1
|
Calisto Bongalhardo D. Sperm fitness assessment in poultry: Brief review of in vitro methods. Anim Reprod Sci 2025; 272:107666. [PMID: 39657511 DOI: 10.1016/j.anireprosci.2024.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
In the poultry industry, every chick or poult produced has high economic value; therefore, selection of male breeders capable of transmitting desirable traits to their offspring has an important role in fertility and hatching success. Following either natural mating or artificial insemination, sperm must go through a sequence of steps to fertilize the egg: 1. Go from the site of deposition (vagina) to the Sperm Storage Tubules (SST); 2. Enter and stay inside the SST; 3. Reacquire motility; and 4. Bind to and penetrate the egg. To perform these tasks successfully, sperm must be alive, motile, and have structural integrity (membrane, glycocalyx, acrosome, and DNA). To evaluate sperm fitness, several in vitro tests can be performed; however, it is often necessary to combine several assays to have a more reliable fertility estimation, as each procedure evaluates specific and distinct sperm features. In this article, we briefly review in vitro tests that can be used to evaluate poultry sperm, associating them with each step for fertilization. The sperm-egg interaction assay using the inner perivitelline layer of chicken eggs is highlighted, since it is a single test that evaluates multiple sperm characteristics and is highly correlated with fertility.
Collapse
|
2
|
Morgan CE, Zhang Z, Miyagi M, Golczak M, Yu EW. Toward structural-omics of the bovine retinal pigment epithelium. Cell Rep 2022; 41:111876. [PMID: 36577381 PMCID: PMC9875382 DOI: 10.1016/j.celrep.2022.111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
The use of an integrated systems biology approach to investigate tissues and organs has been thought to be impracticable in the field of structural biology, where the techniques mainly focus on determining the structure of a particular biomacromolecule of interest. Here, we report the use of cryoelectron microscopy (cryo-EM) to define the composition of a raw bovine retinal pigment epithelium (RPE) lysate. From this sample, we simultaneously identify and solve cryo-EM structures of seven different RPE enzymes whose functions affect neurotransmitter recycling, iron metabolism, gluconeogenesis, glycolysis, axonal development, and energy homeostasis. Interestingly, dysfunction of these important proteins has been directly linked to several neurodegenerative disorders, including Huntington's disease, amyotrophic lateral sclerosis (ALS), Parkinson's disease, Alzheimer's disease, and schizophrenia. Our work underscores the importance of cryo-EM in facilitating tissue and organ proteomics at the atomic level.
Collapse
Affiliation(s)
- Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Department of Chemistry, Thiel College, Greenville, PA 16125, USA,These authors contributed equally
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,These authors contributed equally
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Lead contact,Correspondence:
| |
Collapse
|
3
|
Reda Elkhawagah A, Martino NA, Moustafa Kandiel MM, Ghoneimy Mahmoud K, Ricci A, Vincenti L. Effects of cysteamine supplementation on cryopreserved buffalo bull semen quality parameters. Theriogenology 2022; 192:141-149. [DOI: 10.1016/j.theriogenology.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
|
4
|
Zeng LF, Jin XY, Yin SJ, Qian GY, Wang W, Park YD. Seasonal expression of cytoplasmic creatine kinase in the epididymal epithelium of Pelodiscus sinensis. Biotech Histochem 2021; 97:21-29. [PMID: 33595373 DOI: 10.1080/10520295.2021.1887935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
During hibernation of Pelodiscus sinensis, sperm mature and are stored in the epididymis. We investigated seasonal changes in the morphology of epithelial cells of the epididymis of P. sinensis and changes in expression of cytoplasmic creatine kinase (CK). We found that the epididymal epithelium proliferates rapidly to form multiple layers from June to September, while the epididymal epithelial cells are arranged in a single layer from October to May. From the March before the mating period to the end of the mating period in September, a large amount of neutral glycoprotein is secreted in the epididymal epithelium and in the sperm aggregation area; after October, the glycoprotein in the epididymis decreases. At sperm maturation, cytoplasmic CK is expressed abundantly in the villous epithelium, which is formed by proliferation of epididymal epithelial cells. During hibernation and reproduction, the epididymal epithelium of P. sinensis exhibits different proliferation and secretion patterns as the animal adapts to two types of sperm storage. Cytoplasmic CK may participate in regulating the energy metabolism of the epididymal epithelium; it is an important enzyme for regulating sperm maturation.
Collapse
Affiliation(s)
- Li-Fang Zeng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Xin-Yi Jin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China.,Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| |
Collapse
|
5
|
Abstract
Perturbations in metabolic processes are associated with diseases such as obesity, type 2 diabetes mellitus, certain infections and some cancers. A resurgence of interest in creatine biology is developing, with new insights into a diverse set of regulatory functions for creatine. This resurgence is primarily driven by technological advances in genetic engineering and metabolism as well as by the realization that this metabolite has key roles in cells beyond the muscle and brain. Herein, we highlight the latest advances in creatine biology in tissues and cell types that have historically received little attention in the field. In adipose tissue, creatine controls thermogenic respiration and loss of this metabolite impairs whole-body energy expenditure, leading to obesity. We also cover the various roles that creatine metabolism has in cancer cell survival and the function of the immune system. Renewed interest in this area has begun to showcase the therapeutic potential that lies in understanding how changes in creatine metabolism lead to metabolic disease.
Collapse
Affiliation(s)
- Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Protein profile of Dabry's sturgeon (Acipenser dabryanus) spermatozoa and relationship to sperm quality. Anim Reprod Sci 2018; 201:1-11. [PMID: 30587384 DOI: 10.1016/j.anireprosci.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/25/2018] [Accepted: 12/05/2018] [Indexed: 11/23/2022]
Abstract
Knowledge of conditions affecting sperm quality is essential for efficient culture of fish for commercial purposes and conservation of species. Two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry were used to characterize the proteomic profile of Acipenser dabryanus spermatozoa relative to motility and fertilization capacity. There were differential amounts of protein in 313 spots in spermatozoa of males classified to have relatively greater or lesser spermatozoa quality. The functions of 43 of 50 selected proteins were identified. The proteins in 14 spots were involved in metabolism, and of these, proteins in 11 spots were highly abundant in spermatozoa of males categorized to have spermatozoa of greater quality, including pyruvate kinase, enolase B, phosphoglycerate kinase, lactate dehydrogenase, cytosolic malate dehydrogenase, brain creatine kinase b, Ckmb protein, and nucleoside diphosphate kinase. The proteins involved in mechanics of flagellum movement were identified, including the dynein intermediate chain, radial spoke head 1 homolog; ropporin-1-like, Bardet-Biedl syndrome 5, ADP-ribosylation factor-like protein 3, tektin-4, gamma-actin, and tubulin cytoskeleton proteins to be differentially abundant in spermatozoa that were classified relatively greater or lesser quality. Heat shock proteins, copper/zinc superoxide dismutase and peroxiredoxins, which are involved in stress response were of differential abundance in spermatozoa from males with spermatozoa in the two different classification groups. Proteins were also detected that are involved in protein folding and binding, or hydrolase activity. The results are valuable for the prediction of sperm quality and for reproduction management in A. dabryanus and other threatened species.
Collapse
|
7
|
Duan W, Xu K, Hu F, Zhang Y, Wen M, Wang J, Tao M, Luo K, Zhao R, Qin Q, Zhang C, Liu J, Liu Y, Liu S. Comparative Proteomic, Physiological, Morphological, and Biochemical Analyses Reveal the Characteristics of the Diploid Spermatozoa of Allotetraploid Hybrids of Red Crucian Carp (Carassius auratus) and Common Carp (Cyprinus carpio). Biol Reprod 2015; 94:35. [PMID: 26674567 DOI: 10.1095/biolreprod.115.132787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 12/08/2015] [Indexed: 01/19/2023] Open
Abstract
The generation of diploid spermatozoa is essential for the continuity of tetraploid lineages. The DNA content of diploid spermatozoa from allotetraploid hybrids of red crucian carp and common carp was nearly twice as great as that of haploid spermatozoa from common carp, and the durations of rapid and slow progressive motility were longer. We performed comparative proteomic analyses to measure variations in protein composition between diploid and haploid spermatozoa. Using two-dimensional electrophoresis followed by liquid chromatography tandem mass spectrometry, 21 protein spots that changed in abundance were analyzed. As the common carp and the allotetraploid hybrids are not fully sequenced organisms, we identified proteins by Mascot searching against the National Center for Biotechnology Information non-redundant (NR) protein database for the zebrafish (Danio rerio), and verified them against predicted homologous proteins derived from transcriptomes of the testis. Twenty protein spots were identified successfully, belonging to four gene ontogeny categories: cytoskeleton, energy metabolism, the ubiquitin-proteasome system, and other functions, indicating that these might be associated with the variation in diploid spermatozoa. This categorization of variations in protein composition in diploid spermatozoa will provide new perspectives on male polyploidy. Moreover, our approach indicates that transcriptome data are useful for proteomic analyses in organisms lacking full protein sequences.
Collapse
Affiliation(s)
- Wei Duan
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Kang Xu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Fangzhou Hu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Yi Zhang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Ming Wen
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Jing Wang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Min Tao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Kaikun Luo
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Rurong Zhao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Qinbo Qin
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Chun Zhang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Jinhui Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Yun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Shaojun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
8
|
Fernández S, Córdoba M. Progesterone causes metabolic changes involving aminotransferases and creatine kinase in cryopreserved bovine spermatozoa. Anim Reprod Sci 2015; 164:90-6. [PMID: 26640247 DOI: 10.1016/j.anireprosci.2015.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/02/2015] [Accepted: 11/15/2015] [Indexed: 10/22/2022]
Abstract
Progesterone (P4) is capable of inducing acrosome reaction in many species. The objective of this study was to determine the activity of enzymes involved in metabolism that contribute to the redox state and supply energy for acrosome reaction in cryopreserved bull spermatozoa. To accomplish this aim, acrosome reaction was induced by P4 in capacitated and non-capacitated samples. Alanine and aspartate aminotransferases (ALT, AST) and creatine kinase (CK) activities were measured spectrophotometrically at 340 nm after acrosome reaction with P4. Oxygen consumption was measured polarographically. ALT and AST activities increased by the addition of P4 capacitated and non-capacitated samples. P4 addition provoked an increase in CK activity in non-capacitated spermatozoa compared to heparin capacitated spermatozoa with or without P4 addition. P4 increased oxygen consumption, the percentage of acrosome reacted spermatozoa as well as the absence of acrosome integrity in both capacitated and non-capacitated bovine spermatozoa, but oxygen consumption in P4 samples was significantly lower than in heparin capacitated spermatozoa (P<0.05). Acrosome reaction induction by P4 required different creatine kinase activity with the same oxygen consumption and transaminases level to maintain oxidative metabolism and redox state through reducing equivalents transfer between cytosolic and mitochondrial compartment. In conclusion, P4 induces a lower oxidative metabolism during acrosome reaction in bovine cryopreserved spermatozoa, compared to heparin induced capacitation process.
Collapse
Affiliation(s)
- Silvina Fernández
- Cátedra de Química Biológica, Instituto de Investigación y Tecnología en Reproducción Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280 1427 Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Córdoba
- Cátedra de Química Biológica, Instituto de Investigación y Tecnología en Reproducción Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280 1427 Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
9
|
Cheng CY, Chen PR, Chen CJ, Wang SH, Chen CF, Lee YP, Huang SY. Differential protein expression in chicken spermatozoa before and after freezing–thawing treatment. Anim Reprod Sci 2015; 152:99-107. [DOI: 10.1016/j.anireprosci.2014.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 10/21/2014] [Accepted: 11/09/2014] [Indexed: 10/24/2022]
|
10
|
Kutomi O, Takemura M, Kamachi H, Noguchi M. Estimation of effective concentrations of ATP-regenerating enzymes in cilia of Paramecium caudatum. J Eukaryot Microbiol 2011; 59:49-53. [PMID: 22092750 DOI: 10.1111/j.1550-7408.2011.00594.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022]
Abstract
The phosphoarginine shuttle system effectively regenerates ATP in the cilia of Paramecium caudatum. To estimate the effective concentration of ATP-regenerating enzymes, we attempted to reconstitute certain ATP-regenerating systems within the cilia of intact cortical sheets using exogenous enzymes and high-energy substances. The addition of phosphoenolpyruvate, which is one of the substrates in glycolysis, did not increase the ciliary beat frequency, whereas phosphocreatine together with exogenous creatine kinase, effectively increased the ciliary beat frequency. In the presence of 0.6 mg/ml creatine kinase and 0.4 mM phosphocreatine, the ciliary beat frequency was comparable to that produced by the addition of phosphoarginine. This result indicates that the reconstituted phosphocreatine shuttle system can work as an artificial ATP-regenerating system for ciliary movements. The effective concentration of creatine kinase in the reconstituted phosphocreatine shuttle system was estimated to be about 7.4 μM based on the molecular mass of creatine kinase (MW 81,000). Therefore, the effective concentration of arginine kinase in the cilia of live Paramecium is approximately 10 μM. This estimated concentration of intraciliary arginine kinase is sufficient to maintain a high ATP concentration throughout the cilia of P. caudatum.
Collapse
Affiliation(s)
- Osamu Kutomi
- Department of Environmental Biology and Chemistry, Faculty of Science, University of Toyama, Toyama, 930-8555, Japan
| | | | | | | |
Collapse
|
11
|
Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011; 40:1271-96. [PMID: 21448658 PMCID: PMC3080659 DOI: 10.1007/s00726-011-0877-3] [Citation(s) in RCA: 510] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
Abstract
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.
Collapse
Affiliation(s)
- Theo Wallimann
- Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
12
|
Córdoba M, Pintos L, Beconi MT. Variations in creatine kinase activity and reactive oxygen species levels are involved in capacitation of bovine spermatozoa. Andrologia 2008; 40:370-6. [DOI: 10.1111/j.1439-0272.2008.00871.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Ginger ML, Portman N, McKean PG. Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol 2008; 6:838-50. [PMID: 18923411 DOI: 10.1038/nrmicro2009] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.
Collapse
Affiliation(s)
- Michael L Ginger
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | |
Collapse
|
14
|
Santiago APSA, Chaves EA, Oliveira MF, Galina A. Reactive oxygen species generation is modulated by mitochondrial kinases: correlation with mitochondrial antioxidant peroxidases in rat tissues. Biochimie 2008; 90:1566-77. [PMID: 18634844 DOI: 10.1016/j.biochi.2008.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 06/20/2008] [Indexed: 11/18/2022]
Abstract
Mitochondrial hexokinase (mt-HK) and creatine kinase (mt-CK) activities have been recently proposed to reduce the rate of mitochondrial ROS generation through an ADP re-cycling mechanism. Here, we determined the role of mt-HK and mt-CK activities in regulate mitochondrial ROS generation in rat brain, kidney, heart and liver, relating them to the levels of classical antioxidant enzymes. The activities of both kinases were significantly higher in the brain than in other tissues, whereas the activities of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were higher in both liver and kidney mitochondria. In contrast, manganese superoxide dismutase (Mn-SOD) activity was not significantly different among these tissues. Activation of mitochondrial kinases by addition of their substrates increased the ADP re-cycling and thus the respiration by enhancing the oxidative phosphorylation. Succinate induced hydrogen peroxide (H(2)O(2)) generation was higher in brain than in kidney and heart mitochondria, and the lowest in liver mitochondria. Mitochondrial membrane potential (DeltaPsi(m)) and H(2)O(2) production, decreased with additions of 2-DOG or Cr to respiring brain and kidney mitochondria but not to liver. The inhibition of H(2)O(2) production by 2-DOG and Cr correspond to almost 100% in rat brain and about 70% in kidney mitochondria. Together our data suggest that mitochondrial kinases activities are potent preventive antioxidant mechanism in mitochondria with low peroxidase activities, complementing the classical antioxidant enzymes against oxidative stress.
Collapse
Affiliation(s)
- Ana Paula S A Santiago
- Instituto de Biofísica Carlos Chagas Filho, Programa de Biologia Celular e Parasitologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
15
|
Feiden S, Stypa H, Wolfrum U, Wegener G, Kamp G. A novel pyruvate kinase (PK-S) from boar spermatozoa is localized at the fibrous sheath and the acrosome. Reproduction 2007; 134:81-95. [PMID: 17641091 DOI: 10.1530/rep-06-0250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Boar spermatozoa contain a novel pyruvate kinase (PK-S) that is tightly bound at the acrosome of the sperm head and at the fibrous sheath in the principal piece of the flagellum, while the midpiece contains a soluble pyruvate kinase (PK). PK-S could not be solubilized by detergents, but by trypsin with no loss of activity. Purified PK-S as well as PK-S still bound to cell structures and soluble sperm PK have all kinetics similar to those of rabbit muscle PK-M1. The PK-S subunit had a relative molecular mass of 64 +/- 1 x 10(3) (n = 3), i.e. slightly higher than that of PK-M1, and carried an N-terminal extension (NH(2)-TSEAM-COOH) that is lacking in native PK-M1. Evidence is provided that PK-S is encoded by the PKM gene. Antibodies produced against the N-terminus of purified PK-S (NH(2)-TSEAMPKAHMDAG-COOH) were specific for PK-S as they did not react with somatic PKs or soluble sperm PK, while anti-PK-M1 recognized both sperm PKs. Immunofluorescence microscopy showed anti-PK-S to label the acrosome and the flagellar principal piece, whereas the midpiece containing the mitochondria was labelled only by anti-PK-M1. Immunogold labelling confirmed the localization of PK-S at the acrosome. In the principal piece, both polyclonal anti-PK-M1 and anti-PK-S were found at the fibrous sheath. Our results suggest that PK-S is a major component in the structural organization of glycolysis in boar spermatozoa.
Collapse
Affiliation(s)
- Sandra Feiden
- Molecular Physiology Section, Institute of Zoology, Johannes Gutenberg-University, Becherweg 9-11, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
16
|
Mochida K, Ito K, Kono K, Onduka T, Kakuno A, Fujii K. Molecular and histological evaluation of tributyltin toxicity on spermatogenesis in a marine fish, the mummichog (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 83:73-83. [PMID: 17451821 DOI: 10.1016/j.aquatox.2007.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 05/15/2023]
Abstract
There is still concern about the effects of organotin compounds (OTs) on marine organisms, and especially on their reproductive systems. We investigated the toxicity of tributyltin oxide (TBTO) on spermatogenesis in a marine fish, mummichog, Fundulus heteroclitus. TBTO exposure caused serious histological damage to the testis, including reduction in counts of spermatids and spermatozoa and malformation of somatic cells around the seminal duct. Analysis of the incorporation of bromodeoxyuridine into spermatogenic cells revealed inhibition of the proliferation of germ cells. To find a biomarker for evaluation of the effects of TBTO on fish spermatogenesis, we cloned genes downregulated by TBTO exposure in the mummichog testis, and identified mummichog creatine kinase (mCK). The cDNA sequence of mCK contained an open reading frame encoding 387 amino acid residues (M(r)=43,344). The derived amino acid sequence of mCK was very similar to that of the testicular-type CK of the rainbow trout, Oncorhynchus mykiss. Furthermore, Northern blot analysis revealed that mCK was produced specifically in the testis. We therefore identified mCK in the mummichog as a testicular-type CK. Real-time PCR revealed that exposure of the fish to TBTO significantly reduced mCK expression in the testis. To some extent, this reduction was coincident with that of bromodeoxyuridine incorporation into spermatogenic cells. The mCK gene can therefore be used as a biomarker for evaluating the effects of TBTO on fish spermatogenesis. In addition, levels of expression of the mCK gene in control fish were well correlated with increments in the gonad somatic index (GSI) below 4%. Individuals that were thought to have testicular damage caused by TBTO could be discriminated from those considered normal. The results suggest that TBTO is involved in the suppression of fish spermatogenesis and that analysis of both GSI values and mCK gene expression is useful for evaluating the levels of xenobiotic pollution in coastal areas.
Collapse
Affiliation(s)
- Kazuhiko Mochida
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Shin JB, Streijger F, Beynon A, Peters T, Gadzala L, McMillen D, Bystrom C, Van der Zee CEEM, Wallimann T, Gillespie PG. Hair bundles are specialized for ATP delivery via creatine kinase. Neuron 2007; 53:371-86. [PMID: 17270734 PMCID: PMC1839076 DOI: 10.1016/j.neuron.2006.12.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 12/05/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
When stimulated strongly, a hair cell's mechanically sensitive hair bundle may consume ATP too rapidly for replenishment by diffusion. To provide a broad view of the bundle's protein complement, including those proteins participating in energy metabolism, we used shotgun mass spectrometry methods to identify proteins of purified chicken vestibular bundles. In addition to cytoskeletal proteins, proteins involved in Ca(2+) regulation, and stress-response proteins, many of the most abundant bundle proteins that were identified by mass spectrometry were involved in ATP synthesis. After beta-actin, the cytosolic brain isoform of creatine kinase was the next most abundant bundle protein; at approximately 0.5 mM, creatine kinase is capable of maintaining high ATP levels despite 1 mM/s ATP consumption by the plasma-membrane Ca(2+)-ATPase. Consistent with this critical role in hair bundle function, the creatine kinase circuit is essential for high-sensitivity hearing as demonstrated by hearing loss in creatine kinase knockout mice.
Collapse
Affiliation(s)
- Jung-Bum Shin
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Meyer LE, Machado LB, Santiago APSA, da-Silva WS, De Felice FG, Holub O, Oliveira MF, Galina A. Mitochondrial Creatine Kinase Activity Prevents Reactive Oxygen Species Generation. J Biol Chem 2006; 281:37361-71. [PMID: 17028195 DOI: 10.1074/jbc.m604123200] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As recently demonstrated by our group (da-Silva, W. S., Gómez-Puyou, A., Gómez-Puyou, M. T., Moreno-Sanchez, R., De Felice, F. G., de Meis, L., Oliveira, M. F., and Galina, A. (2004) J. Biol. Chem. 279, 39846-39855) mitochondrial hexokinase activity (mt-HK) plays a preventive antioxidant role because of steady-state ADP re-cycling through the inner mitochondrial membrane in rat brain. In the present work we show that ADP re-cycling accomplished by the mitochondrial creatine kinase (mt-CK) regulates reactive oxygen species (ROS) generation, particularly in high glucose concentrations. Activation of mt-CK by creatine (Cr) and ATP or ADP, induced a state 3-like respiration in isolated brain mitochondria and prevention of H(2)O(2) production obeyed the steady-state kinetics of the enzyme to phosphorylate Cr. The extension of the preventive antioxidant role of mt-CK depended on the phosphocreatine (PCr)/Cr ratio. Rat liver mitochondria, which lack mt-CK activity, only reduced state 4-induced H(2)O(2) generation when 1 order of magnitude more exogenous CK activity was added to the medium. Simulation of hyperglycemic conditions, by the inclusion of glucose 6-phosphate in mitochondria performing 2-deoxyglucose phosphorylation via mt-HK, induced H(2)O(2) production in a Cr-sensitive manner. Simulation of hyperglycemia in embryonic rat brain cortical neurons increased both DeltaPsi(m) and ROS production and both parameters were decreased by the previous inclusion of Cr. Taken together, the results presented here indicate that mitochondrial kinase activity performed a key role as a preventive antioxidant against oxidative stress, reducing mitochondrial ROS generation through an ADP-recycling mechanism.
Collapse
Affiliation(s)
- Laudiene Evangelista Meyer
- Instituto de Bioquímica Médica, Programa de Biofísica e Bioquímica Celular and Programa de Biologia Molecular e Biotecnologia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Koubek P, Elzeinova F, Sulc M, Linhart O, Peknicova J. Monoclonal antibody FsC-47 against carp sperm creatine kinase. Hybridoma (Larchmt) 2006; 25:154-7. [PMID: 16796462 DOI: 10.1089/hyb.2006.25.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The enzyme creatine kinase (CK) plays a key role in energy homeostasis of cells with high and fluctuating energy requirements. As for spermatozoa, the activity of phosphocreatine shuttle, which directs energy from the mitochondria to sites of ATP consumption, is dependent on individual species. High activities of CK are observed in spermatozoa of nonvertebrate, fish, and birds, contrary to the low-level CK activity in mammalian spermatozoa. A new monoclonal antibody (MAb) to carp sperm creatine kinase was prepared. This antibody is applicable to large-scale immunochemical techniques. In this study, it was applied to the study of carp sperm motility, and the evaluation of the influence of CK on the quality and fertilization ability of carp spermatozoa.
Collapse
Affiliation(s)
- P Koubek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
20
|
Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:164-80. [PMID: 16236486 DOI: 10.1016/j.bbadis.2005.09.004] [Citation(s) in RCA: 453] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 08/09/2005] [Accepted: 09/13/2005] [Indexed: 01/23/2023]
Abstract
Mitochondrial creatine kinase (MtCK), together with cytosolic creatine kinase isoenzymes and the highly diffusible CK reaction product, phosphocreatine, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. Mitochondrial proteolipid complexes containing MtCK form microcompartments that are involved in channeling energy in form of phosphocreatine rather than ATP into the cytosol. Under situations of compromised cellular energy state, which are often linked to ischemia, oxidative stress and calcium overload, two characteristics of mitochondrial creatine kinase are particularly relevant: its exquisite susceptibility to oxidative modifications and the compensatory up-regulation of its gene expression, in some cases leading to accumulation of crystalline MtCK inclusion bodies in mitochondria that are the clinical hallmarks for mitochondrial cytopathies. Both of these events may either impair or reinforce, respectively, the functions of mitochondrial MtCK complexes in cellular energy supply and protection of mitochondria form the so-called permeability transition leading to apoptosis or necrosis.
Collapse
Affiliation(s)
- Uwe Schlattner
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH Zürich), Hönggerberg HPM, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
21
|
Post-genomic views of a ‘unique’ metabolism in the eukaryotic flagellum. Biochem Soc Trans 2005. [DOI: 10.1042/bst0330975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This short review summarizes recent advances in our understanding of energy metabolism within the eukaryotic flagellum. Using the example of adenylate kinase, we discuss how a requirement to target metabolic enzymes into the flagellum results in the presence of genes encoding novel isoforms of ubiquitous enzymes within flagellate eukaryotes.
Collapse
|
22
|
Ginger ML, Ngazoa ES, Pereira CA, Pullen TJ, Kabiri M, Becker K, Gull K, Steverding D. Intracellular Positioning of Isoforms Explains an Unusually Large Adenylate Kinase Gene Family in the Parasite Trypanosoma brucei. J Biol Chem 2005; 280:11781-9. [PMID: 15657034 DOI: 10.1074/jbc.m413821200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylate kinases occur classically as cytoplasmic and mitochondrial enzymes, but the expression of seven adenylate kinases in the flagellated protozoan parasite Trypanosoma brucei (order, Kinetoplastida; family, Trypanosomatidae) easily exceeds the number of isoforms previously observed within a single cell and raises questions as to their location and function. We show that a requirement to target adenylate kinase into glycosomes, which are unique kinetoplastid-specific microbodies of the peroxisome class in which many reactions of carbohydrate metabolism are compartmentalized, and two different flagellar structures as well as cytoplasm and mitochondrion explains the expansion of this gene family in trypanosomes. The three isoforms that are selectively built into either the flagellar axoneme or the extra-axonemal paraflagellar rod, which is essential for motility, all contain long N-terminal extensions. Biochemical analysis of the only short form trypanosome adenylate kinase revealed that this enzyme catalyzes phosphotransfer of gamma-phosphate from ATP to AMP, CMP, and UMP acceptors; its high activity and specificity toward CMP is likely to reflect an adaptation to very low intracellular cytidine nucleotide pools. Analysis of some of the phosphotransfer network using RNA interference suggests considerable complexity within the homeostasis of cellular energetics. The anchoring of specific adenylate kinases within two distinct flagellar structures provides a paradigm for metabolic organization and efficiency in other flagellates.
Collapse
Affiliation(s)
- Michael L Ginger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The energy supply for eukaryotic ciliary and flagellar movement is thought to be maintained by ATP-regenerating enzymes such as adenylate kinase, creatine kinase and arginine kinase. In this study, the energy-supplying system for the ciliary movement of Paramecium caudatum was examined. Arginine kinase and adenylate kinase activities were detected in the cilia. To demonstrate that phosphoarginine satisfactorily supplies high-energy phosphate compounds into the narrow ciliary space, we prepared an intact ciliated cortical sheet from live Paramecium caudatum. These cortical sheets, with an intact ciliary membrane, produced a half-closed system in which each cilium was covered with a ciliary membrane with an opening to the cell body. Ciliary beating on the intact cortical sheets was induced by perfusing not only ATP but also ADP. Addition of phosphoarginine (0.2 mmol l(−1)) increased the beat frequency. A further increase in beat frequency was observed in 0.4 mmol l(−1) phosphoarginine, and this was enhanced when the cilia were reactivated with relatively low concentrations of ATP. We have demonstrated that phosphoarginine supplies energy as a ‘phosphagen’ for ciliary beating in Paramecium caudatum, suggesting that phosphoarginine functions not only as a reservoir of energy but also as a transporter of energy in these continuously energy-consuming circumstances. http://www.biologists.com/JEB/movies/jeb3123.html
Collapse
Affiliation(s)
- M Noguchi
- Department of Environmental Biology and Chemistry, Faculty of Science, Toyama University, Toyama 930-8555, Japan.
| | | | | |
Collapse
|
24
|
Saudrais C, Fierville F, Loir M, Le Rumeur E, Cibert C, Cosson J. The use of phosphocreatine plus ADP as energy source for motility of membrane-deprived trout spermatozoa. CELL MOTILITY AND THE CYTOSKELETON 2000; 41:91-106. [PMID: 9786085 DOI: 10.1002/(sici)1097-0169(1998)41:2<91::aid-cm1>3.0.co;2-i] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Live trout spermatozoa initiate flagellar motility for a short period of time (30 s at 18 degrees C), during which their mean beat frequency (BF) decreases steadily from 60 to 20 Hz; motility then stops abruptly. When demembranated, the motility of axonemes lasts much longer, up to 20 min, with high beat frequency, provided that ATP (millimolar concentration) and cAMP (micromolar) are added. In the present paper, the motility of demembranated trout sperm was investigated in the absence of added ATP in various incubation conditions relative to other substrates. Without the addition of exogenous creatine kinase, the addition of phosphocreatine (PCr) and ADP shows the appearance of a progressive activation of all sperm models with BF increasing with time up to high values. Without the addition of cAMP, the BF increases to lower values but flagella propagated poorly coordinated waves for only a few min. Similar progressive activation is also observed when only ADP is added (without any previous in vivo activation) and BF increases up to moderate values. In this latter case, no activation occurs without addition of cAMP. The respective roles of creatine kinase and adenylate kinase in this process were investigated by addition of specific inhibitors such as fluorodinitrobenzene and P1,P5-di(adenosine-5')pentaphosphate in the above described conditions. We conclude from these observations that all the elements necessary for a coupling between ADP/PCr/creatine kinase on one hand and ATP/ADP/dynein on the other appear to be present in trout spermatozoa: thus the existence of a shuttle sustaining this coupling is strongly suggested.
Collapse
Affiliation(s)
- C Saudrais
- Laboratoire de Physiologie des Poissons, INRA, Campus de Beaulieu, Rennes, France
| | | | | | | | | | | |
Collapse
|
25
|
Ross KE, Kaldis P, Solomon MJ. Activating phosphorylation of the Saccharomyces cerevisiae cyclin-dependent kinase, cdc28p, precedes cyclin binding. Mol Biol Cell 2000; 11:1597-609. [PMID: 10793138 PMCID: PMC14870 DOI: 10.1091/mbc.11.5.1597] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic cell cycle progression is controlled by a family of protein kinases known as cyclin-dependent kinases (Cdks). Two steps are essential for Cdk activation: binding of a cyclin and phosphorylation on a conserved threonine residue by the Cdk-activating kinase (CAK). We have studied the interplay between these regulatory mechanisms during the activation of the major Saccharomyces cerevisiae Cdk, Cdc28p. We found that the majority of Cdc28p was phosphorylated on its activating threonine (Thr-169) throughout the cell cycle. The extent of Thr-169 phosphorylation was similar for monomeric Cdc28p and Cdc28p bound to cyclin. By varying the order of the addition of cyclin and Cak1p, we determined that Cdc28p was activated most efficiently when it was phosphorylated before cyclin binding. Furthermore, we found that a Cdc28p(T169A) mutant, which cannot be phosphorylated, bound cyclin less well than wild-type Cdc28p in vivo. These results suggest that unphosphorylated Cdc28p may be unable to bind tightly to cyclin. We propose that Cdc28p is normally phosphorylated by Cak1p before it binds cyclin. This activation pathway contrasts with that in higher eukaryotes, in which cyclin binding appears to precede activating phosphorylation.
Collapse
Affiliation(s)
- K E Ross
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-2114, USA
| | | | | |
Collapse
|
26
|
Affiliation(s)
- T Bourgeron
- Laboratoire d'Immunogénétique Humaine, INSERM U276, Institut Pasteur, Paris, France
| |
Collapse
|
27
|
Bracho GE, Fritch JJ, Tash JS. Identification of flagellar proteins that initiate the activation of sperm motility in vivo. Biochem Biophys Res Commun 1998; 242:231-7. [PMID: 9439641 DOI: 10.1006/bbrc.1997.7937] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein phosphorylation appears to be a necessary step in the intracellular signaling pathway that initiates the activation of sperm motility. Activation of live immotile sea urchin sperm produced rapid, time-dependent increased phosphorylation on proteins of 32, 45, 130, and 500 kDa. Fractionation of immotile and motile sperm indicated that these motility-related phosphoproteins are associated with flagella. These proteins showed greater phosphorylation in the flagellar fraction from motile sperm, suggesting that subcellular boundaries are in place to keep protein kinases and their substrates spatially separated. Solubility properties suggest that these proteins are the heavy chain and smaller subunits of sea urchin sperm dynein which are phosphorylated in vivo to initiate activation of motility. This also suggests that phosphorylation of only these few proteins, out of the nearly 100 phosphorylations known to occur in the basic axoneme, appears to be associated with the early signaling pathways of motility activation in intact sperm.
Collapse
Affiliation(s)
- G E Bracho
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City 66160-7401, USA
| | | | | |
Collapse
|
28
|
Quest AF, Harvey DJ, McIlhinney RA. Myristoylated and nonmyristoylated pools of sea urchin sperm flagellar creatine kinase exist side-by-side: myristoylation is necessary for efficient lipid association. Biochemistry 1997; 36:6993-7002. [PMID: 9188696 DOI: 10.1021/bi9629337] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In sperm of the sea urchin Strongylocentrotus purpuratus, a functional phosphocreatine shuttle, that requires the existence of mitochondrial and cytosolic creatine kinase (CK) isoforms in distinct locations, is essential for sperm motility. S. purpuratus sperm have an unusually large, 145 kDa CK isoform, present exclusively in the sperm tail (TCK), that is enriched in flagellum membrane preparations. Purified TCK contains two very similar proteins, designated TCKI and TCKII, of which only TCKII associates readily with liposomes and detergent micelles in vitro. Here we demonstrate by gas chromatography/mass spectrometry combined with selective ion monitoring that ions diagnostic for the presence of myristoylglycine in proteins are found in TCKII, but not TCKI. By contrast, TCKI, but not TCKII, served in vitro as a substrate for recombinant, polyhistidine-tagged N-myristoyltransferase and was myristoylated to high stoichiometries (0.58 +/- 0.14 pmol of myristate/pmol of TCK), in the presence of myristoyl-CoA, on glycine in amide linkage. In vitro myristoylated TCKI associated with phosphatidylcholine (PC)/phosphatidylserine (PS) (75:25) liposomes and Triton X-100 detergent micelles in gel filtration assays and with PC/PS liposomes in a centrifugation assay in the same manner as did TCKII. In gel filtration experiments, TCKI required at least 25-fold higher PC/PS liposome concentrations than TCKII to obtain 50% association. A partition coefficient of 0.8 x 10(5) M(-1) was determined for TCKII with PC/PS (75:25) liposomes in the centrifugation assay. Thus, myristoylated and nonmyristoylated forms of TCK exist side-by-side in the sea urchin flagellum, and myristoylation is essential for efficient liposome association of TCK.
Collapse
Affiliation(s)
- A F Quest
- Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | | | | |
Collapse
|
29
|
Functions of Creatine Kinase Isoenzymes in Spermatozoa. ADVANCES IN DEVELOPMENTAL BIOLOGY (1992) 1997. [DOI: 10.1016/s1566-3116(08)60040-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|