1
|
Jing X, Wang P, Liu J, Xiang M, Song X, Wang C, Li P, Li H, Wu Z, Zhang C. A viral protein competitively bound to rice CIPK23 inhibits potassium absorption and facilitates virus systemic infection in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2348-2363. [PMID: 38578842 PMCID: PMC11258980 DOI: 10.1111/pbi.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/02/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Potassium (K+) plays a crucial role as a macronutrient in the growth and development of plants. Studies have definitely determined the vital roles of K+ in response to pathogen invasion. Our previous investigations revealed that rice plants infected with rice grassy stunt virus (RGSV) displayed a reduction in K+ content, but the mechanism by which RGSV infection subverts K+ uptake remains unknown. In this study, we found that overexpression of RGSV P1, a specific viral protein encoded by viral RNA1, results in enhanced sensitivity to low K+ stress and exhibits a significantly lower rate of K+ influx compared to wild-type rice plants. Further investigation revealed that RGSV P1 interacts with OsCIPK23, an upstream regulator of Shaker K+ channel OsAKT1. Moreover, we found that the P1 protein recruits the OsCIPK23 to the Cajal bodies (CBs). In vivo assays demonstrated that the P1 protein competitively binds to OsCIPK23 with both OsCBL1 and OsAKT1. In the nucleus, the P1 protein enhances the binding of OsCIPK23 to OsCoilin, a homologue of the signature protein of CBs in Arabidopsis, and facilitates their trafficking through these CB structures. Genetic analysis indicates that mutant in oscipk23 suppresses RGSV systemic infection. Conversely, osakt1 mutants exhibited increased sensitivity to RGSV infection. These findings suggest that RGSV P1 hinders the absorption of K+ in rice plants by recruiting the OsCIPK23 to the CB structures. This process potentially promotes virus systemic infection but comes at the expense of inhibiting OsAKT1 activity.
Collapse
Affiliation(s)
- Xinxin Jing
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pengyue Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianjian Liu
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Hubei Engineering Research Center for Pest Forewarning and ManagementCollege of AgronomyYangtze UniversityJingzhouChina
| | - Meirong Xiang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Xia Song
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chaonan Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Pengbai Li
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
2
|
Wadhwa N, Kapoor S, Kapoor M. Arabidopsis T-DNA mutants affected in TRDMT1/DNMT2 show differential protein synthesis and compromised stress tolerance. FEBS J 2024; 291:92-113. [PMID: 37584564 DOI: 10.1111/febs.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023]
Abstract
TRDMT1/DNMT2 belongs to the conserved family of nucleic acid methyltransferases. Unlike the animal systems, studies on TRDMT1/DNMT2 in land plants have been limited. We show that TRDMT1/DNMT2 is strongly conserved in the green lineage. Studies in mosses have previously shown that TRDMT1/DNMT2 plays a crucial role in modulating molecular networks involved in stress perception and signalling and in transcription/stability of specific tRNAs under stress. To gain deeper insight into its biological roles in a flowering plant, we examined more closely the previously reported Arabidopsis SALK_136635C line deficient in TRDMT1/DNMT2 function [Goll MG et al. (2006) Science 311, 395-398]. RNAs derived from Arabidopsis Dnmt2-deficient plants lacked m5 C38 in tRNAAsp . In this study, by transient expression assays we show that Arabidopsis TRDMT1/DNMT2 is distributed in the nucleus, cytoplasm and RNA-processing bodies, suggesting a role for TRDMT1/DNMT2 in RNA metabolic processes possibly by shuttling between cellular compartments. Bright-field and high-resolution SEM and qPCR analysis reveal roles of TRDMT1/DNMT2 in proper growth and developmental progression. Quantitative proteome analysis by LC-MS/MS coupled with qPCR shows AtTRDMT1/AtDNMT2 function to be crucial for protein synthesis and cellular homeostasis via housekeeping roles and proteins with poly-Asp stretches and RNA pol II activity on selected genes are affected in attrdmt1/atdnmt2. This shift in metabolic pathways primes the mutant plants to become increasingly sensitive to oxidative and osmotic stress. Taken together, our study sheds light on the mechanistic role of TRDMT1/DNMT2 in a flowering plant.
Collapse
Affiliation(s)
- Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sanjay Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
3
|
Lettin L, Erbay B, Blair GE. Viruses and Cajal Bodies: A Critical Cellular Target in Virus Infection? Viruses 2023; 15:2311. [PMID: 38140552 PMCID: PMC10747631 DOI: 10.3390/v15122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Nuclear bodies (NBs) are dynamic structures present in eukaryotic cell nuclei. They are not bounded by membranes and are often considered biomolecular condensates, defined structurally and functionally by the localisation of core components. Nuclear architecture can be reorganised during normal cellular processes such as the cell cycle as well as in response to cellular stress. Many plant and animal viruses target their proteins to NBs, in some cases triggering their structural disruption and redistribution. Although not all such interactions have been well characterised, subversion of NBs and their functions may form a key part of the life cycle of eukaryotic viruses that require the nucleus for their replication. This review will focus on Cajal bodies (CBs) and the viruses that target them. Since CBs are dynamic structures, other NBs (principally nucleoli and promyelocytic leukaemia, PML and bodies), whose components interact with CBs, will also be considered. As well as providing important insights into key virus-host cell interactions, studies on Cajal and associated NBs may identify novel cellular targets for development of antiviral compounds.
Collapse
Affiliation(s)
- Lucy Lettin
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
- Moleküler Biyoloji ve Genetik Bölümü, Fen Fakültesi, Van Yuzuncu Yil University, Van 65140, Türkiye
| | - G. Eric Blair
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| |
Collapse
|
4
|
Xu D, Chen X, Kuang Y, Hong M, Xu T, Wang K, Huang X, Fu C, Ruan K, Zhu C, Feng X, Guang S. rRNA intermediates coordinate the formation of nucleolar vacuoles in C. elegans. Cell Rep 2023; 42:112915. [PMID: 37537842 DOI: 10.1016/j.celrep.2023.112915] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
The nucleolus is the most prominent membraneless organelle within the nucleus. How the nucleolar structure is regulated is poorly understood. Here, we identified two types of nucleoli in C. elegans. Type I nucleoli are spherical and do not have visible nucleolar vacuoles (NoVs), and rRNA transcription and processing factors are evenly distributed throughout the nucleolus. Type II nucleoli contain vacuoles, and rRNA transcription and processing factors exclusively accumulate in the periphery rim. The NoV contains nucleoplasmic proteins and is capable of exchanging contents with the nucleoplasm. The high-order structure of the nucleolus is dynamically regulated in C. elegans. Faithful rRNA processing is important to prohibit NoVs. The depletion of 27SA2 rRNA processing factors resulted in NoV formation. The inhibition of RNA polymerase I (RNAPI) transcription and depletion of two conserved nucleolar factors, nucleolin and fibrillarin, prohibits the formation of NoVs. This finding provides a mechanism to coordinate structure maintenance and gene expression.
Collapse
Affiliation(s)
- Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan Kuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ting Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chuanhai Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ke Ruan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Xuezhu Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
| |
Collapse
|
5
|
Muñoz-Díaz E, Sáez-Vásquez J. Nuclear dynamics: Formation of bodies and trafficking in plant nuclei. FRONTIERS IN PLANT SCIENCE 2022; 13:984163. [PMID: 36082296 PMCID: PMC9445803 DOI: 10.3389/fpls.2022.984163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 06/01/2023]
Abstract
The existence of the nucleus distinguishes prokaryotes and eukaryotes. Apart from containing most of the genetic material, the nucleus possesses several nuclear bodies composed of protein and RNA molecules. The nucleus is separated from the cytoplasm by a double membrane, regulating the trafficking of molecules in- and outwards. Here, we investigate the composition and function of the different plant nuclear bodies and molecular clues involved in nuclear trafficking. The behavior of the nucleolus, Cajal bodies, dicing bodies, nuclear speckles, cyclophilin-containing bodies, photobodies and DNA damage foci is analyzed in response to different abiotic stresses. Furthermore, we research the literature to collect the different protein localization signals that rule nucleocytoplasmic trafficking. These signals include the different types of nuclear localization signals (NLSs) for nuclear import, and the nuclear export signals (NESs) for nuclear export. In contrast to these unidirectional-movement signals, the existence of nucleocytoplasmic shuttling signals (NSSs) allows bidirectional movement through the nuclear envelope. Likewise, nucleolar signals are also described, which mainly include the nucleolar localization signals (NoLSs) controlling nucleolar import. In contrast, few examples of nucleolar export signals, called nucleoplasmic localization signals (NpLSs) or nucleolar export signals (NoESs), have been reported. The existence of consensus sequences for these localization signals led to the generation of prediction tools, allowing the detection of these signals from an amino acid sequence. Additionally, the effect of high temperatures as well as different post-translational modifications in nuclear and nucleolar import and export is discussed.
Collapse
Affiliation(s)
- Eduardo Muñoz-Díaz
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| | - Julio Sáez-Vásquez
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| |
Collapse
|
6
|
Dias-Fields L, Adamala KP. Engineering Ribosomes to Alleviate Abiotic Stress in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:2097. [PMID: 36015400 PMCID: PMC9415564 DOI: 10.3390/plants11162097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
As the centerpiece of the biomass production process, ribosome activity is highly coordinated with environmental cues. Findings revealing ribosome subgroups responsive to adverse conditions suggest this tight coordination may be grounded in the induction of variant ribosome compositions and the differential translation outcomes they might produce. In this perspective, we go through the literature linking ribosome heterogeneity to plants' abiotic stress response. Once unraveled, this crosstalk may serve as the foundation of novel strategies to custom cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Górka S, Kubiak D, Ciesińska M, Niedojadło K, Tyburski J, Niedojadło J. Function of Cajal Bodies in Nuclear RNA Retention in A. thaliana Leaves Subjected to Hypoxia. Int J Mol Sci 2022; 23:ijms23147568. [PMID: 35886915 PMCID: PMC9321658 DOI: 10.3390/ijms23147568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Retention of RNA in the nucleus precisely regulates the time and rate of translation and controls transcriptional bursts that can generate profound variability in mRNA levels among identical cells in tissues. In this study, we investigated the function of Cajal bodies (CBs) in RNA retention in A. thaliana leaf nuclei during hypoxia stress was investigated. It was observed that in ncb-1 mutants with a complete absence of CBs, the accumulation of poly(A+) RNA in the leaf nuclei was lower than that in wt under stress. Moreover, unlike in root cells, CBs store less RNA, and RNA retention in the nuclei is much less intense. Our results reveal that the function of CBs in the accumulation of RNA in nuclei under stress depends on the plant organ. Additionally, in ncb-1, retention of introns of mRNA RPB1 (largest subunit of RNA polymerase II) mRNA was observed. However, this isoform is highly accumulated in the nucleus. It thus follows that intron retention in transcripts is more important than CBs for the accumulation of RNA in nuclei. Accumulated mRNAs with introns in the nucleus could escape transcript degradation by NMD (nonsense-mediated mRNA decay). From non-fully spliced mRNAs in ncb-1 nuclei, whose levels increase during hypoxia, introns are removed during reoxygenation. Then, the mRNA is transferred to the cytoplasm, and the RPB1 protein is translated. Despite the accumulation of isoforms in nuclei with retention of introns in reoxygenation, ncb-1 coped much worse with long hypoxia, and manifested faster yellowing and shrinkage of leaves.
Collapse
Affiliation(s)
- Sylwia Górka
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Dawid Kubiak
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Małgorzata Ciesińska
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland;
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
- Correspondence:
| |
Collapse
|
8
|
Dvořáčková M, Raposo B, Matula P, Fuchs J, Schubert V, Peška V, Desvoyes B, Gutierrez C, Fajkus J. Replication of ribosomal DNA in Arabidopsis occurs both inside and outside the nucleolus during S phase progression. J Cell Sci 2018; 131:jcs.202416. [PMID: 28483825 DOI: 10.1242/jcs.202416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
Ribosomal RNA genes (rDNA) have been used as valuable experimental systems in numerous studies. Here, we focus on elucidating the spatiotemporal organisation of rDNA replication in Arabidopsis thaliana To determine the subnuclear distribution of rDNA and the progression of its replication during the S phase, we apply 5-ethynyl-2'-deoxyuridine (EdU) labelling, fluorescence-activated cell sorting, fluorescence in situ hybridization and structured illumination microscopy. We show that rDNA is replicated inside and outside the nucleolus, where active transcription occurs at the same time. Nascent rDNA shows a maximum of nucleolar associations during early S phase. In addition to EdU patterns typical for early or late S phase, we describe two intermediate EdU profiles characteristic for mid S phase. Moreover, the use of lines containing mutations in the chromatin assembly factor-1 gene fas1 and wild-type progeny of fas1xfas2 crosses depleted of inactive copies allows for selective observation of the replication pattern of active rDNA. High-resolution data are presented, revealing the culmination of replication in the mid S phase in the nucleolus and its vicinity. Taken together, our results provide a detailed snapshot of replication of active and inactive rDNA during S phase progression.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Berta Raposo
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Petr Matula
- Department of Computer Graphics and Design, Faculty of Informatics, Masaryk University, Botanická 554/68a, Brno 60200, Czech Republic
| | - Joerg Fuchs
- Breeding Research Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland D-06466, Germany
| | - Veit Schubert
- Breeding Research Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland D-06466, Germany
| | - Vratislav Peška
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic.,Department of Cell Biology and Radiology, Institute of Biophysics ASCR, v.v.i., Královopolská 135, Brno 61265, Czech Republic
| | - Bénédicte Desvoyes
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Crisanto Gutierrez
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Jiří Fajkus
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic .,Department of Cell Biology and Radiology, Institute of Biophysics ASCR, v.v.i., Královopolská 135, Brno 61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137, Czech Republic
| |
Collapse
|
9
|
Dvořáčková M, Fajkus J. Visualization of the Nucleolus Using Ethynyl Uridine. FRONTIERS IN PLANT SCIENCE 2018; 9:177. [PMID: 29503656 PMCID: PMC5820300 DOI: 10.3389/fpls.2018.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/30/2018] [Indexed: 05/04/2023]
Abstract
Thanks to recent innovative methodologies, key cellular processes such as replication or transcription can be visualized directly in situ in intact tissues. Many studies use so-called click iT chemistry where nascent DNA can be tracked by 5-ethynyl-2'-deoxyuridine (EdU), and nascent RNA by 5-ethynyl uridine (EU). While the labeling of replicating DNA by EdU has already been well established and further exploited in plants, the use of EU to reveal nascent RNA has not been developed to such an extent. In this article, we present a protocol for labeling of nucleolar RNA transcripts using EU and show that EU effectively highlights the nucleolus. The method is advantageous, because the need to prepare transgenic plants expressing fluorescently tagged nucleolar components when the nucleolus has to be visualized can be avoided.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
- *Correspondence: Martina Dvořáčková, Jiří Fajkus, ;
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
- *Correspondence: Martina Dvořáčková, Jiří Fajkus, ;
| |
Collapse
|
10
|
Love AJ, Yu C, Petukhova NV, Kalinina NO, Chen J, Taliansky ME. Cajal bodies and their role in plant stress and disease responses. RNA Biol 2017; 14:779-790. [PMID: 27726481 PMCID: PMC5519230 DOI: 10.1080/15476286.2016.1243650] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Cajal bodies (CBs) are distinct sub-nuclear structures that are present in eukaryotic living cells and are often associated with the nucleolus. CBs play important roles in RNA metabolism and formation of RNPs involved in transcription, splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles, CBs appear to be involved in additional functions that may not be directly related to RNA metabolism and RNP biogenesis. In this review, we assess possible roles of plant CBs in RNA regulatory pathways such as nonsense-mediated mRNA decay and RNA silencing. We also summarize recent progress and discuss new non-canonical functions of plant CBs in responses to stress and disease. It is hypothesized that CBs can regulate these responses via their interaction with poly(ADP ribose)polymerase (PARP), which is known to play an important role in various physiological processes including responses to biotic and abiotic stresses. It is suggested that CBs and their components modify PARP activities and functions.
Collapse
Affiliation(s)
- Andrew J. Love
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Chulang Yu
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Natalia O. Kalinina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia
| | - Jianping Chen
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Michael E. Taliansky
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Ohtani M. Plant snRNP Biogenesis: A Perspective from the Nucleolus and Cajal Bodies. FRONTIERS IN PLANT SCIENCE 2017; 8:2184. [PMID: 29354141 PMCID: PMC5758608 DOI: 10.3389/fpls.2017.02184] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
Small nuclear ribonucleoproteins (snRNPs) are protein-RNA complexes composed of specific snRNP-associated proteins along with small nuclear RNAs (snRNAs), which are non-coding RNA molecules abundant in the nucleus. snRNPs mainly function as core components of the spliceosome, the molecular machinery for pre-mRNA splicing. Thus, snRNP biogenesis is a critical issue for plants, essential for the determination of a cell's activity through the regulation of gene expression. The complex process of snRNP biogenesis is initiated by transcription of the snRNA in the nucleus, continues in the cytoplasm, and terminates back in the nucleus. Critical steps of snRNP biogenesis, such as chemical modification of the snRNA and snRNP maturation, occur in the nucleolus and its related sub-nuclear structures, Cajal bodies. In this review, I discuss roles for the nucleolus and Cajal bodies in snRNP biogenesis, and a possible linkage between the regulation of snRNP biogenesis and plant development and environmental responses.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Misato Ohtani,
| |
Collapse
|
12
|
Weis BL, Kovacevic J, Missbach S, Schleiff E. Plant-Specific Features of Ribosome Biogenesis. TRENDS IN PLANT SCIENCE 2015; 20:729-740. [PMID: 26459664 DOI: 10.1016/j.tplants.2015.07.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/19/2015] [Accepted: 07/15/2015] [Indexed: 05/03/2023]
Abstract
The biogenesis of eukaryotic ribosomes is a fundamental process involving hundreds of ribosome biogenesis factors (RBFs) in three compartments of the cell, namely the nucleolus, nucleus, and cytoplasm. Many RBFs are involved in the processing of the primary ribosomal (r)RNA transcript, in which three of the four rRNAs are imbedded. While pre-rRNA processing is well described for yeast and mammals, a detailed processing scheme for plants is lacking. Here, we discuss the emerging scheme of pre-rRNA processing in Arabidopsis thaliana in comparison to other eukaryotes, with a focus on plant characteristics. In addition, we highlight the impact of the ribosome and its biogenesis on developmental processes because common phenotypes can be observed for ribosomal protein and RBF mutants.
Collapse
Affiliation(s)
- Benjamin L Weis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Jelena Kovacevic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Sandra Missbach
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Current address: Sanofi-Aventis GmbH, Industriepark Höchst, K703, 65926 Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Cluster of Excellence Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Abstract
Initially identified as a marker of coiled bodies (now Cajal bodies or CBs), the protein coilin was discovered a quarter of century ago. Coilin is now known to scaffold the CB, but its structure and function are poorly understood. Nearly devoid of predicted structural motifs, coilin has numerous reported molecular interactions that must underlie its role in the formation and function of CBs. In this review, we summarize what we have learned in the past 25 years about coilin's structure, post-transcriptional modifications, and interactions with RNA and proteins. We show that genes with homology to human coilin are found in primitive metazoans and comment on differences among model organisms. Coilin's function in Cajal body formation and RNP metabolism will be discussed in the light of these developments.
Collapse
Affiliation(s)
- Martin Machyna
- a Department of Molecular Biophysics & Biochemistry ; Yale University ; New Haven , CT USA
| | | | | |
Collapse
|
14
|
Niedojadło J, Kubicka E, Kalich B, Smoliński DJ. Poly(A) RNAs including coding proteins RNAs occur in plant Cajal bodies. PLoS One 2014; 9:e111780. [PMID: 25369024 PMCID: PMC4219776 DOI: 10.1371/journal.pone.0111780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The localisation of poly(A) RNA in plant cells containing either reticular (Allium cepa) or chromocentric (Lupinus luteus, Arabidopsis thaliana) nuclei was studied through in situ hybridisation. In both types of nuclei, the amount of poly(A) RNA was much greater in the nucleus than in the cytoplasm. In the nuclei, poly(A) RNA was present in structures resembling nuclear bodies. The molecular composition as well as the characteristic ultrastructure of the bodies containing poly(A) RNA demonstrated that they were Cajal bodies. We showed that some poly(A) RNAs in Cajal bodies code for proteins. However, examination of the localisation of active RNA polymerase II and in situ run-on transcription assays both demonstrated that CBs are not sites of transcription and that BrU-containing RNA accumulates in these structures long after synthesis. In addition, it was demonstrated that accumulation of poly(A) RNA occurs in the nuclei and CBs of hypoxia-treated cells. Our findings indicated that CBs may be involved in the later stages of poly(A) RNA metabolism, playing a role storage or retention.
Collapse
Affiliation(s)
- Janusz Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
- * E-mail:
| | - Ewa Kubicka
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Beata Kalich
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Dariusz J. Smoliński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
15
|
Connecting the dots of RNA-directed DNA methylation in Arabidopsis thaliana. Chromosome Res 2014; 22:225-40. [PMID: 24846724 DOI: 10.1007/s10577-014-9425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Noncoding RNAs are the rising stars of genome regulation and are crucial to an organism's metabolism, development, and defense. One of their most notable functions is its ability to direct epigenetic modifications through small RNA molecules to specific genomic regions, ensuring transcriptional regulation, proper genome organization, and maintenance of genome integrity. Here, we review the current knowledge of the spatial organization of the Arabidopsis thaliana RNA-directed DNA methylation pathway within the cell nucleus, which, while known to be essential for the proper establishment of epigenetic modifications, remains poorly understood. We will also discuss possible future cytological approaches that have the potential of unveiling functional insights into how small RNA-directed epigenetics is regulated through the spatiotemporal regulation of its major components within the cell.
Collapse
|
16
|
Guo T, Fang Y. Functional organization and dynamics of the cell nucleus. FRONTIERS IN PLANT SCIENCE 2014; 5:378. [PMID: 25161658 PMCID: PMC4130368 DOI: 10.3389/fpls.2014.00378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/16/2014] [Indexed: 05/16/2023]
Abstract
The eukaryotic cell nucleus enclosed within the nuclear envelope harbors organized chromatin territories and various nuclear bodies as sub-nuclear compartments. This higher-order nuclear organization provides a unique environment to regulate the genome during replication, transcription, maintenance, and other processes. In this review, we focus on the plant four-dimensional nuclear organization, its dynamics and function in response to signals during development or stress.
Collapse
Affiliation(s)
| | - Yuda Fang
- *Correspondence: Yuda Fang, National key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China e-mail:
| |
Collapse
|
17
|
Pontes O, Vitins A, Ream TS, Hong E, Pikaard CS, Costa-Nunes P. Intersection of small RNA pathways in Arabidopsis thaliana sub-nuclear domains. PLoS One 2013; 8:e65652. [PMID: 23776518 PMCID: PMC3680462 DOI: 10.1371/journal.pone.0065652] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/25/2013] [Indexed: 12/22/2022] Open
Abstract
In Arabidopsis thaliana, functionally diverse small RNA (smRNA) pathways bring about decreased RNA accumulation of target genes via several different mechanisms. Cytological experiments have suggested that the processing of microRNAs (miRNAs) and heterochromatic small interfering RNAs (hc-siRNAs) occurs within a specific nuclear domain that can present Cajal Body (CB) characteristics. It is unclear whether single or multiple smRNA-related domains are found within the same CB and how specialization of the smRNA pathways is determined within this specific sub-compartment. To ascertain whether nuclear smRNA centers are spatially related, we localized key proteins required for siRNA or miRNA biogenesis by immunofluorescence analysis. The intranuclear distribution of the proteins revealed that hc-siRNA, miRNA and trans-acting siRNA (ta-siRNA) pathway proteins accumulate and colocalize within a sub-nuclear structure in the nucleolar periphery. Furthermore, colocalization of miRNA- and siRNA-pathway members with CB markers, and reduced wild-type localization patterns in CB mutants indicates that proper nuclear localization of these proteins requires CB integrity. We hypothesize that these nuclear domains could be important for RNA silencing and may partially explain the functional redundancies and interactions among components of the same protein family. The CB may be the place in the nucleus where Dicer-generated smRNA precursors are processed and assigned to a specific pathway, and where storage, recycling or assembly of RNA interference components takes place.
Collapse
Affiliation(s)
- Olga Pontes
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America.
| | | | | | | | | | | |
Collapse
|
18
|
Niedojadło J, Mikulski Z, Dełeńko K, Szmidt-Jaworska A, Smoliński DJ, Epstein AL. The perichromatin region of the plant cell nucleus is the area with the strongest co-localisation of snRNA and SR proteins. PLANTA 2012; 236:715-726. [PMID: 22526497 PMCID: PMC3404291 DOI: 10.1007/s00425-012-1640-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/21/2012] [Indexed: 05/31/2023]
Abstract
The spatial organisation of the splicing system in plant cells containing either reticular (Allium cepa) or chromocentric (Lupinus luteus) nuclei was studied by immunolabelling of SR proteins, snRNA, and the PANA antigen, known markers for interchromatin granule clusters in mammalian cells. Electron microscope results allowed us to determine the distribution of these molecules within the structural domains of the nucleus. Similar to animal cells, in both plant species SR proteins were localised in interchromatin granules, but contrary to animal cells contained very small amounts of snRNA. The area with the strongest snRNA and SR protein co-localisation was the perichromatin region, which may be the location of pre-mRNA splicing in the plant cell nuclei. The only observable differences in the organisation of reticular and chromocentric nuclei were the size of the speckles and the number of snRNA pools in the condensed chromatin. We conclude that, despite remarkable changes in the nuclear architecture, the organisation of the splicing system is remarkably similar in both types of plant cell nuclei.
Collapse
Affiliation(s)
- Janusz Niedojadło
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Ul. Gagarina 9, 87-100, Torun, Poland.
| | | | | | | | | | | |
Collapse
|
19
|
Takata H, Nishijima H, Maeshima K, Shibahara KI. The integrator complex is required for integrity of Cajal bodies. J Cell Sci 2012; 125:166-75. [PMID: 22250197 DOI: 10.1242/jcs.090837] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleus in eukaryotic cells is a highly organized and dynamic structure containing numerous subnuclear bodies. The morphological appearance of nuclear bodies seems to be a reflection of ongoing functions, such as DNA replication, transcription, repair, RNA processing and RNA transport. The integrator complex mediates processing of small nuclear RNA (snRNA), so it might play a role in nuclear body formation. Here, we show that the integrator complex is essential for integrity of the Cajal body. Depletion of INTS4, an integrator complex subunit, abrogated 3'-end processing of snRNA. A defect in this activity caused a significant accumulation of the Cajal body marker protein coilin in nucleoli. Some fractions of coilin still formed nucleoplasmic foci; however, they were free of other Cajal body components, such as survival of motor neuron protein (SMN), Sm proteins and snRNAs. SMN and Sm proteins formed striking cytoplasmic granules. These findings demonstrate that the integrator complex is essential for snRNA maturation and Cajal body homeostasis.
Collapse
Affiliation(s)
- Hideaki Takata
- Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.
| | | | | | | |
Collapse
|
20
|
Reddy ASN, Day IS, Göhring J, Barta A. Localization and dynamics of nuclear speckles in plants. PLANT PHYSIOLOGY 2012; 158:67-77. [PMID: 22045923 PMCID: PMC3252098 DOI: 10.1104/pp.111.186700] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/31/2011] [Indexed: 05/17/2023]
Affiliation(s)
- Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
21
|
Smoliński DJ, Kołowerzo A. mRNA accumulation in the Cajal bodies of the diplotene larch microsporocyte. Chromosoma 2011; 121:37-48. [PMID: 21909692 PMCID: PMC3260428 DOI: 10.1007/s00412-011-0339-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/21/2011] [Accepted: 08/23/2011] [Indexed: 11/07/2022]
Abstract
In microsporocytes of the European larch, we demonstrated the presence of several mRNAs in spherical nuclear bodies. In the nuclei of microsporocytes, we observed up to 12 bodies, ranging from 0.5 to 6 μm in diameter, during the prophase of the first meiotic division. Our previous studies revealed the presence of polyadenylated RNA (poly(A) RNA) in these bodies, but did not confirm the presence of nascent transcripts or splicing factors of the SR family. The lack of these molecules precludes the bodies from being the sites of synthesis and early maturation of primary transcripts (Kołowerzo et al., Protoplasma 236:13–19, 2009). However, the bodies serve as sites for the accumulation of splicing machinery, including the Sm proteins and small nuclear RNAs. Characteristic ultrastructures and the molecular composition of the nuclear bodies, which contain poly(A) RNA, are indicative of Cajal bodies (CBs). Here, we demonstrated the presence of several housekeeping gene transcripts—α-tubulin, pectin methylesterase, peroxidase and catalase, ATPase, and inositol-3-phosphate synthase—in CBs. Additionally, we observed transcripts of the RNA polymerase II subunits RPB2 and RPB10 RNA pol II and the core spliceosome proteins mRNA SmD1, SmD2, and SmE. The co-localization of nascent transcripts and mRNAs indicates that mRNA accumulation/storage, particularly in CBs, occurs in the nucleus of microsporocytes.
Collapse
Affiliation(s)
- Dariusz Jan Smoliński
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland.
| | | |
Collapse
|
22
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Rajamäki ML, Valkonen JPT. Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. THE PLANT CELL 2009; 21:2485-502. [PMID: 19700632 PMCID: PMC2751958 DOI: 10.1105/tpc.108.064147] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 07/15/2009] [Accepted: 07/31/2009] [Indexed: 05/19/2023]
Abstract
The multifunctional nuclear inclusion protein a (NIa) of potyviruses (genus Potyvirus; Potyviridae) accumulates in the nucleus of virus-infected cells for unknown reasons. In this study, two regions in the viral genome-linked protein (VPg) domain of NIa in Potato virus A (PVA) were found to constitute nuclear and nucleolar localization signals (NLS) in plant cells (Nicotiana spp). Amino acid substitutions in both NLS I (residues 4 to 9) and NLS II (residues 41 to 50) prevented nuclear localization, whereas mutations in either single NLS did not. Mutations in either NLS, however, prevented nucleolar localization and prevented or diminished virus replication in protoplasts, accumulation in infected plant tissues, and/or systemic movement in plants. One NLS mutant was partially complemented by the wild-type VPg expressed in transgenic plants. Furthermore, NLS I controlled NIa accumulation in Cajal bodies. The VPg domain interacted with fibrillarin, a nucleolar protein, and depletion of fibrillarin reduced PVA accumulation. Overexpression of VPg in leaf tissues interfered with cosuppression of gene expression (i.e., RNA silencing), whereas NLS I and NLS II mutants, which exhibited reduced nuclear and nucleolar localization, showed no such activity. These results demonstrate that some of the most essential viral functions required for completion of the infection cycle are tightly linked to regulation of the NIa nuclear and nucleolar localization.
Collapse
Affiliation(s)
- Minna-Liisa Rajamäki
- Department of Applied Biology, University of Helsinki, Helsinki FIN-00014, Finland.
| | | |
Collapse
|
25
|
Kim SH, Koroleva OA, Lewandowska D, Pendle AF, Clark GP, Simpson CG, Shaw PJ, Brown JWS. Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. THE PLANT CELL 2009; 21:2045-57. [PMID: 19602621 PMCID: PMC2729600 DOI: 10.1105/tpc.109.067736] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/10/2009] [Accepted: 06/24/2009] [Indexed: 05/19/2023]
Abstract
The eukaryotic nucleolus is multifunctional and involved in the metabolism and assembly of many different RNAs and ribonucleoprotein particles as well as in cellular functions, such as cell division and transcriptional silencing in plants. We previously showed that Arabidopsis thaliana exon junction complex proteins associate with the nucleolus, suggesting a role for the nucleolus in mRNA production. Here, we report that the plant nucleolus contains mRNAs, including fully spliced, aberrantly spliced, and single exon gene transcripts. Aberrant mRNAs are much more abundant in nucleolar fractions, while fully spliced products are more abundant in nucleoplasmic fractions. The majority of the aberrant transcripts contain premature termination codons and have characteristics of nonsense-mediated decay (NMD) substrates. A direct link between NMD and the nucleolus is shown by increased levels of the same aberrant transcripts in both the nucleolus and in Up-frameshift (upf) mutants impaired in NMD. In addition, the NMD factors UPF3 and UPF2 localize to the nucleolus, suggesting that the Arabidopsis nucleolus is therefore involved in identifying aberrant mRNAs and NMD.
Collapse
Affiliation(s)
- Sang Hyon Kim
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
snRNP: Rich Nuclear Bodies in Hyacinthus orientalis L. Microspores and Developing Pollen Cells. Int J Cell Biol 2009; 2009:209303. [PMID: 20111623 PMCID: PMC2809418 DOI: 10.1155/2009/209303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 02/19/2009] [Accepted: 04/14/2009] [Indexed: 01/07/2023] Open
Abstract
The aim of the present work was the characterization of nuclear bodies in the microspore and developing pollen cells of Hyacinthus orientalis L.. The combination of Ag-NOR, immunofluorescence and immunogold techniques was used in this study. The obtained results showed the presence of highly agyrophylic extranucleolar bodies in microspore and developing pollen cells, which were finally identified
as Cajal bodies. In all cases, a strong accumulation of snRNP-indicating molecules including TMG cap, Sm
proteins and U2 snRNA, was observed in the examined nuclear bodies. In contrast to their number the
size of the identified structures did not change significantly during pollen development. In the microspore
and the vegetative cell of pollen grains CBs were more numerous than in the generative cell. At later
stages of pollen development, a drastic decrease in CB number was observed and, just before anthesis, a
complete lack of these structures was indicated in both pollen nuclei. On the basis of these results, as well as our previous studies, we postulate a strong relationship between Cajal body numbers and the levels of
RNA synthesis and splicing machinery elements in microspore and developing pollen cells.
Collapse
|
27
|
Lorković ZJ, Barta A. Role of Cajal bodies and nucleolus in the maturation of the U1 snRNP in Arabidopsis. PLoS One 2008; 3:e3989. [PMID: 19098980 PMCID: PMC2600615 DOI: 10.1371/journal.pone.0003989] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 11/21/2008] [Indexed: 01/31/2023] Open
Abstract
Background The biogenesis of spliceosomal snRNPs takes place in both the cytoplasm where Sm core proteins are added and snRNAs are modified at the 5′ and 3′ termini and in the nucleus where snRNP-specific proteins associate. U1 snRNP consists of U1 snRNA, seven Sm proteins and three snRNP-specific proteins, U1-70K, U1A, and U1C. It has been shown previously that after import to the nucleus U2 and U4/U6 snRNP-specific proteins first appear in Cajal bodies (CB) and then in splicing speckles. In addition, in cells grown under normal conditions U2, U4, U5, and U6 snRNAs/snRNPs are abundant in CBs. Therefore, it has been proposed that the final assembly of these spliceosomal snRNPs takes place in this nuclear compartment. In contrast, U1 snRNA in both animal and plant cells has rarely been found in this nuclear compartment. Methodology/Principal Findings Here, we analysed the subnuclear distribution of Arabidopsis U1 snRNP-specific proteins fused to GFP or mRFP in transiently transformed Arabidopsis protoplasts. Irrespective of the tag used, U1-70K was exclusively found in the nucleus, whereas U1A and U1C were equally distributed between the nucleus and the cytoplasm. In the nucleus all three proteins localised to CBs and nucleoli although to different extent. Interestingly, we also found that the appearance of the three proteins in nuclear speckles differ significantly. U1-70K was mostly found in speckles whereas U1A and U1C in ∼90% of cells showed diffuse nucleoplasmic in combination with CBs and nucleolar localisation. Conclusions/Significance Our data indicate that CBs and nucleolus are involved in the maturation of U1 snRNP. Differences in nuclear accumulation and distribution between U1-70K and U1A and U1C proteins may indicate that either U1-70K or U1A and U1C associate with, or is/are involved, in other nuclear processes apart from pre-mRNA splicing.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Department of Medical Biochemistry, Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
28
|
Niedojadło J, Dominowska K, Bednarska E. Nuclear bodies in Douglas fir (Pseudotsuga menziesii Mirb.) microspores. PROTOPLASMA 2008; 234:77-85. [PMID: 18854917 DOI: 10.1007/s00709-008-0018-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 08/21/2008] [Indexed: 05/26/2023]
Abstract
The identification of nucleolar proteins and immunocytochemical localization of small nuclear ribonucleoprotein (snRNP) elements revealed the presence of three types of nuclear bodies in Douglas fir microspore nuclei. One type consists of structures resembling Cajal bodies (CBs) and contains nucleolar proteins as well as snRNPs and U2 snRNA. The second type is bizonal bodies, which are nuclear bodies also linked with the splicing system. The bizonal body comprises two parts: the first contains Sm proteins and stains strongly with silver stain, and the second resembles CBs in terms of the degree of silver staining and molecular composition. Douglas fir is the second species after larch where the presence of bizonal bodies has been demonstrated. Pseudotsuga menziesii Mirb and Larix decidua Mill are species with one of the longest microsporogenesis processes known in plants. The presence of bizonal bodies in both species may be linked to the intensification of the splicing processes in microspores with an exceptionally long cell cycle. The third type of structure is dense bodies, whose morphology and degree of silver staining strongly indicate their functional and spatial relationship to the dense part of bizonal bodies.
Collapse
Affiliation(s)
- Janusz Niedojadło
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, 87-100, Torun, Poland.
| | | | | |
Collapse
|
29
|
Abstract
The general organization ofeukaryotic nuclei, including plant nuclei, into functional domains is now widely recognized. Conventional immunocytochemistry and visualization of proteins fused to fluorescent proteins (FP) have revealed that in plants, RNA and protein components of pre-mRNA splicing are spatially organized depending on the stage of cell cycle, development, and the cell's physiological state. Application of some of the latest microscopy techniques, which reveal biophysical properties such as diffusion and interaction properties of proteins, has begun to provide important insights into the functional organization of spliceosomal proteins in plants. Although some progress has been made in understanding the spatial and temporal organization of splicing machinery in plants, the mechanisms that regulate this organization and its functional consequences remain unresolved.
Collapse
|
30
|
Park S, Rancour DM, Bednarek SY. In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. PLANT PHYSIOLOGY 2008; 148:246-58. [PMID: 18660433 PMCID: PMC2528134 DOI: 10.1104/pp.108.121897] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/14/2008] [Indexed: 05/18/2023]
Abstract
CDC48/p97 is a conserved homohexameric AAA-ATPase chaperone required for a variety of cellular processes but whose role in the development of a multicellular model system has not been examined. Here, we have used reverse genetics, visualization of a functional Arabidopsis (Arabidopsis thaliana) CDC48 fluorescent fusion protein, and morphological analysis to examine the subcellular distribution and requirements for AtCDC48A in planta. Homozygous Atcdc48A T-DNA insertion mutants arrest during seedling development, exhibiting decreased cell expansion and displaying pleiotropic defects in pollen and embryo development. Atcdc48A insertion alleles show significantly reduced male transmission efficiency due to defects in pollen tube growth. Yellow fluorescent protein-AtCDC48A, a fusion protein that functionally complements the insertion mutant defects, localizes in the nucleus and cytoplasm and is recruited to the division mid-zone during cytokinesis. The pattern of nuclear localization differs according to the stage of the cell cycle and differentiation state. Inducible expression of an Atcdc48A Walker A ATPase mutant in planta results in cytokinesis abnormalities, aberrant cell divisions, and root trichoblast differentiation defects apparent in excessive root hair emergence. At the biochemical level, our data suggest that the endogenous steady-state protein level of AtCDC48A is dependent upon the presence of ATPase-active AtCDC48A. These results demonstrate that CDC48A/p97 is critical for cytokinesis, cell expansion, and differentiation in plants.
Collapse
Affiliation(s)
- Sookhee Park
- Department of Biochemistry , University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
31
|
Zienkiewicz K, Zienkiewicz A, Rodriguez-Garcia MI, Smoliński DJ, Swidziński M, Bednarska E. Transcriptional activity and distribution of splicing machinery elements during Hyacinthus orientalis pollen tube growth. PROTOPLASMA 2008; 233:129-139. [PMID: 18615237 DOI: 10.1007/s00709-008-0298-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 11/05/2007] [Indexed: 05/26/2023]
Abstract
The localization of newly formed transcripts and molecules participating in pre-mRNA splicing, i.e., small nuclear ribonucleoproteins (snRNPs) and SC35 protein, in growing pollen tubes of Hyacinthus orientalis L. were analyzed in vitro and in vivo. The results indicated that the restart of RNA synthesis occurred first in the vegetative and then in the generative nucleus of both in vitro and in vivo growing pollen tubes. Changes in RNA synthesis were accompanied by the redistribution of splicing machinery elements in both vegetative and generative nuclei of the growing pollen tube. At stages of pollen tube growth when the vegetative and generative nuclei were transcriptionally active, clear differences in the distribution pattern of the splicing system components were observed in both pollen nuclei. While both small nuclear RNA with a trimethylguanosine cap on the 5' end and SC35 protein were diffusely distributed in the nucleoplasm in the vegetative nucleus, the studied antigens were only present in the areas between condensed chromatin in the generative nucleus. When the transcriptional activity of both pollen nuclei could no longer be observed at later stages of pollen tube growth, snRNPs and SC35 protein were still present in the vegetative nuclei but not in the generative nuclei. We, therefore, investigated potential differences in the spatial organization of splicing system elements during pollen tube growth. They clearly reflect differences in gene expression patterns in the vegetative and the generative cells, which may be determined by the different biological roles of angiosperm male gametophyte cells.
Collapse
Affiliation(s)
- K Zienkiewicz
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Ulica Gagarina 9, Toruń, Poland.
| | | | | | | | | | | |
Collapse
|
32
|
Degenhardt RF, Bonham-Smith PC. Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are disparately required for normal development. PLANT PHYSIOLOGY 2008; 147:128-42. [PMID: 18322146 PMCID: PMC2330296 DOI: 10.1104/pp.107.111799] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 02/26/2008] [Indexed: 05/19/2023]
Abstract
Protein synthesis is catalyzed by the ribosome, a two-subunit enzyme comprised of four ribosomal RNAs and, in Arabidopsis (Arabidopsis thaliana), 81 ribosomal proteins (r-proteins). Plant r-protein genes exist as families of multiple expressed members, yet only one r-protein from each family is incorporated into any given ribosome, suggesting that many r-protein genes may be functionally redundant or development/tissue/stress specific. Here, we characterized the localization and gene-silencing phenotypes of a large subunit r-protein family, RPL23a, containing two expressed genes (RPL23aA and RPL23aB). Live cell imaging of RPL23aA and RPL23aB in tobacco with a C-terminal fluorescent-protein tag demonstrated that both isoforms accumulated in the nucleolus; however, only RPL23aA was targeted to the nucleolus with an N-terminal fluorescent protein tag, suggesting divergence in targeting efficiency of localization signals. Independent knockdowns of endogenous RPL23aA and RPL23aB transcript levels using RNA interference determined that an RPL23aB knockdown did not alter plant growth or development. Conversely, a knockdown of RPL23aA produced a pleiotropic phenotype characterized by growth retardation, irregular leaf and root morphology, abnormal phyllotaxy and vasculature, and loss of apical dominance. Comparison to other mutants suggests that the phenotype results from reduced ribosome biogenesis, and we postulate a link between biogenesis, microRNA-target degradation, and maintenance of auxin homeostasis. An additional RNA interference construct that coordinately silenced both RPL23aA and RPL23aB demonstrated that this family is essential for viability.
Collapse
Affiliation(s)
- Rory F Degenhardt
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2.
| | | |
Collapse
|
33
|
Abstract
The nucleolus is a multifunctional compartment of the eukaryotic nucleus. Besides its well-recognised role in transcription and processing of ribosomal RNA and the assembly of ribosomal subunits, the nucleolus has functions in the processing and assembly of a variety of RNPs and is involved in cell cycle control and senescence and as a sensor of stress. Historically, nucleoli have been tenuously linked to the biogenesis and, in particular, export of mRNAs in yeast and mammalian cells. Recently, data from plants have extended the functions in which the plant nucleolus is involved to include transcriptional gene silencing as well as mRNA surveillance and nonsense-mediated decay, and mRNA export. The nucleolus in plants may therefore have important roles in the biogenesis and quality control of mRNAs.
Collapse
Affiliation(s)
- Anireddy S. N. Reddy
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523 USA
| | - Maxim Golovkin
- Department of Microbiology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
34
|
Bogolyubov D, Parfenov V. Chapter 2 Structure of the Insect Oocyte Nucleus with Special Reference to Interchromatin Granule Clusters and Cajal Bodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:59-110. [DOI: 10.1016/s1937-6448(08)01002-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Qureshi MI, Qadir S, Zolla L. Proteomics-based dissection of stress-responsive pathways in plants. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1239-60. [PMID: 17662502 DOI: 10.1016/j.jplph.2007.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/05/2007] [Accepted: 01/09/2007] [Indexed: 05/16/2023]
Abstract
Abiotic stress has an ability to alter the levels of a number of proteins, which may be soluble or structural in nature or which may exist before and after folding in the plant cell. The most crucial function of plant cell is to respond to stress by developing defence mechanisms. This defence is brought about by alteration in the pattern of gene expression. This leads to modulation of certain metabolic and defensive pathways. Owing to gene expression altered under stress, qualitative and quantitative changes in proteins are obvious. These proteins might play a role in signal transduction, antioxidative defence, antifreezing, heat shock, metal binding, antipathogenesis or osmolyte synthesis. A significant part of the literature shows the quantitative and qualitative changes in proteins, mainly employing western analysis, enzymatic kinetics, fraction isolation, one-dimensional SDS-PAGE electrophoresis, etc. Fortunately, recent developments in sensitivity and accuracy for proteome analysis have provided new dimensions to assess the changes in protein types and their expression levels under stress. The novel aim of this review is to do a side-by-side comparison of the proteins that are induced or overexpressed under abiotic stress, examining those from biochemical literature and the ones observed, sequenced and identified using the advanced proteomics and bioinformatic techniques.
Collapse
Affiliation(s)
- M Irfan Qureshi
- Genomics and Proteomics Lab, Department of Environmental Sciences, University of Tuscia, Viterbo-01100, Italy.
| | | | | |
Collapse
|
36
|
Kim SH, MacFarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JWS, Taliansky M. Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci U S A 2007; 104:11115-20. [PMID: 17576925 PMCID: PMC1904140 DOI: 10.1073/pnas.0704632104] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleolus and specific nucleolar proteins are involved in the life cycles of some plant and animal viruses, but the functions of these proteins and of nucleolar trafficking in virus infections are largely unknown. The ORF3 protein of the plant virus, groundnut rosette virus (an umbravirus), has been shown to cycle through the nucleus, passing through Cajal bodies to the nucleolus and then exiting back into the cytoplasm. This journey is absolutely required for the formation of viral ribonucleoprotein particles (RNPs) that, themselves, are essential for the spread of the virus to noninoculated leaves of the shoot tip. Here, we show that these processes rely on the interaction of the ORF3 protein with fibrillarin, a major nucleolar protein. Silencing of the fibrillarin gene prevents long-distance movement of groundnut rosette virus but does not affect viral replication or cell-to-cell movement. Repressing fibrillarin production also localizes the ORF3 protein to multiple Cajal body-like aggregates that fail to fuse with the nucleolus. Umbraviral ORF3 protein and fibrillarin interact in vitro and, when mixed with umbravirus RNA, form an RNP complex. This complex has a filamentous structure with some regular helical features, resembling the RNP complex formed in vivo during umbravirus infection. The filaments formed in vitro are infectious when inoculated to plants, and their infectivity is resistant to RNase. These results demonstrate previously undescribed functions for fibrillarin as an essential component of translocatable viral RNPs and may have implications for other plant and animal viruses that interact with the nucleolus.
Collapse
Affiliation(s)
- Sang Hyon Kim
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Stuart MacFarlane
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Natalia O. Kalinina
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia; and
| | - Daria V. Rakitina
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia; and
| | - Eugene V. Ryabov
- Horticulture Research International, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Trudi Gillespie
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Sophie Haupt
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - John W. S. Brown
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Michael Taliansky
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Fleurdépine S, Deragon JM, Devic M, Guilleminot J, Bousquet-Antonelli C. A bona fide La protein is required for embryogenesis in Arabidopsis thaliana. Nucleic Acids Res 2007; 35:3306-21. [PMID: 17459889 PMCID: PMC1904278 DOI: 10.1093/nar/gkm200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 01/28/2023] Open
Abstract
Searches in the Arabidopsis thaliana genome using the La motif as query revealed the presence of eight La or La-like proteins. Using structural and phylogenetic criteria, we identified two putative genuine La proteins (At32 and At79) and showed that both are expressed throughout plant development but at different levels and under different regulatory conditions. At32, but not At79, restores Saccharomyces cerevisiae La nuclear functions in non-coding RNAs biogenesis and is able to bind to plant 3'-UUU-OH RNAs. We conclude that these La nuclear functions are conserved in Arabidopsis and supported by At32, which we renamed as AtLa1. Consistently, AtLa1 is predominantly localized to the plant nucleoplasm and was also detected in the nucleolar cavity. The inactivation of AtLa1 in Arabidopsis leads to an embryonic-lethal phenotype with deficient embryos arrested at early globular stage of development. In addition, mutant embryonic cells display a nucleolar hypertrophy suggesting that AtLa1 is required for normal ribosome biogenesis. The identification of two distantly related proteins with all structural characteristics of genuine La proteins suggests that these factors evolved to a certain level of specialization in plants. This unprecedented situation provides a unique opportunity to dissect the very different aspects of this crucial cellular activity.
Collapse
Affiliation(s)
- Sophie Fleurdépine
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Jean-Marc Deragon
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Martine Devic
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Jocelyne Guilleminot
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
38
|
Kim SH, Ryabov EV, Kalinina NO, Rakitina DV, Gillespie T, MacFarlane S, Haupt S, Brown JWS, Taliansky M. Cajal bodies and the nucleolus are required for a plant virus systemic infection. EMBO J 2007; 26:2169-79. [PMID: 17410203 PMCID: PMC1852794 DOI: 10.1038/sj.emboj.7601674] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 03/13/2007] [Indexed: 12/21/2022] Open
Abstract
The nucleolus and Cajal bodies (CBs) are prominent interacting subnuclear domains involved in a number of crucial aspects of cell function. Certain viruses interact with these compartments but the functions of such interactions are largely uncharacterized. Here, we show that the ability of the groundnut rosette virus open reading frame (ORF) 3 protein to move viral RNA long distances through the phloem strictly depends on its interaction with CBs and the nucleolus. The ORF3 protein targets and reorganizes CBs into multiple CB-like structures and then enters the nucleolus by causing fusion of these structures with the nucleolus. The nucleolar localization of the ORF3 protein is essential for subsequent formation of viral ribonucleoprotein (RNP) particles capable of virus long-distance movement and systemic infection. We provide a model whereby the ORF3 protein utilizes trafficking pathways involving CBs to enter the nucleolus and, along with fibrillarin, exit the nucleus to form viral 'transport-competent' RNP particles in the cytoplasm.
Collapse
Affiliation(s)
- Sang Hyon Kim
- Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | | - Natalia O Kalinina
- Scottish Crop Research Institute, Invergowrie, Dundee, UK
- AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Daria V Rakitina
- Scottish Crop Research Institute, Invergowrie, Dundee, UK
- AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | | | - Sophie Haupt
- School of Life Sciences, University of Dundee, Dundee, UK
| | - John W S Brown
- Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | |
Collapse
|
39
|
Bernal M, Sánchez-Testillano P, Risueño MDC, Yruela I. Excess copper induces structural changes in cultured photosynthetic soybean cells. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:1001-1012. [PMID: 32689311 DOI: 10.1071/fp06174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 09/11/2006] [Indexed: 06/11/2023]
Abstract
Soybean [Glycine max (L.) Merr.] cell suspensions have the capacity to develop tolerance to excess copper, constituting a convenient system for studies on the mechanisms of copper tolerance. The functional cell organisation changes observed in these cell cultures after both short-term (stressed cells) and long-term (acclimated cells) exposure to 10 μm CuSO4 are reported from structural, cytochemical and microanalytical approaches. Cells grown in the presence of 10 μm CuSO4 shared some structural features with untreated cells, such as: (i) a large cytoplasmic vacuole, (ii) chloroplasts along the thin layer of cytoplasm, (iii) nucleus in a peripheral location exhibiting circular-shaped nucleolus and a decondensed chromatin pattern, and (iv) presence of Cajal bodies in the cell nuclei. In addition, cells exposed to 10 μm CuSO4 exhibited important differences compared with untreated cells: (i) chloroplasts displayed rounded shape and smaller size with denser-structured internal membranes, especially in copper-acclimated cells; (ii) no starch granules were found within chloroplasts; (iii) the cytoplasmic vacuole was larger, especially after long-term copper exposure; (iv) the levels of citrate and malate increased. Extracellular dark-coloured deposits with high copper content attached at the outer surface of the cell wall were observed only in cells exposed to a short-term copper stress. Structural cell modifications, mainly affecting chloroplasts, accompanied the short-term copper-induced response and were maintained as stable characters during the period of adaptation to excess copper. Vacuolar changes accompanied the long-term copper response. The results indicate that the first response of soybean cells to excess copper prevents its entry into the cell by immobilising it in the cell wall, and after an adaptive period, acclimation to excess copper may be mainly due to vacuolar sequestration.
Collapse
Affiliation(s)
- María Bernal
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - Pilar Sánchez-Testillano
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), C/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Del Carmen Risueño
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), C/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
| |
Collapse
|
40
|
Ali GS, Reddy ASN. ATP, phosphorylation and transcription regulate the mobility of plant splicing factors. J Cell Sci 2006; 119:3527-38. [PMID: 16895966 DOI: 10.1242/jcs.03144] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Serine-arginine-rich (SR) proteins, a family of spliceosomal proteins, function at multiple steps in the assembly of the spliceosome in non-plant systems. Limited studies with metazoan SR splicing factors (ASF/SF2 and SC35) indicated that their mobility is not dependent on ATP and phosphorylation. In addition, inhibition of transcription slightly increased their mobility. Here, we analyzed the mobility of SR45, a plant-specific SR protein with unique domain organization, and SR1/SRp34, a plant homolog of metazoan ASF/SF2, using fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). Our results show that, in contrast to metazoan SR splicing factors, the movement of the plant SR proteins is dependent on ATP, phosphorylation and transcription. To understand the underlying mechanism for these observations, we carried out mobility analyses with the domain-deletion mutants of SR45 in ATP-depleted cells and in the presence of inhibitors of transcription or phosphorylation. Our results show that the sensitivity of SR45 to these inhibitors is conferred by an RNA-recognition motif (RRM) and the serine-arginine-rich (RS) domain 2. These results provide important insights into the mechanisms of plant SR protein movement and suggest fundamental differences in the regulation of the mobility of plant and animal SR splicing factors.
Collapse
Affiliation(s)
- Gul Shad Ali
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
41
|
Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, Chan SWL, Lagrange T, Pikaard CS, Jacobsen SE. An ARGONAUTE4-Containing Nuclear Processing Center Colocalized with Cajal Bodies in Arabidopsis thaliana. Cell 2006; 126:93-106. [PMID: 16839879 DOI: 10.1016/j.cell.2006.05.032] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/07/2006] [Accepted: 05/17/2006] [Indexed: 11/17/2022]
Abstract
ARGONAUTE4 (AGO4) and RNA polymerase IV (Pol IV) are required for DNA methylation guided by 24 nucleotide small interfering RNAs (siRNAs) in Arabidopsis thaliana. Here we show that AGO4 localizes to nucleolus-associated bodies along with the Pol IV subunit NRPD1b; the small nuclear RNA (snRNA) binding protein SmD3; and two markers of Cajal bodies, trimethylguanosine-capped snRNAs and the U2 snRNA binding protein U2B''. AGO4 interacts with the C-terminal domain of NRPD1b, and AGO4 protein stability depends on upstream factors that synthesize siRNAs. AGO4 is also found, along with the DNA methyltransferase DRM2, throughout the nucleus at presumed DNA methylation target sites. Cajal bodies are conserved sites for the maturation of ribonucleoprotein complexes. Our results suggest a function for Cajal bodies as a center for the assembly of an AGO4/NRPD1b/siRNA complex, facilitating its function in RNA-directed gene silencing at target loci.
Collapse
Affiliation(s)
- Carey Fei Li
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Matera AG, Shpargel KB. Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr Opin Cell Biol 2006; 18:317-24. [PMID: 16632338 DOI: 10.1016/j.ceb.2006.03.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/01/2006] [Accepted: 03/30/2006] [Indexed: 11/16/2022]
Abstract
Cajal bodies (CBs) are nuclear subdomains involved in the biogenesis of several classes of small ribonucleoproteins (RNPs). A number of recent advances highlight progress in the understanding of the organization and dynamics of CB components. For example, a class of small Cajal body-specific (sca) RNPs has been discovered. Localization of scaRNPs to CBs was shown to depend on a conserved RNA motif. Intriguingly, this motif is also present in mammalian telomerase RNA and the evidence suggests that assembly of the active form of telomerase RNP occurs in and around CBs during S phase. Important steps in the assembly and modification of spliceosomal RNPs have also been shown to take place in CBs. Additional experiments have revealed the existence of kinetically distinct subclasses of CB components. Finally, the recent identification of novel markers for CBs in both Drosophila and Arabidopsis not only lays to rest questions about the evolutionary conservation of these nuclear suborganelles, but also should enable forward genetic screens for the identification of new components and pathways involved in their assembly, maintenance and function.
Collapse
Affiliation(s)
- A Gregory Matera
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106-4955, USA.
| | | |
Collapse
|
43
|
Collier S, Pendle A, Boudonck K, van Rij T, Dolan L, Shaw P. A distant coilin homologue is required for the formation of cajal bodies in Arabidopsis. Mol Biol Cell 2006; 17:2942-51. [PMID: 16624863 PMCID: PMC1483031 DOI: 10.1091/mbc.e05-12-1157] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cajal bodies (CBs) are subnuclear bodies that are widespread in eukaryotes, being found in mammals, many other vertebrates and in all plant species so far examined. They are mobile structures, moving, fusing, and budding within the nucleus. Here we describe a screen for Arabidopsis mutants with altered CBs and describe mutants that have smaller Cajal bodies (ncb-2, ncb-3), lack them altogether (ncb-1), have increased numbers of CBs (pcb) or have flattened CBs (ccb). We have identified the gene affected in the ncb mutants as a distant homolog of the vertebrate gene that encodes coilin (At1g13030) and have termed the resulting protein Atcoilin. A T-DNA insertional mutant in this gene (ncb-4) also lacks Cajal bodies. Overexpression of Atcoilin cDNA in ncb-1 restores Cajal bodies, which recruit U2B'' as in the wild type, but which are, however, much larger than in the wild type. Thus we have shown that At1g13030 is required for Cajal body formation in Arabidopsis, and we hypothesize that the level of its expression is correlated with Cajal body size. The Atcoilin gene is unaffected in pcb and ccb, suggesting that other genes can also affect CBs.
Collapse
Affiliation(s)
- Sarah Collier
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
This review surveys what is known about the structure and function of the subnuclear domains called Cajal bodies (CBs). The major focus is on CBs in mammalian cells but we provide an overview of homologous CB structures in other organisms. We discuss the protein and RNA components of CBs, including factors recently found to associate in a cell cycle-dependent fashion or under specific metabolic or stress conditions. We also consider the dynamic properties of both CBs and their molecular components, based largely on recent data obtained thanks to the advent of improved in vivo detection and imaging methods. We discuss how these data contribute to an understanding of CB functions and highlight major questions that remain to be answered. Finally, we consider the interesting links that have emerged between CBs and alterations in nuclear structure apparent in a range of human pathologies, including cancer and inherited neurodegenerative diseases. We speculate on the relationship between CB function and molecular disease.
Collapse
Affiliation(s)
- Mario Cioce
- IRBM (Merck Research Laboratories Rome), Rome, Italy.
| | | |
Collapse
|
45
|
Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JWS, Shaw PJ. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 2005; 16:260-9. [PMID: 15496452 PMCID: PMC539170 DOI: 10.1091/mbc.e04-09-0791] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 10/13/2004] [Indexed: 12/15/2022] Open
Abstract
The eukaryotic nucleolus is involved in ribosome biogenesis and a wide range of other RNA metabolism and cellular functions. An important step in the functional analysis of the nucleolus is to determine the complement of proteins of this nuclear compartment. Here, we describe the first proteomic analysis of plant (Arabidopsis thaliana) nucleoli, in which we have identified 217 proteins. This allows a direct comparison of the proteomes of an important nuclear structure between two widely divergent species: human and Arabidopsis. The comparison identified many common proteins, plant-specific proteins, proteins of unknown function found in both proteomes, and proteins that were nucleolar in plants but nonnucleolar in human. Seventy-two proteins were expressed as GFP fusions and 87% showed nucleolar or nucleolar-associated localization. In a striking and unexpected finding, we have identified six components of the postsplicing exon-junction complex (EJC) involved in mRNA export and nonsense-mediated decay (NMD)/mRNA surveillance. This association was confirmed by GFP-fusion protein localization. These results raise the possibility that in plants, nucleoli may have additional functions in mRNA export or surveillance.
Collapse
|
46
|
Lorković ZJ, Barta A. Compartmentalization of the splicing machinery in plant cell nuclei. TRENDS IN PLANT SCIENCE 2004; 9:565-568. [PMID: 15564119 DOI: 10.1016/j.tplants.2004.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The cell nucleus is a membrane-surrounded organelle that contains numerous compartments in addition to chromatin. Compartmentalization of the nucleus is now accepted as an important feature for the organization of nuclear processes and for gene expression. Recent studies on nuclear organization of splicing factors in plant cells provide insights into the compartmentalization of the plant cell nuclei and conservation of nuclear compartments between plants and metazoans.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9/3, A-1030 Vienna, Austria.
| | | |
Collapse
|
47
|
Lorkovic ZJ, Lopato S, Pexa M, Lehner R, Barta A. Interactions of Arabidopsis RS domain containing cyclophilins with SR proteins and U1 and U11 small nuclear ribonucleoprotein-specific proteins suggest their involvement in pre-mRNA Splicing. J Biol Chem 2004; 279:33890-8. [PMID: 15166240 DOI: 10.1074/jbc.m400270200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ser/Arg (SR)-rich proteins are important splicing factors in both general and alternative splicing. By binding to specific sequences on pre-mRNA and interacting with other splicing factors via their RS domain they mediate different intraspliceosomal contacts, thereby helping in splice site selection and spliceosome assembly. While characterizing new members of this protein family in Arabidopsis, we have identified two proteins, termed CypRS64 and CypRS92, consisting of an N-terminal peptidyl-prolyl cis/trans isomerase domain and a C-terminal domain with many SR/SP dipeptides. Cyclophilins possess a peptidyl-prolyl cis/trans isomerase activity and are implicated in protein folding, assembly, and transport. CypRS64 interacts in vivo and in vitro with a subset of Arabidopsis SR proteins, including SRp30 and SRp34/SR1, two homologs of mammalian SF2/ASF, known to be important for 5' splice site recognition. In addition, both cyclophilins interact with U1-70K and U11-35K, which in turn are binding partners of SRp34/SR1. CypRS64 is a nucleoplasmic protein, but in most cells expressing CypRS64-GFP fusion it was also found in one to six round nuclear bodies. However, co-expression of CypRS64 with its binding partners resulted in re-localization of CypRS64 from the nuclear bodies to nuclear speckles, indicating functional interactions. These findings together with the observation that binding of SRp34/SR1 to CypRS64 is phosphorylation-dependent indicate an involvement of CypRS64 in nuclear pre-mRNA splicing, possibly by regulating phosphorylation/dephosphorylation of SR proteins and other spliceosomal components. Alternatively, binding of CypRS64 to proteins important for 5' splice site recognition suggests its involvement in the dynamics of spliceosome assembly.
Collapse
Affiliation(s)
- Zdravko J Lorkovic
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9/3, A-1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
48
|
Lorković ZJ, Hilscher J, Barta A. Use of fluorescent protein tags to study nuclear organization of the spliceosomal machinery in transiently transformed living plant cells. Mol Biol Cell 2004; 15:3233-43. [PMID: 15133128 PMCID: PMC452579 DOI: 10.1091/mbc.e04-01-0055] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 04/29/2004] [Indexed: 01/24/2023] Open
Abstract
Although early studies suggested that little compartmentalization exists within the nucleus, more recent studies on metazoan systems have identified a still increasing number of specific subnuclear compartments. Some of these compartments are dynamic structures; indeed, protein and RNA-protein components can cycle between different domains. This is particularly evident for RNA processing components. In plants, lack of tools has hampered studies on nuclear compartmentalization and dynamics of RNA processing components. Here, we show that transient expression of fluorescent protein fusions of U1 and U2 small nuclear ribonucleoprotein particle (snRNP)-specific proteins U1-70K, U2B", and U2A ', nucleolar proteins Nop10 and PRH75, and serine-arginine-rich proteins in plant protoplasts results in their correct localization. Furthermore, snRNP-specific proteins also were correctly assembled into mature snRNPs. This system allowed a systematic analysis of the cellular localization of Arabidopsis serine-arginine-rich proteins, which, like their animal counterparts, localize to speckles but not to nucleoli and Cajal bodies. Finally, markers for three different nuclear compartments, namely, nucleoli, Cajal bodies, and speckles, have been established and were shown to be applicable for colocalization studies in living plant protoplasts. Thus, transient expression of proteins tagged with four different fluorescent proteins is a suitable system for studying the nuclear organization of spliceosomal proteins in living plant cells and should therefore allow studies of their dynamics as well.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Cell Nucleolus/immunology
- Cell Nucleolus/metabolism
- Cell Nucleolus/ultrastructure
- Cell Nucleus Structures/chemistry
- Chloroplasts/metabolism
- Coiled Bodies/metabolism
- Luminescent Proteins/analysis
- Luminescent Proteins/genetics
- Microscopy, Fluorescence
- Nuclear Proteins/analysis
- Nuclear Proteins/metabolism
- Phosphoproteins/analysis
- Phosphoproteins/metabolism
- Plant Proteins/analysis
- Protoplasts/metabolism
- RNA-Binding Proteins
- Ribonucleoprotein, U1 Small Nuclear/analysis
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear/analysis
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/analysis
- Ribonucleoproteins, Small Nuclear/metabolism
- Serine-Arginine Splicing Factors
- Spliceosomes/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Transformation, Genetic
Collapse
Affiliation(s)
- Zdravko J Lorković
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institute of Medical Biochemistry, 1030 Vienna, Austria.
| | | | | |
Collapse
|
49
|
Fang Y, Hearn S, Spector DL. Tissue-specific expression and dynamic organization of SR splicing factors in Arabidopsis. Mol Biol Cell 2004; 15:2664-2673. [PMID: 15034145 PMCID: PMC420091 DOI: 10.1091/mbc.e04-02-0100] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/04/2004] [Accepted: 03/08/2004] [Indexed: 11/11/2022] Open
Abstract
The organization of the pre-mRNA splicing machinery has been extensively studied in mammalian and yeast cells and far less is known in living plant cells and different cell types of an intact organism. Here, we report on the expression, organization, and dynamics of pre-mRNA splicing factors (SR33, SR1/atSRp34, and atSRp30) under control of their endogenous promoters in Arabidopsis. Distinct tissue-specific expression patterns were observed, and differences in the distribution of these proteins within nuclei of different cell types were identified. These factors localized in a cell type-dependent speckled pattern as well as being diffusely distributed throughout the nucleoplasm. Electron microscopic analysis has revealed that these speckles correspond to interchromatin granule clusters. Time-lapse microscopy revealed that speckles move within a constrained nuclear space, and their organization is altered during the cell cycle. Fluorescence recovery after photobleaching analysis revealed a rapid exchange rate of splicing factors in nuclear speckles. The dynamic organization of plant speckles is closely related to the transcriptional activity of the cells. The organization and dynamic behavior of speckles in Arabidopsis cell nuclei provides significant insight into understanding the functional compartmentalization of the nucleus and its relationship to chromatin organization within various cell types of a single organism.
Collapse
Affiliation(s)
- Yuda Fang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
50
|
Affiliation(s)
- Joseph G Gall
- Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, Maryland 21210, USA.
| |
Collapse
|