had significantly fewer fruiting bodies per unit area. Consistent with the phenotype of a disrupted metabolism, one-third of the gp70-minus cells were large and multinucleated. Together, these results indicated that despite its crystalline appearance, gp70 was an active esterase involved in both the growth and the development of D. discoideum.
Collapse
Affiliation(s)
- A Yuan
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0118, USA.
| | | |
Collapse
|
17
|
Bogdanovic A, Bruckert F, Morio T, Satre M. A syntaxin 7 homologue is present in Dictyostelium discoideum endosomes and controls their homotypic fusion. J Biol Chem 2000; 275:36691-7. [PMID: 10978342 DOI: 10.1074/jbc.m006710200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endo-phagocytic activity is prominent in Dictyostelium discoideum and makes it a good model organism to study the molecular organization of membrane traffic in this pathway. We have identified a syntaxin 7 homologue (26% identity and 54% similarity to human syntaxin 7) in Dictyostelium cDNA and genomic data banks. In addition to the Habc and H3 helices and the C-terminal transmembrane domain characteristic of syntaxins, this protein contains a repetitive N-terminal extension of 68 amino acids. We first showed that Dictyostelium syntaxin 7 was able to form a complex with N-ethylmaleimide-sensitive fusion protein and alpha- and gamma-soluble N-ethylmaleimide-sensitive fusion protein attachment protein. Its intracellular localization was then studied by cell fractionation techniques and magnetic purification of the endocytic compartments. Most of D. discoideum syntaxin 7 is contained in endosomes. Finally, an in vitro endosome homotypic fusion assay (Laurent, O., Bruckert, F., Adessi, C., and Satre, M. (1998) J. Biol. Chem. 273, 793-799) was used to study a possible role for syntaxin 7 in this process. Purified anti-syntaxin 7 antibodies and a recombinant soluble fragment of syntaxin 7 both strongly inhibited fusion activity, indicating that this protein was necessary for endosome-endosome fusion. These results demonstrate the importance of this syntaxin 7 homologue in the early phases of Dictyostelium endo-phagocytic pathway.
Collapse
Affiliation(s)
- A Bogdanovic
- From the Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, Département de Biologie Moléculaire et Structurale, 38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
18
|
Abstract
Geometry-based mechanisms have been proposed to account for the sorting of membranes and fluid phase in the endocytic pathway, yet little is known about the involvement of the actin-myosin cytoskeleton. Here, we demonstrate that Dictyostelium discoideum myosin IB functions in the recycling of plasma membrane components from endosomes back to the cell surface. Cells lacking MyoB (myoA(-)/B(-), and myoB(-) cells) and wild-type cells treated with the myosin inhibitor butanedione monoxime accumulated a plasma membrane marker and biotinylated surface proteins on intracellular endocytic vacuoles. An assay based on reversible biotinylation of plasma membrane proteins demonstrated that recycling of membrane components is severely impaired in myoA/B null cells. In addition, MyoB was specifically found on magnetically purified early pinosomes. Using a rapid-freezing cryoelectron microscopy method, we observed an increased number of small vesicles tethered to relatively early endocytic vacuoles in myoA(-)/B(-) cells, but not to later endosomes and lysosomes. This accumulation of vesicles suggests that the defects in membrane recycling result from a disordered morphology of the sorting compartment.
Collapse
Affiliation(s)
- Eva M. Neuhaus
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, D-69120 Heidelberg, Germany
| | - Thierry Soldati
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, D-69120 Heidelberg, Germany
| |
Collapse
|
19
|
Brazill DT, Caprette DR, Myler HA, Hatton RD, Ammann RR, Lindsey DF, Brock DA, Gomer RH. A protein containing a serine-rich domain with vesicle fusing properties mediates cell cycle-dependent cytosolic pH regulation. J Biol Chem 2000; 275:19231-40. [PMID: 10747962 DOI: 10.1074/jbc.m000900200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initial differentiation in Dictyostelium involves both asymmetric cell division and a cell cycle-dependent mechanism. We previously identified a gene, rtoA, which when disrupted randomizes the cell cycle-dependent mechanism without affecting either the underlying cell cycle or asymmetric differentiation. We find that in wild-type cells, RtoA levels vary during the cell cycle. Cytosolic pH, which normally varies with the cell cycle, is randomized in rtoA cells. The middle 60% of the RtoA protein is 10 tandem repeats of an 11 peptide-long serine-rich motif, which we find has a random coil structure. This domain catalyzes the fusion of phospholipid vesicles in vitro. Conversely, rtoA cells have a defect in the fusion of endocytic vesicles. They also have a decreased exocytosis rate, a decreased pH of endocytic/exocytic vesicles, and an increased average cytosolic pH. Our data indicate that the serine-rich domain of RtoA can mediate membrane fusion and that RtoA can increase the rate of vesicle fusion during processing of endoctyic vesicles. We hypothesize that RtoA modulates initial cell type choice by linking vegetative cell physiology to the cell cycle.
Collapse
Affiliation(s)
- D T Brazill
- Howard Hughes Medical Institute and the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Weidenhaupt M, Bruckert F, Louwagie M, Garin J, Satre M. Functional and molecular identification of novel members of the ubiquitous membrane fusion proteins alpha- and gamma-SNAP (soluble N-ethylmaleimide-sensitive factor-attachment proteins) families in Dictyostelium discoideum. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2062-70. [PMID: 10727946 DOI: 10.1046/j.1432-1327.2000.01212.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The soluble N-ethylmaleimide-sensitive-factor-attachment proteins (SNAP) are eukaryotic soluble proteins required for membrane fusion. Based on their initial identification in bovine brain cytosol, they are divided in alpha/beta and gamma subfamilies. SNAPs act as adapters between N-ethylmaleimide-sensitive factor (NSF), a hexameric ATPase, and membrane SNARE proteins (SNAP receptors). Within the NSF/SNAP/SNARE complex, SNAPs contribute to the catalysis of an ATP-driven conformational change in the SNAREs, resulting in dissociation of the complex. We have constructed a Dictyostelium discoideum strain overexpressing a c-myc-tagged form of D. discoideum NSF (NSF-myc). Its immunoprecipitation from detergent-solubilized membrane extracts reveals two associated polypeptides with apparent molecular masses of 33 and 36 kDa (p33 and p36) that are absent in NSF-myc immunoprecipitates from cytosol. Analysis of trypsin-digested peptides by microsequencing and mass spectrometry and comparison with cDNA sequences identify p33 and p36 as the D. discoideum homologues of alpha- and gamma-SNAP, respectively. The alpha-/gamma-SNAP molar ratio is close to 3 in vegetative amoebae from this organism. The molecular identification of gamma-SNAP in plants (Arabidopsis thaliana) and insects (Drosophila melanogaster) documents, for the first time, the wide distribution of the gamma subtype. Altogether, these results suggest a specific role for gamma-SNAP, distinct from that of alpha-SNAP.
Collapse
Affiliation(s)
- M Weidenhaupt
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR314 CNRS) and Laboratoire de Chimie des Protéines, Département de Biologie Moléculaire et Structurale, CEA-Grenoble, France
| | | | | | | | | |
Collapse
|
21
|
Gasparian M, Pusterla M, Baldan B, Downey PM, Rossetto O, de Laureto PP, Filippini F, Terzi M, Lo Schiavo F. Identification and characterization of an 18-kilodalton, VAMP-like protein in suspension-cultured carrot cells. PLANT PHYSIOLOGY 2000; 122:25-34. [PMID: 10631246 PMCID: PMC58841 DOI: 10.1104/pp.122.1.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/1999] [Accepted: 09/17/1999] [Indexed: 05/23/2023]
Abstract
Polyclonal antibodies raised against rat vesicle associated membrane protein-2 (VAMP-2) recognized, in carrot (Daucus carota) microsomes, two major polypeptides of 18 and 30 kD, respectively. A biochemical separation of intracellular membranes by a sucrose density gradient co-localized the two polypeptides as resident in light, dense microsomes, corresponding to the endoplasmic reticulum-enriched fractions. Purification of coated vesicles allowed us to distinguish the subcellular location of the 18-kD polypeptide from that of 30 kD. The 18-kD polypeptide is present in the non-clathrin-coated vesicle peak. Like other VAMPs, the carrot 18-kD polypeptide is proteolyzed by tetanus toxin after separation of coatomers. Amino acid sequence analysis of peptides obtained by digestion of the 18-kD carrot polypeptide with the endoproteinase Asp-N confirms it to be a member of the VAMP family, as is suggested by its molecular weight, vesicular localization, and toxin-induced cleavage.
Collapse
Affiliation(s)
- M Gasparian
- Dipartimento di Biologia, Universit¿a di Padova, Viale Giuseppe Colombo 3, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Srinivasan S, Alexander H, Alexander S. The prespore vesicles of Dictyostelium discoideum. Purification, characterization, and developmental regulation. J Biol Chem 1999; 274:35823-31. [PMID: 10585466 DOI: 10.1074/jbc.274.50.35823] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coordinate fusion of the prespore vesicles (PSVs) with the plasma membrane at the terminal stage of spore differentiation in Dictyostelium discoideum is an important example of developmentally regulated protein secretion. However, little is known about the composition of the vesicles, the molecular signals regulating secretion, or the mechanics of the membrane fusion. Taking a biochemical approach, we purified PSVs from different developmental stages. These preparations are highly enriched for their specific cargo of spore coat proteins while devoid of markers for other cellular compartments. Electron microscopic observations show that the PSV preparations are homogenous, with the soluble spore coat protein PsB/SP85 distributed throughout the lumen and the acid mucopolysaccharide localized in the central core. During development the PSVs increase in size and density concomitant with an increase in their protein cargo. The PSVs contain approximately 80 proteins, and we have identified a PSV-specific GTP-binding protein that may be involved in regulating vesicle fusion. The PSVs are not clathrin-coated and do not contain the SpiA spore coat protein. The PSV preparations are ideal for a global proteome analysis to identify proteins involved in signal reception, vesicle movement, docking, and fusion in this developmentally regulated organelle.
Collapse
Affiliation(s)
- S Srinivasan
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211-7400, USA
| | | | | |
Collapse
|
23
|
Journet A, Chapel A, Jehan S, Adessi C, Freeze H, Klein G, Garin J. Characterization of Dictyostelium discoideum cathepsin D. J Cell Sci 1999; 112 ( Pt 21):3833-43. [PMID: 10523518 DOI: 10.1242/jcs.112.21.3833] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies using magnetic purification of Dictyostelium discoideum endocytic vesicles led us to the identification of some major vesicle proteins. Using the same purification procedure, we have now focused our interest on a 44 kDa soluble vesicle protein. Microsequencing of internal peptides and subsequent cloning of the corresponding cDNA identified this protein as the Dictyostelium homolog of mammalian cathepsins D. The only glycosylation detected on Dictyostelium cathepsin D (CatD) is common antigen 1, a cluster of mannose 6-sulfate residues on N-linked oligosaccharide chains. CatD intracellular trafficking has been studied, showing the presence of the protein throughout the entire endocytic pathway. During the differentiation process, the catD gene presents a developmental regulation, which is also observed at the protein level. catD gene disruption does not alter significantly the cell behaviour, either in the vegetative form or the differentiation stage. However, modifications in the SDS-PAGE profiles of proteins bearing common antigen 1 were detected, when comparing parental and catD(-) cells. These modifications point to a possible role of CatD in the maturation of a few Dictyostelium lysosomal proteins.
Collapse
Affiliation(s)
- A Journet
- Laboratoire de Chimie des Protéines, CEA-Grenoble, rue des Martyrs, F-38054 Grenoble, Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Horn J, Dietz-Schmidt A, Zündorf I, Garin J, Dingermann T, Winckler T. A Dictyostelium protein binds to distinct oligo(dA) x oligo(dT) DNA sequences in the C-module of the retrotransposable element DRE. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:441-8. [PMID: 10491202 DOI: 10.1046/j.1432-1327.1999.00768.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genome of the eukaryotic microbe Dictyostelium discoideum contains some 200 copies of the nonlong-terminal repeat retrotransposon DRE. Among several unique features of this retroelement, DRE is transcribed in both directions leading to the formation of partially overlapping plus strand and minus strand RNAs. The synthesis of minus strand RNAs is controlled by the C-module, a 134-bp DNA sequence located at the 3'-end of DRE. A nuclear protein (CMBF) binds to the C-module via interaction with two almost homopolymeric 24 bp oligo(dA) x oligo(dT) sequences. The DNA-binding drugs distamycin and netropsin, which bind to A x T-rich DNA sequences in the minor groove, competed efficiently for the binding of CMBF to the C-module. The CMBF-encoding gene, cbfA, was isolated and a DNA-binding domain was mapped to a 25-kDa C-terminal region of the protein. A peptide motif involved in the binding of A x T-rich DNA by high mobility group-I proteins ('GRP' box) was identified in the deduced CMBF protein sequence, and exchange of a consensus arginine residue for alanine within the CMBF GRP box abolished the interaction of CMBF with the C-module. The current data support the theory that CMBF binds to the C-module by detecting its long-range DNA conformation and interacting with A x T base pairs in the minor groove of oligo(dA) x oligo(dT) stretches.
Collapse
Affiliation(s)
- J Horn
- Institut für Pharmazeutische Biologie, Universität Frankfurt/Mainz (Biozentrum), Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Quirin N, Keramidas M, Garin J, Chambaz E, Feige JJ. Tissue inhibitor of metalloproteinase-2 (TIMP-2) expression is strongly induced by ACTH in adrenocortical cells. J Cell Physiol 1999; 180:372-80. [PMID: 10430177 DOI: 10.1002/(sici)1097-4652(199909)180:3<372::aid-jcp8>3.0.co;2-g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Besides its acute and chronic effects on corticosteroid synthesis, the pituitary adrenocorticotropic hormone (ACTH) regulates diverse adrenocortical biological functions including the synthesis of a number of mitochondrial, cytoplasmic, and secreted proteins. ACTH-induced secreted proteins are candidates to act as local extracellular relays of the hormone in either an autocrine or a paracrine manner. In the present study, we report that stimulation of primary cultures of bovine adrenocortical (BAC) fasciculata cells with 10 nM ACTH for 24 h results in a mean 8 +/- 4-fold induction of the synthesis of a secreted protein presenting an apparent Mr of 21 kDa. Peptide microsequencing and Western blotting allowed us to identify this 21-kDa ACTH-induced protein as the tissue inhibitor of metalloproteinase-2 (TIMP-2). The induction of TIMP-2 by ACTH required transcription, was mimicked by 8-bromo cyclic 3'-5' adenosine monophosphate, but was not observed in response to angiotensin II, IGF-1, fibroblast growth factor-2, transforming growth factor-beta1, or cortisol treatments. ACTH stimulated TIMP-2 mRNA levels by a factor 4, whereas TIMP-1 mRNA levels were not affected and TIMP-3 mRNA remained undetectable. The biological activity of TIMP-2 varied accordingly, as we observed that the conditioned medium of ACTH-treated BAC cells was four times more potent at inhibiting gelatinolytic activity than was the conditioned medium of control cells. Because the proteolytic activity of both progelatinase-B and progelatinase-A secreted by BAC cells remained latent, whether in the presence or in the absence of ACTH, a paracrine rather than autocrine role is proposed for TIMP-2 in the adrenal cortex.
Collapse
Affiliation(s)
- N Quirin
- INSERM Unit 244, Department of Molecular and Structural Biology, Commissariat ê l'Energie Atomique, Grenoble, France
| | | | | | | | | |
Collapse
|
26
|
Rivero F, Furukawa R, Fechheimer M, Noegel AA. Three actin cross-linking proteins, the 34 kDa actin-bundling protein, alpha-actinin and gelation factor (ABP-120), have both unique and redundant roles in the growth and development of Dictyostelium. J Cell Sci 1999; 112 ( Pt 16):2737-51. [PMID: 10413681 DOI: 10.1242/jcs.112.16.2737] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contribution of three actin cross-linking proteins, alpha-actinin (alphaA), gelation factor (ABP-120), and the 34 kDa actin-bundling protein to cellular functions has been studied in three single mutant (alphaA-, 120-, and 34-) and three double mutant (alphaA-/120-, 34-/alphaA-, 34-/120-) strains of Dictyostelium generated by homologous recombination. Strains alphaA-/120- and 34-/alphaA- exhibited a reduced rate of pinocytosis, grew to lower saturation densities, and produced small cells in shaking cultures. All strains grew normally in bacterial suspensions and on agar plates with a bacterial lawn. Slow growth under conditions of reduced temperature and increased osmolarity was observed in single mutants 34- and alphaA-, respectively, as well as in some of the double mutant strains. Motility, chemotaxis, and development were largely unaltered in 34-/alphaA- and 34-/120- cells. However, 34-/alphaA- cells showed enhanced aggregation when starved in suspension. Moreover, morphogenesis was impaired in both double mutant strains and fruiting bodies of aberrant morphology were observed. These defects were reverted by re-expression of one of the lacking cross-linking proteins. The additive and synthetic phenotypes of these mutations indicate that actin cross-linking proteins serve both unique and overlapping functions in the actin cytoskeleton.
Collapse
Affiliation(s)
- F Rivero
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
27
|
Wienke DC, Knetsch ML, Neuhaus EM, Reedy MC, Manstein DJ. Disruption of a dynamin homologue affects endocytosis, organelle morphology, and cytokinesis in Dictyostelium discoideum. Mol Biol Cell 1999; 10:225-43. [PMID: 9880338 PMCID: PMC25165 DOI: 10.1091/mbc.10.1.225] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The identification and functional characterization of Dictyostelium discoideum dynamin A, a protein composed of 853 amino acids that shares up to 44% sequence identity with other dynamin-related proteins, is described. Dynamin A is present during all stages of D. discoideum development and is found predominantly in the cytosolic fraction and in association with endosomal and postlysosomal vacuoles. Overexpression of the protein has no adverse effect on the cells, whereas depletion of dynamin A by gene-targeting techniques leads to multiple and complex phenotypic changes. Cells lacking a functional copy of dymA show alterations of mitochondrial, nuclear, and endosomal morphology and a defect in fluid-phase uptake. They also become multinucleated due to a failure to complete normal cytokinesis. These pleiotropic effects of dynamin A depletion can be rescued by complementation with the cloned gene. Morphological studies using cells producing green fluorescent protein-dynamin A revealed that dynamin A associates with punctate cytoplasmic vesicles. Double labeling with vacuolin, a marker of a postlysosomal compartment in D. discoideum, showed an almost complete colocalization of vacuolin and dynamin A. Our results suggest that that dynamin A is likely to function in membrane trafficking processes along the endo-lysosomal pathway of D. discoideum but not at the plasma membrane.
Collapse
Affiliation(s)
- D C Wienke
- Abteilung Biophysik, Max-Planck-Institut für Medizinische Forschung, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
28
|
Louwagie M, Rabilloud T, Garin J. Use of ethanolamine for sample stacking in capillary electrophoresis. Electrophoresis 1998; 19:2440-4. [PMID: 9820964 DOI: 10.1002/elps.1150191414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Capillary zone electrophoresis (CZE) in the presence of ethanolamine was used in a micropreparative mode. Sample volumes up to 1 microL could be loaded onto a 100 microns diameter capillary without loss in resolution. Coupled to narrow-bore reversed-phase high-performance liquid chromatography, ethanolamine-CZE allowed the collection of sufficient amounts of pure peptidic material to perform amino acid sequence analysis.
Collapse
Affiliation(s)
- M Louwagie
- Laboratoire de Chimie des Protéines, CEA/Grenoble, France
| | | | | |
Collapse
|
29
|
Emslie KR, Birch D, Champion AC, Williams KL. Localisation of glycoproteins containing type 3 O-linked glycosylation to multilamellar bodies in Dictyostelium discoideum. Eur J Protistol 1998. [DOI: 10.1016/s0932-4739(98)80059-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Chevallet M, Santoni V, Poinas A, Rouquié D, Fuchs A, Kieffer S, Rossignol M, Lunardi J, Garin J, Rabilloud T. New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 1998; 19:1901-9. [PMID: 9740050 DOI: 10.1002/elps.1150191108] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Severe quantitative loss of protein is often observed in high-resolution two-dimensional electrophoresis of membrane proteins, while the resolution is usually not affected. To improve the solubility of proteins in this technique, we tested denaturing cocktails containing various detergents and chaotropes. Best results were obtained with a denaturing solution containing urea, thiourea, and zwitterionic detergents, synthesized for this purpose. Among the dozen detergents synthesized and tested, amidosulfobetaines with an alkyl tail containing 14-16 carbons proved most efficient, solubilizing previously undetected membrane proteins.
Collapse
Affiliation(s)
- M Chevallet
- CEA, Laboratoire de Bioénergétique Cellulaire et Pathologique, Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Laurent O, Bruckert F, Adessi C, Satre M. In vitro reconstituted Dictyostelium discoideum early endosome fusion is regulated by Rab7 but proceeds in the absence of ATP-Mg2+ from the bulk solution. J Biol Chem 1998; 273:793-9. [PMID: 9422733 DOI: 10.1074/jbc.273.2.793] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We characterized the in vitro fusion of endosomal compartments from Dictyostelium discoideum. Fusion activity was restricted to early compartments, was dependent on cytosolic proteins, and was activated by GTP and guanosine 5'-O(3-thio)triphosphate (GTPgammaS). This stimulation suggests the involvement of a small G protein, which we propose to be Rab7 on the basis of the strong inhibitory effect of anti-Rab7 antibodies. It is noteworthy that in the presence of GTPgammaS, the concentration of ATP-Mg2+ could be reduced to less than 1 nM without loss of fusion activity. Under these conditions, competing residual ATP with adenosine 5'-O-(3-thio)triphosphate-Mg2+ also failed to inhibit endosome fusion. The presence of an ATP-depleting system alone blocked fusion probably because endogenous GTP was removed by coupling through NDP kinase. Moreover, whether ATP was present or not, GTPgammaS-activated fusion was equally sensitive to anti-Rab7 antibodies or N-ethylmaleimide and was restricted to early compartments. These results show that soluble ATP-Mg2+ is not needed for endosome fusion. Since homotypic fusion of endosomes in D. discoideum has been shown to depend on the ATPase N-ethylmaleimide-sensitive factor (Lenhard, J. M., Mayorga, L. , and Stahl, P. D. (1992) J. Biol. Chem. 267, 1896-1903), the nucleotide exchange on the N-ethylmaleimide sensitive factor must take place before GTPgammaS activation in this system.
Collapse
Affiliation(s)
- O Laurent
- CEA-Grenoble, Département de Biologie Moléculaire et Structurale, 38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
32
|
Jenne N, Rauchenberger R, Hacker U, Kast T, Maniak M. Targeted gene disruption reveals a role for vacuolin B in the late endocytic pathway and exocytosis. J Cell Sci 1998; 111 ( Pt 1):61-70. [PMID: 9394012 DOI: 10.1242/jcs.111.1.61] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of Dictyostelium discoideum take up fluid by macropinocytosis. The contents of macropinosomes are acidified and digested by lysosomal enzymes. Thereafter, an endocytic marker progresses in an F-actin dependent mechanism from the acidic lysosomal phase to a neutral post-lysosomal phase. From the post-lysosomal compartment indigestible remnants are released by exocytosis. This compartment is characterised by two isoforms of vacuolin, A and B, which are encoded by different genes. Fusions of the vacuolin isoforms to the green fluorescent protein associate with the cytoplasmic side of post-lysosomal vacuoles in vivo. Vacuolin isoforms also localise to patches at the plasma membrane. Since vacuolins have no homologies to known proteins and do not contain domains of obvious function, we investigated their role by knocking out the genes separately. Although the sequences of vacuolins A and B are about 80% identical, only deletion of the vacuolin B gene results in a defect in the endocytic pathway; the vacuolin A knock-out appeared to be phenotypically normal. In vacuolin B- mutants endocytosis is normal, but the progression of fluid-phase marker from acidic to neutral pH is impaired. Furthermore, in the mutants post-lysosomal vacuoles are dramatically increased in size and accumulate endocytic marker, suggesting a role for vacuolin B in targeting the vacuole for exocytosis.
Collapse
Affiliation(s)
- N Jenne
- Abt. Zellbiologie, Max-Planck-Institut fur Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
33
|
Bracco E, Peracino B, Noegel AA, Bozzaro S. Cloning and transcriptional regulation of the gene encoding the vacuolar/H+ ATPase B subunit of Dictyostelium discoideum. FEBS Lett 1997; 419:37-40. [PMID: 9426215 DOI: 10.1016/s0014-5793(97)01425-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The main function of vacuolar H+ ATPases in eukaryotic cells is to generate proton and electrochemical gradients across the membrane of inner compartments. We have isolated the gene encoding the B subunit of Dictyostelium discoideum vacuolar H+ ATPase (vatB) and analyzed its transcriptional regulation. The deduced protein comprises 493 amino acids with a calculated molecular mass of 54874 Da. The predicted protein sequence is highly homologous to previously determined V/H+ ATPase B subunit sequences. The protein is encoded by a single gene in the Dictyostelium genome. The gene is maximally expressed during growth and it decreases during the first hours of development. Gene expression is rapidly enhanced by phagocytosis, but not by fluid-phase endocytosis. Acidic and alkaline conditions affect vatB gene expression differently.
Collapse
Affiliation(s)
- E Bracco
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Ospedale S. Luigi Gonzaga, Orbassano-Turin, Italy
| | | | | | | |
Collapse
|
34
|
Sesaki H, Wong EF, Siu CH. The cell adhesion molecule DdCAD-1 in Dictyostelium is targeted to the cell surface by a nonclassical transport pathway involving contractile vacuoles. J Cell Biol 1997; 138:939-51. [PMID: 9265658 PMCID: PMC2138044 DOI: 10.1083/jcb.138.4.939] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/1997] [Revised: 05/14/1997] [Indexed: 02/05/2023] Open
Abstract
DdCAD-1 is a 24-kD Ca2+-dependent cell- cell adhesion molecule that is expressed soon after the initiation of development in Dictyostelium cells. DdCAD-1 is present on the cell surface as well as in the cytosol. However, the deduced amino acid sequence of DdCAD-1 lacks a hydrophobic signal peptide or any predicted transmembrane domain, suggesting that it may be presented on the cell surface via a nonclassical transport mechanism. Here we report that DdCAD-1 is transported to the cell surface via contractile vacuoles, which are normally involved in osmoregulation. Immunofluorescence microscopy and subcellular fractionation revealed a preferential association of DdCAD-1 with contractile vacuoles. Proteolytic treatment of isolated contractile vacuoles degraded vacuole-associated calmodulin but not DdCAD-1, demonstrating that DdCAD-1 was present in the lumen. The use of hyperosmotic conditions that suppress contractile vacuole activity led to a dramatic decrease in DdCAD-1 accumulation on the cell surface and the absence of cell cohesiveness. Shifting cells back to a hypotonic condition after hypertonic treatments induced a rapid increase in DdCAD-1-positive contractile vacuoles, followed by the accumulation of DdCAD-1 on the cell membrane. 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole, a specific inhibitor of vacuolar-type H+-ATPase and thus of the activity of contractile vacuoles, also inhibited the accumulation of DdCAD-1 on the cell surface. Furthermore, an in vitro reconstitution system was established, and isolated contractile vacuoles were shown to import soluble DdCAD-1 into their lumen in an ATP-stimulated manner. Taken together, these data provide the first evidence for a nonclassical protein transport mechanism that uses contractile vacuoles to target a soluble cytosolic protein to the cell surface.
Collapse
Affiliation(s)
- H Sesaki
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
35
|
Duborjal H, Dupuis A, Chapel A, Kieffer S, Lunardi J, Issartel JP. Immuno-purification of a dimeric subcomplex of the respiratory NADH-CoQ reductase of Rhodobacter capsulatus equivalent to the FP fraction of the mitochondrial complex I. FEBS Lett 1997; 405:345-50. [PMID: 9108316 DOI: 10.1016/s0014-5793(97)00212-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Rhodobacter capsulatus genes encoding the NUOE and NUOF subunits, equivalent to the 24 kDa and 51 kDa subunits of the mammalian mitochondrial complex I, have been sequenced. According to the nucleotide sequence, the NUOE subunit is 389 amino acids long and has a molecular mass of 41.3 kDa. In comparison to the mitochondrial equivalent subunit, NUOE is extended at the C terminus by more than 150 amino acids. The NUOF subunit is 431 amino acids long and has a molecular mass of 47.1 kDa. A subcomplex containing both the NUOE and NUOF subunits was extracted by detergent treatment of R. capsulatus membranes and immuno-purified. This subcomplex is homologous to the mitochondrial FP fragment. Mass spectrometry after trypsin treatment of the NUOE subunit validates the atypical primary structure deduced from the sequence of the gene.
Collapse
Affiliation(s)
- H Duborjal
- Laboratoire de Bioénergétique Cellulaire et Pathologique, DBMS, CEA Grenoble, France
| | | | | | | | | | | |
Collapse
|
36
|
Rauchenberger R, Hacker U, Murphy J, Niewöhner J, Maniak M. Coronin and vacuolin identify consecutive stages of a late, actin-coated endocytic compartment in Dictyostelium. Curr Biol 1997; 7:215-8. [PMID: 9276759 DOI: 10.1016/s0960-9822(97)70093-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cells of the unicellular eukaryote Dictyostelium discoideum take up all their nutrients by endocytosis. Both particle- and fluid-containing vacuoles are transiently surrounded by a cytoskeletal coat [1] [2]. When this coat has dissociated, acidification and digestion of the vesicle contents occur, followed by exocytosis of the indigestible remnants after 60-90 minutes. At least nine compartments are needed for mathematical modelling of endocytic transit [3], suggesting that markers associate for only a few minutes with a specific endocytic compartment. Among the proteins that have been identified as components of endocytic vesicles are actin, subunits of the V-H+ ATPase and small GTP-binding proteins of the Rab family [4] [5] [6] [7]. Using a monoclonal antibody produced against Dictyostelium endocytic vesicles, we have isolated a cDNA corresponding to a novel protein that we have named vacuolin. In order to determine the precise step along the endocytic pathway that involves vacuolin, we generated a fusion protein of the green fluorescent protein (GFP) and vacuolin. GFP-vacuolin-decorated vesicles were identified as a post-lysosomal compartment that acquires endocytic markers shortly before exocytosis. At earlier stages, this post-lysosomal compartment was identified by the binding of a tagged cytoskeletal protein, coronin-GFP. Vacuoles were coated with filamentous actin along the entire post-lysosomal pathway, and the integrity of the actin coat was required for exocytosis.
Collapse
Affiliation(s)
- R Rauchenberger
- Abteilung Zellbiologie, Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
37
|
Ord T, Adessi C, Wang L, Freeze HH. The cysteine proteinase gene cprG in Dictyostelium discoideum has a serine-rich domain that contains GlcNAc-1-P. Arch Biochem Biophys 1997; 339:64-72. [PMID: 9056234 DOI: 10.1006/abbi.1996.9870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A lysosomal cysteine proteinase called proteinase-1 is the major proteolytic enzyme in vegetative cells of Dictyostelium discoideum. This phosphoglycosylated protein contains multiple residues of GlcNAc-1-P linked to peptidyl serines. Here we report the cloning, structure, and expression of its cDNA (cprG). Another cDNA (cprF) closely related to cprG was also cloned and characterized. mRNAs of both genes are present during the vegetative phase and decrease in developing cells. However, the level of cprG mRNA is about 100-fold higher than that of cprF. The predicted protein products of both genes contain a unique serine-rich domain that was previously found only in two Dictyostelium proteinases (CP4 and CP5) that also carry a GlcNAc-1-P-Ser modification. The cprG product, renamed CP7, was tagged with the FLAG-epitope (FLAG-CP7) and shown to bind to cystatin, a highly specific inhibitor of cysteine proteinases. The FLAG-CP7 product also contained both N-linked oligosaccharides and GlcNAc-1-P. Deletion of the serine-rich domain from FLAG-CP7 yields a product that still binds to cystatin, but no longer carries GlcNAc-1-P. This finding supports the idea that the GlcNAc-1-P residues are normally added to the serine-rich domain, found only in vegetative Dictyostelium cysteine proteinases.
Collapse
Affiliation(s)
- T Ord
- Burnham Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
38
|
Hacker U, Albrecht R, Maniak M. Fluid-phase uptake by macropinocytosis in Dictyostelium. J Cell Sci 1997; 110 ( Pt 2):105-12. [PMID: 9044041 DOI: 10.1242/jcs.110.2.105] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study fluid-phase endocytosis in living cells and its relationship to changes in the cell cortex, we have used a green fluorescent protein (GFP)-tagged version of coronin, an actin-associated protein that localises to dynamic regions of the Dictyostelium cell cortex. In the confocal microscope, internalisation of fluorescently labelled dextran as a fluid-phase marker can be recorded simultaneously with the recruitment of the coronin-GFP fusion-protein from the cytoplasm of the phagocyte. At crown-shaped surface protrusions, extracellular medium is taken up into vesicles with an average diameter of 1.6 microns, which is significantly larger than the 0.1 microns diameter of clathrin-coated pinosomes. The observed frequency of macropinosome formation can account for a large portion, if not all, of the fluid-phase uptake. The redistribution of coronin-GFP strongly resembles cytoskeletal rearrangements during phagocytosis. Scanning-electron micrographs indicate that crown-shaped cell-surface extensions can undergo shape changes, without a particle bound, that are similar to shape changes that occur during phagocytosis. In quantitative assays, the uptake of particles and fluid are about equally dependent on F-actin and coronin.
Collapse
Affiliation(s)
- U Hacker
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
39
|
Adessi C, Miege C, Albrieux C, Rabilloud T. Two-dimensional electrophoresis of membrane proteins: a current challenge for immobilized pH gradients. Electrophoresis 1997; 18:127-35. [PMID: 9059834 DOI: 10.1002/elps.1150180124] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane proteins were separated by high resolution two-dimensional (2-D) electrophoresis. On isoelectric focusing (IEF) with immobilized pH gradients severe protein losses in the resulting 2-D map were observed when compared with carrier ampholyte-based IEF. This has been noticed for two different biological systems, namely the chloroplast envelope of spinach and the endocytic vesicles from Dictyostelium discoideum. The possible mechanisms of these losses on immobilized pH gradients are discussed.
Collapse
Affiliation(s)
- C Adessi
- Laboratoire de Chimie des Protéines, CEA, Grenoble, France
| | | | | | | |
Collapse
|
40
|
Gingras D, White D, Garin J, Multigner L, Job D, Cosson J, Huitorel P, Zingg H, Dumas F, Gagnon C. Purification, cloning, and sequence analysis of a Mr = 30,000 protein from sea urchin axonemes that is important for sperm motility. Relationship of the protein to a dynein light chain. J Biol Chem 1996; 271:12807-13. [PMID: 8662724 DOI: 10.1074/jbc.271.22.12807] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have generated a series of monoclonal antibodies against axonemal proteins from sea urchin spermatozoa in order to identify novel proteins involved in the regulation of flagellar motility. The monoclonal antibody D405-14 inhibited the motility of demembranated-reactivated sperm models at low concentrations and recognized a single polypeptide of 33 kDa (p33) on immunoblots of sea urchin axonemal proteins. Fractionation of the axonemes with high salt solutions, heat, and detergent resulted in the selective extraction of p33 into a 0.6 M NaCl-soluble and a 0.5% sodium lauryl sarcosinate (Sarkosyl)-soluble form. Both forms of p33 were purified to apparent homogeneity by immunoaffinity chromatography on monoclonal antibody D405-14-Sepharose. We have also isolated and sequenced a full-length cDNA clone encoding the 33-kDa protein. The sequence predicts a polypeptide of 260 amino acids having a mass of 29,730 Da and an isoelectric point of 9.3. Sequence comparison indicates that p33 is 66% identical (74% similar) to the p28 light chain of axonemal inner dynein arm of Chlamydomonas reinhardtii. Taken together, these results suggest that we have identified a p28 light chain homolog in sea urchin sperm axoneme and that this protein may play a dynamic role in flagellar motility.
Collapse
Affiliation(s)
- D Gingras
- Urology Research Laboratory, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montréal, Québec, Canada H3A 1A1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Liu T, Clarke M. The vacuolar proton pump of Dictyostelium discoideum: molecular cloning and analysis of the 100 kDa subunit. J Cell Sci 1996; 109 ( Pt 5):1041-51. [PMID: 8743951 DOI: 10.1242/jcs.109.5.1041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar proton pump is a highly-conserved multimeric enzyme that catalyzes the translocation of protons across the membranes of eukaryotic cells. Its largest subunit (95-116 kDa) occurs in tissue and organelle-specific isoforms and thus may be involved in targeting the enzyme or modulating its function. In amoebae of Dictyostelium discoideum, proton pumps with a 100 kDa subunit are found in membranes of the contractile vacuole complex, an osmoregulatory organelle. We cloned the cDNA that encodes this 100 kDa protein and found that its sequence predicts a protein 45% identical (68% similar) to the corresponding mammalian proton pump subunit. Like the mammalian protein, the predicted Dictyostelium sequence contains six possible transmembrane domains and a single consensus sequence for N-linked glycosylation. Southern blot analysis detected only a single gene, which was designated vatM. Using genomic DNA and degenerate oligonucleotides based on conserved regions of the protein as primers, we generated products by polymerase chain reaction that included highly variable regions of this protein family. The cloned products were identical in nucleotide sequence to vatM, arguing that Dictyostelium cells contain only a single isoform of this proton pump subunit. Consistent with this interpretation, the amino acid sequences of peptides derived from a protein associated with endosomal membranes (Adessu et al. (1995) J. Cell Sci. 108, 3331–3337) match the predicted sequence of the protein encoded by vatM. Thus, a single isoform of the 100 kDa proton pump subunit appears to serve in both the contractile vacuole system and the endosomal/lysosomal system of Dictyostelium, arguing that this subunit is not responsible for regulating the differing abundance and function of proton pumps in these two compartments. Gene targeting experiments suggest that this subunit plays important (possibly essential) roles in Dictyostelium cells.
Collapse
Affiliation(s)
- T Liu
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|