1
|
Ding S, Chen Y, Huang C, Song L, Liang Z, Wei B. Perception and response of skeleton to mechanical stress. Phys Life Rev 2024; 49:77-94. [PMID: 38564907 DOI: 10.1016/j.plrev.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mechanical stress stands as a fundamental factor in the intricate processes governing the growth, development, morphological shaping, and maintenance of skeletal mass. The profound influence of stress in shaping the skeletal framework prompts the assertion that stress essentially births the skeleton. Despite this acknowledgment, the mechanisms by which the skeleton perceives and responds to mechanical stress remain enigmatic. In this comprehensive review, our scrutiny focuses on the structural composition and characteristics of sclerotin, leading us to posit that it serves as the primary structure within the skeleton responsible for bearing and perceiving mechanical stress. Furthermore, we propose that osteocytes within the sclerotin emerge as the principal mechanical-sensitive cells, finely attuned to perceive mechanical stress. And a detailed analysis was conducted on the possible transmission pathways of mechanical stress from the extracellular matrix to the nucleus.
Collapse
Affiliation(s)
- Sicheng Ding
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yiren Chen
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chengshuo Huang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhen Liang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Bo Wei
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
2
|
Ueda Y, Matsunaga D, Deguchi S. Asymmetric response emerges between creation and disintegration of force-bearing subcellular structures as revealed by percolation analysis. Integr Biol (Camb) 2024; 16:zyae012. [PMID: 38900169 DOI: 10.1093/intbio/zyae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Cells dynamically remodel their internal structures by modulating the arrangement of actin filaments (AFs). In this process, individual AFs exhibit stochastic behavior without knowing the macroscopic higher-order structures they are meant to create or disintegrate, but the mechanism allowing for such stochastic process-driven remodeling of subcellular structures remains incompletely understood. Here we employ percolation theory to explore how AFs interacting only with neighboring ones without recognizing the overall configuration can nonetheless create a substantial structure referred to as stress fibers (SFs) at particular locations. We determined the interaction probabilities of AFs undergoing cellular tensional homeostasis, a fundamental property maintaining intracellular tension. We showed that the duration required for the creation of SFs is shortened by the increased amount of preexisting actin meshwork, while the disintegration occurs independently of the presence of actin meshwork, suggesting that the coexistence of tension-bearing and non-bearing elements allows cells to promptly transition to new states in accordance with transient environmental changes. The origin of this asymmetry between creation and disintegration, consistently observed in actual cells, is elucidated through a minimal model analysis by examining the intrinsic nature of mechano-signal transmission. Specifically, unlike the symmetric case involving biochemical communication, physical communication to sense environmental changes is facilitated via AFs under tension, while other free AFs dissociated from tension-bearing structures exhibit stochastic behavior. Thus, both the numerical and minimal models demonstrate the essence of intracellular percolation, in which macroscopic asymmetry observed at the cellular level emerges not from microscopic asymmetry in the interaction probabilities of individual molecules, but rather only as a consequence of the manner of the mechano-signal transmission. These results provide novel insights into the role of the mutual interplay between distinct subcellular structures with and without tension-bearing capability. Insight: Cells continuously remodel their internal elements or structural proteins in response to environmental changes. Despite the stochastic behavior of individual structural proteins, which lack awareness of the larger subcellular structures they are meant to create or disintegrate, this self-assembly process somehow occurs to enable adaptation to the environment. Here we demonstrated through percolation simulations and minimal model analyses that there is an asymmetry in the response between the creation and disintegration of subcellular structures, which can aid environmental adaptation. This asymmetry inherently arises from the nature of mechano-signal transmission through structural proteins, namely tension-mediated information exchange within cells, despite the stochastic behavior of individual proteins lacking asymmetric characters in themselves.
Collapse
Affiliation(s)
- Yuika Ueda
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University
| | - Daiki Matsunaga
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
3
|
Ingber DE. From tensegrity to human organs-on-chips: implications for mechanobiology and mechanotherapeutics. Biochem J 2023; 480:243-257. [PMID: 36821520 PMCID: PMC9987949 DOI: 10.1042/bcj20220303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
The field of mechanobiology, which focuses on the key role that physical forces play in control of biological systems, has grown enormously over the past few decades. Here, I provide a brief personal perspective on the development of the tensegrity theory that contributed to the emergence of the mechanobiology field, the key role that crossing disciplines has played in its development, and how it has matured over time. I also describe how pursuing questions relating to mechanochemical transduction and mechanoregulation can lead to the creation of novel technologies and open paths for development of new therapeutic strategies for a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, U.S.A
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, U.S.A
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, U.S.A
| |
Collapse
|
4
|
Wang C, Li S, Ademiloye AS, Nithiarasu P. Biomechanics of cells and subcellular components: A comprehensive review of computational models and applications. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3520. [PMID: 34390323 DOI: 10.1002/cnm.3520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Cells are a fundamental structural, functional and biological unit for all living organisms. Up till now, considerable efforts have been made to study the responses of single cells and subcellular components to an external load, and understand the biophysics underlying cell rheology, mechanotransduction and cell functions using experimental and in silico approaches. In the last decade, computational simulation has become increasingly attractive due to its critical role in interpreting experimental data, analysing complex cellular/subcellular structures, facilitating diagnostic designs and therapeutic techniques, and developing biomimetic materials. Despite the significant progress, developing comprehensive and accurate models of living cells remains a grand challenge in the 21st century. To understand current state of the art, this review summarises and classifies the vast array of computational biomechanical models for cells. The article covers the cellular components at multi-spatial levels, that is, protein polymers, subcellular components, whole cells and the systems with scale beyond a cell. In addition to the comprehensive review of the topic, this article also provides new insights into the future prospects of developing integrated, active and high-fidelity cell models that are multiscale, multi-physics and multi-disciplinary in nature. This review will be beneficial for the researchers in modelling the biomechanics of subcellular components, cells and multiple cell systems and understanding the cell functions and biological processes from the perspective of cell mechanics.
Collapse
Affiliation(s)
- Chengyuan Wang
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Si Li
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Adesola S Ademiloye
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| |
Collapse
|
5
|
Gawęda M, Długoń E, Jeleń P, Jadach R, Wajda A, Nocuń M, Szymańska M, Sitarz M. Examination of doped zirconia-based layers deposited on metallic substrates. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Kim K, Yoshinaga N, Bhattacharyya S, Nakazawa H, Umetsu M, Teizer W. Large-scale chirality in an active layer of microtubules and kinesin motor proteins. SOFT MATTER 2018; 14:3221-3231. [PMID: 29670958 DOI: 10.1039/c7sm02298k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During the early developmental process of organisms, the formation of left-right laterality requires a subtle mechanism, as it is associated with other principal body axes. Any inherent chiral feature in an egg cell can in principal trigger this spontaneous breaking of chiral symmetry. Individual microtubules, major cytoskeletal filaments, are known as chiral objects. However, to date there lacks convincing evidence of a hierarchical connection of the molecular nature of microtubules to large-scale chirality, particularly at the length scale of an entire cell. Here we assemble an in vitro active layer, consisting of microtubules and kinesin motor proteins, on a glass surface. Upon inclusion of methyl cellulose, the layered system exhibits a long-range active nematic phase, characterized by the global alignment of gliding MTs. This nematic order spans over the entire system size in the millimeter range and, remarkably, allows hidden collective chirality to emerge as counterclockwise global rotation of the active MT layer. The analysis based on our theoretical model suggests that the emerging global nematic order results from the local alignment of MTs, stabilized by methyl cellulose. It also suggests that the global rotation arises from the MTs' intrinsic curvature, leading to preferential handedness. Given its flexibility, this layered in vitro cytoskeletal system enables the study of membranous protein behavior responsible for important cellular developmental processes.
Collapse
Affiliation(s)
- Kyongwan Kim
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Garland J. Unravelling the complexity of signalling networks in cancer: A review of the increasing role for computational modelling. Crit Rev Oncol Hematol 2017; 117:73-113. [PMID: 28807238 DOI: 10.1016/j.critrevonc.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer induction is a highly complex process involving hundreds of different inducers but whose eventual outcome is the same. Clearly, it is essential to understand how signalling pathways and networks generated by these inducers interact to regulate cell behaviour and create the cancer phenotype. While enormous strides have been made in identifying key networking profiles, the amount of data generated far exceeds our ability to understand how it all "fits together". The number of potential interactions is astronomically large and requires novel approaches and extreme computation methods to dissect them out. However, such methodologies have high intrinsic mathematical and conceptual content which is difficult to follow. This review explains how computation modelling is progressively finding solutions and also revealing unexpected and unpredictable nano-scale molecular behaviours extremely relevant to how signalling and networking are coherently integrated. It is divided into linked sections illustrated by numerous figures from the literature describing different approaches and offering visual portrayals of networking and major conceptual advances in the field. First, the problem of signalling complexity and data collection is illustrated for only a small selection of known oncogenes. Next, new concepts from biophysics, molecular behaviours, kinetics, organisation at the nano level and predictive models are presented. These areas include: visual representations of networking, Energy Landscapes and energy transfer/dissemination (entropy); diffusion, percolation; molecular crowding; protein allostery; quinary structure and fractal distributions; energy management, metabolism and re-examination of the Warburg effect. The importance of unravelling complex network interactions is then illustrated for some widely-used drugs in cancer therapy whose interactions are very extensive. Finally, use of computational modelling to develop micro- and nano- functional models ("bottom-up" research) is highlighted. The review concludes that computational modelling is an essential part of cancer research and is vital to understanding network formation and molecular behaviours that are associated with it. Its role is increasingly essential because it is unravelling the huge complexity of cancer induction otherwise unattainable by any other approach.
Collapse
Affiliation(s)
- John Garland
- Manchester Interdisciplinary Biocentre, Manchester University, Manchester, UK.
| |
Collapse
|
8
|
Affiliation(s)
- Yannis F Missirlis
- Department of Mechanical Engineering and Aeronautics, University of Patras Patras, Greece
| |
Collapse
|
9
|
Vasilescu C, Tanase M, Dragomir M, Calin GA. From mobility to crosstalk. A model of intracellular miRNAs motion may explain the RNAs interaction mechanism on the basis of target subcellular localization. Math Biosci 2016; 280:50-61. [PMID: 27498347 DOI: 10.1016/j.mbs.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/18/2016] [Accepted: 07/27/2016] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs), 22 nucleotides long molecules with the function to reduce gene expression by inhibiting mRNA translation through partial complementary to one or more messenger RNA (mRNA) molecules. A single miRNA can reduce the expression levels of hundreds of genes and one mRNA can be a target for many miRNAs. Despite the study models used so far, miRNAs and mRNAs cannot be seen as acting in an isolated manner or even "in pairs". They most likely exert their complex actions through numerous overlapping interrelations. One of the models depicting interdependence of intracytoplasmic RNAs is the crosstalk model. It is based on a competition between several target mRNAs which are regulated by the same miRNA. In this paper, we will discuss the mobility mechanism of miRNAs, recently suggested by data from "single particle tracking" experiments. These data suggests that miRNA intracellular mobility may be of "intermittent active transport"(IAT) type. IAT is a mobility model composed by alternation of active transport (AT) and Brownian motion (BM). Based on a mathematical model, we concluded that, AT phase may explain the efficiency in reaching far targets and the BM phase may explain the competition. Furthermore, we suggest that the interaction between miRNAs and their targets depends on the concentration of the molecules, the affinity between the molecules and also on the intracellular localization of the molecules. Hence, the probability that a miRNA interacts with its target depends also on the distance to the target and the macromolecular crowding. Taken together, our data proposes an intracytoplasmic mobility mechanism for miRNA and shows that this model can partially explain the RNA crosstalk.
Collapse
Affiliation(s)
- Catalin Vasilescu
- Department of Surgery, Fundeni Clinical Hospital, 258 Fundeni Street, Bucharest, 22328, Romania; "Carol Davila" University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, Bucharest 050474, Romania.
| | - Mihai Tanase
- University Politehnica of Bucharest, Splaiul Independenei 313, Bucharest, 060042, Romania
| | - Mihnea Dragomir
- "Carol Davila" University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, Bucharest 050474, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Center for RNA Interference and Non-coding RNAs, The University of Texas, MD Anderson Cancer Center, So Campus Research Bldg 3 (3SCR4.3424), 1881 East Road, Unit 1950, Houston 77030, TX, USA
| |
Collapse
|
10
|
Evstifeeva AY, Belousov LV. Surface microdeformations and regulation of cell movements in Xenopus development. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Patrício P, Leal CR, Duarte J, Januário C. Rheology of the cytoskeleton as a fractal network. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:040702. [PMID: 26565151 DOI: 10.1103/physreve.92.040702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 06/05/2023]
Abstract
We model the cytoskeleton as a fractal network by identifying each segment with a simple Kelvin-Voigt element with a well defined equilibrium length. The final structure retains the elastic characteristics of a solid or a gel, which may support stress, without relaxing. By considering a very simple regular self-similar structure of segments in series and in parallel, in one, two, or three dimensions, we are able to express the viscoelasticity of the network as an effective generalized Kelvin-Voigt model with a power law spectrum of retardation times L∼τ(α). We relate the parameter α with the fractal dimension of the gel. In some regimes (0<α<1), we recover the weak power law behaviors of the elastic and viscous moduli with the angular frequencies G'∼G"∼w(α) that occur in a variety of soft materials, including living cells. In other regimes, we find different power laws for G' and G".
Collapse
Affiliation(s)
- P Patrício
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - C R Leal
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisboa, Portugal
- Centro de Investigação em Agronomia, Alimentos, Ambiente e Paisagem, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - J Duarte
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisboa, Portugal
- Center for Mathematical Analysis, Geometry and Dynamical Systems, Mathematics Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - C Januário
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisboa, Portugal
| |
Collapse
|
12
|
Mayne R, Adamatzky A, Jones J. On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum. Commun Integr Biol 2015; 8:e1059007. [PMID: 26478782 PMCID: PMC4594612 DOI: 10.1080/19420889.2015.1059007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 11/18/2022] Open
Abstract
The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently ‘intelligent’ behavior. But how does intelligence emerge in an acellular organism? Through a range of laboratory experiments, we visualize the plasmodial cytoskeleton—a ubiquitous cellular protein scaffold whose functions are manifold and essential to life—and discuss its putative role as a network for transducing, transmitting and structuring data streams within the plasmodium. Through a range of computer modeling techniques, we demonstrate how emergent behavior, and hence computational intelligence, may occur in cytoskeletal communications networks. Specifically, we model the topology of both the actin and tubulin cytoskeletal networks and discuss how computation may occur therein. Furthermore, we present bespoke cellular automata and particle swarm models for the computational process within the cytoskeleton and observe the incidence of emergent patterns in both. Our work grants unique insight into the origins of natural intelligence; the results presented here are therefore readily transferable to the fields of natural computation, cell biology and biomedical science. We conclude by discussing how our results may alter our biological, computational and philosophical understanding of intelligence and consciousness.
Collapse
Affiliation(s)
- Richard Mayne
- International Center of Unconventional Computing; University of the West of England ; Bristol, UK
| | - Andrew Adamatzky
- International Center of Unconventional Computing; University of the West of England ; Bristol, UK
| | - Jeff Jones
- International Center of Unconventional Computing; University of the West of England ; Bristol, UK
| |
Collapse
|
13
|
Lobo J, See EYS, Biggs M, Pandit A. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine. J Tissue Eng Regen Med 2015; 10:539-53. [DOI: 10.1002/term.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/25/2014] [Accepted: 12/09/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Joana Lobo
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Eugene Yong-Shun See
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Manus Biggs
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| |
Collapse
|
14
|
Aon MA, Cortassa S. Function of metabolic and organelle networks in crowded and organized media. Front Physiol 2015; 5:523. [PMID: 25653618 PMCID: PMC4300868 DOI: 10.3389/fphys.2014.00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/19/2014] [Indexed: 11/13/2022] Open
Abstract
(Macro)molecular crowding and the ability of the ubiquitous cytoskeleton to dynamically polymerize–depolymerize are prevalent cytoplasmic conditions in prokaryotic and eukaryotic cells. Protein interactions, enzymatic or signaling reactions - single, sequential or in complexes - whole metabolic pathways and organelles can be affected by crowding, the type and polymeric status of cytoskeletal proteins (e.g., tubulin, actin), and their imparted organization. The self-organizing capability of the cytoskeleton can orchestrate metabolic fluxes through entire pathways while its fractal organization can frame the scaling of activities in several levels of organization. The intracellular environment dynamics (e.g., biochemical reactions) is dominated by the orderly cytoskeleton and the intrinsic randomness of molecular crowding. Existing evidence underscores the inherent capacity of intracellular organization to generate emergent global behavior. Yet unknown is the relative impact on cell function provided by organelle or functional compartmentation based on transient proteins association driven by weak interactions (quinary structures) under specific environmental challenges or functional conditions (e.g., hypoxia, division, differentiation). We propose a qualitative, integrated structural–functional model of cytoplasmic organization based on a modified version of the Sierspinsky–Menger–Mandelbrot sponge, a 3D representation of a percolation cluster, and examine its capacity to accommodate established experimental facts.
Collapse
Affiliation(s)
- Miguel A Aon
- Department of Medicine, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Sonia Cortassa
- Department of Medicine, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
15
|
Breuer D, Ivakov A, Sampathkumar A, Hollandt F, Persson S, Nikoloski Z. Quantitative analyses of the plant cytoskeleton reveal underlying organizational principles. J R Soc Interface 2015; 11:20140362. [PMID: 24920110 DOI: 10.1098/rsif.2014.0362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The actin and microtubule (MT) cytoskeletons are vital structures for cell growth and development across all species. While individual molecular mechanisms underpinning actin and MT dynamics have been intensively studied, principles that govern the cytoskeleton organization remain largely unexplored. Here, we captured biologically relevant characteristics of the plant cytoskeleton through a network-driven imaging-based approach allowing us to quantitatively assess dynamic features of the cytoskeleton. By introducing suitable null models, we demonstrate that the plant cytoskeletal networks exhibit properties required for efficient transport, namely, short average path lengths and high robustness. We further show that these advantageous features are maintained during temporal cytoskeletal rearrangements. Interestingly, man-made transportation networks exhibit similar properties, suggesting general laws of network organization supporting diverse transport processes. The proposed network-driven analysis can be readily used to identify organizational principles of cytoskeletons in other organisms.
Collapse
Affiliation(s)
- David Breuer
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Alexander Ivakov
- Plant Cell Walls, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Arun Sampathkumar
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Florian Hollandt
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Staffan Persson
- Plant Cell Walls, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
| |
Collapse
|
16
|
Abstract
Nanobiomechanics of living cells is very important to understand cell-materials interactions. This would potentially help to optimize the surface design of the implanted materials and scaffold materials for tissue engineering. The nanoindentation techniques enable quantifying nanobiomechanics of living cells, with flexibility of using indenters of different geometries. However, the data interpretation for nanoindentation of living cells is often difficult. Despite abundant experimental data reported on nanobiomechanics of living cells, there is a lack of comprehensive discussion on testing with different tip geometries, and the associated mechanical models that enable extracting the mechanical properties of living cells. Therefore, this paper discusses the strategy of selecting the right type of indenter tips and the corresponding mechanical models at given test conditions.
Collapse
Affiliation(s)
- Jinju Chen
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Arthritis Research UK (ARUK) Tissue Engineering Centre, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
17
|
Ingber DE, Wang N, Stamenović D. Tensegrity, cellular biophysics, and the mechanics of living systems. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:046603. [PMID: 24695087 PMCID: PMC4112545 DOI: 10.1088/0034-4885/77/4/046603] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The recent convergence between physics and biology has led many physicists to enter the fields of cell and developmental biology. One of the most exciting areas of interest has been the emerging field of mechanobiology that centers on how cells control their mechanical properties, and how physical forces regulate cellular biochemical responses, a process that is known as mechanotransduction. In this article, we review the central role that tensegrity (tensional integrity) architecture, which depends on tensile prestress for its mechanical stability, plays in biology. We describe how tensional prestress is a critical governor of cell mechanics and function, and how use of tensegrity by cells contributes to mechanotransduction. Theoretical tensegrity models are also described that predict both quantitative and qualitative behaviors of living cells, and these theoretical descriptions are placed in context of other physical models of the cell. In addition, we describe how tensegrity is used at multiple size scales in the hierarchy of life—from individual molecules to whole living organisms—to both stabilize three-dimensional form and to channel forces from the macroscale to the nanoscale, thereby facilitating mechanochemical conversion at the molecular level.
Collapse
Affiliation(s)
- Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Harvard Medical School, Harvard School of Engineering and Applied Sciences, and Boston Children’s Hospital, 3 Blackfan Circle, CLSB5, Boston, MA 02115
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St, Urbana, IL 61801
| | - Dimitrije Stamenović
- Department of Biomedical Engineering, and Division of Material Science and Engineering, College of Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| |
Collapse
|
18
|
Palmer BM, Tanner BCW, Toth MJ, Miller MS. An inverse power-law distribution of molecular bond lifetimes predicts fractional derivative viscoelasticity in biological tissue. Biophys J 2014; 104:2540-52. [PMID: 23746527 DOI: 10.1016/j.bpj.2013.04.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 04/12/2013] [Accepted: 04/26/2013] [Indexed: 11/18/2022] Open
Abstract
Viscoelastic characteristics of many materials falling under the category of soft glassy substances, including biological tissue, often exhibit a mechanical complex modulus Y(ω) well described by a fractional derivative model: Y(ω) = E(iω/ϕ)k, where E = a generalized viscoelastic stiffness; i = (-1)1/2; ω = angular frequency; ϕ = scaling factor; and k = an exponent valued between 0 and 1. The term "fractional derivative" refers to the value of k: when k = 0 the viscoelastic response is purely elastic, and when k = 1 the response is purely viscous. We provide an analytical derivation of the fractional derivative complex modulus based on the hypothesis that the viscoelastic response arises from many intermittent molecular crosslinks, whose lifetimes longer than a critical threshold lifetime, tcrit, are distributed with an inverse power law proportional to t-(k+2). We demonstrate that E is proportional to the number and stiffness of crosslinks formed at any moment; the scaling factor ϕ is equivalent to reciprocal of tcrit; and the relative mean lifetime of the attached crosslinks is inversely proportional to the parameter k. To test whether electrostatic molecular bonds could be responsible for the fractional derivative viscoelasticity, we used chemically skinned human skeletal muscle as a one-dimensional model of a soft glassy substance. A reduction in ionic strength from 175 to 110 mEq resulted in a larger E with no change in k, consistent with a higher probability of interfilament molecular interactions. Thick to thin filament spacing was reduced by applying 4% w/v of the osmolyte Dextran T500, which also resulted in a larger E, indicating a greater probability of crosslink formation in proportion to proximity. A 10°C increase in temperature resulted in an increase in k, which corresponded to a decrease in cross-bridge attachment lifetime expected with higher temperatures. These theoretical and experimental results suggest that the fractional derivative viscoelasticity observed in some biological tissue arises as a mechanical consequence of electrostatic interactions, whose longest lifetimes are distributed with an inverse power law.
Collapse
Affiliation(s)
- Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA.
| | | | | | | |
Collapse
|
19
|
Hayes JS, Richards RG. Surfaces to control tissue adhesion for osteosynthesis with metal implants:in vitroandin vivostudies to bring solutions to the patient. Expert Rev Med Devices 2014; 7:131-42. [DOI: 10.1586/erd.09.55] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Abstract
Complex biological systems operate under non-equilibrium conditions and exhibit emergent properties associated with correlated spatial and temporal structures. These properties may be individually unpredictable, but tend to be governed by power-law probability distributions and/or correlation. This article reviews the concepts that are invoked in the treatment of complex systems through a wide range of respiratory-related examples. Following a brief historical overview, some of the tools to characterize structural variabilities and temporal fluctuations associated with complex systems are introduced. By invoking the concept of percolation, the notion of multiscale behavior and related modeling issues are discussed. Spatial complexity is then examined in the airway and parenchymal structures with implications for gas exchange followed by a short glimpse of complexity at the cellular and subcellular network levels. Variability and complexity in the time domain are then reviewed in relation to temporal fluctuations in airway function. Next, an attempt is given to link spatial and temporal complexities through examples of airway opening and lung tissue viscoelasticity. Specific examples of possible and more direct clinical implications are also offered through examples of optimal future treatment of fibrosis, exacerbation risk prediction in asthma, and a novel method in mechanical ventilation. Finally, the potential role of the science of complexity in the future of physiology, biology, and medicine is discussed.
Collapse
Affiliation(s)
- Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
21
|
Chen J, Irianto J, Inamdar S, Pravincumar P, Lee DA, Bader DL, Knight MM. Cell mechanics, structure, and function are regulated by the stiffness of the three-dimensional microenvironment. Biophys J 2013; 103:1188-97. [PMID: 22995491 DOI: 10.1016/j.bpj.2012.07.054] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/06/2012] [Accepted: 07/27/2012] [Indexed: 11/17/2022] Open
Abstract
This study adopts a combined computational and experimental approach to determine the mechanical, structural, and metabolic properties of isolated chondrocytes cultured within three-dimensional hydrogels. A series of linear elastic and hyperelastic finite-element models demonstrated that chondrocytes cultured for 24 h in gels for which the relaxation modulus is <5 kPa exhibit a cellular Young's modulus of ∼5 kPa. This is notably greater than that reported for isolated chondrocytes in suspension. The increase in cell modulus occurs over a 24-h period and is associated with an increase in the organization of the cortical actin cytoskeleton, which is known to regulate cell mechanics. However, there was a reduction in chromatin condensation, suggesting that changes in the nucleus mechanics may not be involved. Comparison of cells in 1% and 3% agarose showed that cells in the stiffer gels rapidly develop a higher Young's modulus of ∼20 kPa, sixfold greater than that observed in the softer gels. This was associated with higher levels of actin organization and chromatin condensation, but only after 24 h in culture. Further studies revealed that cells in stiffer gels synthesize less extracellular matrix over a 28-day culture period. Hence, this study demonstrates that the properties of the three-dimensional microenvironment regulate the mechanical, structural, and metabolic properties of living cells.
Collapse
Affiliation(s)
- J Chen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
22
|
Mitra J, Tripathi G, Sharma A, Basu B. Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. RSC Adv 2013. [DOI: 10.1039/c3ra23315d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
MUNIR GILLIAN, HUANG JIE, EDIRISINGHE MOHAN, NANGREJO RAFIQUE, BONFIELD WILLIAM. ELECTROHYDRODYNAMIC PROCESSING OF CALCIUM PHOSPHATES: COATING AND PATTERNING FOR MEDICAL IMPLANTS. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984411000426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydroxyapatite (HA)-coated metallic prostheses, which combine the osteoconductivity of HA and high strength of metallic alloys, have been increasingly the choice of joint replacement prostheses by surgeons as the general population lives longer. Surface modification of metallic implant surfaces is one of the key focal points to implantation technology. In addition to material chemistry, surface topography has been found to positively impact cellular response and is able to enhance the life time of the implant. Recently, a new technique, template-assisted electrohydrodynamic atomization (TAEA) spraying, developed using the principles of electrohydrodynamic atomization spraying, which is an electrically driven jet-based deposition method, is of considerable interest in surface topography formation. The process offers the attractive advantages of compatibility with micro-fabrication technology and versatility in pattern specification for advanced implant designs. This technology incorporates nanosized calcium phosphate to mimic the size and chemical composition of bone mineral in a micrometer-dimension pattern configuration to guide cellular responses. In vitro studies showed that both pillar and track nano Silicon-substituted HA (SiHA) patterns were able to encourage the attachment and growth of osteoblast cells, the track patterns provided the favourite surface for the initial cell attachment while a fast cell proliferation rate was found on the pillar pattern from day 1 to day 5 in comparison with that of a SiHA-coated surface. The alignment of actin cytoskeleton of osteoblast cells matched the orientation of the entire cell. The shear peel strength of the patterned interlocking nano-HA coating was found to be at least an order of magnitude higher than the conventional HA coating. Therefore, TAEA offers great potential for producing new coatings with a tailored surface topography, on both the micro- and nano-scale in a more cost effective way to enhance the performance of medical implants.
Collapse
Affiliation(s)
- GILLIAN MUNIR
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - JIE HUANG
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - MOHAN EDIRISINGHE
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - RAFIQUE NANGREJO
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - WILLIAM BONFIELD
- Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
| |
Collapse
|
24
|
Langheinrich D, Yslas E, Broglia M, Rivarola V, Acevedo D, Lasagni A. Control of cell growth direction by direct fabrication of periodic micro- and submicrometer arrays on polymers. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/polb.23017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Gümüşderelioğlu M, Betül Kaya F, Beşkardeş IG. Comparison of epithelial and fibroblastic cell behavior on nano/micro-topographic PCL membranes produced by crystallinity control. J Colloid Interface Sci 2011; 358:444-53. [DOI: 10.1016/j.jcis.2011.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/06/2011] [Accepted: 03/08/2011] [Indexed: 11/28/2022]
|
26
|
Newman SA. Animal egg as evolutionary innovation: a solution to the “embryonic hourglass” puzzle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:467-83. [DOI: 10.1002/jez.b.21417] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 12/26/2022]
|
27
|
A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation. Biomech Model Mechanobiol 2011; 11:49-59. [DOI: 10.1007/s10237-011-0292-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
|
28
|
Mechanical properties of cells and ageing. Ageing Res Rev 2011; 10:16-25. [PMID: 19897057 DOI: 10.1016/j.arr.2009.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 11/23/2022]
Abstract
Mechanical properties are fundamental properties of the cells and tissues of living organisms. The mechanical properties of a single cell as a biocomposite are determined by the interdependent combination of cellular components mechanical properties. Quantitative estimate of the cell mechanical properties depends on a cell state, method of measurement, and used theoretical model. Predominant tendency for the majority of cells with ageing is an increase of cell stiffness and a decrease of cell ability to undergo reversible large deformations. The mechanical signal transduction in old cells becomes less effective than that in young cells, and with ageing, the cells lose the ability of the rapid functional rearrangements of cellular skeleton. The article reviews the theoretical and experimental facts touching the age-related changes of the mechanical properties of cellular components and cells in the certain systems of an organism (the blood, the vascular system, the musculoskeletal system, the lens, and the epithelium). In fact, the cell mechanical parameters (including elastic modulii) can be useful as specific markers of cell ageing.
Collapse
|
29
|
Hayes JS, Czekanska EM, Richards RG. The Cell–Surface Interaction. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 126:1-31. [DOI: 10.1007/10_2011_110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Anselme K, Davidson P, Popa A, Giazzon M, Liley M, Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 2010; 6:3824-46. [PMID: 20371386 DOI: 10.1016/j.actbio.2010.04.001] [Citation(s) in RCA: 476] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 12/22/2022]
Abstract
The current development of nanobiotechnologies requires a better understanding of cell-surface interactions on the nanometre scale. Recently, advances in nanoscale patterning and detection have allowed the fabrication of appropriate substrates and the study of cell-substrate interactions. In this review we discuss the methods currently available for nanoscale patterning and their merits, as well as techniques for controlling the surface chemistry of materials at the nanoscale without changing the nanotopography and the possibility of truly characterizing the surface chemistry at the nanoscale. We then discuss the current knowledge of how a cell can interact with a substrate at the nanoscale and the effect of size, morphology, organization and separation of nanofeatures on cell response. Moreover, cell-substrate interactions are mediated by the presence of proteins adsorbed from biological fluids on the substrate. Many questions remain on the effect of nanotopography on protein adsorption. We review papers related to this point. As all these parameters have an influence on cell response, it is important to develop specific studies to point out their relative influence, as well as the biological mechanisms underlying cell responses to nanotopography. This will be the basis for future research in this field. An important topic in tissue engineering is the effect of nanoscale topography on bacteria, since cells have to compete with bacteria in many environments. The limited current knowledge of this topic is also discussed in the light of using topography to encourage cell adhesion while limiting bacterial adhesion. We also discuss current and prospective applications of cell-surface interactions on the nanoscale. Finally, based on questions raised previously that remain to be solved in the field, we propose future directions of research in materials science to help elucidate the relative influence of the physical and chemical aspects of nanotopography on bacteria and cell response with the aim of contributing to the development of nanobiotechnologies.
Collapse
|
31
|
Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol 2009; 5:e1000445. [PMID: 19629173 PMCID: PMC2709079 DOI: 10.1371/journal.pcbi.1000445] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/23/2009] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix plays a critical role in orchestrating the events necessary for wound healing, muscle repair, morphogenesis, new blood vessel growth, and cancer invasion. In this study, we investigate the influence of extracellular matrix topography on the coordination of multi-cellular interactions in the context of angiogenesis. To do this, we validate our spatio-temporal mathematical model of angiogenesis against empirical data, and within this framework, we vary the density of the matrix fibers to simulate different tissue environments and to explore the possibility of manipulating the extracellular matrix to achieve pro- and anti-angiogenic effects. The model predicts specific ranges of matrix fiber densities that maximize sprout extension speed, induce branching, or interrupt normal angiogenesis, which are independently confirmed by experiment. We then explore matrix fiber alignment as a key factor contributing to peak sprout velocities and in mediating cell shape and orientation. We also quantify the effects of proteolytic matrix degradation by the tip cell on sprout velocity and demonstrate that degradation promotes sprout growth at high matrix densities, but has an inhibitory effect at lower densities. Our results are discussed in the context of ECM targeted pro- and anti-angiogenic therapies that can be tested empirically.
Collapse
|
32
|
Nature of motor control: perspectives and issues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 629:93-123. [PMID: 19227497 DOI: 10.1007/978-0-387-77064-2_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Four perspectives on motor control provide the framework for developing a comprehensive theory of motor control in biological systems. The four perspectives, of decreasing orthodoxy, are distinguished by their sources of inspiration: neuroanatomy, robotics, self-organization, and ecological realities. Twelve major issues that commonly constrain (either explicitly or implicitly) the understanding of the control and coordination of movement are identified and evaluated within the framework of the four perspectives. The issues are as follows: (1) Is control strictly neural? (2) Is there a divide between planning and execution? (3) Does control entail a frequently involved knowledgeable executive? (4) Do analytical internal models mediate control? (5) Is anticipation necessarily model dependent? (6) Are movements preassembled? (7) Are the participating components context independent? (8) Is force transmission strictly myotendinous? (9) Is afference a matter of local linear signaling? (10) Is neural noise an impediment? (11) Do standard variables (of mechanics and physiology) suffice? (12) Is the organization of control hierarchical?
Collapse
|
33
|
Fu Q, Wu C, Shen Y, Zheng S, Chen R. Effect of LIMK2 RNAi on reorganization of the actin cytoskeleton in osteoblasts induced by fluid shear stress. J Biomech 2008; 41:3225-8. [DOI: 10.1016/j.jbiomech.2008.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
|
34
|
Schmitz J, Gottschalk KE. Mechanical regulation of cell adhesion. SOFT MATTER 2008; 4:1373-1387. [PMID: 32907100 DOI: 10.1039/b716805p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellular adhesion against external forces is governed by both the equilibrium affinity of the involved receptor-ligand bonds and the mechanics of the cell. Certain receptors like integrins change their affinity as well as the mechanics of their anchorage to tune the adhesiveness. Whereas in the last few years the focus of integrin research has lain on the affinity regulation of the adhesion receptors, more recently the importance of cellular mechanics became apparent. Here, we focus on different aspects of the mechanical regulation of the cellular adhesiveness.
Collapse
Affiliation(s)
- Julia Schmitz
- Applied Physics, LMU München, Amalienstr. 54, 80799 München, Germany.
| | | |
Collapse
|
35
|
|
36
|
Dalby MJ, Gadegaard N, Herzyk P, Sutherland D, Agheli H, Wilkinson CDW, Curtis ASG. Nanomechanotransduction and interphase nuclear organization influence on genomic control. J Cell Biochem 2007; 102:1234-44. [PMID: 17427951 DOI: 10.1002/jcb.21354] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability of cells to alter their genomic regulation in response to mechanical conditioning or through changes in morphology and the organization of the interphase nuclei are key questions in cell biology. Here, two nanotopographies have been used as a model surfaces to change cell morphology in order to investigate spatial genomic changes within the nuclei of fibroblasts. Initially, centromeres for chromosome pairs were labeled and the average distance on different substrates calculated. Further to this, Affymetrix whole genome GeneChips were used to rank genomic changes in response to topography and plot the whereabouts on the chromosomes these changes were occurring. It was seen that as cell spreading was changed, so were the positions along the chromosomes that gene regulations were being observed. We hypothesize that as changes in cell and thus nuclear morphology occur, that this may alter the probability of transcription through opening or closing areas of the chromosomes to transcription factors.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Dalby MJ, Biggs MJP, Gadegaard N, Kalna G, Wilkinson CDW, Curtis ASG. Nanotopographical stimulation of mechanotransduction and changes in interphase centromere positioning. J Cell Biochem 2007; 100:326-38. [PMID: 16888806 DOI: 10.1002/jcb.21058] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We apply a recently developed method for controlling the spreading of cultured cells using electron beam lithography (EBL) to create polymethylmethacrylate (PMMA) substrata with repeating nanostructures. There are indications that the reduced cell spreading on these substrata, compared with planar PMMA, results from a reduced adhesivity since there are fewer adhesive structures and fewer of their associated stress fibres. The reduced cell spreading also results in a reduced nuclear area and a closer spacing of centrosomes within the nucleus, suggesting that the tension applied to the nucleus is reduced as would be expected from the reduction in stress fibres. In order to obtain further evidence for this, we have used specific inhibitors of components of the cytoskeleton and have found effects comparable with those induced by the new substrata. We have also obtained evidence that these subtrata result in downregulation of gene expression which suggests that this may be due to the changed tension on the nucleus: an intriguing possibility that merits further investigation.
Collapse
Affiliation(s)
- Matthew J Dalby
- Division of Infection and Immunity, Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
38
|
Cañadas P, Wendling-Mansuy S, Isabey D. Frequency response of a viscoelastic tensegrity model: Structural rearrangement contribution to cell dynamics. J Biomech Eng 2006; 128:487-95. [PMID: 16813440 DOI: 10.1115/1.2205867] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In an attempt to understand the role of structural rearrangement onto the cell response during imposed cyclic stresses, we simulated numerically the frequency-dependent behavior of a viscoelastic tensegrity structure (VTS model) made of 24 elastic cables and 6 rigid bars. The VTS computational model was based on the nonsmooth contact dynamics (NSCD) method in which the constitutive elements of the tensegrity structure are considered as a set of material points that mutually interact. Low amplitude oscillatory loading conditions were applied and the frequency response of the overall structure was studied in terms of frequency dependence of mechanical properties. The latter were normalized by the homogeneous properties of constitutive elements in order to capture the essential feature of spatial rearrangement. The results reveal a specific frequency-dependent contribution of elastic and viscous effects which is responsible for significant changes in the VTS model dynamical properties. The mechanism behind is related to the variable contribution of spatial rearrangement of VTS elements which is decreased from low to high frequency as dominant effects are transferred from mainly elastic to mainly viscous. More precisely, the elasticity modulus increases with frequency while the viscosity modulus decreases, each evolution corresponding to a specific power-law dependency. The satisfactorily agreement found between present numerical results and the literature data issued from in vitro cell experiments suggests that the frequency-dependent mechanism of spatial rearrangement presently described could play a significant and predictable role during oscillatory cell dynamics.
Collapse
Affiliation(s)
- Patrick Cañadas
- CNRS UMR 5508 Laboratoire de Mécanique et Génie Civil (LMGC), Université Montpellier II-CC 048, Place Eugène Bataillon, 34 095 Montpellier Cedex 05, France.
| | | | | |
Collapse
|
39
|
Féréol S, Fodil R, Labat B, Galiacy S, Laurent VM, Louis B, Isabey D, Planus E. Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. ACTA ACUST UNITED AC 2006; 63:321-40. [PMID: 16634082 DOI: 10.1002/cm.20130] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In order to understand the sensitivity of alveolar macrophages (AMs) to substrate properties, we have developed a new model of macrophages cultured on substrates of increasing Young's modulus: (i) a monolayer of alveolar epithelial cells representing the supple (approximately 0.1 kPa) physiological substrate, (ii) polyacrylamide gels with two concentrations of bis-acrylamide representing low and high intermediate stiffness (respectively 40 kPa and 160 kPa) and, (iii) a highly rigid surface of plastic or glass (respectively 3 MPa and 70 MPa), the two latter being or not functionalized with type I-collagen. The macrophage response was studied through their shape (characterized by 3D-reconstructions of F-actin structure) and their cytoskeletal stiffness (estimated by transient twisting of magnetic RGD-coated beads and corrected for actual bead immersion). Macrophage shape dramatically changed from rounded to flattened as substrate stiffness increased from soft ((i) and (ii)) to rigid (iii) substrates, indicating a net sensitivity of alveolar macrophages to substrate stiffness but without generating F-actin stress fibers. Macrophage stiffness was also increased by large substrate stiffness increase but this increase was not due to an increase in internal tension assessed by the negligible effect of a F-actin depolymerizing drug (cytochalasine D) on bead twisting. The mechanical sensitivity of AMs could be partly explained by an idealized numerical model describing how low cell height enhances the substrate-stiffness-dependence of the apparent (measured) AM stiffness. Altogether, these results suggest that macrophages are able to probe their physical environment but the mechanosensitive mechanism behind appears quite different from tissue cells, since it occurs at no significant cell-scale prestress, shape changes through minimal actin remodeling and finally an AMs stiffness not affected by the loss in F-actin integrity.
Collapse
Affiliation(s)
- Sophie Féréol
- Inserm UMR 651, Fonctions Cellulaires et Moléculaires de l'Appareil Respiratoire et des Vaisseaux, Equipe Biomécanique Cellulaire et Respiratoire et Université Paris XII, Faculté de Médecine, Institut Supérieur des Biosciences de Paris, Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mancuso S, Barlow PW, Volkmann D, Baluska F. Actin turnover-mediated gravity response in maize root apices: gravitropism of decapped roots implicates gravisensing outside of the root cap. PLANT SIGNALING & BEHAVIOR 2006; 1:52-8. [PMID: 19521476 PMCID: PMC2633879 DOI: 10.4161/psb.1.2.2432] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 10/31/2005] [Indexed: 05/08/2023]
Abstract
The dynamic actin cytoskeleton has been proposed to be linked to gravity sensing in plants but the mechanistic understanding of these processes remains unknown. We have performed detailed pharmacological analyses of the role of the dynamic actin cytoskeleton in gravibending of maize (Zea mays) root apices. Depolymerization of actin filaments with two drugs having different mode of their actions, cytochalasin D and latrunculin B, stimulated root gravibending. By contrast, drug-induced stimulation of actin polymerization and inhibition of actin turnover, using two different agents phalloidin and jasplakinolide, compromised the root gravibending. Importantly, all these actin drugs inhibited root growth to similar extents suggesting that high actin turnover is essential for the gravity-related growth responses rather than for the general growth process. Both latrunculin B and cytochalasin D treatments inhibited root growth but restored gravibending of the decapped root apices, indicating that there is a strong potential for effective actin-mediated gravity sensing outside the cap. This elusive gravity sensing outside the root cap is dependent not only on the high rate of actin turnover but also on weakening of myosin activities, as general inhibition of myosin ATPases induced stimulation of gravibending of the decapped root apices. Collectively, these data provide evidence for the actin turnover-mediated gravity sensing outside the root cap.
Collapse
Affiliation(s)
- Stefano Mancuso
- Electrophysiology Laboratory; Department of Horticulture; University of Florence; Sesto Fiorentino, Italy
| | - Peter W Barlow
- School of Biological Sciences; University of Bristol; Woodland Road; Bristol, UK
| | - Dieter Volkmann
- Rheinische Friedrich-Wilhelms-University of Bonn; Institute of Cellular and Molecular Botany; Bonn, Germany
| | - Frantisek Baluska
- Rheinische Friedrich-Wilhelms-University of Bonn; Institute of Cellular and Molecular Botany; Bonn, Germany
| |
Collapse
|
41
|
Abstract
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. EC migration can be regulated by different mechanisms such as chemotaxis, haptotaxis, and mechanotaxis. This review will focus on fluid shear stress-induced mechanotransduction during EC migration. EC migration and mechanotransduction can be modulated by cytoskeleton, cell surface receptors such as integrins and proteoglycans, the chemical and physical properties of extracellular matrix (ECM) and cell-cell adhesions. The shear stress applied on the luminal surface of ECs can be sensed by cell membrane and associated receptor and transmitted throughout the cell to cell-ECM adhesions and cell-cell adhesions. As a result, shear stress induces directional migration of ECs by promoting lamellipodial protrusion and the formation of focal adhesions (FAs) at the front in the flow direction and the disassembly of FAs at the rear. Persistent EC migration in the flow direction can be driven by polarized activation of signaling molecules and the positive feedback loops constituted by Rho GTPases, cytoskeleton, and FAs at the leading edge. Furthermore, shear stress-induced EC migration can overcome the haptotaxis of ECs. Given the hemodynamic environment of the vascular system, mechanotransduction during EC migration has a significant impact on vascular development, angiogenesis, and vascular wound healing.
Collapse
Affiliation(s)
- Song Li
- Department of Bioengineering and Center for Functional Tissue Engineering, University of California-Berkeley, San Francisco/Berkeley, California 94720, USA.
| | | | | |
Collapse
|
42
|
Dalby MJ. Topographically induced direct cell mechanotransduction. Med Eng Phys 2005; 27:730-42. [PMID: 15921949 DOI: 10.1016/j.medengphy.2005.04.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 04/11/2005] [Indexed: 01/26/2023]
Abstract
This review is designed to introduce the cytoskeleton and then discuss how mechanical forces may be transduced to the cell nucleus. In addition to this, it also tries to explain current thinking as to how the nucleus turns these mechanical cues into gene changes and is especially interested in mechanotransduction arising from topographically induced morphological changes, specifically nanotopography. Thus, this review also describes cell responses to topography.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
43
|
Wojtaszek P, Anielska-Mazur A, Gabryś H, Baluška F, Volkmann D. Recruitment of myosin VIII towards plastid surfaces is root-cap specific and provides the evidence for actomyosin involvement in root osmosensing. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:721-736. [PMID: 32689170 DOI: 10.1071/fp05004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 04/22/2005] [Indexed: 06/11/2023]
Abstract
The existence of a cell wall-plasma membrane-cytoskeleton (WMC) continuum in plants has long been postulated. However, the individual molecules building such a continuum are still largely unknown. We test here the hypothesis that the integrin-based multiprotein complexes of animal cells have been replaced in plants with more dynamic entities. Using an experimental approach based on protoplast digestion mixtures, and utilising specific antibodies against Arabidopsis ATM1 myosin, we reveal possible roles played by plant-specific unconventional myosin VIII in the functioning of WMC continuum. We demonstrate rapid relocation (less than 5 min) of myosin VIII to statolith surfaces in maize root-cap cells, which is accompanied by the reorganisation of actin cytoskeleton. Upon prolonged stimulation, myosin VIII is also recruited to plasmodesmata and pit-fields of plasmolysing root cap statocytes. The osmotic stimulus is the major factor inducing relocation, but the cell wall-cytoskeleton interactions also play an important role. In addition, we demonstrate the tight association of myosin VIII with the surfaces of chloroplasts, and provide an indication for the differences in the mechanisms of plastid movement in roots and leaves of plants. Overall, our data provide evidence for the active involvement of actomyosin complexes, rooted in the WMC continuum, in the cellular volume control and maintenance of spatial relationships between cellular compartments.
Collapse
Affiliation(s)
- Przemysław Wojtaszek
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Anna Anielska-Mazur
- Department of Plant Physiology and Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Halina Gabryś
- Department of Plant Physiology and Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - František Baluška
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Dieter Volkmann
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| |
Collapse
|
44
|
Stamenović D. Effects of cytoskeletal prestress on cell rheological behavior. Acta Biomater 2005; 1:255-62. [PMID: 16701804 DOI: 10.1016/j.actbio.2005.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 01/27/2005] [Accepted: 01/31/2005] [Indexed: 11/30/2022]
Abstract
Normal tissue development requires that cells alter their mechanical behavior in different microenvironments to carry out their diverse functions. During cell spreading, migration, invasion and mitosis, cells exhibit a high degree of deformability, exhibiting almost a fluid-like behavior, whereas within quiescent differentiated tissues, cells must behave like an elastic solid to maintain their structural integrity in the face of an applied mechanical stress. A growing body of experimental evidence suggests that rheological properties of adherent cells depend on pre-existing tensional stress ("prestress") borne by the cytoskeleton. This prestress results from the action of tensional forces borne by actin microfilaments, transmitted over intermediate filaments and resisted by both extracellular matrix adhesions and internal microtubules. Observations that the prestress influences mechanical properties of the cell are intimately related to the cellular tensegrity model. This model depicts the cytoskeleton as an interconnected network of cables that carry pre-existing tension that is balanced by compression-bearing struts and by anchoring forces of the substrate. This paper offers a brief survey of the basic concept of cellular tensegrity model, comparison of model predictions with experimental data obtained from rheological measurements on living cells, and comparison with other models that have been used in studies of rheology of cells.
Collapse
Affiliation(s)
- Dimitrije Stamenović
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA.
| |
Collapse
|
45
|
Abstract
Many abiotic and other signals are transduced in eukaryotic cells by changes in the level of free calcium via pumps, channels and stores. We suggest here that ion condensation should also be taken into account. Calcium, like other counterions, is condensed onto linear polymers at a critical value of the charge density. Such condensation resembles a phase transition and has a topological basis in that it is promoted by linear as opposed to spherical assemblies of charges. Condensed counterions are delocalised and can diffuse in the so-called near region along the polymers. It is generally admitted that cytoskeletal filaments, proteins colocalised with these filaments, protein filaments distinct from cytoskeletal filaments, and filamentous assemblies of other macromolecules, constitute an intracellular macromolecular network. Here we draw attention to the fact that this network has physicochemical characteristics that enable counterion condensation. We then propose a model in which the feedback relationships between the condensation/decondensation of calcium and the activation of calcium-dependent kinases and phosphatases control the charge density of the filaments of the intracellular macromolecular network. We show how condensation might help mediate free levels of calcium both locally and globally. In this model, calcium condensation/decondensation on the macromolecular network creates coherent patterns of protein phosphorylation that integrate signals. This leads us to hypothesize that the process of ion condensation operates in signal transduction, that it can have an integrative role and that the macromolecular network serves as an integrative receptor.
Collapse
Affiliation(s)
- Camille Ripoll
- Laboratoire Assemblages Moléculaires: Modélisation et Imagerie SIMS, FRE CNRS 2829, Faculté des Sciences de l'Université de Rouen, Mont Saint Aignan, France.
| | | | | |
Collapse
|
46
|
Newman SA, Forgacs G, Hinner B, Maier CW, Sackmann E. Phase transformations in a model mesenchymal tissue. Phys Biol 2004; 1:100-9. [PMID: 16204827 DOI: 10.1088/1478-3967/1/2/006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Connective tissues, the most abundant tissue type of the mature mammalian body, consist of cells suspended in complex microenvironments known as extracellular matrices (ECMs). In the immature connective tissues (mesenchymes) encountered in developmental biology and tissue engineering applications, the ECMs contain varying amounts of randomly arranged fibers, and the physical state of the ECM changes as the fibers secreted by the cells undergo fibril and fiber assembly and organize into networks. In vitro composites consisting of assembling solutions of type I collagen, containing suspended polystyrene latex beads ( approximately 6 microm in diameter) with collagen-binding surface properties, provide a simplified model for certain physical aspects of developing mesenchymes. In particular, assembly-dependent topological (i.e., connectivity) transitions within the ECM could change a tissue from one in which cell-sized particles (e.g., latex beads or cells) are mechanically unlinked to one in which the particles are part of a mechanical continuum. Any particle-induced alterations in fiber organization would imply that cells could similarly establish physically distinct microdomains within tissues. Here we show that the presence of beads above a critical number density accelerates the sol-gel transition that takes place during the assembly of collagen into a globally interconnected network of fibers. The presence of this suprathreshold number of beads also dramatically changes the viscoelastic properties of the collagen matrix, but only when the initial concentration of soluble collagen is itself above a critical value. Our studies provide a starting point for the analysis of phase transformations of more complex biomaterials including developing and healing tissues as well as tissue substitutes containing living cells.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
47
|
Zoubiane GS, Valentijn A, Lowe ET, Akhtar N, Bagley S, Gilmore AP, Streuli CH. A role for the cytoskeleton in prolactin-dependent mammary epithelial cell differentiation. J Cell Sci 2004; 117:271-80. [PMID: 14676278 DOI: 10.1242/jcs.00855] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of exocrine glands depends on signals within the extracellular environment. In the mammary gland, integrin-mediated adhesion to the extracellular matrix protein laminin co-operates with soluble factors such as prolactin to regulate tissue-specific gene expression. The mechanism of matrix and prolactin crosstalk and the activation of downstream signals are not fully understood. Because integrins organize the cytoskeleton, we analysed the contribution of the cytoskeleton to prolactin receptor activation and the resultant stimulation of milk protein gene expression. We show that the proximal signalling events initiated by prolactin (i.e. tyrosine phosphorylation of receptor and the associated kinase Jak2) do not depend on an intact actin cytoskeleton. However, actin networks and microtubules are both necessary for continued mammary cell differentiation, because cytoskeletal integrity is required to transduce the signals between prolactin receptor and Stat5, a transcription factor necessary for milk protein gene transcription. The two different cytoskeletal scaffolds regulate prolactin signalling through separate mechanisms that are specific to cellular differentiation but do not affect the general profile of protein synthesis.
Collapse
Affiliation(s)
- Ghada S Zoubiane
- School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Forgacs G, Yook SH, Janmey PA, Jeong H, Burd CG. Role of the cytoskeleton in signaling networks. J Cell Sci 2004; 117:2769-75. [PMID: 15150320 DOI: 10.1242/jcs.01122] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular signal transduction occurs through cascades of reactions involving dozens of proteins that transmit signals from the cell surface, through a crowded cellular environment filled with organelles and a filamentous cytoskeleton, to specific targets. Numerous signaling molecules are immobilized or transiently bound to the cytoskeleton, yet most models for signaling pathways have no specific role for this mesh, which is often presumed to function primarily as a scaffold that determines cell mechanics but not information flow. We combined analytical tools with several recently established large-scale protein-protein interaction maps for Saccharomyces cerevisiae to quantitatively address the role of the cytoskeleton in intracellular signaling. The results demonstrate that the network of signaling proteins is intimately linked to the cytoskeleton, suggesting that this interconnected filamentous structure plays a crucial and distinct functional role in signal transduction.
Collapse
Affiliation(s)
- Gabor Forgacs
- Department of Physics and Biology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
49
|
Perbal G, Lefranc A, Jeune B, Driss-Ecole D. Mechanotransduction in root gravity sensing cells. PHYSIOLOGIA PLANTARUM 2004; 120:303-11. [PMID: 14974478 DOI: 10.1111/j.0031-9317.2004.0233.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The analysis of the dose-response curve of the gravitropic reaction of lentil seedling roots has shown that these organs are more sensitive when they have been grown in microgravity than when they have been grown on a 1 g centrifuge in space before gravistimulation. This difference of gravisensitivity is not due to the volume or the density of starch grains of statoliths, which are about the same in both conditions (1 g or microgravity). However, the distribution of statoliths within the statocyte may be responsible for this differential sensitivity, since the dispersion of these organelles is greater in microgravity than in 1 g. When lentil roots grown in microgravity or in 1 g are stimulated at 0.93 g for 22 min, the amyloplasts sediment following two different trajectories. They move from the proximal half of the statocytes toward the lower longitudinal wall in the microgravity grown sample and from the distal half toward the longitudinal wall in the 1 g grown sample. At the end of the stimulation, they reach a similar position within the statocytes. If the roots of both samples are left in microgravity for 3 h, the amyloplasts move toward the cell centre in a direction that makes an average angle of 40 degrees with respect to the lower longitudinal wall. The actin filaments, which are responsible for this movement, may have an overall orientation of 40 degrees with respect to this wall. Thus, when roots grown in microgravity are stimulated on the minicentrifuge the amyloplasts slide on the actin filaments, whereas they move perpendicular to them in 1 g grown roots. Our results suggest that greater sensitivity of seedling roots grown in microgravity should be due to greater dispersion of statoliths, to better contacts between statoliths and the actin network and to greater number of activated mechanoreceptors. One can hypothesize that stretch activated ion channels (SACs) located in the plasma membrane are responsible for the transduction of gravistimulus. These SACs may be connected together by elements of the cytoskeleton lining the plasma membrane and to the actin filaments. They could be stimulated by the action of statoliths on the actin network and/or on these elements of the cytoskeleton which link the mechanoreceptors (SACs).
Collapse
Affiliation(s)
- Gerald Perbal
- Laboratoire CEMV, Universite Pierre et Marie Curie, Paris, France.
| | | | | | | |
Collapse
|
50
|
Calaghan SC, Le Guennec JY, White E. Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:29-59. [PMID: 14642867 DOI: 10.1016/s0079-6107(03)00057-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cardiac myocyte has an intracellular scaffold, the cytoskeleton, which has been implicated in several cardiac pathologies including hypertrophy and failure. In this review we describe the role that the cytoskeleton plays in modulating both the electrical activity (through ion channels and exchangers) and mechanical (or contractile) activity of the adult heart. We focus on the 3 components of the cytoskeleton, actin microfilaments, microtubules, and desmin filaments. The limited visual data available suggest that the subsarcolemmal actin cytoskeleton is sparse in the adult myocyte. Selective disruption of cytoskeletal actin by pharmacological tools has yet to be verified in the adult cell, yet evidence exists for modulation of several ionic currents, including I(CaL), I(Na), I(KATP), I(SAC) by actin microfilaments. Microtubules exist as a dense network throughout the adult cardiac cell, and their structure, architecture, kinetics and pharmacological manipulation are well described. Both polymerised and free tubulin are functionally significant. Microtubule proliferation reduces contraction by impeding sarcomeric motion; modulation of sarcoplasmic reticulum Ca(2+) release may also be involved in this effect. The lack of effect of microtubule disruption on cardiac contractility in adult myocytes, and the concentration-dependent modulation of the rate of contraction by the disruptor nocodazole in neonatal myocytes, support the existence of functionally distinct microtubule populations. We address the controversy regarding the stimulation of the beta-adrenergic signalling pathway by free tubulin. Work with mice lacking desmin has demonstrated the importance of intermediate filaments to normal cardiac function, but the precise role that desmin plays in the electrical and mechanical activity of cardiac muscle has yet to be determined.
Collapse
Affiliation(s)
- S C Calaghan
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|