1
|
Schumann U, Liu L, Aggio-Bruce R, Cioanca AV, Shariev A, Madigan MC, Valter K, Wen J, Natoli R. Spatial transcriptomics reveals regionally altered gene expression that drives retinal degeneration. Commun Biol 2025; 8:629. [PMID: 40251274 PMCID: PMC12008306 DOI: 10.1038/s42003-025-07887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 03/05/2025] [Indexed: 04/20/2025] Open
Abstract
Photoreceptor cell death is a hallmark of age-related macular degeneration. Environmental, lifestyle and genetic risk factors are known contributors to disease progression, whilst at the molecular level, oxidative stress and inflammation are central pathogenetic drivers. However, the spatial and cellular origins of these molecular mechanisms remain unclear. We used spatial transcriptomics to investigate the spatio-temporal gene expression changes in the adult mouse retina in response to photo-oxidative stress. We identify regionally distinct transcriptomes, with higher expression of immunity related genes in the superior retina. Exposure to stress induced expression of genes involved in inflammatory processes, innate immune responses, and cytokine production in a highly localised manner. A distinct region ~800 µm superior from the optic nerve head seems a key driver of these molecular changes. Further, we show highly localised early molecular changes in the superior mouse retina during retinal stress and identify novel genes drivers. We provide evidence of angiogenic changes in response to photo-oxidative stress and suggest additional angiogenic signalling pathways within the retina including VEGF, pleiotrophin and midkine. These new insights into retinal angiogenesis pave the way to identify novel drivers of retinal neovascularisation with an opportunity for therapeutic development.
Collapse
Affiliation(s)
- Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Save Sight Institute, The University of Sydney, Sydney, Australia.
| | - Lixinyu Liu
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), The Australian National University, Canberra, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Artur Shariev
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Michele C Madigan
- The Save Sight Institute, The University of Sydney, Sydney, Australia
- The School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Jiayu Wen
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), The Australian National University, Canberra, Australia.
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| |
Collapse
|
2
|
El‐Darzi N, Mast N, Li Y, Pikuleva IA. Dietary effects on the retina of hamsters. FASEB J 2025; 39:e70451. [PMID: 40099968 PMCID: PMC11917192 DOI: 10.1096/fj.202403390r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
The retina is a sensory tissue in the back of the eye, which captures visual information and relays it to the brain. The retinal pigment epithelium separates the neural retina from the choroidal (systemic) circulation and is thereby exposed to circulating lipoprotein particles. Herein, we used hamsters and conducted various retinal evaluations of animals fed either a normal diet or a Western-type diet (WTD). Prior to evaluations, hamsters were injected with indocyanine green (ICG), a fluorescent dye that binds to various proteins and lipids in the systemic circulation. The WTD increased plasma levels of total and HDL cholesterol 1.8- and 2.1-fold, respectively, and led to additional HDL2 and HDL3 subpopulations. The diet also increased the ICG fluorescence in the retinal pigment epithelium and the underlying choroidal circulation on histological tracking and altered retinal protein abundance as assessed by proteomics. Functional enrichments were found in the retinal gene expression, energy production, intracellular transport, cytoskeleton- and synapse-related processes, and protein ubiquitination. The biochemical basis linking the WTD, retinal energy production, and retinal neurotransmission was suggested as well. The data obtained were then compared with those from our previous investigations of hamsters and different mouse genotypes. We identified common retinal processes that can be affected by circulating lipoprotein particles regardless of the mechanism by which their levels and subpopulations were altered (through diet or genetic modification). Thus, we obtained novel mechanistic insights into how lipids in the systemic circulation can affect the retina.
Collapse
Affiliation(s)
- Nicole El‐Darzi
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Natalia Mast
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Yong Li
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
3
|
Enderlin J, Rieu Q, Réty S, Vanoni EM, Roux S, Dégardin J, César Q, Augustin S, Nous C, Cai B, Fontaine V, Sennlaub F, Nandrot EF. Retinal atrophy, inflammation, phagocytic and metabolic disruptions develop in the MerTK-cleavage-resistant mouse model. Front Neurosci 2024; 18:1256522. [PMID: 38680449 PMCID: PMC11047123 DOI: 10.3389/fnins.2024.1256522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/11/2024] [Indexed: 05/01/2024] Open
Abstract
In the eye, cells from the retinal pigment epithelium (RPE) facing the neurosensory retina exert several functions that are all crucial for long-term survival of photoreceptors (PRs) and vision. Among those, RPE cells phagocytose under a circadian rhythm photoreceptor outer segment (POS) tips that are constantly subjected to light rays and oxidative attacks. The MerTK tyrosine kinase receptor is a key element of this phagocytic machinery required for POS internalization. Recently, we showed that MerTK is subjected to the cleavage of its extracellular domain to finely control its function. In addition, monocytes in retinal blood vessels can migrate inside the inner retina and differentiate into macrophages expressing MerTK, but their role in this context has not been studied yet. We thus investigated the ocular phenotype of MerTK cleavage-resistant (MerTKCR) mice to understand the relevance of this characteristic on retinal homeostasis at the RPE and macrophage levels. MerTKCR retinae appear to develop and function normally, as observed in retinal sections, by electroretinogram recordings and optokinetic behavioral tests. Monitoring of MerTKCR and control mice between the ages of 3 and 18 months showed the development of large degenerative areas in the central retina as early as 4 months when followed monthly by optical coherence tomography (OCT) plus fundus photography (FP)/autofluorescence (AF) detection but not by OCT alone. The degenerative areas were associated with AF, which seems to be due to infiltrated macrophages, as observed by OCT and histology. MerTKCR RPE primary cultures phagocytosed less POS in vitro, while in vivo, the circadian rhythm of POS phagocytosis was deregulated. Mitochondrial function and energy production were reduced in freshly dissected RPE/choroid tissues at all ages, thus showing a metabolic impairment not present in macrophages. RPE anomalies were detected by electron microscopy, including phagosomes retained in the apical area and vacuoles. Altogether, this new mouse model displays a novel phenotype that could prove useful to understanding the interplay between RPE and PRs in inflammatory retinal degenerations and highlights new roles for MerTK in the regulation of the energetic metabolism and the maintenance of the immune privilege in the retina.
Collapse
Affiliation(s)
- Julie Enderlin
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Quentin Rieu
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Salomé Réty
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Elora M. Vanoni
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Solène Roux
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Julie Dégardin
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Quénol César
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Sébastien Augustin
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Caroline Nous
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Valérie Fontaine
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Florian Sennlaub
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Emeline F. Nandrot
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Moekotte L, Kuiper JJW, Hiddingh S, Nguyen XTA, Boon CJF, van den Born LI, de Boer JH, van Genderen MM. CRB1-Associated Retinal Dystrophy Patients Have Expanded Lewis Glycoantigen-Positive T Cells. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 37792335 PMCID: PMC10565706 DOI: 10.1167/iovs.64.13.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose Eye inflammation may occur in patients with inherited retinal dystrophies (IRDs) and is seen frequently in IRDs associated with mutations in the CRB1 gene. The purpose of this study was to determine the types of inflammatory cells involved in IRDs, by deep profiling the composition of peripheral blood mononuclear cells of patients with a CRB1-associated IRD. Methods This study included 33 patients with an IRD with confirmed CRB1 mutations and 32 healthy controls. A 43-parameter flow cytometry analysis was performed on peripheral blood mononuclear cells isolated from venous blood. FlowSOM and manual Boolean combination gating were used to identify and quantify immune cell subsets. Results Comparing patients with controls revealed a significant increase in patients in the abundance of circulating CD4+ T cells and CD8+ T cells that express sialyl Lewis X antigen. Furthermore, we detected a decrease in plasmacytoid dendritic cells and an IgA+CD24+CD38+ transitional B-cell subset in patients with an IRD. Conclusions Patients with a CRB1-associated IRD show marked changes in blood leukocyte composition, affecting lymphocyte and dendritic cell populations. These results implicate inflammatory pathways in the disease manifestations of IRDs.
Collapse
Affiliation(s)
- Lude Moekotte
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jonas J. W. Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Camiel J. F. Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Joke H. de Boer
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria M. van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
- Bartiméus, Diagnostic Center for complex visual disorders, Zeist, the Netherlands
| |
Collapse
|
5
|
Lieffrig SA, Gyimesi G, Mao Y, Finnemann SC. Clearance phagocytosis by the retinal pigment epithelial during photoreceptor outer segment renewal: Molecular mechanisms and relation to retinal inflammation. Immunol Rev 2023; 319:81-99. [PMID: 37555340 PMCID: PMC10615845 DOI: 10.1111/imr.13264] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Mammalian photoreceptor outer segment renewal is a highly coordinated process that hinges on timed cell signaling between photoreceptor neurons and the adjacent retinal pigment epithelial (RPE). It is a strictly rhythmic, synchronized process that underlies in part circadian regulation. We highlight findings from recently developed methods that quantify distinct phases of outer segment renewal in retinal tissue. At light onset, outer segments expose the conserved "eat-me" signal phosphatidylserine exclusively at their distal, most aged tip. A coordinated two-receptor efferocytosis process follows, in which ligands bridge outer segment phosphatidylserine with the RPE receptors αvβ5 integrin, inducing cytosolic signaling toward Rac1 and focal adhesion kinase/MERTK, and with MERTK directly, additionally inhibiting RhoA/ROCK and thus enabling F-actin dynamics favoring outer segment fragment engulfment. Photoreceptors and RPE persist for life with each RPE cell in the eye servicing dozens of overlying photoreceptors. Thus, RPE cells phagocytose more often and process more material than any other cell type. Mutant mice with impaired outer segment renewal largely retain functional photoreceptors and retinal integrity. However, when anti-inflammatory signaling in the RPE via MERTK or the related TYRO3 is lacking, catastrophic inflammation leads to immune cell infiltration that swiftly destroys the retina causing blindness.
Collapse
Affiliation(s)
- Stephanie A. Lieffrig
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | - Gavin Gyimesi
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | | | - Silvia C. Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| |
Collapse
|
6
|
Si Z, Zheng Y, Zhao J. The Role of Retinal Pigment Epithelial Cells in Age-Related Macular Degeneration: Phagocytosis and Autophagy. Biomolecules 2023; 13:901. [PMID: 37371481 DOI: 10.3390/biom13060901] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related macular degeneration (AMD) causes vision loss in the elderly population. Dry AMD leads to the formation of Drusen, while wet AMD is characterized by cell proliferation and choroidal angiogenesis. The retinal pigment epithelium (RPE) plays a key role in AMD pathogenesis. In particular, helioreceptor renewal depends on outer segment phagocytosis of RPE cells, while RPE autophagy can protect cells from oxidative stress damage. However, when the oxidative stress burden is too high and homeostasis is disturbed, the phagocytosis and autophagy functions of RPE become damaged, leading to AMD development and progression. Hence, characterizing the roles of RPE cell phagocytosis and autophagy in the pathogenesis of AMD can inform the development of potential therapeutic targets to prevent irreversible RPE and photoreceptor cell death, thus protecting against AMD.
Collapse
Affiliation(s)
- Zhibo Si
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
7
|
Iker Etchegaray J, Kelley S, Penberthy K, Karvelyte L, Nagasaka Y, Gasperino S, Paul S, Seshadri V, Raymond M, Marco AR, Pinney J, Stremska M, Barron B, Lucas C, Wase N, Fan Y, Unanue E, Kundu B, Burstyn-Cohen T, Perry J, Ambati J, Ravichandran KS. Phagocytosis in the retina promotes local insulin production in the eye. Nat Metab 2023; 5:207-218. [PMID: 36732622 PMCID: PMC10457724 DOI: 10.1038/s42255-022-00728-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023]
Abstract
The retina is highly metabolically active, relying on glucose uptake and aerobic glycolysis. Situated in close contact to photoreceptors, a key function of cells in the retinal pigment epithelium (RPE) is phagocytosis of damaged photoreceptor outer segments (POS). Here we identify RPE as a local source of insulin in the eye that is stimulated by POS phagocytosis. We show that Ins2 messenger RNA and insulin protein are produced by RPE cells and that this production correlates with RPE phagocytosis of POS. Genetic deletion of phagocytic receptors ('loss of function') reduces Ins2, whereas increasing the levels of the phagocytic receptor MerTK ('gain of function') increases Ins2 production in male mice. Contrary to pancreas-derived systemic insulin, RPE-derived local insulin is stimulated during starvation, which also increases RPE phagocytosis. Global or RPE-specific Ins2 gene deletion decreases retinal glucose uptake in starved male mice, dysregulates retinal physiology, causes defects in phototransduction and exacerbates photoreceptor loss in a mouse model of retinitis pigmentosa. Collectively, these data identify RPE cells as a phagocytosis-induced local source of insulin in the retina, with the potential to influence retinal physiology and disease.
Collapse
Affiliation(s)
- J Iker Etchegaray
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shannon Kelley
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen Penberthy
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Laura Karvelyte
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia, Charlottesville, VA, USA
| | - Sofia Gasperino
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Soumen Paul
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Vikram Seshadri
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Michael Raymond
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Ana Royo Marco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Jonathan Pinney
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Marta Stremska
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brady Barron
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher Lucas
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- University of Edinburgh, Edinburgh, UK
| | - Nishikant Wase
- Biomolecular Analysis Facility, University of Virginia, Charlottesville, VA, USA
| | - Yong Fan
- Drexel University, Philadelphia, PA, USA
| | - Emil Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bijoy Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Tal Burstyn-Cohen
- Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Justin Perry
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia, Charlottesville, VA, USA
- Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
- Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel.
- VIB/UGent Inflammation Research Centre, and Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Gelat B, Rathaur P, Malaviya P, Patel B, Trivedi K, Johar K, Gelat R. The intervention of epithelial-mesenchymal transition in homeostasis of human retinal pigment epithelial cells: a review. J Histotechnol 2022; 45:148-160. [DOI: 10.1080/01478885.2022.2137665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Brijesh Gelat
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Pooja Rathaur
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| | - Pooja Malaviya
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| | - Binita Patel
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, India
| | - Krupali Trivedi
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kaid Johar
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Rahul Gelat
- Institute of Teaching and Research in Ayurveda (ITRA), Gujarat Ayurved University, Jamnagar, India
| |
Collapse
|
9
|
Choudhary M, Tayyari F, Handa JT, Malek G. Characterization and identification of measurable endpoints in a mouse model featuring age-related retinal pathologies: a platform to test therapies. J Transl Med 2022; 102:1132-1142. [PMID: 36775353 PMCID: PMC10041606 DOI: 10.1038/s41374-022-00795-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Apolipoprotein B100 (apoB100) is the structural protein of cholesterol carriers including low-density lipoproteins. It is a constituent of sub-retinal pigment epithelial (sub-RPE) deposits and pro-atherogenic plaques, hallmarks of early dry age-related macular degeneration (AMD), an ocular neurodegenerative blinding disease, and cardiovascular disease, respectively. Herein, we characterized the retinal pathology of transgenic mice expressing mouse apoB100 in order to catalog their functional and morphological ocular phenotypes as a function of age and establish measurable endpoints for their use as a mouse model to test potential therapies. ApoB100 mice were found to exhibit an age-related decline in retinal function, as measured by electroretinogram (ERG) recordings of their scotopic a-wave, scotopic b-wave; and c-wave amplitudes. ApoB100 mice also displayed a buildup of the cholesterol carrier, apolipoprotein E (apoE) within and below the supporting extracellular matrix, Bruch's membrane (BrM), along with BrM thickening, and accumulation of thin diffuse electron-dense sub-RPE deposits, the severity of which increased with age. Moreover, the combination of apoB100 and advanced age were found to be associated with RPE morphological changes and the presence of sub-retinal immune cells as visualized in RPE-choroid flatmounts. Finally, aged apoB100 mice showed higher levels of circulating and ocular pro-inflammatory cytokines, supporting a link between age and increased local and systemic inflammation. Collectively, the data support the use of aged apoB100 mice as a platform to evaluate potential therapies for retinal degeneration, specifically drugs intended to target removal of lipids from Bruch's membrane and/or alleviate ocular inflammation.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Faryan Tayyari
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
10
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
11
|
Rieu Q, Bougoüin A, Zagar Y, Chatagnon J, Hamieh A, Enderlin J, Huby T, Nandrot EF. Pleiotropic Roles of Scavenger Receptors in Circadian Retinal Phagocytosis: A New Function for Lysosomal SR-B2/LIMP-2 at the RPE Cell Surface. Int J Mol Sci 2022; 23:ijms23073445. [PMID: 35408805 PMCID: PMC8998831 DOI: 10.3390/ijms23073445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
The retinal phagocytic machinery resembles the one used by macrophages to clear apoptotic cells. However, in the retina, the permanent contact between photoreceptor outer segments (POS) and retinal pigment epithelial (RPE) cells requires a tight control of this circadian machinery. In addition to the known receptors synchronizing POS internalization, several others are expressed by RPE cells. Notably, scavenger receptor CD36 has been shown to intervene in the internalization speed. We thus investigated members of the scavenger receptor family class A SR-AI and MARCO and class B CD36, SR-BI and SR-B2/LIMP-2 using immunoblotting, immunohisto- and immunocytochemistry, lipid raft flotation gradients, phagocytosis assays after siRNA/antibody inhibition, RT-qPCR and western blot analysis along the light:dark cycle. All receptors were expressed by RPE cell lines and tissues and colocalized with POS, except SR-BI. All receptors were associated with lipid rafts, and even more upon POS challenge. SR-B2/LIMP-2 inhibition suggested a role in the control of the internalization speed similar to CD36. In vivo, MARCO and CD36 displayed rhythmic gene and protein expression patterns concomitant with the phagocytic peak. Taken together, our results indicate that CD36 and SR-B2/LIMP-2 play a direct regulatory role in POS phagocytosis dynamics, while the others such as MARCO might participate in POS clearance by RPE cells either as co-receptors or via an indirect process.
Collapse
Affiliation(s)
- Quentin Rieu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Antoine Bougoüin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Jonathan Chatagnon
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Abdallah Hamieh
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Julie Enderlin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
| | - Thierry Huby
- Sorbonne Université, INSERM, UMR-S 1166, F-75013 Paris, France;
| | - Emeline F. Nandrot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (Q.R.); (A.B.); (Y.Z.); (J.C.); (A.H.); (J.E.)
- Correspondence: ; Tel.: +33-1-5346-2541; Fax: +33-1-5346-2602
| |
Collapse
|
12
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
Pisko J, Špirková A, Čikoš Š, Olexiková L, Kovaříková V, Šefčíková Z, Fabian D. Apoptotic cells in mouse blastocysts are eliminated by neighbouring blastomeres. Sci Rep 2021; 11:9228. [PMID: 33927296 PMCID: PMC8085119 DOI: 10.1038/s41598-021-88752-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/16/2021] [Indexed: 02/02/2023] Open
Abstract
Apoptosis is a physiological process that occurs commonly during the development of the preimplantation embryo. The present work examines the ability of apoptotic embryonic cells to express a signal promoting their phagocytosis, and quantifies the ability of neighbouring, normal embryonic cells to perform that task. Microscopic analysis of mouse blastocysts revealed phosphatidylserine externalization to be 10 times less common than incidence of apoptotic cells (as detected by TUNEL). In spite of the low frequency of phosphatidylserine-flipping (in inner cell mass, no annexin V staining was recorded), fluorescence staining of the plasma membrane showed more than 20% of apoptotic cells to have been engulfed by neighbouring blastomeres. The mean frequency of apoptotic cells escaping phagocytosis by their extrusion into blastocyst cavities did not exceed 10%. Immunochemically visualised RAC1 (an enzyme important in actin cytoskeleton rearrangement) was seen in phagosome-like structures containing a nucleus with a condensed morphology. Gene transcript analysis showed that the embryonic cells expressed 12 receptors likely involved in phagocytic process (Scarf1, Msr1, Cd36, Itgav, Itgb3, Cd14, Scarb1, Cd44, Stab1, Adgrb1, Cd300lf, Cd93). In conclusion, embryonic cells possess all the necessary mechanisms for recognising, engulfing and digesting apoptotic cells, ensuring the clearance of most dying blastomeres.
Collapse
Affiliation(s)
- Jozef Pisko
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Alexandra Špirková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Štefan Čikoš
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Lucia Olexiková
- Research Institute for Animal Production Nitra, National Agricultural and Food Centre (NPPC), Hlohovecká 2, 951 41, Lužianky, Slovak Republic
| | - Veronika Kovaříková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Zuzana Šefčíková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Dušan Fabian
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic.
| |
Collapse
|
14
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
15
|
Storm T, Burgoyne T, Futter CE. Membrane trafficking in the retinal pigment epithelium at a glance. J Cell Sci 2020; 133:133/16/jcs238279. [PMID: 32855284 DOI: 10.1242/jcs.238279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a highly specialised pigmented monolayer sandwiched between the choroid and the photoreceptors in the retina. Key functions of the RPE include transport of nutrients to the neural retina, removal of waste products and water from the retina to the blood, recycling of retinal chromophores, absorption of scattered light and phagocytosis of the tips of the photoreceptor outer segments. These functions place a considerable membrane trafficking burden on the RPE. In this Cell Science at a Glance article and the accompanying poster, we focus on RPE-specific adaptations of trafficking pathways. We outline mechanisms underlying the polarised expression of membrane proteins, melanosome biogenesis and movement, and endocytic trafficking, as well as photoreceptor outer segment phagocytosis and degradation. We also briefly discuss theories of how dysfunction in trafficking pathways contributes to retinal disease.
Collapse
Affiliation(s)
- Tina Storm
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Thomas Burgoyne
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Clare E Futter
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
16
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Sørensen NB, Christiansen AT, Kjær TW, Klemp K, la Cour M, Heegaard S, Kiilgaard JF. Bruch's membrane allows unhindered passage of up to 2 μm latex beads in an in vivo porcine model. Exp Eye Res 2018; 180:1-7. [PMID: 30468719 DOI: 10.1016/j.exer.2018.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE It has been proposed that changes in the permeability of Bruch's membrane play a role in the pathogenesis of age-related macular degeneration (AMD). This paper investigates, in an in vivo porcine model, the migration of fluorescent latex beads across the Bruch's membrane after subretinal injection. METHODS Forty-one healthy eyes of 33 three-month-old domestic pigs received a subretinal injection of 0.5, 1.0, 2.0, or 4.0 μm fluorescent latex beads. Between three hours and five weeks after injection evaluations were performed with fundus photographs and histology. Fluorescent beads were identified in unstained histologic sections using the rhodamine filter with the light microscope. RESULTS The fluorescent latex beads relocated from the subretinal space. Intact beads up to 2.0 μm were found in the choroid, sclera, and extrascleral space. The smaller beads were also found inside choroidal and extrascleral blood vessels. In contrast, the larger beads of 4.0 μm did not pass the Bruch's membrane. CONCLUSION Subretinally implanted beads up to 2.0 μm pass the Bruch's membrane intact and cross the blood-ocular barrier. The intact beads are found in the choroid, sclera and inside blood vessels. The results give reason to consider the role of subretinal clearance and passage of Bruch's membrane in the development of AMD.
Collapse
Affiliation(s)
- Nina Buus Sørensen
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | | - Kristian Klemp
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten la Cour
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Folke Kiilgaard
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
18
|
Ying G, Boldt K, Ueffing M, Gerstner CD, Frederick JM, Baehr W. The small GTPase RAB28 is required for phagocytosis of cone outer segments by the murine retinal pigmented epithelium. J Biol Chem 2018; 293:17546-17558. [PMID: 30228185 PMCID: PMC6231133 DOI: 10.1074/jbc.ra118.005484] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/12/2018] [Indexed: 12/19/2022] Open
Abstract
RAB28, a member of the RAS oncogene family, is a ubiquitous, farnesylated, small GTPase of unknown function present in photoreceptors and the retinal pigmented epithelium (RPE). Nonsense mutations of the human RAB28 gene cause recessive cone-rod dystrophy 18 (CRD18), characterized by macular hyperpigmentation, progressive loss of visual acuity, RPE atrophy, and severely attenuated cone and rod electroretinography (ERG) responses. In an attempt to elucidate the disease-causing mechanism, we generated Rab28-/- mice by deleting exon 3 and truncating RAB28 after exon 2. We found that Rab28-/- mice recapitulate features of the human dystrophy (i.e. they exhibited reduced cone and rod ERG responses and progressive retina degeneration). Cones of Rab28-/- mice extended their outer segments (OSs) to the RPE apical processes and formed enlarged, balloon-like distal tips before undergoing degeneration. The visual pigment content of WT and Rab28-/- cones was comparable before the onset of degeneration. Cone phagosomes were almost absent in Rab28-/- mice, whereas rod phagosomes displayed normal levels. A protein-protein interaction screen identified several RAB28-interacting proteins, including the prenyl-binding protein phosphodiesterase 6 δ-subunit (PDE6D) and voltage-gated potassium channel subfamily J member 13 (KCNJ13) present in the RPE apical processes. Of note, the loss of PDE6D prevented delivery of RAB28 to OSs. Taken together, these findings reveal that RAB28 is required for shedding and phagocytosis of cone OS discs.
Collapse
Affiliation(s)
- Guoxin Ying
- From the Department of Ophthalmology and Visual Sciences, University of Utah Health Science Center, Salt Lake City, Utah 84132,
| | - Karsten Boldt
- the Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tübingen, Germany, and
| | - Marius Ueffing
- the Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tübingen, Germany, and
| | - Cecilia D Gerstner
- From the Department of Ophthalmology and Visual Sciences, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Jeanne M Frederick
- From the Department of Ophthalmology and Visual Sciences, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Wolfgang Baehr
- From the Department of Ophthalmology and Visual Sciences, University of Utah Health Science Center, Salt Lake City, Utah 84132,
- the Departments of Neurobiology and Anatomy and
- Biology, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
19
|
Mast N, Bederman IR, Pikuleva IA. Retinal Cholesterol Content Is Reduced in Simvastatin-Treated Mice Due to Inhibited Local Biosynthesis Albeit Increased Uptake of Serum Cholesterol. Drug Metab Dispos 2018; 46:1528-1537. [PMID: 30115644 PMCID: PMC6193214 DOI: 10.1124/dmd.118.083345] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Statins, a class of cholesterol-lowering drugs, are currently being investigated for treatment of age-related macular degeneration, a retinal disease. Herein, retinal and serum concentrations of four statins (atorvastatin, simvastatin, pravastatin, and rosuvastatin) were evaluated after mice were given a single drug dose of 60 mg/kg body weight. All statins, except rosuvastatin, were detected in the retina: atorvastatin and pravastatin at 1.6 pmol and simvastatin at 4.1 pmol. Serum statin concentrations (pmol/ml) were 223 (simvastatin), 1401 (atorvastatin), 2792 (pravastatin), and 9050 (rosuvastatin). Simvastatin was then administered to mice daily for 6 weeks at 60 mg/kg body weight. Simvastatin treatment reduced serum cholesterol levels by 18% and retinal content of cholesterol and lathosterol (but not desmosterol) by 24% and 21%, respectively. The relative contributions of retinal cholesterol biosynthesis and retinal uptake of serum cholesterol to total retinal cholesterol input were changed as well. These contributions were 79% and 21%, respectively, in vehicle-treated mice and 69% and 31%, respectively, in simvastatin-treated mice. Thus, simvastatin treatment lowered retinal cholesterol because a compensatory upregulation of retinal uptake of serum cholesterol was not sufficient to overcome the effect of inhibited retinal biosynthesis. Simultaneously, simvastatin-treated mice had a 2.9-fold increase in retinal expression of Cd36, the major receptor clearing oxidized low-density lipoproteins from Bruch's membrane. Notably, simvastatin treatment essentially did not affect brain cholesterol homeostasis. Our results reveal the statin effect on the retinal and brain cholesterol input and are of value for future clinical investigations of statins as potential therapeutics for age-related macular degeneration.
Collapse
Affiliation(s)
- Natalia Mast
- Departments of Ophthalmology and Visual Sciences (N.M., I.A.P.) and Pediatrics (I.R.B.), Case Western Reserve University, Cleveland, Ohio
| | - Ilya R Bederman
- Departments of Ophthalmology and Visual Sciences (N.M., I.A.P.) and Pediatrics (I.R.B.), Case Western Reserve University, Cleveland, Ohio
| | - Irina A Pikuleva
- Departments of Ophthalmology and Visual Sciences (N.M., I.A.P.) and Pediatrics (I.R.B.), Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
20
|
Lyssenko NN, Haider N, Picataggi A, Cipollari E, Jiao W, Phillips MC, Rader DJ, Chavali VRM. Directional ABCA1-mediated cholesterol efflux and apoB-lipoprotein secretion in the retinal pigment epithelium. J Lipid Res 2018; 59:1927-1939. [PMID: 30076206 DOI: 10.1194/jlr.m087361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Cholesterol-containing soft drusen and subretinal drusenoid deposits (SDDs) occur at the basolateral and apical side of the retinal pigment epithelium (RPE), respectively, in the chorioretina and are independent risk factors for late age-related macular degeneration (AMD). Cholesterol in these deposits could originate from the RPE as nascent HDL or apoB-lipoprotein. We characterized cholesterol efflux and apoB-lipoprotein secretion in RPE cells. Human RPE cells, ARPE-19, formed nascent HDL that was similar in physicochemical properties to nascent HDL formed by other cell types. In highly polarized primary human fetal RPE (phfRPE) monolayers grown in low-lipid conditions, cholesterol efflux to HDL was moderately directional to the apical side and much stronger than ABCA1-mediated efflux to apoA-I at both sides; ABCA1-mediated efflux was weak and equivalent between the two sides. Feeding phfRPE monolayers with oxidized or acetylated LDL increased intracellular levels of free and esterified cholesterol and substantially raised ABCA1-mediated cholesterol efflux at the apical side. phfRPE monolayers secreted apoB-lipoprotein preferentially to the apical side in low-lipid and oxidized LDL-feeding conditions. These findings together with evidence from human genetics and AMD pathology suggest that RPE-generated HDL may contribute lipid to SDDs.
Collapse
Affiliation(s)
- Nicholas N Lyssenko
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Naqi Haider
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | - Antonino Picataggi
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eleonora Cipollari
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wanzhen Jiao
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | - Michael C Phillips
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
21
|
Abstract
Cell death is a perpetual feature of tissue microenvironments; each day under homeostatic conditions, billions of cells die and must be swiftly cleared by phagocytes. However, cell death is not limited to this natural turnover-apoptotic cell death can be induced by infection, inflammation, or severe tissue injury. Phagocytosis of apoptotic cells is thus coupled to specific functions, from the induction of growth factors that can stimulate the replacement of dead cells to the promotion of tissue repair or tissue remodeling in the affected site. In this review, we outline the mechanisms by which phagocytes sense apoptotic cell death and discuss how phagocytosis is integrated with environmental cues to drive appropriate responses.
Collapse
Affiliation(s)
- Lidia Bosurgi
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Bernard-Nocht-Institut für Tropenmedizin, Hamburg, Germany
| | - Lindsey D Hughes
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA
| | - Sourav Ghosh
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
22
|
Yu B, Egbejimi A, Dharmat R, Xu P, Zhao Z, Long B, Miao H, Chen R, Wensel TG, Cai J, Chen Y. Phagocytosed photoreceptor outer segments activate mTORC1 in the retinal pigment epithelium. Sci Signal 2018; 11:11/532/eaag3315. [PMID: 29844054 DOI: 10.1126/scisignal.aag3315] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The retinal pigment epithelium (RPE) transports nutrients and metabolites between the microvascular bed that maintains the outer retina and photoreceptor neurons. The RPE removes photoreceptor outer segments (POS) by receptor-mediated phagocytosis, a process that peaks in the morning. Uptake and degradation of POS initiates signaling cascades in the RPE. Upstream stimuli from various metabolic activities converge on mechanistic target of rapamycin complex 1 (mTORC1), and aberrant mTORC1 signaling is implicated in aging and age-related degeneration of the RPE. We measured mTORC1-mediated responses to RPE phagocytosis in vivo and in vitro. During the morning burst of POS shedding, there was transient activation of mTORC1-mediated signaling in the RPE. POS activated mTORC1 through lysosome-independent mechanisms, and engulfed POS served as a docking platform for mTORC1 assembly. The identification of POS as endogenous stimuli of mTORC1 in the RPE provides a mechanistic link underlying the photoreceptor-RPE interaction in the outer retina.
Collapse
Affiliation(s)
- Bo Yu
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anuoluwapo Egbejimi
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachayata Dharmat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei Xu
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zhenyang Zhao
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bo Long
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hongyu Miao
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Theodore G Wensel
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiyang Cai
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yan Chen
- Department of Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, TX 77555, USA. .,Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
23
|
van Leeuwen EM, Emri E, Merle BMJ, Colijn JM, Kersten E, Cougnard-Gregoire A, Dammeier S, Meester-Smoor M, Pool FM, de Jong EK, Delcourt C, Rodrigez-Bocanegra E, Biarnés M, Luthert PJ, Ueffing M, Klaver CCW, Nogoceke E, den Hollander AI, Lengyel I. A new perspective on lipid research in age-related macular degeneration. Prog Retin Eye Res 2018; 67:56-86. [PMID: 29729972 DOI: 10.1016/j.preteyeres.2018.04.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis.
Collapse
Affiliation(s)
- Elisabeth M van Leeuwen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eszter Emri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Benedicte M J Merle
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Johanna M Colijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Audrey Cougnard-Gregoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Sascha Dammeier
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Magda Meester-Smoor
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Eiko K de Jong
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Cécile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | | | | | | | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Everson Nogoceke
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imre Lengyel
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
24
|
Davies SP, Reynolds GM, Stamataki Z. Clearance of Apoptotic Cells by Tissue Epithelia: A Putative Role for Hepatocytes in Liver Efferocytosis. Front Immunol 2018; 9:44. [PMID: 29422896 PMCID: PMC5790054 DOI: 10.3389/fimmu.2018.00044] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
Toxic substances and microbial or food-derived antigens continuously challenge the liver, which is tasked with their safe neutralization. This vital organ is also important for the removal of apoptotic immune cells during inflammation and has been previously described as a “graveyard” for dying lymphocytes. The clearance of apoptotic and necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue homeostasis. Much of the research into this form of immunological control has focused on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, which lack key receptors that mediate phagocytosis in macrophages. Herein, we discuss recent developments that increased our understanding of efferocytosis in tissues, with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in health and in inflammation, highlighting the role of phagocytic epithelia.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gary M Reynolds
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
25
|
Ao J, Wood JP, Chidlow G, Gillies MC, Casson RJ. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol 2018; 46:670-686. [PMID: 29205705 DOI: 10.1111/ceo.13121] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
The retinal pigment epithelium (RPE) comprises a monolayer of cells located between the neuroretina and the choriocapillaries. The RPE serves several important functions in the eye: formation of the blood-retinal barrier, protection of the retina from oxidative stress, nutrient delivery and waste disposal, ionic homeostasis, phagocytosis of photoreceptor outer segments, synthesis and release of growth factors, reisomerization of all-trans-retinal during the visual cycle, and establishment of ocular immune privilege. Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. Dysfunction of the RPE has been associated with the pathogenesis of AMD in relation to increased oxidative stress, mitochondrial destabilization and complement dysregulation. Photobiomodulation or near infrared light therapy which refers to non-invasive irradiation of tissue with light in the far-red to near-infrared light spectrum (630-1000 nm), is an intervention that specifically targets key mechanisms of RPE dysfunction that are implicated in AMD pathogenesis. The current evidence for the efficacy of photobiomodulation in AMD is poor but its safety profile and proposed mechanisms of action motivate further research as a novel therapy for AMD.
Collapse
Affiliation(s)
- Jack Ao
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - John Pm Wood
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark C Gillies
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert J Casson
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Chiang CK, Tworak A, Kevany BM, Xu B, Mayne J, Ning Z, Figeys D, Palczewski K. Quantitative phosphoproteomics reveals involvement of multiple signaling pathways in early phagocytosis by the retinal pigmented epithelium. J Biol Chem 2017; 292:19826-19839. [PMID: 28978645 PMCID: PMC5712622 DOI: 10.1074/jbc.m117.812677] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
One of the major biological functions of the retinal pigmented epithelium (RPE) is the clearance of shed photoreceptor outer segments (POS) through a multistep process resembling phagocytosis. RPE phagocytosis helps maintain the viability of photoreceptors that otherwise could succumb to the high metabolic flux and photo-oxidative stress associated with visual processing. The regulatory mechanisms underlying phagocytosis in the RPE are not fully understood, although dysfunction of this process contributes to the pathogenesis of multiple human retinal degenerative disorders, including age-related macular degeneration. Here, we present an integrated transcriptomic, proteomic, and phosphoproteomic analysis of phagocytosing RPE cells, utilizing three different experimental models: the human-derived RPE-like cell line ARPE-19, cultured murine primary RPE cells, and RPE samples from live mice. Our combined results indicated that early stages of phagocytosis in the RPE are mainly characterized by pronounced changes in the protein phosphorylation level. Global phosphoprotein enrichment analysis revealed involvement of PI3K/Akt, mechanistic target of rapamycin (mTOR), and MEK/ERK pathways in the regulation of RPE phagocytosis, confirmed by immunoblot analyses and in vitro phagocytosis assays. Most strikingly, phagocytosis of POS by cultured RPE cells was almost completely blocked by pharmacological inhibition of phosphorylation of Akt. Our findings, along with those of previous studies, indicate that these phosphorylation events allow the RPE to integrate multiple signals instigated by shed POS at different stages of the phagocytic process.
Collapse
Affiliation(s)
- Cheng-Kang Chiang
- From the Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- the Department of Chemistry, National Dong Hwa University, No. 1 Sec. 2 Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | | | | | - Bo Xu
- From the Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Janice Mayne
- From the Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Zhibin Ning
- From the Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Daniel Figeys
- From the Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada,
- the Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Krzysztof Palczewski
- the Department of Pharmacology and
- the Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, and
| |
Collapse
|
27
|
Fazeli G, Wehman AM. Safely removing cell debris with LC3-associated phagocytosis. Biol Cell 2017; 109:355-363. [PMID: 28755428 DOI: 10.1111/boc.201700028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Phagocytosis and autophagy are two distinct pathways that degrade external and internal unwanted particles. Both pathways lead to lysosomal degradation inside the cell, and over the last decade, the line between them has blurred; autophagy proteins were discovered on phagosomes engulfing foreign bacteria, leading to the proposal of LC3-associated phagocytosis (LAP). Many proteins involved in macroautophagy are used for phagosome degradation, although Atg8/LC3 family proteins only decorate the outer membrane of LC3-associated phagosomes, in contrast to both autophagosome membranes. A few proteins distinguish LAP from autophagy, such as components of the autophagy pre-initiation complex. However, most LAP cargo is wrapped in multiple layers of membranes, making them similar in structure to autophagosomes. Recent evidence suggests that LC3 is important for the degradation of internal membranes, explaining why LC3 would be a vital part of both macroautophagy and LAP. In addition to removing invading pathogens, multicellular organisms also use LAP to degrade cell debris, including cell corpses and photoreceptor outer segments. The post-mitotic midbody remnant is another cell fragment, which results from each cell division, that was recently added to the growing list of LAP cargoes. Thus, LAP plays an important role during the normal physiology and homoeostasis of animals.
Collapse
Affiliation(s)
- Gholamreza Fazeli
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, 97080, Germany
| | - Ann Marie Wehman
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, 97080, Germany
| |
Collapse
|
28
|
Ikarashi R, Akechi H, Kanda Y, Ahmad A, Takeuchi K, Morioka E, Sugiyama T, Ebisawa T, Ikeda M, Ikeda M. Regulation of molecular clock oscillations and phagocytic activity via muscarinic Ca 2+ signaling in human retinal pigment epithelial cells. Sci Rep 2017; 7:44175. [PMID: 28276525 PMCID: PMC5343479 DOI: 10.1038/srep44175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Vertebrate eyes are known to contain circadian clocks, however, the intracellular mechanisms regulating the retinal clockwork remain largely unknown. To address this, we generated a cell line (hRPE-YC) from human retinal pigmental epithelium, which stably co-expressed reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). The hRPE-YC cells demonstrated circadian rhythms in Bmal1 transcription. Also, these cells represented circadian rhythms in Ca2+-spiking frequencies, which were canceled by dominant-negative Bmal1 transfections. The muscarinic agonist carbachol, but not photic stimulation, phase-shifted Bmal1 transcriptional rhythms with a type-1 phase response curve. This is consistent with significant M3 muscarinic receptor expression and little photo-sensor (Cry2 and Opn4) expression in these cells. Moreover, forskolin phase-shifted Bmal1 transcriptional rhythm with a type-0 phase response curve, in accordance with long-lasting CREB phosphorylation levels after forskolin exposure. Interestingly, the hRPE-YC cells demonstrated apparent circadian rhythms in phagocytic activities, which were abolished by carbachol or dominant-negative Bmal1 transfection. Because phagocytosis in RPE cells determines photoreceptor disc shedding, molecular clock oscillations and cytosolic Ca2+ signaling may be the driving forces for disc-shedding rhythms known in various vertebrates. In conclusion, the present study provides a cellular model to understand molecular and intracellular signaling mechanisms underlying human retinal circadian clocks.
Collapse
Affiliation(s)
- Rina Ikarashi
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Honami Akechi
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Yuzuki Kanda
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Alsawaf Ahmad
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Kouhei Takeuchi
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Eri Morioka
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Takashi Sugiyama
- Advanced Core Technology Department, Research and Development Division, Olympus Co. Ltd., 2-3 Kuboyama, Hachioji, Tokyo 192-8512, Japan
| | - Takashi Ebisawa
- Department of Psychiatry, Tokyo Metropolitan Police Hospital, 4-22-1 Nakano, Nakano-ku, Tokyo 164-8541, Japan
| | - Masaaki Ikeda
- Department of Physiology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan.,Molecular Clock Project, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka city, Saitama, 350-1241, Japan
| | - Masayuki Ikeda
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan.,Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| |
Collapse
|
29
|
Iannaccone A, Hollingsworth TJ, Koirala D, New DD, Lenchik NI, Beranova-Giorgianni S, Gerling IC, Radic MZ, Giorgianni F. Retinal pigment epithelium and microglia express the CD5 antigen-like protein, a novel autoantigen in age-related macular degeneration. Exp Eye Res 2016; 155:64-74. [PMID: 27989757 DOI: 10.1016/j.exer.2016.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022]
Abstract
We report on a novel autoantigen expressed in human macular tissues, identified following an initial Western blot (WB)-based screening of sera from subjects with age-related macular degeneration (AMD) for circulating auto-antibodies (AAbs) recognizing macular antigens. Immunoprecipitation, 2D-gel electrophoresis (2D-GE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), direct enzyme-linked immunosorbent assays (ELISA), WBs, immunohistochemistry (IHC), human primary and ARPE-19 immortalized cell cultures were used to characterize this novel antigen. An approximately 40-kDa autoantigen in AMD was identified as the scavenger receptor CD5 antigen-like protein (CD5L), also known as apoptosis inhibitor of macrophage (AIM). CD5L/AIM was localized to human RPE by IHC and WB methods and to retinal microglial cells by IHC. ELISAs with recombinant CD5L/AIM on a subset of AMD sera showed a nearly 2-fold higher anti-CD5L/AIM reactivity in AMD vs. Control sera (p = 0.000007). Reactivity ≥0.4 was associated with 18-fold higher odds of having AMD (χ2 = 21.42, p = 0.00063). Circulating CD5L/AIM levels were also nearly 2-fold higher in AMD sera compared to controls (p = 0.0052). The discovery of CD5L/AIM expression in the RPE and in retinal microglial cells adds to the known immunomodulatory roles of these cells in the retina. The discovery of AAbs recognizing CD5L/AIM identifies a possible novel disease biomarker and suggest a potential role for CD5L/AIM in the pathogenesis of AMD in situ. The possible mechanisms via which anti-CD5L/AIM AAbs may contribute to AMD pathogenesis are discussed. In particular, since CD5L is known to stimulate autophagy and to participate in oxidized LDL uptake in macrophages, we propose that anti-CD5L/AIM auto-antibodies may play a role in drusen biogenesis and inflammatory RPE damage in AMD.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, USA.
| | - T J Hollingsworth
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA
| | - Diwa Koirala
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - David D New
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA
| | - Nataliya I Lenchik
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; University of Tennessee Health Science Center, Department of Medicine, Division of Endocrinology, Memphis, TN, USA
| | - Sarka Beranova-Giorgianni
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Ivan C Gerling
- University of Tennessee Health Science Center, Department of Medicine, Division of Endocrinology, Memphis, TN, USA
| | - Marko Z Radic
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, TN, USA
| | - Francesco Giorgianni
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| |
Collapse
|
30
|
D'Alessio AC, Fan ZP, Wert KJ, Baranov P, Cohen MA, Saini JS, Cohick E, Charniga C, Dadon D, Hannett NM, Young MJ, Temple S, Jaenisch R, Lee TI, Young RA. A Systematic Approach to Identify Candidate Transcription Factors that Control Cell Identity. Stem Cell Reports 2016; 5:763-775. [PMID: 26603904 PMCID: PMC4649293 DOI: 10.1016/j.stemcr.2015.09.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 02/08/2023] Open
Abstract
Hundreds of transcription factors (TFs) are expressed in each cell type, but cell identity can be induced through the activity of just a small number of core TFs. Systematic identification of these core TFs for a wide variety of cell types is currently lacking and would establish a foundation for understanding the transcriptional control of cell identity in development, disease, and cell-based therapy. Here, we describe a computational approach that generates an atlas of candidate core TFs for a broad spectrum of human cells. The potential impact of the atlas was demonstrated via cellular reprogramming efforts where candidate core TFs proved capable of converting human fibroblasts to retinal pigment epithelial-like cells. These results suggest that candidate core TFs from the atlas will prove a useful starting point for studying transcriptional control of cell identity and reprogramming in many human cell types. Core transcription factors (TFs) are predicted for >200 cell types/tissues Predicted TFs for retinal pigment epithelial (RPE) cells can reprogram fibroblasts These reprogrammed RPE-like cells are functionally similar to primary RPE The sets of predicted factors may facilitate studies of control of cell identity
Collapse
Affiliation(s)
- Ana C D'Alessio
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Zi Peng Fan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katherine J Wert
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Petr Baranov
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Janmeet S Saini
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY 12201, USA
| | - Evan Cohick
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | - Daniel Dadon
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Michael J Young
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, Nolan JM. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res 2016; 50:34-66. [PMID: 26541886 PMCID: PMC4698241 DOI: 10.1016/j.preteyeres.2015.10.003] [Citation(s) in RCA: 341] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/04/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
The human macula uniquely concentrates three carotenoids: lutein, zeaxanthin, and meso-zeaxanthin. Lutein and zeaxanthin must be obtained from dietary sources such as green leafy vegetables and orange and yellow fruits and vegetables, while meso-zeaxanthin is rarely found in diet and is believed to be formed at the macula by metabolic transformations of ingested carotenoids. Epidemiological studies and large-scale clinical trials such as AREDS2 have brought attention to the potential ocular health and functional benefits of these three xanthophyll carotenoids consumed through the diet or supplements, but the basic science and clinical research underlying recommendations for nutritional interventions against age-related macular degeneration and other eye diseases are underappreciated by clinicians and vision researchers alike. In this review article, we first examine the chemistry, biochemistry, biophysics, and physiology of these yellow pigments that are specifically concentrated in the macula lutea through the means of high-affinity binding proteins and specialized transport and metabolic proteins where they play important roles as short-wavelength (blue) light-absorbers and localized, efficient antioxidants in a region at high risk for light-induced oxidative stress. Next, we turn to clinical evidence supporting functional benefits of these carotenoids in normal eyes and for their potential protective actions against ocular disease from infancy to old age.
Collapse
Affiliation(s)
- Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Binxing Li
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Preejith P Vachali
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Rajalekshmy Shyam
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Bradley S Henriksen
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - John M Nolan
- Macular Pigment Research Group, Vision Research Centre, School of Health Science, Carriganore House, Waterford Institute of Technology West Campus, Carriganore, Waterford, Ireland.
| |
Collapse
|
32
|
Vellonen KS, Malinen M, Mannermaa E, Subrizi A, Toropainen E, Lou YR, Kidron H, Yliperttula M, Urtti A. A critical assessment of in vitro tissue models for ADME and drug delivery. J Control Release 2014; 190:94-114. [DOI: 10.1016/j.jconrel.2014.06.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/22/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
|
33
|
Khalifeh-Soltani A, McKleroy W, Sakuma S, Cheung YY, Tharp K, Qiu Y, Turner SM, Chawla A, Stahl A, Atabai K. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids. Nat Med 2014; 20:175-83. [PMID: 24441829 DOI: 10.1038/nm.3450] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/11/2013] [Indexed: 12/14/2022]
Abstract
Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8(-/-)) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin- and αvβ5 integrin-dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications.
Collapse
Affiliation(s)
- Amin Khalifeh-Soltani
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Lung Biology Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - William McKleroy
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Lung Biology Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Stephen Sakuma
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Lung Biology Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yuk Yin Cheung
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Kevin Tharp
- 1] Metabolic Biology, University of California, Berkeley, Berkeley, California, USA. [2] Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, USA
| | - Yifu Qiu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | | | - Ajay Chawla
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [3] Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Andreas Stahl
- 1] Metabolic Biology, University of California, Berkeley, Berkeley, California, USA. [2] Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, USA
| | - Kamran Atabai
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Lung Biology Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
34
|
Mustafi D, Kevany BM, Genoud C, Bai X, Palczewski K. Photoreceptor phagocytosis is mediated by phosphoinositide signaling. FASEB J 2013; 27:4585-95. [PMID: 23913857 DOI: 10.1096/fj.13-237537] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Circadian oscillations in peripheral tissues, such as the retinal compartment of the eye, are critical to anticipating changing metabolic demands. Circadian shedding of retinal photoreceptor cell discs with subsequent phagocytosis by the neighboring retinal pigmented epithelium (RPE) is essential for removal of toxic metabolites and lifelong survival of these postmitotic neurons. Defects in photoreceptor phagocytosis can lead to severe retinal pathology, but the biochemical mechanisms remain poorly defined. By first documenting a 2.8-fold burst of photoreceptor phagocytosis events in the mouse eye in the morning compared with the afternoon by serial block face imaging, we established time points to assess transcriptional readouts by RNA sequencing (RNA-Seq). We identified 365 oscillating protein-coding transcripts that implicated the phosphoinositide lipid signaling network mediating the discrete steps of photoreceptor phagocytosis. Moreover, examination of overlapping cistromic sites by core clock transcription factors and promoter elements of these effector genes provided a functional basis for the circadian cycling of these transcripts. RNA-Seq also revealed oscillating expression of 16 long intergenic noncoding RNAs and key histone modifying enzymes critical for circadian gene expression. Our phenotypic and genotypic characterization reveals a complex global landscape of overlapping and temporally controlled networks driving the essential circadian process in the eye.
Collapse
Affiliation(s)
- Debarshi Mustafi
- 1Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4965, USA.
| | | | | | | | | |
Collapse
|
35
|
Diagnostic and Therapeutic Challenges. Retina 2013; 33:1471-4. [DOI: 10.1097/iae.0b013e318285ce03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
|
37
|
Li Y, Tsai YT, Hsu CW, Erol D, Yang J, Wu WH, Davis RJ, Egli D, Tsang SH. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med 2012; 18:1312-9. [PMID: 22895806 DOI: 10.2119/molmed.2012.00242] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/09/2012] [Indexed: 11/06/2022] Open
Abstract
The U.S. Food and Drug Administration recently approved phase I/II clinical trials for embryonic stem (ES) cell-based retinal pigmented epithelium (RPE) transplantation, but this allograft transplantation requires lifelong immunosuppressive therapy. Autografts from patient-specific induced pluripotent stem (iPS) cells offer an alternative solution to this problem. However, more data are required to establish the safety and efficacy of iPS transplantation in animal models before moving iPS therapy into clinical trials. This study examines the efficacy of iPS transplantation in restoring functional vision in Rpe65(rd12)/Rpe65(rd12) mice, a clinically relevant model of retinitis pigmentosa (RP). Human iPS cells were differentiated into morphologically and functionally RPE-like tissue. Quantitative real-time polymerase chain reaction (RT-PCR) and immunoblots confirmed RPE fate. The iPS-derived RPE cells were injected into the subretinal space of Rpe65(rd12)/Rpe65(rd12) mice at 2 d postnatally. After transplantation, the long-term surviving iPS-derived RPE graft colocalized with the host native RPE cells and assimilated into the host retina without disruption. None of the mice receiving transplants developed tumors over their lifetimes. Furthermore, electroretinogram, a standard method for measuring efficacy in human trials, demonstrated improved visual function in recipients over the lifetime of this RP mouse model. Our study provides the first direct evidence of functional recovery in a clinically relevant model of retinal degeneration using iPS transplantation and supports the feasibility of autologous iPS cell transplantation for retinal and macular degenerations featuring significant RPE loss.
Collapse
Affiliation(s)
- Yao Li
- Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kinnunen K, Petrovski G, Moe MC, Berta A, Kaarniranta K. Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol 2012; 90:299-309. [PMID: 22112056 DOI: 10.1111/j.1755-3768.2011.02179.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Age-related macular degeneration (AMD) is attributed to a complex interaction of genetic and environmental factors. It is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium (RPE) and Bruch's membrane, as well as alterations in choroidal capillaries. AMD pathogenesis is strongly associated with chronic oxidative stress and inflammation that ultimately lead to protein damage, aggregation and degeneration of RPE. Specific degenerative findings for AMD are accumulation of intracellular lysosomal lipofuscin and extracellular drusens. In this review, we discuss thoroughly RPE-derived mechanisms in AMD pathology.
Collapse
Affiliation(s)
- Kati Kinnunen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
39
|
Bao Y, Wang L, Xu Y, Yang Y, Wang L, Si S, Cho S, Hong B. Salvianolic acid B inhibits macrophage uptake of modified low density lipoprotein (mLDL) in a scavenger receptor CD36-dependent manner. Atherosclerosis 2012; 223:152-9. [PMID: 22658257 DOI: 10.1016/j.atherosclerosis.2012.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 03/06/2012] [Accepted: 05/05/2012] [Indexed: 01/17/2023]
Abstract
CD36, a class B scavenger receptor, has been implicated in the pathogenesis of a host of vascular inflammatory diseases. Through a high-throughput screening (HTS) assay for CD36 antagonist, we previously identified salvianolic acid B (SAB), a hydrophilic component derived from the herb Danshen, as a potential candidate. Danshen, the dried roots of Salvia miltiorrhiza, has been widely used in China for the prevention and treatment of atherosclerosis-related disorders. Previous studies showed that SAB acted as an anti-oxidant by preventing lipid peroxidation and oxidized LDL (oxLDL) formation. The present study was to investigate the specificity and efficacy of SAB in the inhibition of CD36-mediated lipid uptake. SAB reduced modified LDL (mLDL) uptake in a dose-dependent manner in phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 and RAW 264.7 cells. In the CD36 silenced THP-1 cells, SAB had no effect in reducing mLDL uptake, whereas its overexpression in CHO cells reinstates the effect, indicating a specific involvement of SAB in antagonizing the CD36's function. Surface plasmon resonance (SPR) analysis revealed a direct binding of SAB to CD36 with a high affinity (K(D) = 3.74 μM), confirming physical interactions of SAB with the receptor. Additionally, SAB reduced oxLDL-induced CD36 gene expression in the cultured cell lines and primary macrophages. In ApoE KO mice fed a high fat diet, SAB reduced CD36 gene expression and lipid uptake in macrophages, showing its ability to antagonize CD36 pathways in vivo. These results demonstrate that SAB is an effective CD36 antagonist and suggest SAB as a potential anti-atherosclerotic agent.
Collapse
Affiliation(s)
- Yi Bao
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Huang W, Febbraio M, Silverstein RL. CD9 tetraspanin interacts with CD36 on the surface of macrophages: a possible regulatory influence on uptake of oxidized low density lipoprotein. PLoS One 2011; 6:e29092. [PMID: 22216174 PMCID: PMC3244426 DOI: 10.1371/journal.pone.0029092] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/21/2011] [Indexed: 12/26/2022] Open
Abstract
CD36 is a type 2 scavenger receptor with multiple functions. CD36 binding to oxidized LDL triggers signaling cascades that are required for macrophage foam cell formation, but the mechanisms by which CD36 signals remain incompletely understood. Mass spectrometry analysis of anti-CD36 immuno-precipitates from macrophages identified the tetraspanin CD9 as a CD36 interacting protein. Western blot showed that CD9 was precipitated from mouse macrophages by anti-CD36 monoclonal antibody and CD36 was likewise precipitated by anti-CD9, confirming the mass spectrometry results. Macrophages from cd36 null mice were used to demonstrate specificity. Membrane associations of the two proteins on intact cells was analyzed by confocal immunofluorescence microscopy and by a novel cross linking assay that detects proteins in close proximity (<40 nm). Functional significance was determined by assessing lipid accumulation, foam cell formation and JNK activation in wt, cd9 null and cd36 null macrophages exposed to oxLDL. OxLDL uptake, lipid accumulation, foam cell formation, and JNK phosphorylation were partially impaired in cd9 null macrophages. The present study demonstrates that CD9 associates with CD36 on the macrophage surface and may participate in macrophage signaling in response to oxidized LDL.
Collapse
Affiliation(s)
- Wenxin Huang
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Maria Febbraio
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case, Western Reserve University, Cleveland, Ohio, United States of America
| | - Roy L. Silverstein
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case, Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
42
|
Martin C, Chevrot M, Poirier H, Passilly-Degrace P, Niot I, Besnard P. CD36 as a lipid sensor. Physiol Behav 2011; 105:36-42. [DOI: 10.1016/j.physbeh.2011.02.029] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/10/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
|
43
|
Abstract
PURPOSE To investigate spectral domain optical coherence tomography and autofluorescence findings in eyes with pseudoxanthoma elasticum. METHODS A retrospective analysis of visual acuity, spectral domain optical coherence tomography, and autofluorescence findings of consecutive patients with pseudoxanthoma elasticum was performed. The spectral domain optical coherence tomography was evaluated for retinal architecture, subretinal accumulations, and photoreceptor layer thickness. Autofluorescence and near-infrared reflectance images were reviewed for correlative findings. RESULTS There were 21 patients (42 eyes) with pseudoxanthoma elasticum with a mean age of 56.1 ± 12.4 years. Subretinal fluid was found in 14 eyes, 7 of which had no signs of choroidal neovascularization. In six of the seven eyes with a history of choroidal neovascularization controlled with antivascular endothelial growth factor injections, there were areas of subretinal fluid that were not contiguous with the choroidal neovascularization and did not seem responsive to antivascular endothelial growth factor injections. Two types of formed material were observed in the subretinal space and outer retina. The first was hypoautofluorescent deposits above the retinal pigment epithelium resembling subretinal drusenoid deposits (reticular pseudodrusen). The second was yellow to brown hyperautofluorescent aggregates in the subretinal space and outer retina similar to those seen in pattern dystrophies and was found in 19 eyes. There was an apparent association between the presence of subretinal fluid and pattern dystrophy-like findings. CONCLUSION Subretinal fluid in patients with pseudoxanthoma elasticum is not always indicative of active leakage from underlying choroidal neovascularization and can be resistant to antivascular endothelial growth factor injections. This fluid is associated with pattern dystrophy-like findings and may indicate abnormal retinal pigment epithelial function.
Collapse
|
44
|
Zigler JS, Zhang C, Grebe R, Sehrawat G, Hackler L, Adhya S, Hose S, McLeod DS, Bhutto I, Barbour W, Parthasarathy G, Zack DJ, Sergeev Y, Lutty GA, Handa JT, Sinha D. Mutation in the βA3/A1-crystallin gene impairs phagosome degradation in the retinal pigmented epithelium of the rat. J Cell Sci 2011; 124:523-31. [PMID: 21266465 DOI: 10.1242/jcs.078790] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phagocytosis of the shed outer segment discs of photoreceptors is a major function of the retinal pigmented epithelium (RPE). We demonstrate for the first time that βA3/A1-crystallin, a major structural protein of the ocular lens, is expressed in RPE cells. Further, by utilizing the Nuc1 rat, in which the βA3/A1-crystallin gene is mutated, we show that this protein is required by RPE cells for proper degradation of outer segment discs that have been internalized in phagosomes. We also demonstrate that in wild-type RPE, βA3/A1-crystallin is localized to the lysosomes. However, in the Nuc1 RPE, βA3/A1-crystallin fails to translocate to the lysosomes, perhaps because misfolding of the mutant protein masks sorting signals required for proper trafficking. The digestion of phagocytized outer segments requires a high level of lysosomal enzyme activity, and cathepsin D, the major enzyme responsible for proteolysis of the outer segments, is decreased in mutant RPE cells. Interestingly, our results also indicate a defect in the autophagy process in the Nuc1 RPE, which is probably also linked to impaired lysosomal function, because phagocytosis and autophagy might share common mechanisms in degradation of their targets. βA3/A1-crystallin is a novel lysosomal protein in RPE, essential for degradation of phagocytosed material.
Collapse
Affiliation(s)
- J Samuel Zigler
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Picard E, Houssier M, Bujold K, Sapieha P, Lubell W, Dorfman A, Racine J, Hardy P, Febbraio M, Lachapelle P, Ong H, Sennlaub F, Chemtob S. CD36 plays an important role in the clearance of oxLDL and associated age-dependent sub-retinal deposits. Aging (Albany NY) 2010; 2:981-9. [PMID: 21098885 PMCID: PMC3034186 DOI: 10.18632/aging.100218] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 11/07/2010] [Indexed: 12/02/2022]
Abstract
Age-related macular degeneration (AMD) represents the major cause of vision loss in industrialized nations. Laminar deposits in Bruch's membrane (BM) are among the first prominent histopathologic features, along with drusen formation, and have been found to contain oxidized lipids. Increases in concentrations of oxidized LDL (oxLDL) in plasma are observed with age and high fat high (HFHC) cholesterol diet. CD36 is the principal receptor implicated in uptake of oxLDL, and is expressed in the retinal pigment epithelium (RPE). We determined if CD36 participates in oxLDL uptake in RPE and correspondingly in clearance of sub-retinal deposits. Uptake of oxLDL by RPEin vitro and in vivo was CD36-dependent. CD36 deficiency in mice resulted in age-associated accumulation of oxLDL and sub-retinal BM thickening, despite fed a regular diet. Conversely, treatment of HFHC-fed ApoE null mice with a CD36 agonist, EP80317 (300 μg/kg/day), markedly diminished thickening of BM, and partially preserved (in part) photoreceptor function. In conclusion, our data uncover a new role for CD36 in the clearance of oxidized lipids from BM and in the prevention of age-dependent sub-retinal laminar deposits.
Collapse
Affiliation(s)
- Emilie Picard
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Research Center, Hospitals Ste. Justine and Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| | - Marianne Houssier
- Inserm, U872, Paris, F-75006 France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, UMR S 872, Paris, F-75006 France
- Université Paris Descartes, UMR S 872, Paris, F-75006 France
| | - Kim Bujold
- Faculty of Pharmacy, University de Montreal, Montreal, Quebec, Canada
| | - Przemyslaw Sapieha
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Research Center, Hospitals Ste. Justine and Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| | - William Lubell
- Departments of Chemistry, University de Montreal, Montreal, Quebec, Canada
| | - Allison Dorfman
- Departments of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Julie Racine
- Departments of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Research Center, Hospitals Ste. Justine and Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| | - Maria Febbraio
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 4412, USA
| | - Pierre Lachapelle
- Departments of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Huy Ong
- Faculty of Pharmacy, University de Montreal, Montreal, Quebec, Canada
| | - Florian Sennlaub
- Inserm, U872, Paris, F-75006 France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, UMR S 872, Paris, F-75006 France
- Université Paris Descartes, UMR S 872, Paris, F-75006 France
- APHP, Département d'Ophthalmologie Hôtel Dieu, Paris, France
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Research Center, Hospitals Ste. Justine and Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Kennedy DJ, Kuchibhotla S, Westfall KM, Silverstein RL, Morton RE, Febbraio M. A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovasc Res 2010; 89:604-13. [PMID: 21088116 PMCID: PMC3028977 DOI: 10.1093/cvr/cvq360] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aims Obesity and hyperlipidaemia are associated with insulin resistance (IR); however, the mechanisms responsible remain incompletely understood. Pro-atherogenic hyperlipidaemic states are characterized by inflammation, oxidant stress, and pathophysiologic oxidized lipids, including ligands for the scavenger receptor CD36. Here we tested the hypothesis that the absence of CD36 protects mice from IR associated with diet-induced obesity and hyperlipidaemia. Methods and results Adipose tissue from CD36−/− mice demonstrated a less inflammatory phenotype and improved insulin signalling in vivo and at the level of the adipocyte and macrophage. The pathophysiologic ligand oxidized low-density lipoprotein (oxLDL) activated c-Jun N-terminal kinase (JNK) and disrupted insulin signalling in both adipocytes and macrophages in a CD36-dependent manner. Macrophages isolated from CD36−/− mice after high-fat diet feeding elicited less JNK activation and inhibition of insulin signalling in adipocytes after co-culture compared with wild-type macrophages. Conclusion These data suggest that a CD36-dependent inflammatory paracrine loop between adipocytes and macrophages facilitates chronic inflammation and contributes to IR common in obesity and dyslipidaemia.
Collapse
Affiliation(s)
- David J Kennedy
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
47
|
Fliesler SJ, Bretillon L. The ins and outs of cholesterol in the vertebrate retina. J Lipid Res 2010; 51:3399-413. [PMID: 20861164 DOI: 10.1194/jlr.r010538] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The vertebrate retina has multiple demands for utilization of cholesterol and must meet those demands either by synthesizing its own supply of cholesterol or by importing cholesterol from extraretinal sources, or both. Unlike the blood-brain barrier, the blood-retina barrier allows uptake of cholesterol from the circulation via a lipoprotein-based/receptor-mediated mechanism. Under normal conditions, cholesterol homeostasis is tightly regulated; also, cholesterol exists in the neural retina overwhelmingly in unesterified form, and sterol intermediates are present in minimal to negligible quantities. However, under certain pathological conditions, either due to an inborn error in cholesterol biosynthesis or as a consequence of exposure to selective inhibitors of enzymes in the cholesterol pathway, the ratio of sterol intermediates to cholesterol in the retina can rise dramatically and persist, in some cases resulting in progressive degeneration that significantly compromises the structure and function of the retina. Although the relative contributions of de novo synthesis versus extraretinal uptake are not yet known, herein we review what is known about these processes and the dynamics of cholesterol in the vertebrate retina and indicate some future avenues of research in this area.
Collapse
Affiliation(s)
- Steven J Fliesler
- Research Service, Veterans Administration Western New York Healthcare System, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | | |
Collapse
|
48
|
Novikova YP, Aleinikova KS, Poplinskaya VA, Grigoryan EN. The retinal pigment epithelial cells of the adult newt and rat under conditions of in vitro organotypic culture. BIOL BULL+ 2010. [DOI: 10.1134/s1062359010030027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Kevany BM, Palczewski K. Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda) 2010; 25:8-15. [PMID: 20134024 DOI: 10.1152/physiol.00038.2009] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Photoreceptor cells maintain a roughly constant length by continuously generating new outer segments from their base while simultaneously releasing mature outer segments engulfed by the retinal pigment epithelium (RPE). Thus postmitotic RPE cells phagocytose an immense amount of material over a lifetime, disposing of photoreceptor cell waste while retaining useful content. This review focuses on current knowledge of outer segment phagocytosis, discussing the steps involved along with their critical participants as well as how various perturbations in outer segment (OS) disposal can lead to retinopathies.
Collapse
Affiliation(s)
- Brian M Kevany
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| | | |
Collapse
|
50
|
Silverstein RL. Type 2 scavenger receptor CD36 in platelet activation: the role of hyperlipemia and oxidative stress. CLINICAL LIPIDOLOGY 2009; 4:767. [PMID: 20161667 PMCID: PMC2819200 DOI: 10.2217/clp.09.57] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Platelet hyper-reactivity and a systemic prothrombotic state are associated with atherosclerosis and other inflammatory conditions. CD36, a member of the Type 2 scavenger receptor family, is a multiligand pattern recognition receptor that recognizes specific oxidized phospholipids, molecules expressed on microbial pathogens, apoptotic cells, and cell-derived microparticles. Recent studies have demonstrated that CD36 binding to oxidized LDL or microparticles activates a specific signaling pathway that induces platelet activation. This pathway is activated in vivo in the setting of hyperlipidemia and oxidant stress. Genetic deletion of CD36 protects mice from pathological thrombosis associated with hyperlipidemia without any apparent effect on normal hemostasis. Targeting CD36 or its signaling pathway could potentially lead to the development of novel antithrombotic therapies for patients with atheroinflammatory disorders.
Collapse
Affiliation(s)
- Roy L Silverstein
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave 44195, NC10, Cleveland, OH, USA Tel.: +1 216 444 5220 Fax: +1 216 444 9404
| |
Collapse
|