1
|
Lv X, He M, Zhou H, Wang S, Cao X, Yuan Z, Getachew T, Li Y, Sun W. SP1 and KROX20 Regulate the Proliferation of Dermal Papilla Cells and Target the CUX1 Gene. Animals (Basel) 2024; 14:429. [PMID: 38338072 PMCID: PMC10854491 DOI: 10.3390/ani14030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Previous studies have demonstrated that CUX1 could contribute to the proliferation of DPCs in vitro, but the upstream transcriptional regulatory mechanisms of CUX1 remain largely unknown. This study aimed to investigate the upstream transcriptional regulators of CUX1 to enhance our comprehension of the mechanism of action of the CUX1 gene in ovine DPCs. Initially, the JASPAR (2024) software was used to predict the upstream target transcription factors for the CUX1 gene. Subsequently, through RT-qPCR and a double luciferase reporter assay, the interaction between SP1, KROX20, and CUX1 was established, respectively. The results indicated that SP1 and KROX20 were two highly reliable upstream transcription regulators for the CUX1 gene. Additionally, we found that SP1 promoted the proliferation of DPCs by overexpressing SP1 in DPCs, and KROX20 inhibited the proliferation of DPCs by overexpressing KROX20 in DPCs. These findings are also consistent with the transcriptional regulation of CUX1 by SP1 and KROX20, respectively. This study suggests that the effect of DPC proliferation in vitro by CUX1 may regulated by the transcription factors SP1 and KROX20.
Collapse
Affiliation(s)
- Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Lim TC, Leong MF, Lu H, Du C, Gao S, Wan ACA, Ying JY. Follicular dermal papilla structures by organization of epithelial and mesenchymal cells in interfacial polyelectrolyte complex fibers. Biomaterials 2013; 34:7064-72. [PMID: 23796577 DOI: 10.1016/j.biomaterials.2013.05.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/25/2013] [Indexed: 02/06/2023]
Abstract
The hair follicle is a regenerating organ that produces a new hair shaft during each growth cycle. Development and cycling of the hair follicle is governed by interactions between the epithelial and mesenchymal components. Therefore, development of an engineered 3D hair follicle would be useful for studying these interactions to identify strategies for treatment of hair loss. We have developed a technique suitable for assembly of different cell types in close proximity in fibrous hydrogel scaffolds with resolutions of ∼50 μm. By assembly of dermal papilla (DP) and keratinocytes, structures similar to the native hair bulb arrangement are formed. Gene expression of these constructs showed up-regulation of molecules involved in epithelial-mesenchymal interactions of the hair follicle. Implantation of the follicular structures in SCID mice led to the formation of hair follicle-like structures, thus demonstrating their hair inductive ability. The transparency of the fiber matrix and the small dimensions of the follicular structures allowed the direct quantitation of DP cell proliferation by confocal microscopy, clearly illustrating the promoting or inhibitory effects of hair growth regulating agents. Collectively, our results suggested a promising application of these 3D engineered follicular structures for in vitro screening and testing of drugs for hair growth therapy.
Collapse
Affiliation(s)
- Tze Chiun Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | | | | | | | | | | | | |
Collapse
|
3
|
Morisaki N, Ohuchi A, Moriwaki S. The role of neprilysin in regulating the hair cycle. PLoS One 2013; 8:e55947. [PMID: 23418484 PMCID: PMC3572137 DOI: 10.1371/journal.pone.0055947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022] Open
Abstract
In most mammals, each hair follicle undergoes a cyclic process of growing, regressing and resting phases (anagen, catagen, telogen, respectively) called the hair cycle. Various biological factors have been reported to regulate or to synchronize with the hair cycle. Some factors involved in the extracellular matrix, which is a major component of skin tissue, are also thought to regulate the hair cycle. We have focused on an enzyme that degrades elastin, which is associated with skin elasticity. Since our previous study identified skin fibroblast elastase as neprilysin (NEP), we examined the fluctuation of NEP enzyme activity and its expression during the synchronized hair cycle of rats. NEP activity in the skin was elevated at early anagen, and decreased during catagen to telogen. The expression of NEP mRNA and protein levels was modulated similarly. Immunostaining showed changes in NEP localization throughout the hair cycle, from the follicular epithelium during early anagen to the dermal papilla during catagen. To determine whether NEP plays an important role in regulating the hair cycle, we used a specific inhibitor of NEP (NPLT). NPLT was applied topically daily to the dorsal skin of C3H mice, which had been depilated in advance. Mice treated with NPLT had significantly suppressed hair growth. These data suggest that NEP plays an important role in regulating the hair cycle by its increased expression and activity in the follicular epithelium during early anagen.
Collapse
Affiliation(s)
- Naoko Morisaki
- Biological Science Laboratories, Kao Corporation, Haga-gun, Tochigi, Japan.
| | | | | |
Collapse
|
4
|
Mistriotis P, Andreadis ST. Hair follicle: a novel source of multipotent stem cells for tissue engineering and regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:265-78. [PMID: 23157470 DOI: 10.1089/ten.teb.2012.0422] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adult body harbors powerful reservoirs of stem cells that enable tissue regeneration under homeostatic conditions or in response to disease or injury. The hair follicle (HF) is a readily accessible mini organ within the skin and contains stem cells from diverse developmental origins that were shown to have surprisingly broad differentiation potential. In this review, we discuss the biology of the HF with particular emphasis on the various stem cell populations residing within the tissue. We summarize the existing knowledge on putative HF stem cell markers, the differentiation potential, and technologies to isolate and expand distinct stem cell populations. We also discuss the potential of HF stem cells for drug and gene delivery, tissue engineering, and regenerative medicine. We propose that the abundance of stem cells with broad differentiation potential and the ease of accessibility makes the HF an ideal source of stem cells for gene and cell therapies.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York 14260-4200, USA
| | | |
Collapse
|
5
|
Piérard-Franchimont C, Petit L, Loussouarn G, Saint-Léger D, Piérard GE. The hair eclipse phenomenon: sharpening the focus on the hair cycle chronobiology. Int J Cosmet Sci 2010; 25:295-9. [PMID: 18494912 DOI: 10.1111/j.1467-2494.2003.00198.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronobiology governing the hair cycle is a fascinating and complex process. Both the hair growth cycle and the hair shaft growth are coordinated and depend on the interplay of different biological signals and various exogenous stimuli. A latency period may occur between hair shedding (teloptosis, exogen phase) and the early emergence of the next anagen VI stage. This lag time referred to on the hair eclipse phenomenon likely depends on the influence of a series of distinct synchronizers, and does not represent per se a peculiar hair cycle phase. It is the result of some dysregulations of the hair cycling, involving early teloptosis, delayed anagen I initiation or stunted hair growth at any stage between the anagen I and anagen V phases. As such, the hair eclipse phenomenon may be an erratic process occurring in physiopathological conditions affecting hair follicles singly or in focal to generalized patterns. It may be more frequent when it follows synchronized teloptosis occurring in telogen effluvium (newborn alopecia, post-partum alopecia, seasonal alopecia and alopecia areata). It may also be prominent when microinflammation is abutted on the permanent portion of the hair follicle as in dandruff, seborrhoeic dermatitis, androgenic alopecia and photoageing baldness. Local synchronizers such as growth factors and other mediators may eventually be lacking or involved in the hair eclipse phenomenon. Their identification and characterization might drive new corrective or preventive applications.
Collapse
Affiliation(s)
- C Piérard-Franchimont
- Department of Dermatopathology, University Hospital Sart Tilman, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
6
|
Ohyama M, Zheng Y, Paus R, Stenn KS. The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Exp Dermatol 2009; 19:89-99. [PMID: 19650868 DOI: 10.1111/j.1600-0625.2009.00935.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hair follicle morphogenesis and regeneration occur by an extensive and collaborative crosstalk between epithelial and mesenchymal skin components. A series of pioneering studies, which revealed an indispensable role of follicular dermal papilla and dermal sheath cells in this crosstalk, has led workers in the field to study in detail the anatomical distribution, functional properties, and molecular signature of the trichogenic dermal cells. The purpose of this paper was to provide a practical summary of the development and recent advances in the study of trichogenic dermal cells. Following a short review of the relevant literature, the methods for isolating and culturing these cells are summarized. Next, the bioassays, both in vivo and in vitro, that enable the evaluation of trichogenic properties of tested dermal cells are described in detail. A list of trichogenic molecular markers identified by those assays is also provided. Finally, this methods review is completed by defining some of the major questions needing resolution.
Collapse
Affiliation(s)
- Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
7
|
Mansilla S, Boulaftali Y, Venisse L, Arocas V, Meilhac O, Michel JB, Jandrot-Perrus M, Bouton MC. Macrophages and platelets are the major source of protease nexin-1 in human atherosclerotic plaque. Arterioscler Thromb Vasc Biol 2008; 28:1844-50. [PMID: 18617644 DOI: 10.1161/atvbaha.108.171389] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Protease nexin-1 (PN-1), a serpin constitutively expressed by vascular smooth muscle cells and endothelial cells, inhibits thrombin, plasminogen activators, and plasmin and can thus be expected to play a role in vascular biology. The present study addressed the question of PN-1 expression in human atherothrombosis. METHODS AND RESULTS Immunohistochemistry and biochemical studies confirmed that PN-1 was expressed at a moderate level in the medial layer of normal human arteries and showed that PN-1 expression was increased in atherothrombotic lesions. In early noncomplicated plaques, PN-1 was associated with infiltrating mononuclear cells. A strong PN-1 signal was observed in advanced lesions, principally in intraplaque hemorrhage-related structures. Monocytes/macrophages and platelets were identified as the main sources of PN-1 within atherothrombotic material. Isolated human monocytes and platelets both expressed high levels of active PN-1, and monocyte PN-1 expression was upregulated, at both messenger and protein levels, in response to stimulation by lipopolysaccharides. In contrast, PN-1 expression was downregulated during their differentiation into macrophages which were shown to produce degraded forms of PN-1. CONCLUSIONS Platelets and monocytes/macrophages are a major source of PN-1 in human atherothrombotic plaques. PN-1 could thus represent a new actor in the evolution of atherosclerotic lesions.
Collapse
|
8
|
Feutz AC, Barrandon Y, Monard D. Control of thrombin signaling through PI3K is a mechanism underlying plasticity between hair follicle dermal sheath and papilla cells. J Cell Sci 2008; 121:1435-43. [DOI: 10.1242/jcs.018689] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In hair follicles, dermal papilla (DP) and dermal sheath (DS) cells exhibit striking levels of plasticity, as each can regenerate both cell types. Here, we show that thrombin induces a phosphoinositide 3-kinase (PI3K)-Akt pathway-dependent acquisition of DS-like properties by DP cells in vitro, involving increased proliferation rate, acquisition of `myofibroblastic' contractile properties and a decreased capacity to sustain growth and survival of keratinocytes. The thrombin inhibitor protease nexin 1 [PN-1, also known as SERPINE2) regulates all those effects in vitro. Accordingly, the PI3K-Akt pathway is constitutively activated and expression of myofibroblastic marker smooth-muscle actin is enhanced in vivo in hair follicle dermal cells from PN-1–/– mice. Furthermore, physiological PN-1 disappearance and upregulation of the thrombin receptor PAR-1 (also known as F2R) during follicular regression in wild-type mice also correlate with such changes in DP cell characteristics. Our results indicate that control of thrombin signaling interferes with hair follicle dermal cells plasticity to regulate their function.
Collapse
Affiliation(s)
- Anne-Catherine Feutz
- Friedrich Miescher Institute for Biomedical Research, CH-4058, Basel, Switzerland
| | - Yann Barrandon
- Laboratory of Stem Cell Dynamics, Ecole Polytechnique Fédérale de Lausanne and Lausanne University Hospital, Station 15, CH-1015 Lausanne, Switzerland
| | - Denis Monard
- Friedrich Miescher Institute for Biomedical Research, CH-4058, Basel, Switzerland
| |
Collapse
|
9
|
Osada A, Iwabuchi T, Kishimoto J, Hamazaki TS, Okochi H. Long-Term Culture of Mouse Vibrissal Dermal Papilla Cells andDe NovoHair Follicle Induction. ACTA ACUST UNITED AC 2007; 13:975-82. [PMID: 17341162 DOI: 10.1089/ten.2006.0304] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have succeeded in culturing dermal papilla (DP) cells long term and developed new techniques that enhance their hair follicle-inducing efficiency in a patch assay. The outgrowing DP cells from mouse vibrissae were markedly stimulated by 10% fetal bovine serum-Dulbecco's modified essential medium that included fibroblast growth factor-2 (FGF-2). Moreover, the potency of proliferation was maintained during serial cultivations (more than 30 passages). We combined these established DP cells with epidermal cells and implanted them subcutaneously into athymic mice to examine their hair follicle-inducing ability. New hair follicles were induced by dissociated DP cells at earlier passages (under passage 4), but the cells from later passages could not induce follicles. We next aggregated the DP cells to form spheres and then injected them with epidermal cells. Unlike the dissociated DP cells, the spheres made from the later passaged cells (more than 10 passages) did induce new hair follicles. We examined several genes specific for DP of anagen follicles and confirmed that their expression level was elevated in the spheres compared with their expression level in adherent DP cells. These results suggest that FGF-2 is essential for dermal papilla cell culture and that sphere formation partially models the intact DP, resulting in hair follicle induction, even by later passaged cells.
Collapse
Affiliation(s)
- Aki Osada
- Department of Tissue Regeneration, Research Institute, International Medical Center of Japan, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
Boivin WA, Jiang H, Utting OB, Hunt DWC. Influence of interleukin-1α on androgen receptor expression and cytokine secretion by cultured human dermal papilla cells. Exp Dermatol 2006; 15:784-93. [PMID: 16984260 DOI: 10.1111/j.1600-0625.2006.00462.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dermal papilla cells (DPC) control the growth character of the hair follicle through their elaboration of mitogenic factors and extracellular matrix components. Further, the dermal papilla is a primary site of androgen action in the hair follicle. Interleukin-1alpha (IL-1alpha) is prominent in skin wounding and inflammatory responses although regarded as a negative hair growth regulator. We studied the effect of IL-1alpha and the potent androgen 5alpha-dihydrotestosterone (DHT) on the expression of the androgen receptor (AR) and various factors secreted by cultured human temporal scalp DPC. IL-1alpha triggered cellular changes consistent with nuclear factor-kappaB pathway activation as well as reduced AR mRNA and protein expression levels for DHT-stimulated DPC. This cytokine also increased DPC supernatant keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), IL-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF) concentrations. IL-1alpha did not influence DPC supernatant levels of transforming growth factor-beta1, a negative hair growth regulator. The stimulatory effect of IL-1alpha on DPC VEGF, GM-CSF, KGF, and IL-8 expression was also evident at the mRNA level for these cytokines. IL-1alpha also increased mRNA transcript levels of protease-nexin-1, a secreted serine protease inhibitor expressed in the dermal papilla of anagen-stage hair follicles. Although DHT did not affect supernatant cytokine concentrations, the androgen altered mRNA transcript levels of several factors for DPC co-stimulated with IL-1alpha. In consideration of its in vitro activity profile, IL-1alpha may be an important modifier of dermal papilla activity as well as potentially influence androgen-regulated gene expression in DPC.
Collapse
Affiliation(s)
- Wendy A Boivin
- Scientific Affairs: Dermatology, QLT Inc., 887 Great Northern Way, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
11
|
Rendl M, Lewis L, Fuchs E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol 2005; 3:e331. [PMID: 16162033 PMCID: PMC1216328 DOI: 10.1371/journal.pbio.0030331] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 07/19/2005] [Indexed: 12/17/2022] Open
Abstract
De novo hair follicle formation in embryonic skin and new hair growth in adult skin are initiated when specialized mesenchymal dermal papilla (DP) cells send cues to multipotent epithelial stem cells. Subsequently, DP cells are enveloped by epithelial stem cell progeny and other cell types to form a niche orchestrating hair growth. Understanding the general biological principles that govern the mesenchymal–epithelial interactions within the DP niche, however, has been hampered so far by the lack of systematic approaches to dissect the complete molecular make-up of this complex tissue. Here, we take a novel multicolor labeling approach, using cell type–specific transgenic expression of red and green fluorescent proteins in combination with immunolabeling of specific antigens, to isolate pure populations of DP and four of its surrounding cell types: dermal fibroblasts, melanocytes, and two different populations of epithelial progenitors (matrix and outer root sheath cells). By defining their transcriptional profiles, we develop molecular signatures characteristic for the DP and its niche. Validating the functional importance of these signatures is a group of genes linked to hair disorders that have been largely unexplored. Additionally, the DP signature reveals novel signaling and transcription regulators that distinguish them from other cell types. The mesenchymal–epithelial signatures include key factors previously implicated in ectodermal-neural fate determination, as well as a myriad of regulators of bone morphogenetic protein signaling. These findings establish a foundation for future functional analyses of the roles of these genes in hair development. Overall, our strategy illustrates how knowledge of the genes uniquely expressed by each cell type residing in a complex niche can reveal important new insights into the biology of the tissue and its associated disease states. Determining the molecular signature of the cells that orchestrate hair follicle growth generates new insights that will aid in understanding the normal biology and disease states of this tissue.
Collapse
Affiliation(s)
- Michael Rendl
- 1Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Lisa Lewis
- 1Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Elaine Fuchs
- 1Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
12
|
Cao Q, Yu D, Lee A, Kasai Y, Tychsen B, Paus R, Freedberg IM, Sun TT. Expression of an Olfactomedin-Related Gene in Rat Hair Follicular Papilla Cells. J Invest Dermatol 2005; 125:24-33. [PMID: 15982299 DOI: 10.1111/j.0022-202x.2005.23746.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Follicular papilla (FP) cells, but not their closely related dermal fibroblasts, can maintain hair growth suggesting cell type-specific molecular signals. To define the molecular differences between these two cell types, we generated a subtraction complementary DNA (cDNA) library highly enriched in FP-specific cDNA. Differential screening identified FP-1 as the most abundant cDNA sequence in this subtraction library. FP-1 message RNA is highly abundant in cultured rat vibrissa FP cells, can be detected at very low levels in the stomach and the ovary, and is undetectable in cultured dermal fibroblasts and in 16 rat non-follicular tissues. The full-length, 2.3 kb FP-1 cDNA encodes a protein of 549 amino acids harboring a signal peptide, collagen triple helix repeats, and an olfactomedin-like domain. Monospecific rabbit antibodies to FP-1 recognize in cultured FP cells a single approximately 72 kDa glycoprotein with a approximately 60 kDa protein core. FP-1 protein is expressed in vivo in a hair cycle-dependent manner, as it can be detected in FP during anagen, but not in catagen and telogen phases of the hair cycle. FP-1 is presumably a highly specific extracellular matrix protein synthesized by FP cells and may be involved in the organization of FP during certain phases of normal or pathological hair growth.
Collapse
Affiliation(s)
- Qiong Cao
- Epithelial Biology Unit, Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
O'Shaughnessy RFL, Yeo W, Gautier J, Jahoda CAB, Christiano AM. The WNT signalling modulator, Wise, is expressed in an interaction-dependent manner during hair-follicle cycling. J Invest Dermatol 2004; 123:613-21. [PMID: 15373764 DOI: 10.1111/j.0022-202x.2004.23410.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used microarray hybridization to identify genes induced in the dermal papilla (DP) during anagen as a result of the interaction with epithelial matrix cells. We identified inhibitors of the bone morphogenetic protein (BMP) and transforming growth factor beta (TGFbeta)-signalling pathway, as well as the rat homologue of the Xenopus-secreted WNT modulator Wise. A large number of genes previously determined to be expressed in the DP were shown to be expressed in both the DP and dermal sheath (DS). Genes induced in the DP during anagen included modulators of genes expressed additionally in the DS as well as specialized extracellular matrix components. Expression of some of these genes were lost when the DP cells were cultured, suggesting that their expression was interaction dependent. One such gene, the WNT-signalling modulator Wise, was expressed in the DP and not in the non-inductive DS and was additionally expressed at high levels in the precortex and in the putative bulge region. In addition to the reported WNT-signalling modulation role, we show that Wise reduced both BMP and TGFbeta signalling in transformed fibroblasts. We speculate that loss of gene expression in cultured cells is a model for the loss of gene expression observed at catagen.
Collapse
Affiliation(s)
- Ryan F L O'Shaughnessy
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York 10032, USA.
| | | | | | | | | |
Collapse
|
14
|
Yu D, Cao Q, He Z, Sun TT. Expression Profiles of Tyrosine Kinases in Cultured Follicular Papilla Cells Versus Dermal Fibroblasts. J Invest Dermatol 2004; 123:283-90. [PMID: 15245426 DOI: 10.1111/j.0022-202x.2004.23212.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine kinases play crucial roles in cell differentiation and proliferation. Using degenerative primed PCR followed by differential display, we analyzed the tyrosine kinase expression profiles of cultured rat follicular papilla (FP) cells versus dermal fibroblasts. We showed that c-met, cdc2, and tec were preferentially expressed in cultured FP cells, whereas alpha-platelet-derived growth factor receptor (alpha-PDGFR) was preferentially expressed in cultured fibroblasts. The cell type specificity of these tyrosine kinases was confirmed by semi-quantitative RT-PCR using both rat and human cultured cells. Consistent with these results, hepatocyte growth factor preferentially stimulated the growth of rat FP cells, whereas PDGF-AA preferentially stimulated rat fibroblasts. High concentrations of some these kinases are also found in the follicular matrix keratinocytes as revealed by in situ hybridization. The expression of specific tyrosine kinases in FP and matrix cells may play roles in regulating hair growth and cycling.
Collapse
Affiliation(s)
- Dawen Yu
- Epithelial Biology Unit, Ronald O. Perelman Department of Dermatology, NYU Cancer Institute, New York University School of Medicine, New York 10016, USA
| | | | | | | |
Collapse
|
15
|
Anan T, Sonoda T, Asada Y, Kurata S, Takayasu S. Protease-Activated Receptor-1 (Thrombin Receptor) Is Expressed in Mesenchymal Portions of Human Hair Follicle. J Invest Dermatol 2003; 121:669-73. [PMID: 14632180 DOI: 10.1046/j.1523-1747.2003.12490.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protease nexin-1, a serine protease inhibitor, is expressed specifically in the dermal papilla (DP) of anagen hair follicles and is suggested to be one of the modulators of the cyclic growth of hair follicles. Accumulating evidence has shown that protease nexin-1 plays its biologic role by inhibiting thrombin action in various systems other than the hair follicle. Thrombin has various physiologic functions including blood coagulation cascade, mostly via activation of protease-activated receptors (PAR). In this study, we investigated the expression of PAR mRNA using RT-PCR in dissected human hair follicles. We showed that PAR-1 mRNA was expressed specifically in the mesenchymal portions, including DP and connective tissue sheath, of anagen hair follicles. Furthermore, immunoreactivity for PAR-1 was detected in the DP and lower portion of connective tissue sheath in the anagen and catagen phases and in the DP of telogen hair follicles. Because only a pharmacologic level (100 nM) of thrombin significantly stimulated cell proliferation and DNA synthesis of the cultured dermal papilla cells, thrombin does not seem to have a mitogenic effect on dermal papilla cells physiologically. These results raise the possibility that thrombin is involved in the cyclic hair growth through its receptor of PAR-1.
Collapse
Affiliation(s)
- T Anan
- Department of Dermatology, Oita Medical University, Oita-gun, Oita, Japan.
| | | | | | | | | |
Collapse
|
16
|
Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc 2003; 8:46-55. [PMID: 12894994 DOI: 10.1046/j.1523-1747.2003.12171.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelial-mesenchymal interactions play pivotal roles in the morphogenesis of many organs and various types of appendages. During hair follicle development, extensive interactions between two embryologically different hair follicle compartments (epidermal keratinocytes and dermal papilla fibroblasts) lead to the formation of the hair shaft-producing mini-organ that shows cyclic activity during postnatal life with periods of active growth, involution and resting. During the hair cycle, the epithelium and the mesenchyme are regulated by a distinct set of molecular signals that are unique for every distinct phase of the hair cycle. In telogen hair follicles, epithelial-mesenchymal interactions are characterized by a predominance of inhibitory signals that retain the hair follicle in a quiescent state. During anagen, a large variety of growth stimulatory pathways are activated in the epithelium and in the mesenchyme, the coordination of which are essential for proper hair fiber formation. During catagen, the termination of anagen-specific signaling interactions between the epithelium and the mesenchyme leads to apoptosis in the hair follicle epithelium, while activation of selected signaling pathways promotes the transition of the dermal papilla into a quiescent state. The signaling exchange between the follicular epithelium and the mesenchyme is modulated by proteoglycans, such as versican, which may significantly enhance or reduce the biological activities of secreted growth stimulators. However, additional research will be required to bridge the gap between our current understanding of mechanisms underlying epithelial-mesenchymal interactions in hair follicles and the potential clinical application of growth modulators involved in those interactions. Further progress in this area of research will hopefully lead to the development of new drugs for the treatment of hair growth disorders.
Collapse
|
17
|
Abstract
Androgenetic alopecia (AGA) is the most common type of hair loss in men. The relative strong concordance of the degree of baldness in fathers and sons is not consistent with a smiple Mendelian trait and a polygenic basis is considered to be most likely. So far the predisposing genes for AGA are unknown and we do not understand the molecular steps involved in androgen-dependent beard growth versus androgen-dependent hair loss, but AGA can be defined as a DHT-dependent process with continuous miniaturization of sensitive hair follicles. The type 2 5aR plays a central role by the intrafollicular conversion of T to DHT. Due to the inceasing knowledge in this field, this article shall privide an critical overwiew of recent discoveries.
Collapse
Affiliation(s)
- R Hoffmann
- Department of Dermatology, Philipp University, Marburg, Germany.
| |
Collapse
|
18
|
Yu DW, Yang T, Sonoda T, Gong Y, Cao Q, Gaffney K, Jensen PJ, Freedberg IM, Lavker RM, Sun TT. Osteopontin gene is expressed in the dermal papilla of pelage follicles in a hair-cycle-dependent manner. J Invest Dermatol 2001; 117:1554-8. [PMID: 11886522 DOI: 10.1046/j.0022-202x.2001.01568.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hair follicle formation and maintenance involve intimate interactions between follicular epithelial cells and a group of specialized mesenchymal cells known as the dermal papilla. Using the random primer polymerase chain reaction, we have identified an approximately 1.4 kb osteopontin mRNA that is present in large quantities in cultured rat vibrissa dermal papilla cells but undetectable in cultured rat skin fibroblasts. In situ hybridization showed that the osteopontin gene is expressed in dermal papilla cells of pelage follicles during catagen but not in anagen or telogen. As an acidic glycosylated RGD-containing extracellular matrix protein, osteopontin can function both as a cell attachment protein and as a soluble cytokine playing roles in signaling, cell migration, tissue survival, anti-inflammation, and T-cell-mediated cellular immunity. Our results indicate that the comparison of the mRNA of cultured dermal papilla cells and fibroblasts can lead to the identification of not only anagen-specific genes (e.g., nexin 1), but also a catagen-specific gene. We have thus provided evidence that specific genes are turned on during catagen, which is therefore not simply a passive "degenerative" phase. The functional role of osteopontin in catagen is unclear but it may promote the formation of a tightly aggregated dermal papilla, and/or protect the dermal papilla cells from apoptosis induced by cytokines or hypoxia during catagen.
Collapse
Affiliation(s)
- D W Yu
- Epithelial Biology Unit and Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Robinson M, Reynolds AJ, Gharzi A, Jahoda CA. In vivo induction of hair growth by dermal cells isolated from hair follicles after extended organ culture. J Invest Dermatol 2001; 117:596-604. [PMID: 11564165 DOI: 10.1046/j.0022-202x.2001.01461.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Successful hair follicle organ culture has been established for some time, but hair growth in vitro is limited and generally terminates prematurely in comparison with in vivo. The reasons why growth stops in culture are as yet unknown. In this investigation, adult rat vibrissa follicles for which growth in culture is limited to about 10 d, were maintained in vitro for a minimum of 20 d after the hair shaft stopped growing. The pattern of fiber growth and long-term follicle pathology reflected the initial hair cycle stage at the time of isolation. Furthermore, there was evidence that a group of follicles put into culture when in late anagen were attempting to cycle in vitro. Microscopy showed that, in spite of widespread pathologic changes to the follicle epithelium, dermal cells in the follicle showed remarkable resilience. Their viability was confirmed when primary cell cultures were established from isolated dermal tissue. These cells labeled positively for alpha-smooth muscle actin, an established marker of hair follicle dermal cell phenotype in vitro. Moreover, isolated dermal tissue induced hair growth when implanted into inactivated hair follicles in vivo. These data confirm that the cessation in hair growth is not due to a loss of the inductive capacity in the dermal component. Long-term organ culture may provide opportunities to investigate factors that are expressed or lost during hair growth cessation. In addition it may be possible to develop this method further to obtain a reliable and predictable model of hair follicle cycling in vitro.
Collapse
Affiliation(s)
- M Robinson
- Department of Biological Sciences, University of Durham, Durham, UK
| | | | | | | |
Collapse
|
20
|
Abstract
Nearly 50 years ago, Chase published a review of hair cycling in which he detailed hair growth in the mouse and integrated hair biology with the biology of his day. In this review we have used Chase as our model and tried to put the adult hair follicle growth cycle in perspective. We have tried to sketch the adult hair follicle cycle, as we know it today and what needs to be known. Above all, we hope that this work will serve as an introduction to basic biologists who are looking for a defined biological system that illustrates many of the challenges of modern biology: cell differentiation, epithelial-mesenchymal interactions, stem cell biology, pattern formation, apoptosis, cell and organ growth cycles, and pigmentation. The most important theme in studying the cycling hair follicle is that the follicle is a regenerating system. By traversing the phases of the cycle (growth, regression, resting, shedding, then growth again), the follicle demonstrates the unusual ability to completely regenerate itself. The basis for this regeneration rests in the unique follicular epithelial and mesenchymal components and their interactions. Recently, some of the molecular signals making up these interactions have been defined. They involve gene families also found in other regenerating systems such as fibroblast growth factor, transforming growth factor-beta, Wnt pathway, Sonic hedgehog, neurotrophins, and homeobox. For the immediate future, our challenge is to define the molecular basis for hair follicle growth control, to regenerate a mature hair follicle in vitro from defined populations, and to offer real solutions to our patients' problems.
Collapse
Affiliation(s)
- K S Stenn
- Beauty Genome Sciences Inc., Skillman, New Jersey, USA.
| | | |
Collapse
|
21
|
Sleeman MA, Murison JG, Strachan L, Kumble K, Glenn MP, McGrath A, Grierson A, Havukkala I, Tan PL, Watson JD. Gene expression in rat dermal papilla cells: analysis of 2529 ESTs. Genomics 2000; 69:214-24. [PMID: 11031104 DOI: 10.1006/geno.2000.6300] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dermal papilla (DEPA) cells are resident at the base of hair follicles and are fundamental to hair growth and development. Cultured DEPA cells, in contrast to normal fibroblast cells, are capable of inducing de novo hair follicle growth in vivo. By differential screening of a DEPA cDNA library, we have demonstrated that dermal papilla cells are different from fibroblasts at the molecular level. We further studied these cells by random sequencing of 5130 clones from the DEPA cDNA library. Fifty percent had a BLASTX E value < or =1 x 10(-25). Twenty-one percent had similarity to proteins involved in cell structure/motility with 4 of the top 10 most abundant clones encoding extracellular matrix proteins. Clones encoding growth factor molecules were also abundant. The remaining 50.7% of clones had low similarity scores, demonstrating many novel molecules. For example, we identified a new CTGF family member, the rat homologue of Elm1.
Collapse
Affiliation(s)
- M A Sleeman
- Genesis Research and Development Corporation Limited, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Proteinases and their inhibitors are very likely to function as mediators or regulators of the hair growth cycle. Very little information is currently available, however, regarding the specific inhibitors present in human hair follicles at defined stages of their growth cycle. In this study we have analyzed two proteinase inhibitors, plasminogen activator inhibitor type 2 and protease nexin 1, in human hair follicles using in situ hybridization and/or immunohistochemistry. Protease nexin 1 mRNA was found only in the mesenchymal population of the hair follicle, i.e., the follicular papilla cells, during the anagen but not the catagen phase. In contrast, plasminogen activator inhibitor type 2 was localized to several epithelial populations in the follicle: the more differentiated cells of the infundibulum; the companion layer in anagen follicles; and the single layer of outer root sheath cells directly abutting the club hair in telogen follicles. At least some of the plasminogen activator inhibitor type 2 in human follicles appears to be in the relaxed form, as evidenced by strong staining with an antibody that is specific for this form of the inhibitor. This suggests that plasminogen activator inhibitor type 2 interacts with and is cleaved by an endogenous follicular proteinase and supports a constitutive role for this inhibitor in human follicular epithelia.
Collapse
Affiliation(s)
- P J Jensen
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Lindner G, Menrad A, Gherardi E, Merlino G, Welker P, Handjiski B, Roloff B, Paus R. Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. FASEB J 2000; 14:319-32. [PMID: 10657988 DOI: 10.1096/fasebj.14.2.319] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HGF/SF and its receptor (Met) are principal mediators of mesenchymal-epithelial interactions in several different systems and have recently been implicated in the control of hair follicle (HF) growth. We have studied their expression patterns during HF morphogenesis and cycling in C57BL/6 mice, whereas functional hair growth effects of HGF/SF were assessed in vivo by analysis of transgenic mice and in skin organ culture. In normal mouse skin, follicular expression of HGF/SF and Met was strikingly localized: HGF/SF was found only in the HF mesenchyme (dermal papilla fibroblasts) and Met in the neighboring hair bulb keratinocytes. Both HGF/SF and Met expression peaked during the initial phases of HF morphogenesis, the stage of active hair growth (early and mid anagen), and during the apoptosis-driven HF regression (catagen). Met+ cells in the regressing epithelial strand appeared to be protected from undergoing apoptosis. Compared to wild-type controls, transgenic mice overexpressing HGF/SF under the control of the MT-1 promoter had twice as many developing HF and displayed accelerated HF development on postnatal day 3. They also showed significant catagen retardation on P17. In organ culture and in vivo, HGF/SF i.c. resulted in a significant catagen retardation. These results demonstrate an important role of HGF/SF and Met in murine hair growth control and suggest that Met-mediated signaling might be exploited for therapeutic manipulation of human hair growth disorders.-Lindner, G., Menrad, A., Gherardi, E., Merlino, G., Welker, P., Handjiski, B., Roloff, B., Paus, R. Involvement of hepatocyte growth factor/scatter factor and Met receptor signaling in hair follicle morphogenesis and cycling.
Collapse
Affiliation(s)
- G Lindner
- Department of Dermatology, Charité, Humboldt-University, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sonoda T, Asada Y, Kurata S, Takayasu S. The mRNA for protease nexin-1 is expressed in human dermal papilla cells and its level is affected by androgen. J Invest Dermatol 1999; 113:308-13. [PMID: 10469326 DOI: 10.1046/j.1523-1747.1999.00707.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protease nexin-1, an inhibitor of serine proteases, plays important parts in the regulation of the growth, differentiation, and death of cells by modulating proteolytic activity. The mRNA for protease nexin-1 accumulates in rat dermal papilla cells in a hair cycle-dependent fashion and its levels are well correlated with the ability of dermal papilla cells to support hair growth. In an attempt to characterize the potential role of protease nexin-1 as a modulator of hair growth in humans, we investigated the steady-state level of protease nexin-1 mRNA in cultured human dermal papilla cells using a semiquantitative technique that involved reverse transcription and polymerase chain reaction, as well as the localization of this mRNA in vivo using dissected hair follicles. Protease nexin-1 mRNA was expressed in all dermal papilla cells examined, and it was also identified in the lower part of the connective tissue sheath. Moreover, we found that levels of protease nexin-1 mRNA were depressed by dihydrotestosterone, the most potent androgen, in cultured dermal papilla cells obtained from balding scalp. Our results suggest that protease nexin-1 might be a key molecule in the control of hair growth in humans and, moreover, that the androgen-mediated downregulation of the synthesis of protease nexin-1 might be associated with the progression of male-pattern baldness.
Collapse
Affiliation(s)
- T Sonoda
- Department of Dermatology, Oita Medical University, Hasama, Japan.
| | | | | | | |
Collapse
|
25
|
Kishimoto J, Ehama R, Wu L, Jiang S, Jiang N, Burgeson RE. Selective activation of the versican promoter by epithelial- mesenchymal interactions during hair follicle development. Proc Natl Acad Sci U S A 1999; 96:7336-41. [PMID: 10377415 PMCID: PMC22086 DOI: 10.1073/pnas.96.13.7336] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interaction between the epithelium and the mesenchyme is an essential feature of organogenesis, including hair follicle formation. The dermal papilla (DP), a dense aggregate of specialized dermis-derived stromal cells located at the bottom of the follicle, is a major component of hair that signals the follicular epithelial cells to prolong the hair growth process. However, little is known about DP-specific gene activation with regard to hair induction. In this study we demonstrate that a short fragment (839 bp) of the human versican (a core protein of one of the matrix chondroitin sulfate proteoglycans) promoter is sufficient to activate lacZ reporter gene expression in the DP of postnatal transgenic mice and also in the condensed mesenchyme (the origin of the DP) beneath the hair placode during hair follicle embryogenesis. Using the same versican promoter with green fluorescent protein (GFP), large numbers of fresh pelage DP cells were isolated from newborn transgenic skin by high-speed cell sorting. These GFP-positive DP cells showed abundant versican mRNA, confirming that the reporter molecules reflected endogenous versican gene expression. These sorted GFP-positive cells showed DP-like morphology in culture, but both GFP and versican expression was lost during primary culture. In vivo hair growth assays showed that GFP-positive cells could induce hair when grafted with epithelial cells, whereas GFP-negative cells grafted with epithelium or GFP-positive cells alone did not. These results suggest that versican may play an essential role both in mesenchymal condensation and in hair induction.
Collapse
Affiliation(s)
- J Kishimoto
- Massachusetts General Hospital/Harvard Cutaneous Biology Research Center, Charlestown, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Seiberg M, Wisniewski S, Cauwenbergh G, Shapiro SS. Trypsin-induced follicular papilla apoptosis results in delayed hair growth and pigmentation. Dev Dyn 1997; 208:553-64. [PMID: 9097027 DOI: 10.1002/(sici)1097-0177(199704)208:4<553::aid-aja11>3.0.co;2-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Programmed cell death is a controlled process that leads to the elimination of single cells via apoptosis. Programmed cell death is fundamental to development, morphogenesis, and homeostasis. Proteases play a major role in the death process. We have previously shown that a serine protease, secreted by a keratinocyte cell line, can induce apoptosis in numerous cell lines. Here we show that serine proteases can induce cell death in vivo as well. Using a synchronized hair growth mouse model, we show that topical trypsin treatment following depilation induces cell death at the follicular papilla. This results in delaying hair growth and pigmentation. We speculate that trypsin might affect a receptor-mediated signaling pathway that leads to follicular papilla cell death.
Collapse
Affiliation(s)
- M Seiberg
- Skin Research Center, Johnson and Johnson CPWW, Skillman, New Jersey 08558, USA
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- K S Stenn
- Skin Biology Research Center of Johnson & Johnson, Skillman, New Jersey, USA
| | | |
Collapse
|
28
|
Stenn KS, Combates NJ, Eilertsen KJ, Gordon JS, Pardinas JR, Parimoo S, Prouty SM. Hair follicle growth controls. Dermatol Clin 1996; 14:543-58. [PMID: 9238315 DOI: 10.1016/s0733-8635(05)70383-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Research in hair biology has embarked in the pursuit for molecules that control hair growth. Many molecules already have been associated with the controls of hair patterning, hair maturation, and hair cycling and differentiation. Knowing how these molecules work gives us the tools for understanding and treating patients with hair disorders.
Collapse
Affiliation(s)
- K S Stenn
- Skin Biology Research Center, Johnson & Johnson, Skillman, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|