1
|
Hashemolhosseini S, Gessler L. Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction. Neural Regen Res 2025; 20:2464-2479. [PMID: 39248171 PMCID: PMC11801303 DOI: 10.4103/nrr.nrr-d-24-00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Skeletal muscles are essential for locomotion, posture, and metabolic regulation. To understand physiological processes, exercise adaptation, and muscle-related disorders, it is critical to understand the molecular pathways that underlie skeletal muscle function. The process of muscle contraction, orchestrated by a complex interplay of molecular events, is at the core of skeletal muscle function. Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction. Within muscle fibers, calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force. Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling. The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis. Myogenic regulators coordinate the differentiation of myoblasts into mature muscle fibers. Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability. Several muscle-related diseases, including congenital myasthenic disorders, sarcopenia, muscular dystrophies, and metabolic myopathies, are underpinned by dysregulated molecular pathways in skeletal muscle. Therapeutic interventions aimed at preserving muscle mass and function, enhancing regeneration, and improving metabolic health hold promise by targeting specific molecular pathways. Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway, a critical regulator of myogenesis, muscle regeneration, and metabolic function, and the Hippo signaling pathway. In recent years, more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers, and at the neuromuscular junction. In fact, research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers. In this review, we will summarize and discuss the data on these two pathways, focusing on their concerted action next to their contribution to skeletal muscle biology. However, an in-depth discussion of the non-canonical Wnt pathway, the fibro/adipogenic precursors, or the mechanosensory aspects of these pathways is not the focus of this review.
Collapse
Affiliation(s)
- Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lea Gessler
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Ma Z, Li P, Feng X, Zhu Y, Li F, Xu G, Wang L, Wang S, Wu R, Zhu C, Gao P, Jiang Q, Shu G. Cinnamic acid-GPR109A pathway improves skeletal muscle hypertrophy and metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156851. [PMID: 40424982 DOI: 10.1016/j.phymed.2025.156851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Cinnamic acid (CA), a phenylalanine metabolite found in various plants, such as Cinnamomi ramulus, a key role in regulating biological process, like proliferation, osteoblast differentiation, glucose and lipid metabolism, angiogenesis, and the activation of brown adipocytes. However, its physiological role in manipulating skeletal muscle phenotype is unclear. PURPOSE In this study, we summarize its amazing role in skeletal muscle hypertrophy and mitochondrial metabolism and briefly clarify the mechanical function of GPR109A/PKA pathway under those process. METHODS In vivo, C57BL/6 mice were subjected to acute and chronic CA supplement to investigate its function on skeletal muscle development, exercise capacity and systemic metabolism. In vitro, C2C12 cells was used to quantify protein synthesis, mitochondrial biogenesis and intracellular ATP dynamics. RESULTS Chronic CA supplementation effectively increased energy expenditure and significantly altered lean fat mass and gut microbiota composition in mice, while acute addition of CA enhanced the tibialis anterior muscle index, tricarboxylic acid cycle activation, and exercise capacity. Mechanically, we demonstrated that CA induces myotube hypertrophy by promoting protein synthesis in vitro. Meanwhile, the mitochondrial content and intracellular ATP level were significantly accumulated through the activation of GPR109A and its downstream PKA/CREB signalling pathway, and which is also could regulated by CA directly binding. CONCLUSION These results firstly reveal the critical role of CA in promoting skeletal muscle hypertrophy and mitochondrial metabolism via the GPR109A/PKA pathway, which shows experimental basic for CA to be a potential food source for improving metabolism. Most importantly form a treatment standpoint, CA could be a newly treatment for sarcopenia.
Collapse
Affiliation(s)
- Zewei Ma
- Guangdong Laboratory for Lingnan Modern Agricultural and Guangdong Province, Guangzhou, Guangdong 510642, China; Guangdong Province Key Laboratory of Animal Nutritional Regulation, Guangzhou, Guangdong 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Penglin Li
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaohua Feng
- Guangdong Laboratory for Lingnan Modern Agricultural and Guangdong Province, Guangzhou, Guangdong 510642, China; Guangdong Province Key Laboratory of Animal Nutritional Regulation, Guangzhou, Guangdong 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yunlong Zhu
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fan Li
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guli Xu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Songbo Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruifan Wu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Canjun Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural and Guangdong Province, Guangzhou, Guangdong 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ping Gao
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Gang Shu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural and Guangdong Province, Guangzhou, Guangdong 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Franklin JM, Dubocanin D, Chittenden C, Barillas A, Lee RJ, Ghosh RP, Gerton JL, Guan KL, Altemose N. Human Satellite 3 DNA encodes megabase-scale transcription factor binding platforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.22.616524. [PMID: 39484556 PMCID: PMC11526998 DOI: 10.1101/2024.10.22.616524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Eukaryotic genomes frequently contain large arrays of tandem repeats, called satellite DNA. While some satellite DNAs participate in centromere function, others do not. For example, Human Satellite 3 (HSat3) forms the largest satellite DNA arrays in the human genome, but these multi-megabase regions were almost fully excluded from genome assemblies until recently, and their potential functions remain understudied and largely unknown. To address this, we performed a systematic screen for HSat3 binding proteins. Our work revealed that HSat3 contains millions of copies of transcription factor (TF) motifs bound by over a dozen TFs from various signaling pathways, including the growth-regulating transcription effector family TEAD1-4 from the Hippo pathway. Imaging experiments show that TEAD recruits the co-activator YAP to HSat3 regions in a cell-state specific manner. Using synthetic reporter assays, targeted repression of HSat3, inducible degradation of YAP, and super-resolution microscopy, we show that HSat3 arrays can localize YAP/TEAD inside the nucleolus, enhancing RNA Polymerase I activity. Beyond discovering a direct relationship between the Hippo pathway and ribosomal DNA regulation, this work demonstrates that satellite DNA can encode multiple transcription factor binding motifs, defining an important functional role for these enormous genomic elements.
Collapse
Affiliation(s)
| | - Danilo Dubocanin
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Cy Chittenden
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Ashlie Barillas
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Rosa Jooyoung Lee
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Rajarshi P. Ghosh
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | - Kun-Liang Guan
- Westlake University, School of Life Sciences, Hangzhou, Zhejiang, China
| | - Nicolas Altemose
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Kim YK, Ramalho-Santos M. 20 years of stemness: From stem cells to hypertranscription and back. Stem Cell Reports 2025; 20:102406. [PMID: 39919752 PMCID: PMC11960510 DOI: 10.1016/j.stemcr.2025.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Transcriptional profiling of stem cells came of age at the beginning of the century with the use of microarrays to analyze cell populations in bulk. Since then, stem cell transcriptomics has become increasingly sophisticated, notably with the recent widespread use of single-cell RNA sequencing. Here, we provide a perspective on how an early signature of genes upregulated in embryonic and adult stem cells, identified using microarrays over 20 years ago, serendipitously led to the recent discovery that stem/progenitor cells across organs are in a state of hypertranscription, a global elevation of the transcriptome. Looking back, we find that the 2002 stemness signature is a robust marker of stem cell hypertranscription, even though it was developed well before it was known what hypertranscription meant or how to detect it. We anticipate that studies of stem cell hypertranscription will be rich in novel insights in physiological and disease contexts for years to come.
Collapse
Affiliation(s)
- Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto ON M5G 1X5, Canada.
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto ON M5G 1X5, Canada.
| |
Collapse
|
5
|
Xu Q, Qiu X, Di H, Li Z, Liu Z, Liu K. Liraglutide improves senescence and ameliorating diabetic sarcopenia via the YAP-TAZ pathway. J Diabetes Complications 2025; 39:108975. [PMID: 39987624 DOI: 10.1016/j.jdiacomp.2025.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVE Beyond its established glucose-lowering and weight-reducing benefits, glucagon-like peptide-1 receptor agonists (GLP-1RAs) such as liraglutide may also mitigate sarcopenia. This study investigates the effects of liraglutide on diabetic sarcopenia and its underlying mechanisms. METHODS A type 2 diabetic SD rat model was induced using a high-fat, high-sugar diet supplemented with a low dose of streptozotocin. Comparisons were made among control (Con), diabetic (DM), and liraglutide-treated (Li) groups for gastrocnemius muscle wet weight and length, histology (HE staining), immunofluorescence for muscle fiber typing, and Western blotting for aging-related proteins and YAP/TAZ pathway components. Concurrently, C2C12 myoblasts were differentiated into myotubes, treated with 60 mM glucose to model diabetic conditions, and assessed for morphological changes, senescence (SA-β-gal staining), and protein expression dynamics. RESULTS Diabetic rats displayed significant reductions in muscle mass, length, and cross-sectional area, along with disorganized fiber architecture, all of which were improved by liraglutide. In vitro, C2C12 myotubes showed accelerated aging and atrophy under high-glucose conditions, which were significantly reduced by liraglutide. Analysis revealed increased expression of aging markers P53 and P21 and decreased YAP/TAZ/TEAD and Cyclin D1 levels in diabetic conditions, which were reversed following liraglutide treatment. The inhibition of YAP significantly negated the protective effects of liraglutide. CONCLUSION High glucose promotes muscle cell aging and sarcopenia, processes that liraglutide can attenuate by modulating the YAP/TAZ signaling pathway. This study underscores liraglutide's potential to alleviate muscle degeneration in diabetic sarcopenia through its regulatory impact on critical aging pathways.
Collapse
MESH Headings
- Liraglutide/pharmacology
- Liraglutide/therapeutic use
- Animals
- Sarcopenia/drug therapy
- Sarcopenia/etiology
- Sarcopenia/metabolism
- Sarcopenia/pathology
- Sarcopenia/prevention & control
- Rats
- YAP-Signaling Proteins
- Male
- Signal Transduction/drug effects
- Rats, Sprague-Dawley
- Cellular Senescence/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Mice
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Transcription Factors/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Cell Line
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
Collapse
Affiliation(s)
- Qian Xu
- Department of Emergency, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Xuan Qiu
- Department of Endocrine and Metabolism, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Hailing Di
- Department of Clinical Nutrition, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zanchao Liu
- Key Laboratory, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Kuanzhi Liu
- Department of Endocrine and Metabolism, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Chang TL, Borelli AN, Cutler AA, Olwin BB, Anseth KS. Myofibers cultured in viscoelastic hydrogels reveal the effects of integrin-binding and mechanosensing on muscle satellite cells. Acta Biomater 2025; 192:48-60. [PMID: 39615561 PMCID: PMC11949280 DOI: 10.1016/j.actbio.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Quiescent skeletal muscle satellite cells (SCs) located on myofibers activate in response to muscle injury to regenerate muscle; however, identifying the role of specific matrix signals on SC behavior in vivo is difficult. Therefore, we developed a viscoelastic hydrogel with tunable properties to encapsulate myofibers while maintaining stem cell niche polarity and SC-myofiber interactions to investigate how matrix signals, including viscoelasticity and the integrin-binding ligand arginyl-glycyl-aspartic acid (RGD), influence SC behavior during muscle regeneration. Viscoelastic hydrogels support myofiber culture while preserving SC stemness for up to 72 hours post-encapsulation, minimizing myofiber hypercontraction and SC hyperproliferation compared to Matrigel. Pax7 is continuously expressed in SCs on myofibers embedded in hydrogels with higher stress relaxation while SCs differentiate when embedded in elastic hydrogels. Increasing RGD concentrations activates SCs and translocates YAP/TAZ to the nucleus as revealed by photo-expansion microscopy. Deleting YAP/TAZ abrogates RGD-mediated activation of SCs, and thus, YAP/TAZ mediates RGD ligand-induced SC activation and subsequent proliferation. STATEMENT OF SIGNIFICANCE: Satellite cells (SCs) are responsible for muscle maintenance and regeneration, but how the extracellular matrix regulates SC function is less understood and would benefit from new biomaterial models that can recapitulate the complexity of SC niche in vitro. Upon isolation of myofibers, SCs exit quiescence, becoming activated. To circumvent this issue, we developed a viscoelastic hydrogel for encapsulating myofibers, which maintains SC quiescence and limits differentiation, allowing the study of RGD effects. We showed that increasing RGD concentration promotes activation and suppresses differentiation. Finally, to allow high resolution imaging for resolving the subcellular localization of YAP/TAZ transcriptional co-activators, we applied photo-expansion microscopy and gel-to-gel transfer techniques to quantify YAP/TAZ nuclear-cytoplasmic ratio, revealing that RGD-mediated activation relies on YAP/TAZ nuclear translocation.
Collapse
Affiliation(s)
- Tze-Ling Chang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexandra N Borelli
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alicia A Cutler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bradley B Olwin
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
7
|
Qin X, Niu W, Zhao K, Luo Y, Wang W, He Y, Yang F, Cao B, Du M, Su H. Resveratrol enhances post-injury muscle regeneration by regulating antioxidant and mitochondrial biogenesis. Curr Res Food Sci 2025; 10:100972. [PMID: 39896273 PMCID: PMC11787617 DOI: 10.1016/j.crfs.2025.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Resveratrol (RES), a natural polyphenolic compound, has shown promise in enhancing skeletal muscle regeneration and metabolic function. This study aims to explore the impact of RES on muscle regeneration after injury through the regulation of antioxidant capacity and mitochondrial biogenesis. RES treatment significantly increased the ratio of tibialis anterior muscle mass to body weight, alongside reduced fasting glucose levels. Following cardiotoxin-induced injury, RES treatment improved muscle regeneration, characterized by greater formation of new fibers and better structural repair compared to the control. Notably, gene expression analyses demonstrated that RES-treated mice exhibited elevated levels of myogenic markers, such as paired box 7 (Pax7), myogenic factor 5 (Myf5), myoblast determination protein (MyoD), and Myogenin (MyoG). Concurrently, yes-associated protein (YAP) increased, underscoring its role in regulating satellite cell activity. Transcriptomic analysis identified enriched pathways related to muscle regeneration and mitochondrial biogenesis, with increased expression of mitochondrial transcription factors and higher mitochondrial DNA content in RES-treated mice. Furthermore, RES enhanced antioxidant capacity via the Kelch-like ECH-associated protein 1 (KEAP-1)/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway, as indicated by elevated activities of total antioxidant capacity, Glutathione peroxidase (GSH-PX), and superoxidase dismutase (SOD). Collectively, these findings suggest that RES not only promotes muscle regeneration but also supports mitochondrial function and antioxidant defenses, positioning it as a food-derived pharmaceutical for targeting muscle repair after injury.
Collapse
Affiliation(s)
- Xiaoli Qin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenjing Niu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Kai Zhao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S0A2, Canada
| | - Yawen Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenfang Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yang He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Huawei Su
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Shao A, Kissil JL, Fan CM. The L27 domain of MPP7 enhances TAZ-YY1 cooperation to renew muscle stem cells. EMBO Rep 2024; 25:5667-5686. [PMID: 39496834 PMCID: PMC11624273 DOI: 10.1038/s44319-024-00305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renew, to support a lifetime of regenerative capacity. Here we study the renewal of skeletal muscle stem cell (MuSC) during regeneration. The transcriptional co-factors TAZ/YAP (via the TEAD transcription factors) regulate cell cycle and growth while the transcription factor YY1 regulates metabolic programs for MuSC activation. We show that MPP7 and AMOT join TAZ and YY1 to regulate a selected number of common genes that harbor TEAD and YY1 binding sites. Among these common genes, Carm1 can direct MuSC renewal. We demonstrate that the L27 domain of MPP7 enhances the interaction as well as the transcriptional activity of TAZ and YY1, while AMOT acts as an intermediate to bridge them together. Furthermore, MPP7, TAZ and YY1 co-occupy the promoters of Carm1 and other common downstream genes. Our results define a renewal program comprised of two progenitor transcriptional programs, in which selected key genes are regulated by protein-protein interactions, dependent on promoter context.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA
| | - Joseph L Kissil
- Department of Molecular Oncology, The H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA.
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
9
|
Han J, Zhang J, Zhang X, Luo W, Liu L, Zhu Y, Liu Q, Zhang XA. Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders. Stem Cell Res Ther 2024; 15:386. [PMID: 39468616 PMCID: PMC11520482 DOI: 10.1186/s13287-024-04011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Hippo pathway is an evolutionarily conservative key pathway that regulates organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. Yes-associated protein 1 (YAP)/ WW domain-containing transcription regulator 1 (TAZ) serves as a pivotal transcription factor within the Hippo signaling pathway, which undergoes negative regulation by the Hippo pathway. The expression of YAP/TAZ affects various biological processes, including differentiation of osteoblasts (OB) and osteoclasts (OC), cartilage homeostasis, skeletal muscle development, regeneration and quality maintenance. At the same time, the dysregulation of the Hippo pathway can concurrently contribute to the development of various musculoskeletal disorders, including bone tumors, osteoporosis (OP), osteoarthritis (OA), intervertebral disc degeneration (IDD), muscular dystrophy, and rhabdomyosarcoma (RMS). Therefore, targeting the Hippo pathway has emerged as a promising therapeutic strategy for the treatment of musculoskeletal disorders. The focus of this review is to elucidate the mechanisms by which the Hippo pathway maintains homeostasis in bone, cartilage, and skeletal muscle, while also providing a comprehensive summary of the pivotal role played by core components of this pathway in musculoskeletal diseases. The efficacy and feasibility of Hippo pathway-related drugs for targeted therapy of musculoskeletal diseases are also discussed in our study. These endeavors offer novel insights into the application of Hippo signaling in musculoskeletal disorders, providing effective therapeutic targets and potential drug candidates for treating such conditions.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang, 110122, China
| | - Wenxin Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Lifei Liu
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Qingfeng Liu
- Department of General Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China.
| |
Collapse
|
10
|
Madl CM, Wang YX, Holbrook CA, Su S, Shi X, Byfield FJ, Wicki G, Flaig IA, Blau HM. Hydrogel biomaterials that stiffen and soften on demand reveal that skeletal muscle stem cells harbor a mechanical memory. Proc Natl Acad Sci U S A 2024; 121:e2406787121. [PMID: 39163337 PMCID: PMC11363279 DOI: 10.1073/pnas.2406787121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024] Open
Abstract
Muscle stem cells (MuSCs) are specialized cells that reside in adult skeletal muscle poised to repair muscle tissue. The ability of MuSCs to regenerate damaged tissues declines markedly with aging and in diseases such as Duchenne muscular dystrophy, but the underlying causes of MuSC dysfunction remain poorly understood. Both aging and disease result in dramatic increases in the stiffness of the muscle tissue microenvironment from fibrosis. MuSCs are known to lose their regenerative potential if cultured on stiff plastic substrates. We sought to determine whether MuSCs harbor a memory of their past microenvironment and if it can be overcome. We tested MuSCs in situ using dynamic hydrogel biomaterials that soften or stiffen on demand in response to light and found that freshly isolated MuSCs develop a persistent memory of substrate stiffness characterized by loss of proliferative progenitors within the first three days of culture on stiff substrates. MuSCs cultured on soft hydrogels had altered cytoskeletal organization and activity of Rho and Rac guanosine triphosphate hydrolase (GTPase) and Yes-associated protein mechanotransduction pathways compared to those on stiff hydrogels. Pharmacologic inhibition identified RhoA activation as responsible for the mechanical memory phenotype, and single-cell RNA sequencing revealed a molecular signature of the mechanical memory. These studies highlight that microenvironmental stiffness regulates MuSC fate and leads to MuSC dysfunction that is not readily reversed by changing stiffness. Our results suggest that stiffness can be circumvented by targeting downstream signaling pathways to overcome stem cell dysfunction in aged and disease states with aberrant fibrotic tissue mechanics.
Collapse
Affiliation(s)
- Christopher M. Madl
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Yu Xin Wang
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Colin A. Holbrook
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Shiqi Su
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Xuechen Shi
- Department of Physiology, Perelman School of Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Fitzroy J. Byfield
- Department of Physiology, Perelman School of Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Gwendoline Wicki
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, LausanneCH-1015, Switzerland
| | - Iris A. Flaig
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, LausanneCH-1015, Switzerland
| | - Helen M. Blau
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
11
|
Tam LM, Rand MD. Review: myogenic and muscle toxicity targets of environmental methylmercury exposure. Arch Toxicol 2024; 98:1645-1658. [PMID: 38546836 PMCID: PMC11105986 DOI: 10.1007/s00204-024-03724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
A number of environmental toxicants are noted for their activity that leads to declined motor function. However, the role of muscle as a proximal toxicity target organ for environmental agents has received considerably less attention than the toxicity targets in the nervous system. Nonetheless, the effects of conventional neurotoxicants on processes of myogenesis and muscle maintenance are beginning to resolve a concerted role of muscle as a susceptible toxicity target. A large body of evidence from epidemiological, animal, and in vitro studies has established that methylmercury (MeHg) is a potent developmental toxicant, with the nervous system being a preferred target. Despite its well-recognized status as a neurotoxicant, there is accumulating evidence that MeHg also targets muscle and neuromuscular development as well as contributes to the etiology of motor defects with prenatal MeHg exposure. Here, we summarize evidence for targets of MeHg in the morphogenesis and maintenance of skeletal muscle that reveal effects on MeHg distribution, myogenesis, myotube formation, myotendinous junction formation, neuromuscular junction formation, and satellite cell-mediated muscle repair. We briefly recapitulate the molecular and cellular mechanisms of skeletal muscle development and highlight the pragmatic role of alternative model organisms, Drosophila and zebrafish, in delineating the molecular underpinnings of muscle development and MeHg-mediated myotoxicity. Finally, we discuss how toxicity targets in muscle development may inform the developmental origins of health and disease theory to explain the etiology of environmentally induced adult motor deficits and accelerated decline in muscle fitness with aging.
Collapse
Affiliation(s)
- Lok Ming Tam
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, 14642, USA.
- Clinical and Translational Science Institute, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, 14642, USA
| |
Collapse
|
12
|
Wang K, Yang J, An Y, Wang J, Tan S, Xu H, Dong Y. MST1/2 regulates fibro/adipogenic progenitor fate decisions in skeletal muscle regeneration. Stem Cell Reports 2024; 19:501-514. [PMID: 38552635 PMCID: PMC11096422 DOI: 10.1016/j.stemcr.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Abstract
Defective skeletal muscle regeneration is often accompanied by fibrosis. Fibroblast/adipose progenitors (FAPs) are important in these processes, however, the regulation of FAP fate decisions is unclear. Here, using inducible conditional knockout mice, we show that blocking mammalian Ste20-like kinases 1/2 (MST1/2) of FAPs prevented apoptosis and reduced interleukin-6 secretion in vivo and in vitro, which impaired myoblast proliferation and differentiation, as well as impaired muscle regeneration. Deletion of Mst1/2 increased co-localization of Yes-associated protein (YAP) with Smad2/3 in nuclei and promoted differentiation of FAPs toward myofibroblasts, resulting in excessive collagen deposition and skeletal muscle fibrosis. Meanwhile, inhibition of MST1/2 increased YAP/Transcriptional co-activator with PDZ-binding motif activation, which promoted activation of the WNT/β-catenin pathway and impaired the differentiation of FAPs toward adipocytes. These results reveal a new mechanism for MST1/2 action in disrupted skeletal muscle regeneration and fibrosis via regulation of FAP apoptosis and differentiation. MST1/2 is a potential therapeutic target for the treatment of some myopathies.
Collapse
Affiliation(s)
- Kezhi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingjing Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yina An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shuyu Tan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Xu
- Department of Physical Education, China Agricultural University, Beijing 100193, China.
| | - Yanjun Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Roshanmehr F, Abdoli S, Bazi Z, Jari M, Shahbazi M. Enhancing the productivity and proliferation of CHO-K1 cells by oncoprotein YAP (Yes-associated protein). Appl Microbiol Biotechnol 2024; 108:285. [PMID: 38573360 PMCID: PMC10994876 DOI: 10.1007/s00253-024-13122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
CHO cells are extensively employed in biological drug industry to manufacture therapeutic proteins. Nevertheless, production of biopharmaceuticals faces obstacles such as limited growth and inadequate productivity. Employing host cell engineering techniques for CHO cells serves as a valuable approach to address the constraints encountered in biologics manufacturing. Despite advancements, most techniques focus on specific genes to address individual cellular challenges. The significance of YAP, transcriptional co-activator, cannot be overstated due to its involvement in regulating organ size and tumor formation. YAP's influence extends to various cellular processes and is regulated by kinase cascade in the Hippo pathway, which phosphorylates serine residues in specific LATS recognition motifs. Activation of YAP has been observed to impact both the size and quantity of cells. This research investigates the effects of YAP5SA on proliferation, apoptosis, and productivity in CHO-K1 cells. YAP5SA, with mutations in all five LATS-target sites, is selected for its heightened activity and resistance to repression through the Hippo-LATS1/2 kinase signaling pathway. Plasmid harboring YAP5SA was transfected into EPO-CHO and the influence of YAP5SA overexpression was investigated. According to our findings, transfection of EPO-CHO cells with YAP5SA exhibited a substantial enhancement in CHO cell productivity, resulting in a 3-fold increase in total protein and EPO, as well as a 1.5-fold increase in specific productivity. Additionally, it significantly contributes in augmenting viability, size, and proliferation. Overall, the findings of this study exemplify the potential of utilizing YAP5SA to impact particular cellular mechanisms, thereby presenting an avenue for customizing cells to fulfill production demands. KEY POINTS: • YAP5SA in CHO cells boosts growth, reduces apoptosis, and significantly improves productivity. • YAP5SA regulates genes involved in proliferation, survival, and mTOR activation. • YAP5SA increases productivity by improving cell cycle, c-MYC expression, and mTOR pathway.
Collapse
Affiliation(s)
- Farnaz Roshanmehr
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahriyar Abdoli
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Bazi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Jari
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Arya Tina Gene (ATG), Biopharmaceutical Company, Gorgan, Iran.
| |
Collapse
|
14
|
Hung M, Lo HF, Beckmann AG, Demircioglu D, Damle G, Hasson D, Radice GL, Krauss RS. Cadherin-dependent adhesion is required for muscle stem cell niche anchorage and maintenance. Development 2024; 151:dev202387. [PMID: 38456551 PMCID: PMC11057819 DOI: 10.1242/dev.202387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
Adhesion between stem cells and their niche provides stable anchorage and signaling cues to sustain properties such as quiescence. Skeletal muscle stem cells (MuSCs) adhere to an adjacent myofiber via cadherin-catenin complexes. Previous studies on N- and M-cadherin in MuSCs revealed that although N-cadherin is required for quiescence, they are collectively dispensable for MuSC niche localization and regenerative activity. Although additional cadherins are expressed at low levels, these findings raise the possibility that cadherins are unnecessary for MuSC anchorage to the niche. To address this question, we conditionally removed from MuSCs β- and γ-catenin, and, separately, αE- and αT-catenin, factors that are essential for cadherin-dependent adhesion. Catenin-deficient MuSCs break quiescence similarly to N-/M-cadherin-deficient MuSCs, but exit the niche and are depleted. Combined in vivo, ex vivo and single cell RNA-sequencing approaches reveal that MuSC attrition occurs via precocious differentiation, re-entry to the niche and fusion to myofibers. These findings indicate that cadherin-catenin-dependent adhesion is required for anchorage of MuSCs to their niche and for preservation of the stem cell compartment. Furthermore, separable cadherin-regulated functions govern niche localization, quiescence and MuSC maintenance.
Collapse
Affiliation(s)
- Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aviva G. Beckmann
- Pathos AI, 600 West Chicago Avenue, Suite 510, Chicago, IL 60654, USA
| | - Deniz Demircioglu
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gargi Damle
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Glenn L. Radice
- Cardiovascular Research Center, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
15
|
Fard D, Barbiera A, Dobrowolny G, Tamagnone L, Scicchitano BM. Semaphorins: Missing Signals in Age-dependent Alteration of Neuromuscular Junctions and Skeletal Muscle Regeneration. Aging Dis 2024; 15:517-534. [PMID: 37728580 PMCID: PMC10917540 DOI: 10.14336/ad.2023.0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
Skeletal muscle is characterized by a remarkable capacity to rearrange after physiological changes and efficiently regenerate. However, during aging, extensive injury, or pathological conditions, the complete regenerative program is severely affected, with a progressive loss of muscle mass and function, a condition known as sarcopenia. The compromised tissue repair program is attributable to the gradual depletion of stem cells and to altered regulatory signals. Defective muscle regeneration can severely affect re-innervation by motor axons, and neuromuscular junctions (NMJs) development, ultimately leading to skeletal muscle atrophy. Defects in NMJ formation and maintenance occur physiologically during aging and are responsible for the pathogenesis of several neuromuscular disorders. However, it is still largely unknown how neuromuscular connections are restored on regenerating fibers. It has been suggested that attractive and repelling signals used for axon guidance could be implicated in this process; in particular, guidance molecules called semaphorins play a key role. Semaphorins are a wide family of extracellular regulatory signals with a multifaceted role in cell-cell communication. Originally discovered as axon guidance factors, they have been implicated in cancer progression, embryonal organogenesis, skeletal muscle innervation, and other physiological and developmental functions in different tissues. In particular, in skeletal muscle, specific semaphorin molecules are involved in the restoration and remodeling of the nerve-muscle connections, thus emphasizing their plausible role to ensure the success of muscle regeneration. This review article aims to discuss the impact of aging on skeletal muscle regeneration and NMJs remodeling and will highlight the most recent insights about the role of semaphorins in this context.
Collapse
Affiliation(s)
- Damon Fard
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Alessandra Barbiera
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Gabriella Dobrowolny
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy.
| | - Luca Tamagnone
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| | - Bianca Maria Scicchitano
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| |
Collapse
|
16
|
Sun C, Serra C, Kalicharan BH, Harding J, Rao M. Challenges and Considerations of Preclinical Development for iPSC-Based Myogenic Cell Therapy. Cells 2024; 13:596. [PMID: 38607035 PMCID: PMC11011706 DOI: 10.3390/cells13070596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Cell therapies derived from induced pluripotent stem cells (iPSCs) offer a promising avenue in the field of regenerative medicine due to iPSCs' expandability, immune compatibility, and pluripotent potential. An increasing number of preclinical and clinical trials have been carried out, exploring the application of iPSC-based therapies for challenging diseases, such as muscular dystrophies. The unique syncytial nature of skeletal muscle allows stem/progenitor cells to integrate, forming new myonuclei and restoring the expression of genes affected by myopathies. This characteristic makes genome-editing techniques especially attractive in these therapies. With genetic modification and iPSC lineage specification methodologies, immune-compatible healthy iPSC-derived muscle cells can be manufactured to reverse the progression of muscle diseases or facilitate tissue regeneration. Despite this exciting advancement, much of the development of iPSC-based therapies for muscle diseases and tissue regeneration is limited to academic settings, with no successful clinical translation reported. The unknown differentiation process in vivo, potential tumorigenicity, and epigenetic abnormality of transplanted cells are preventing their clinical application. In this review, we give an overview on preclinical development of iPSC-derived myogenic cell transplantation therapies including processes related to iPSC-derived myogenic cells such as differentiation, scaling-up, delivery, and cGMP compliance. And we discuss the potential challenges of each step of clinical translation. Additionally, preclinical model systems for testing myogenic cells intended for clinical applications are described.
Collapse
Affiliation(s)
- Congshan Sun
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| | - Carlo Serra
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Mahendra Rao
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| |
Collapse
|
17
|
Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep 2024; 43:113926. [PMID: 38457338 DOI: 10.1016/j.celrep.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.
Collapse
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Kwon Y. YAP/TAZ as Molecular Targets in Skeletal Muscle Atrophy and Osteoporosis. Aging Dis 2024; 16:AD.2024.0306. [PMID: 38502585 PMCID: PMC11745433 DOI: 10.14336/ad.2024.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Skeletal muscles and bones are closely connected anatomically and functionally. Age-related degeneration in these tissues is associated with physical disability in the elderly and significantly impacts their quality of life. Understanding the mechanisms of age-related musculoskeletal tissue degeneration is crucial for identifying molecular targets for therapeutic interventions for skeletal muscle atrophy and osteoporosis. The Hippo pathway is a recently identified signaling pathway that plays critical roles in development, tissue homeostasis, and regeneration. The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the mammalian Hippo signaling pathway. This review highlights the fundamental roles of YAP and TAZ in the homeostatic maintenance and regeneration of skeletal muscles and bones. YAP/TAZ play a significant role in stem cell function by relaying various environmental signals to stem cells. Skeletal muscle atrophy and osteoporosis are related to stem cell dysfunction or senescence triggered by YAP/TAZ dysregulation resulting from reduced mechanosensing and mitochondrial function in stem cells. In contrast, the maintenance of YAP/TAZ activation can suppress stem cell senescence and tissue dysfunction and may be used as a basis for the development of potential therapeutic strategies. Thus, targeting YAP/TAZ holds significant therapeutic potential for alleviating age-related muscle and bone dysfunction and improving the quality of life in the elderly.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Helzer D, Kannan P, Reynolds JC, Gibbs DE, Crosbie RH. Role of microenvironment on muscle stem cell function in health, adaptation, and disease. Curr Top Dev Biol 2024; 158:179-201. [PMID: 38670705 DOI: 10.1016/bs.ctdb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.
Collapse
Affiliation(s)
- Daniel Helzer
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Devin E Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
20
|
Chen J, Chen H, Dong X, Hui T, Yan M, Ren D, Zou S, Wang S, Fei E, Zhang W, Lai X. Deficiency of skeletal muscle Agrin contributes to the pathogenesis of age-related sarcopenia in mice. Cell Death Dis 2024; 15:201. [PMID: 38461287 PMCID: PMC10925061 DOI: 10.1038/s41419-024-06581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Sarcopenia, a progressive and prevalent neuromuscular disorder, is characterized by age-related muscle wasting and weakening. Despite its widespread occurrence, the molecular underpinnings of this disease remain poorly understood. Herein, we report that levels of Agrin, an extracellular matrix (ECM) protein critical for neuromuscular formation, were decreased with age in the skeletal muscles of mice. The conditional loss of Agrin in myogenic progenitors and satellite cells (SCs) (Pax7 Cre:: Agrin flox/flox) causes premature muscle aging, manifesting a distinct sarcopenic phenotype in mice. Conversely, the elevation of a miniaturized form of Agrin in skeletal muscle through adenovirus-mediated gene transfer induces enhanced muscle capacity in aged mice. Mechanistic investigations suggest that Agrin-mediated improvement in muscle function occurs through the stimulation of Yap signaling and the concurrent upregulation of dystroglycan expression. Collectively, our findings underscore the pivotal role of Agrin in the aging process of skeletal muscles and propose Agrin as a potential therapeutic target for addressing sarcopenia.
Collapse
Affiliation(s)
- Jie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hong Chen
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xia Dong
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Tiankun Hui
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Min Yan
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Dongyan Ren
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Suqi Zou
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shunqi Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Erkang Fei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Wenhua Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xinsheng Lai
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China.
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
21
|
Meinhold M, Verbrugge S, Shi A, Schönfelder M, Becker L, Jaspers RT, Zammit PS, Wackerhage H. Yap/Taz activity is associated with increased expression of phosphoglycerate dehydrogenase that supports myoblast proliferation. Cell Tissue Res 2024; 395:271-283. [PMID: 38183459 PMCID: PMC10904560 DOI: 10.1007/s00441-023-03851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/24/2023] [Indexed: 01/08/2024]
Abstract
In skeletal muscle, the Hippo effector Yap promotes satellite cell, myoblast, and rhabdomyoblast proliferation but prevents myogenic differentiation into multinucleated muscle fibres. We previously noted that Yap drives expression of the first enzyme of the serine biosynthesis pathway, phosphoglycerate dehydrogenase (Phgdh). Here, we examined the regulation and function of Phgdh in satellite cells and myoblasts and found that Phgdh protein increased during satellite cell activation. Analysis of published data reveal that Phgdh mRNA in mouse tibialis anterior muscle was highly expressed at day 3 of regeneration after cardiotoxin injection, when markers of proliferation are also robustly expressed and in the first week of synergist-ablated muscle. Finally, siRNA-mediated knockdown of PHGDH significantly reduced myoblast numbers and the proliferation rate. Collectively, our data suggest that Phgdh is a proliferation-enhancing metabolic enzyme that is induced when quiescent satellite cells become activated.
Collapse
Affiliation(s)
- Marius Meinhold
- School of Medicine and Health, Technical University of Munich, Connollystrasse 32, 80809, Munich, Germany.
| | - Sander Verbrugge
- School of Medicine and Health, Technical University of Munich, Connollystrasse 32, 80809, Munich, Germany
| | - Andi Shi
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Department of Prosthodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Martin Schönfelder
- School of Medicine and Health, Technical University of Munich, Connollystrasse 32, 80809, Munich, Germany
| | - Lore Becker
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, German Mouse Clinic, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Richard T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Department of Prosthodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Henning Wackerhage
- School of Medicine and Health, Technical University of Munich, Connollystrasse 32, 80809, Munich, Germany
| |
Collapse
|
22
|
Robertson R, Li S, Filippelli RL, Chang NC. Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. Curr Top Dev Biol 2024; 158:83-121. [PMID: 38670717 DOI: 10.1016/bs.ctdb.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Muscle stem cells (MuSCs) are crucial to the repair and homeostasis of mature skeletal muscle. MuSC dysfunction and dysregulation of the myogenic program can contribute to the development of pathology ranging from cancers like rhabdomyosarcoma (RMS) or muscle degenerative diseases such as Duchenne muscular dystrophy (DMD). Both diseases exhibit dysregulation at nearly all steps of myogenesis. For instance, MuSC self-renewal processes are altered. In RMS, this leads to the creation of tumor propagating cells. In DMD, impaired asymmetric stem cell division creates a bias towards producing self-renewing stem cells instead of committing to differentiation. Hyperproliferation of these cells contribute to tumorigenesis in RMS and symmetric expansion of the self-renewing MuSC population in DMD. Both diseases also exhibit a repression of factors involved in terminal differentiation, halting RMS cells in the proliferative stage and thus driving tumor growth. Conversely, the MuSCs in DMD exhibit impaired differentiation and fuse prematurely, affecting myonuclei maturation and the integrity of the dystrophic muscle fiber. Finally, both disease states cause alterations to the MuSC niche. Various elements of the niche such as inflammatory and migratory signaling that impact MuSC behavior are dysregulated. Here we show how these seemingly distantly related diseases indeed have similarities in MuSC dysfunction, underlying the importance of considering MuSCs when studying the pathophysiology of muscle diseases.
Collapse
Affiliation(s)
- Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
23
|
dos Santos AEA, Guadalupe JL, Albergaria JDS, Almeida IA, Moreira AMS, Copola AGL, de Araújo IP, de Paula AM, Neves BRA, Santos JPF, da Silva AB, Jorge EC, Andrade LDO. Random cellulose acetate nanofibers: a breakthrough for cultivated meat production. Front Nutr 2024; 10:1297926. [PMID: 38249608 PMCID: PMC10796801 DOI: 10.3389/fnut.2023.1297926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024] Open
Abstract
Overcoming the challenge of creating thick, tissue-resembling muscle constructs is paramount in the field of cultivated meat production. This study investigates the remarkable potential of random cellulose acetate nanofibers (CAN) as a transformative scaffold for muscle tissue engineering (MTE), specifically in the context of cultivated meat applications. Through a comparative analysis between random and aligned CAN, utilizing C2C12 and H9c2 myoblasts, we unveil the unparalleled capabilities of random CAN in facilitating muscle differentiation, independent of differentiation media, by exploiting the YAP/TAZ-related mechanotransduction pathway. In addition, we have successfully developed a novel process for stacking cell-loaded CAN sheets, enabling the production of a three-dimensional meat product. C2C12 and H9c2 loaded CAN sheets were stacked (up to four layers) to form a ~300-400 μm thick tissue 2 cm in length, organized in a mesh of uniaxial aligned cells. To further demonstrate the effectiveness of this methodology for cultivated meat purposes, we have generated thick and viable constructs using chicken muscle satellite cells (cSCs) and random CAN. This groundbreaking discovery offers a cost-effective and biomimetic solution for cultivating and differentiating muscle cells, forging a crucial link between tissue engineering and the pursuit of sustainable and affordable cultivated meat production.
Collapse
Affiliation(s)
- Ana Elisa Antunes dos Santos
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jorge Luís Guadalupe
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliano Douglas Silva Albergaria
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Itallo Augusto Almeida
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Amanda Maria Siqueira Moreira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline Gonçalves Lio Copola
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Isabella Paula de Araújo
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Ana Maria de Paula
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bernardo Ruegger Almeida Neves
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Paulo Ferreira Santos
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Aline Bruna da Silva
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luciana de Oliveira Andrade
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
24
|
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol 2023; 24:895-911. [PMID: 37626124 DOI: 10.1038/s41580-023-00644-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/27/2023]
Abstract
Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
He M, Zhang W, Wang S, Ge L, Cao X, Wang S, Yuan Z, Lv X, Getachew T, Mwacharo JM, Haile A, Sun W. Effects of YAP1 on proliferation and differentiation of Hu sheep skeletal muscle satellite cells in vitro. Anim Biotechnol 2023; 34:2691-2700. [PMID: 36001393 DOI: 10.1080/10495398.2022.2112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study aimed to understand the expression level of YAP1 in the skeletal muscle of Hu sheep and to reveal the regulatory mechanism of YAP1 on Hu sheep skeletal muscle satellite cells (SMSCs). Previous research by our group has found that YAP1 may affect the growth and development of Hu sheep skeletal muscle. In the present study, we found the expression of YAP1 in the skeletal muscle is higher than in other tissues of Hu sheep. Then, we detected the effect of YAP1 on proliferation and differentiation in Hu sheep SMSCs. According to the results of qPCR, CCK-8, EDU, and Western blot, compared to the group of negative control, overexpression of YAP1 promoted the proliferation and inhibited the differentiation of SMSCs according to the results of qPCR, CCK-8, EDU, Western blot, while the interference of YAP1 was on the contrary. Overall, our study suggests that YAP1 is an important functional molecule in the growth and development of skeletal muscle by regulating the proliferation and differentiation of SMSCs. These findings are of great use for understanding the roles of YAP1 in the skeletal muscle of Hu sheep.
Collapse
Affiliation(s)
- Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Tesfaye Getachew
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Aynalem Haile
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| |
Collapse
|
26
|
Nair AS, Jayan AP, Anandu KR, Saiprabha VN, Pappachen LK. Unraveling the prevalence of various signalling pathways in non-small-cell lung cancer: a review. Mol Cell Biochem 2023; 478:2875-2890. [PMID: 37014561 DOI: 10.1007/s11010-023-04704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Cancer has become a huge public health issue all around the world. The focus of research is on innovative cancer therapy techniques that include the disease's unique targets. Among the cancer-related deaths that occur, lung cancer is considered to be one of the major, accounting for about 1.6 million fatalities globally in 2012, or nearly 20% of all cancer deaths. Non-small-cell lung cancer, a type of lung cancer comprises upto 84% of lung cancer cases, demonstrating the need for a more effective treatment. A novel category of cancer management, known as targeted cancer medicines, has risen to prominence in recent years. Targeted cancer treatments, like traditional chemotherapy, employ pharmacological drugs to slow cancer development, enhance cell death, and prevent it from spreading. Targeted treatments, as the name implies, work by interfering with particular proteins implicated in cancer. Numerous research conducted in the last several decades have led to the conclusion that signalling pathways are involved in the growth of lung cancer. All malignant tumours are produced, spread, invade, and behave in various abnormal ways due to abnormal pathways. Numerous significant signalling pathways, including the RTK/RAS/MAP-Kinase pathway (hence often referred to as RTK-RAS for simplicity), PI3K/Akt signalling, and others, have been discovered as commonly genetically changed. The current developments in research on various signalling pathways, as well as the underlying mechanisms of the molecules implicated in these pathways, are innovatively summarised in this review. To give a good sense of the study that has been done so far, many routes are placed together. Thus, this review includes the detailed description regarding each pathways, the mutations formed, and the present treatment strategy to overcome the resistance.
Collapse
Affiliation(s)
- Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry & Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Ajay P Jayan
- Department of Pharmaceutical Chemistry & Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - K R Anandu
- Department of Pharmaceutical Chemistry & Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - V N Saiprabha
- Department of Pharmaceutical Chemistry & Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry & Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
27
|
Shao A, Kissil JL, Fan CM. The L27 Domain of MPP7 enhances TAZ-YY1 Cooperation to Renew Muscle Stem Cells. RESEARCH SQUARE 2023:rs.3.rs-3673774. [PMID: 38077061 PMCID: PMC10705706 DOI: 10.21203/rs.3.rs-3673774/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renewal, for the regenerative process to last a lifetime. How stem cells renew is of critical biological and medical significance. Here we use the skeletal muscle stem cell (MuSC) to study this process. Using a combination of genetic, molecular, and biochemical approaches, we show that MPP7, AMOT, and TAZ/YAP form a complex that activates a common set of target genes. Among these targets, Carm1 can direct MuSC renewal. In the absence of MPP7, TAZ can support regenerative progenitors and activate Carm1 expression, but not to a level needed for self-renewal. Facilitated by the actin polymerization-responsive AMOT, TAZ recruits the L27 domain of MPP7 to up-regulate Carm1 to the level necessary to drive MuSC renewal. The promoter of Carm1, and those of other common downstream genes, also contain binding site(s) for YY1. We further demonstrate that the L27 domain of MPP7 enhances the interaction between TAZ and YY1 to activate Carm1. Our results define a renewal transcriptional program embedded within the progenitor program, by selectively up-regulating key gene(s) within the latter, through the combination of protein interactions and in a manner dependent on the promoter context.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Joseph L. Kissil
- Department of Molecular Oncology, The H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| |
Collapse
|
28
|
Shao A, Kissil JL, Fan CM. The L27 Domain of MPP7 enhances TAZ-YY1 Cooperation to Renew Muscle Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565166. [PMID: 37961392 PMCID: PMC10635061 DOI: 10.1101/2023.11.01.565166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renewal, for the regenerative process to last a lifetime. How stem cells renew is of critical biological and medical significance. Here we use the skeletal muscle stem cell (MuSC) to study this process. Using a combination of genetic, molecular, and biochemical approaches, we show that MPP7, AMOT, and TAZ/YAP form a complex that activates a common set of target genes. Among these targets, Carm1 can direct MuSC renewal. In the absence of MPP7, TAZ can support regenerative progenitors and activate Carm1 expression, but not to a level needed for self-renewal. Facilitated by the actin polymerization-responsive AMOT, TAZ recruits the L27 domain of MPP7 to up-regulate Carm1 to the level necessary to drive MuSC renewal. The promoter of Carm1, and those of other common downstream genes, also contain binding site(s) for YY1. We further demonstrate that the L27 domain of MPP7 enhances the interaction between TAZ and YY1 to activate Carm1. Our results define a renewal transcriptional program embedded within the progenitor program, by selectively up-regulating key gene(s) within the latter, through the combination of protein interactions and in a manner dependent on the promoter context.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Joseph L. Kissil
- Department of Molecular Oncology, The H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| |
Collapse
|
29
|
Bharadwaj A, Sharma J, Singh J, Kumari M, Dargar T, Kalita B, Mathew SJ. Musculoskeletal defects associated with myosin heavy chain-embryonic loss of function are mediated by the YAP signaling pathway. EMBO Mol Med 2023; 15:e17187. [PMID: 37492882 PMCID: PMC10493586 DOI: 10.15252/emmm.202217187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
Mutations in MYH3, the gene encoding the developmental myosin heavy chain-embryonic (MyHC-embryonic) skeletal muscle-specific contractile protein, cause several congenital contracture syndromes. Among these, recessive loss-of-function MYH3 mutations lead to spondylocarpotarsal synostosis (SCTS), characterized by vertebral fusions and scoliosis. We find that Myh3 germline knockout adult mice display SCTS phenotypes such as scoliosis and vertebral fusion, in addition to reduced body weight, muscle weight, myofiber size, and grip strength. Myh3 knockout mice also exhibit changes in muscle fiber type, altered satellite cell numbers and increased muscle fibrosis. A mass spectrometric analysis of embryonic skeletal muscle from Myh3 knockouts identified integrin signaling and cytoskeletal regulation as the most affected pathways. These pathways are closely connected to the mechanosensing Yes-associated protein (YAP) transcriptional regulator, which we found to be significantly activated in the skeletal muscle of Myh3 knockout mice. To test whether increased YAP signaling might underlie the musculoskeletal defects in Myh3 knockout mice, we treated these mice with CA3, a small molecule inhibitor of YAP signaling. This led to increased muscle fiber size, rescue of most muscle fiber type alterations, normalization of the satellite cell marker Pax7 levels, increased grip strength, reduced fibrosis, and decline in scoliosis in Myh3 knockout mice. Thus, increased YAP activation underlies the musculoskeletal defects seen in Myh3 knockout mice, indicating its significance as a key pathway to target in SCTS and other MYH3-related congenital syndromes.
Collapse
Affiliation(s)
- Anushree Bharadwaj
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Jaydeep Sharma
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Jagriti Singh
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Mahima Kumari
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Tanushri Dargar
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
- Present address:
Faculte de MedicineInstitut NeuroMyoGeneLyonFrance
| | - Bhargab Kalita
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
- Present address:
Department of Pathology and Perlmutter Cancer CenterNew York University School of MedicineNew YorkNYUSA
| | - Sam J Mathew
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| |
Collapse
|
30
|
Brondolin M, Herzog D, Sultan S, Warburton F, Vigilante A, Knight RD. Migration and differentiation of muscle stem cells are coupled by RhoA signalling during regeneration. Open Biol 2023; 13:230037. [PMID: 37726092 PMCID: PMC10508982 DOI: 10.1098/rsob.230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Skeletal muscle is highly regenerative and is mediated by a population of migratory adult muscle stem cells (muSCs). Effective muscle regeneration requires a spatio-temporally regulated response of the muSC population to generate sufficient muscle progenitor cells that then differentiate at the appropriate time. The relationship between muSC migration and cell fate is poorly understood and it is not clear how forces experienced by migrating cells affect cell behaviour. We have used zebrafish to understand the relationship between muSC cell adhesion, behaviour and fate in vivo. Imaging of pax7-expressing muSCs as they respond to focal injuries in trunk muscle reveals that they migrate by protrusive-based means. By carefully characterizing their behaviour in response to injury we find that they employ an adhesion-dependent mode of migration that is regulated by the RhoA kinase ROCK. Impaired ROCK activity results in reduced expression of cell cycle genes and increased differentiation in regenerating muscle. This correlates with changes to focal adhesion dynamics and migration, revealing that ROCK inhibition alters the interaction of muSCs to their local environment. We propose that muSC migration and differentiation are coupled processes that respond to changes in force from the environment mediated by RhoA signalling.
Collapse
Affiliation(s)
- Mirco Brondolin
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Dylan Herzog
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Sami Sultan
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Fiona Warburton
- Oral Clinical Research Unit, King's College London, London, London SE1 9RT, UK
| | | | - Robert D. Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| |
Collapse
|
31
|
Bhattacharya S, Mukherjee A, Pisano S, Dimri S, Knaane E, Altshuler A, Nasser W, Dey S, Shi L, Mizrahi I, Blum N, Jokel O, Amitai-Lange A, Kaganovsky A, Mimouni M, Socea S, Midlij M, Tiosano B, Hasson P, Feral C, Wolfenson H, Shalom-Feuerstein R. The biophysical property of the limbal niche maintains stemness through YAP. Cell Death Differ 2023:10.1038/s41418-023-01156-7. [PMID: 37095157 DOI: 10.1038/s41418-023-01156-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
The cell fate decisions of stem cells (SCs) largely depend on signals from their microenvironment (niche). However, very little is known about how biochemical niche cues control cell behavior in vivo. To address this question, we focused on the corneal epithelial SC model in which the SC niche, known as the limbus, is spatially segregated from the differentiation compartment. We report that the unique biomechanical property of the limbus supports the nuclear localization and function of Yes-associated protein (YAP), a putative mediator of the mechanotransduction pathway. Perturbation of tissue stiffness or YAP activity affects SC function as well as tissue integrity under homeostasis and significantly inhibited the regeneration of the SC population following SC depletion. In vitro experiments revealed that substrates with the rigidity of the corneal differentiation compartment inhibit nuclear YAP localization and induce differentiation, a mechanism that is mediated by the TGFβ-SMAD2/3 pathway. Taken together, these results indicate that SC sense biomechanical niche signals and that manipulation of mechano-sensory machinery or its downstream biochemical output may bear fruits in SC expansion for regenerative therapy.
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Abhishek Mukherjee
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Sabrina Pisano
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107, Nice, France
| | - Shalini Dimri
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Eman Knaane
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Anna Altshuler
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Waseem Nasser
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Sunanda Dey
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Lidan Shi
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Ido Mizrahi
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Noam Blum
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Ophir Jokel
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Aya Amitai-Lange
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Anna Kaganovsky
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Michael Mimouni
- Department of Ophthalmology, Rambam Health Care Campus, 31096, Haifa, Israel
| | - Sergiu Socea
- Department of Ophthalmology, Rambam Health Care Campus, 31096, Haifa, Israel
| | - Mohamad Midlij
- Department of Ophthalmology, Hilel Yafe Medical Center, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hilel Yafe Medical Center, Hadera, Israel
| | - Peleg Hasson
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Chloe Feral
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107, Nice, France
| | - Haguy Wolfenson
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
| | - Ruby Shalom-Feuerstein
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
| |
Collapse
|
32
|
Hu W, Wang X, Bi Y, Bao J, Shang M, Zhang L. The Molecular Mechanism of the TEAD1 Gene and miR-410-5p Affect Embryonic Skeletal Muscle Development: A miRNA-Mediated ceRNA Network Analysis. Cells 2023; 12:cells12060943. [PMID: 36980284 PMCID: PMC10047409 DOI: 10.3390/cells12060943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Muscle development is a complex biological process involving an intricate network of multiple factor interactions. Through the analysis of transcriptome data and molecular biology confirmation, this study aims to reveal the molecular mechanism underlying sheep embryonic skeletal muscle development. The RNA sequencing of embryos was conducted, and microRNA (miRNA)-mediated competitive endogenous RNA (ceRNA) networks were constructed. qRT-PCR, siRNA knockdown, CCK-8 assay, scratch assay, and dual luciferase assay were used to carry out gene function identification. Through the analysis of the ceRNA networks, three miRNAs (miR-493-3p, miR-3959-3p, and miR-410-5p) and three genes (TEAD1, ZBTB34, and POGLUT1) were identified. The qRT-PCR of the DE-miRNAs and genes in the muscle tissues of sheep showed that the expression levels of the TEAD1 gene and miR-410-5p were correlated with the growth rate. The knockdown of the TEAD1 gene by siRNA could significantly inhibit the proliferation of sheep primary embryonic myoblasts, and the expression levels of SLC1A5, FoxO3, MyoD, and Pax7 were significantly downregulated. The targeting relationship between miR-410-5p and the TEAD1 gene was validated by a dual luciferase assay, and miR-410-5p can significantly downregulate the expression of TEAD1 in sheep primary embryonic myoblasts. We proved the regulatory relationship between miR-410-5p and the TEAD1 gene, which was related to the proliferation of sheep embryonic myoblasts. The results provide a reference and molecular basis for understanding the molecular mechanism of embryonic muscle development.
Collapse
Affiliation(s)
- Wenping Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinyue Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yazhen Bi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Bao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingyu Shang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
33
|
Roy A, Patra SK. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev Rep 2023; 19:2-25. [PMID: 35997871 DOI: 10.1007/s12015-022-10448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Molecular views of plasma membrane organization and dynamics are gradually changing over the past fifty years. Dynamics of plasma membrane instigate several signaling nexuses in eukaryotic cells. The striking feature of plasma membrane dynamics is that, it is internally transfigured into various subdomains of clustered macromolecules. Lipid rafts are nanoscale subdomains, enriched with cholesterol and sphingolipids, reside as floating entity mostly on the exoplasmic leaflet of the lipid bilayer. In terms of functionality, lipid rafts are unique among other membrane subdomains. Herein, advances on the roles of lipid rafts in cellular physiology and homeostasis are discussed, precisely, on how rafts dynamically harbor signaling proteins, including GPCRs, catalytic receptors, and ionotropic receptors within it and orchestrate multiple signaling pathways. In the developmental proceedings signaling are designed for patterning of overall organism and they differ from the somatic cell physiology and signaling of fully developed organisms. Some of the developmental signals are characteristic in maintenance of stemness and activated during several types of tumor development and cancer progression. The harmony between extracellular signaling and lineage specific transcriptional programs are extremely important for embryonic development. The roles of plasma membrane lipid rafts mediated signaling in lineage specificity, early embryonic development, stem cell maintenance are emerging. In view of this, we have highlighted and analyzed the roles of lipid rafts in receptor organization, cell signaling, and gene expression during embryonic development; from pre-implantation through the post-implantation phase, in stem cell and cancer biology.
Collapse
Affiliation(s)
- Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
34
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
35
|
Torregrosa C, Chorin F, Beltran EEM, Neuzillet C, Cardot-Ruffino V. Physical Activity as the Best Supportive Care in Cancer: The Clinician's and the Researcher's Perspectives. Cancers (Basel) 2022; 14:5402. [PMID: 36358820 PMCID: PMC9655932 DOI: 10.3390/cancers14215402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Multidisciplinary supportive care, integrating the dimensions of exercise alongside oncological treatments, is now regarded as a new paradigm to improve patient survival and quality of life. Its impact is important on the factors that control tumor development, such as the immune system, inflammation, tissue perfusion, hypoxia, insulin resistance, metabolism, glucocorticoid levels, and cachexia. An increasing amount of research has been published in the last years on the effects of physical activity within the framework of oncology, marking the appearance of a new medical field, commonly known as "exercise oncology". This emerging research field is trying to determine the biological mechanisms by which, aerobic exercise affects the incidence of cancer, the progression and/or the appearance of metastases. We propose an overview of the current state of the art physical exercise interventions in the management of cancer patients, including a pragmatic perspective with tips for routine practice. We then develop the emerging mechanistic views about physical exercise and their potential clinical applications. Moving toward a more personalized, integrated, patient-centered, and multidisciplinary management, by trying to understand the different interactions between the cancer and the host, as well as the impact of the disease and the treatments on the different organs, this seems to be the most promising method to improve the care of cancer patients.
Collapse
Affiliation(s)
- Cécile Torregrosa
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- Département de Chirurgie Digestive et Oncologique, Hôpital Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 9 avenue Charles de Gaulle, 92100 Boulogne Billancourt, France
| | - Frédéric Chorin
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), HEALTHY Graduate School, Université Côte d’Azur, 06205 Nice, France
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06205 Nice, France
| | - Eva Ester Molina Beltran
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Cindy Neuzillet
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
36
|
Wong DCP, Xiao J, Chew TW, Pan M, Lee CJM, Ang JW, Yow I, Thivakar T, Ackers‐Johnson M, Lee NJW, Foo RS, Kanchanawong P, Low BC. BNIP-2 Activation of Cellular Contractility Inactivates YAP for H9c2 Cardiomyoblast Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202834. [PMID: 35975420 PMCID: PMC9631078 DOI: 10.1002/advs.202202834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Rho GTPases and Hippo kinases are key regulators of cardiomyoblast differentiation. However, how these signaling axes are coordinated spatiotemporally remains unclear. Here, the central and multifaceted roles of the BCH domain containing protein, BNIP-2, in orchestrating the expression of two key cardiac genes (cardiac troponin T [cTnT] and cardiac myosin light chain [Myl2]) in H9c2 and human embryonic stem cell-derived cardiomyocytes are delineated. This study shows that BNIP-2 mRNA and protein expression increase with the onset of cTnT and Myl2 and promote the alignment of H9c2 cardiomyocytes. Mechanistically, BNIP-2 is required for the inactivation of YAP through YAP phosphorylation and its cytosolic retention. Turbo-ID proximity labeling corroborated by super-resolution analyses and biochemical pulldown data reveals a scaffolding role of BNIP-2 for LATS1 to phosphorylate and inactivate YAP in a process that requires BNIP-2 activation of cellular contractility. The findings identify BNIP-2 as a pivotal signaling scaffold that spatiotemporally integrates RhoA/Myosin II and LATS1/YAP mechanotransduction signaling to drive cardiomyoblast differentiation, by switching the genetic programming from YAP-dependent growth to YAP-silenced differentiation. These findings offer insights into the importance of scaffolding proteins in bridging the gap between mechanical and biochemical signals in cell growth and differentiation and the prospects in translational applications.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
- Department of Biological SciencesNational University of SingaporeSingapore117558Singapore
| | - Jingwei Xiao
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
| | - Ti Weng Chew
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
| | - Meng Pan
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
| | - Chang Jie Mick Lee
- Genome Institute of SingaporeAgency for ScienceTechnology and ResearchSingapore138672Singapore
| | - Jing Wen Ang
- Department of Biological SciencesNational University of SingaporeSingapore117558Singapore
| | - Ivan Yow
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
| | - T. Thivakar
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
| | - Matthew Ackers‐Johnson
- Genome Institute of SingaporeAgency for ScienceTechnology and ResearchSingapore138672Singapore
- Cardiovascular Research InstituteNational University Healthcare SystemsSingapore117599Singapore
| | - Nicole Jia Wen Lee
- Department of Biological SciencesNational University of SingaporeSingapore117558Singapore
| | - Roger Sik‐Yin Foo
- Genome Institute of SingaporeAgency for ScienceTechnology and ResearchSingapore138672Singapore
- Cardiovascular Research InstituteNational University Healthcare SystemsSingapore117599Singapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Boon Chuan Low
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
- Department of Biological SciencesNational University of SingaporeSingapore117558Singapore
- NUS CollegeNational University of SingaporeSingapore138593Singapore
| |
Collapse
|
37
|
Kovach AR, Oristian KM, Kirsch DG, Bentley RC, Cheng C, Chen X, Chen P, Chi JA, Linardic CM. Identification and targeting of a
HES1‐YAP1‐CDKN1C
functional interaction in fusion‐negative rhabdomyosarcoma. Mol Oncol 2022; 16:3587-3605. [PMID: 36037042 PMCID: PMC9580881 DOI: 10.1002/1878-0261.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Rhabdomyosarcoma (RMS), a cancer characterized by features of skeletal muscle, is the most common soft‐tissue sarcoma of childhood. With 5‐year survival rates among high‐risk groups at < 30%, new therapeutics are desperately needed. Previously, using a myoblast‐based model of fusion‐negative RMS (FN‐RMS), we found that expression of the Hippo pathway effector transcriptional coactivator YAP1 (YAP1) permitted senescence bypass and subsequent transformation to malignant cells, mimicking FN‐RMS. We also found that YAP1 engages in a positive feedback loop with Notch signaling to promote FN‐RMS tumorigenesis. However, we could not identify an immediate downstream impact of this Hippo‐Notch relationship. Here, we identify a HES1‐YAP1‐CDKN1C functional interaction, and show that knockdown of the Notch effector HES1 (Hes family BHLH transcription factor 1) impairs growth of multiple FN‐RMS cell lines, with knockdown resulting in decreased YAP1 and increased CDKN1C expression. In silico mining of published proteomic and transcriptomic profiles of human RMS patient‐derived xenografts revealed the same pattern of HES1‐YAP1‐CDKN1C expression. Treatment of FN‐RMS cells in vitro with the recently described HES1 small‐molecule inhibitor, JI130, limited FN‐RMS cell growth. Inhibition of HES1 in vivo via conditional expression of a HES1‐directed shRNA or JI130 dosing impaired FN‐RMS tumor xenograft growth. Lastly, targeted transcriptomic profiling of FN‐RMS xenografts in the context of HES1 suppression identified associations between HES1 and RAS‐MAPK signaling. In summary, these in vitro and in vivo preclinical studies support the further investigation of HES1 as a therapeutic target in FN‐RMS.
Collapse
Affiliation(s)
- Alexander R Kovach
- Department of Pediatrics Duke University School of Medicine Durham NC USA
| | - Kristianne M Oristian
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
- Department of Radiation Oncology Duke University School of Medicine Durham NC USA
| | - David G Kirsch
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
- Department of Radiation Oncology Duke University School of Medicine Durham NC USA
| | - Rex C Bentley
- Department of Pathology Duke University Durham NC USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital Memphis TN USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital Memphis TN USA
| | - Po‐Han Chen
- Department of Molecular Genetics & Microbiology Duke University School of Medicine Durham NC USA
| | - Jen‐Tsan Ashley Chi
- Department of Molecular Genetics & Microbiology Duke University School of Medicine Durham NC USA
| | - Corinne M Linardic
- Department of Pediatrics Duke University School of Medicine Durham NC USA
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
| |
Collapse
|
38
|
Pruller J, Figeac N, Zammit PS. DVL1 and DVL3 require nuclear localisation to regulate proliferation in human myoblasts. Sci Rep 2022; 12:8388. [PMID: 35589804 PMCID: PMC9120025 DOI: 10.1038/s41598-022-10536-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/25/2022] [Indexed: 11/09/2022] Open
Abstract
WNT signalling is essential for regulating a diverse range of cellular processes. In skeletal muscle, the WNT pathway plays crucial roles in maintenance of the stem cell pool and myogenic differentiation. Focus is usually directed at examining the function of central components of the WNT pathway, including β-CATENIN and the GSK3β complex and TCF/LEF transcription factors, in tissue homeostasis and cancer. Other core components of the WNT pathway though, are three dishevelled (DVL) proteins: membrane associated proteins that propagate WNT signalling from membrane to nucleus. Here we examined DVL function in human myogenesis and the muscle-related cancer alveolar rhabdomyosarcoma. We demonstrate that DVL1 and DVL3 are necessary for efficient proliferation in human myoblasts and are important for timely myogenic differentiation. DVL1 and DVL3 also contribute to regulation of proliferation in rhabdomyosarcoma. DVL1 or DVL3 must be present in the nucleus to regulate proliferation, but they operate through different protein domains: DVL3 requires the DIX and PDZ domains, while DVL1 does not. Importantly, DVL1 and DVL3 activity is independent of markedly increased translocation of β-CATENIN to the nucleus, normally a hallmark of active canonical WNT signalling.
Collapse
Affiliation(s)
- Johanna Pruller
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Nicolas Figeac
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
39
|
MicroRNA-181a Regulates the Proliferation and Differentiation of Hu Sheep Skeletal Muscle Satellite Cells and Targets the YAP1 Gene. Genes (Basel) 2022; 13:genes13030520. [PMID: 35328074 PMCID: PMC8949050 DOI: 10.3390/genes13030520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
MicroRNA (miRNA) is of great importance to muscle growth and development, including the regulation of the proliferation and differentiation of skeletal muscle satellite cells (SMSCs). In our research group’s previous study, we found that miR-181a is differentially expressed in the longissimus dorsi muscle of Hu sheep at different stages. We speculated that miR-181a may participate in the growth and development process of Hu sheep. To understand the mechanism of miR-181a regulating the growth and development of Hu sheep skeletal muscle, we extracted skeletal muscle satellite cells from the longissimus dorsi muscle of 3-month-old Hu sheep fetuses and performed a series of experiments. Our results showed that miR-181a suppressed SMSCs’ proliferation using QRT-PCR, Western blot, CCK-8, EDU, and Flow cytometry cycle tests. In addition, QRT-PCR, Western blot, and immunofluorescence indicated that miR-181a facilitated the differentiation of SMSCs. Then, we used dual-luciferase reporter gene detection, QRT-PCR, and Western blot to find that the Yes1-related transcription regulator (YAP1) is the target gene of miR-181a. Our study supplies a research basis for understanding the regulation mechanism of miR-181a on the growth of Hu sheep skeletal muscle.
Collapse
|
40
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
41
|
Yang J, Wang K, An Y, Wu R, Li J, Wang H, Dong Y. Mst1/2 is necessary for satellite cell differentiation to promote muscle regeneration. Stem Cells 2022; 40:74-87. [DOI: 10.1093/stmcls/sxab010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022]
Abstract
Abstract
The diminished ability for muscle to regenerate is associated with aging, diabetes and cancers. Muscle regeneration depends on the activation and differentiation of satellite cells (SCs). Inactivation of Mst1/2 promotes cell proliferation by activating Yap, and that has been reported as a potential therapeutic target for improving many organ regeneration. However, the function of Mst1/2 in SCs fate decision and that effect on muscle regeneration remain unknown. By using inducible conditional knockout Mst1/2 in the SCs of mice and an inhibitor of Mst1/2, we found that inhibition of Mst1/2 in SCs significantly decrease Yap phosphorylation, thus causing Yap to accumulate in the nucleus and impairing SC differentiation; Mst1/2 were slightly elevated by irisin stimulation during SC differentiation; but inhibiting Mst1/2 in SCs significantly impaired irisin-induced muscle regeneration. These results indicate that Mst1/2 is necessary for SC differentiation and inhibiting Mst1/2 as a therapeutic target has potential risks for muscle regeneration.
Collapse
Affiliation(s)
- Jingjing Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kezhi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yina An
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ran Wu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiangbo Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haidong Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Yanjun Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022; 11:cells11010160. [PMID: 35011721 PMCID: PMC8750433 DOI: 10.3390/cells11010160] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults’ health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has become clear that dysbiosis may play a role in the onset and progression of sarcopenia and SO. Skeletal muscle secretes myokines during contraction, which play an important role in controlling muscle growth, function, and metabolic balance. Myokine dysfunction can cause and aggravate obesity, sarcopenia, and SO. The only ways to prevent and slow the progression of sarcopenia, particularly sarcopenic obesity, are physical activity and correct nutritional support. While exercise cannot completely prevent sarcopenia and age-related loss in muscular function, it can certainly delay development and slow down the rate of sarcopenia. The purpose of this review was to discuss potential pathways to muscle deterioration in obese individuals. We also want to present the current understanding of the role of various factors, including microbiota and myokines, in the process of sarcopenia and SO.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-93-51
| | - Piotr Pierzchalski
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Marian Szczepanik
- Department of Medical Biology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| |
Collapse
|
43
|
Liu L, Liu M, Xie D, Liu X, Yan H. Role of the extracellular matrix and YAP/TAZ in cell reprogramming. Differentiation 2021; 122:1-6. [PMID: 34768156 DOI: 10.1016/j.diff.2021.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Stem cells are crucial in the fields of regenerative medicine and cell therapy. Mechanical signals from the cellular microenvironment play an important role in inducing the reprogramming of somatic cells into stem cells in vitro, but the mechanisms of this process have yet to be fully explored. Mechanical signals may activate a physical pathway involving the focal adhesions-cytoskeleton-LINC complex axis, and a chemical pathway involving YAP/TAZ. ENH protein likely plays an important role in connecting and regulating these two pathways. Such mechanisms illustrate one way in which mechanical signals from the cellular microenvironment can induce reprogramming of somatic cells to stem cells, and lays the foundation for a new strategy for inducing and regulating such reprogramming in vitro by means of physical processes related to local mechanical forces.
Collapse
Affiliation(s)
- Lan Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Mengchang Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Defu Xie
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Xingke Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Hong Yan
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
44
|
Liu Z, Lin L, Zhu H, Wu Z, Ding X, Hu R, Jiang Y, Tang C, Ding S, Guo R. YAP Promotes Cell Proliferation and Stemness Maintenance of Porcine Muscle Stem Cells under High-Density Condition. Cells 2021; 10:cells10113069. [PMID: 34831292 PMCID: PMC8621012 DOI: 10.3390/cells10113069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Muscle stem cells (MuSCs) isolated ex vivo are essential original cells to produce cultured meat. Currently, one of the main obstacles for cultured meat production derives from the limited capacity of large-scale amplification of MuSCs, especially under high-density culture condition. Here, we show that at higher cell densities, proliferation and differentiation capacities of porcine MuSCs are impaired. We investigate the roles of Hippo-YAP signaling, which is important regulators in response to cell contact inhibition. Interestingly, abundant but not functional YAP proteins are accumulated in MuSCs seeded at high density. When treated with lysophosphatidic acid (LPA), the activator of YAP, porcine MuSCs exhibit increased proliferation and elevated differentiation potential compared with control cells. Moreover, constitutively active YAP with deactivated phosphorylation sites, but not intact YAP, promotes cell proliferation and stemness maintenance of MuSCs. Together, we reveal a potential molecular target that enables massive MuSCs expansion for large-scale cultured meat production under high-density condition.
Collapse
Affiliation(s)
- Zheng Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (L.L.); (H.Z.); (Z.W.); (X.D.); (R.H.); (Y.J.); (C.T.)
- National Center of Meat Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (L.L.); (H.Z.); (Z.W.); (X.D.); (R.H.); (Y.J.); (C.T.)
- National Center of Meat Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing Agricultural University, Nanjing 210095, China
| | - Haozhe Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (L.L.); (H.Z.); (Z.W.); (X.D.); (R.H.); (Y.J.); (C.T.)
- National Center of Meat Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongyuan Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (L.L.); (H.Z.); (Z.W.); (X.D.); (R.H.); (Y.J.); (C.T.)
- National Center of Meat Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (L.L.); (H.Z.); (Z.W.); (X.D.); (R.H.); (Y.J.); (C.T.)
- National Center of Meat Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongrong Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (L.L.); (H.Z.); (Z.W.); (X.D.); (R.H.); (Y.J.); (C.T.)
- National Center of Meat Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing Agricultural University, Nanjing 210095, China
| | - Yichen Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (L.L.); (H.Z.); (Z.W.); (X.D.); (R.H.); (Y.J.); (C.T.)
- National Center of Meat Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing Agricultural University, Nanjing 210095, China
| | - Changbo Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (L.L.); (H.Z.); (Z.W.); (X.D.); (R.H.); (Y.J.); (C.T.)
- National Center of Meat Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijie Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (L.L.); (H.Z.); (Z.W.); (X.D.); (R.H.); (Y.J.); (C.T.)
- National Center of Meat Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (S.D.); (R.G.)
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (L.L.); (H.Z.); (Z.W.); (X.D.); (R.H.); (Y.J.); (C.T.)
- Correspondence: (S.D.); (R.G.)
| |
Collapse
|
45
|
Rodríguez-Fdez S, Bustelo XR. Rho GTPases in Skeletal Muscle Development and Homeostasis. Cells 2021; 10:cells10112984. [PMID: 34831205 PMCID: PMC8616218 DOI: 10.3390/cells10112984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rho guanosine triphosphate hydrolases (GTPases) are molecular switches that cycle between an inactive guanosine diphosphate (GDP)-bound and an active guanosine triphosphate (GTP)-bound state during signal transduction. As such, they regulate a wide range of both cellular and physiological processes. In this review, we will summarize recent work on the role of Rho GTPase-regulated pathways in skeletal muscle development, regeneration, tissue mass homeostatic balance, and metabolism. In addition, we will present current evidence that links the dysregulation of these GTPases with diseases caused by skeletal muscle dysfunction. Overall, this information underscores the critical role of a number of members of the Rho GTPase subfamily in muscle development and the overall metabolic balance of mammalian species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: or
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
46
|
Goudreau AD, Everest C, Nagpal TS, Puranda JL, Bhattacharjee J, Vasanthan T, Adamo KB. Elucidating the interaction between maternal physical activity and circulating myokines throughout gestation: A scoping review. Am J Reprod Immunol 2021; 86:e13488. [PMID: 34331363 DOI: 10.1111/aji.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Physical activity (PA) during pregnancy provides both maternal and fetal health benefits. It has been theorized that myokines, peptides secreted by contracting skeletal muscle, may play an important mechanistic role in facilitating the health benefits obtained from prenatal exercise. The objective of this review was to synthesize the current literature on the relationship between maternal PA and myokine response. A search strategy was developed using the terms pregnancy, PA, IL-6, IL-10, IL-13, and TNF-α. A systematic search was completed in July 2020, in Medline, SPORTDiscus, EMBASE, CENTRAL, and in November 2020 for unpublished dissertations (grey literature; Proquest). Both human- and animal-based studies of any design were included, while commentaries and editorial articles were excluded. Data were extracted by two independent reviewers and summarized narratively. Data were thematically summarized based on the myokine and whether findings were from human or animal studies. Ten studies were included in this review. Findings from studies that examined IL-6, IL-10, and TNF-α suggest a trimester-specific interaction between PA and myokine levels; no studies evaluated IL-13. Future research should investigate the PA-myokine relationship throughout all stages of gestation.
Collapse
Affiliation(s)
| | - Catherine Everest
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Taniya S Nagpal
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Society of Obstetricians and Gynaecologists of Canada, Ottawa, ON, Canada
| | - Jessica L Puranda
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jayonta Bhattacharjee
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Kristi B Adamo
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
47
|
Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 2021; 23:204-226. [PMID: 34663964 DOI: 10.1038/s41580-021-00421-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle contains a designated population of adult stem cells, called satellite cells, which are generally quiescent. In homeostasis, satellite cells proliferate only sporadically and usually by asymmetric cell division to replace myofibres damaged by daily activity and maintain the stem cell pool. However, satellite cells can also be robustly activated upon tissue injury, after which they undergo symmetric divisions to generate new stem cells and numerous proliferating myoblasts that later differentiate to muscle cells (myocytes) to rebuild the muscle fibre, thereby supporting skeletal muscle regeneration. Recent discoveries show that satellite cells have a great degree of population heterogeneity, and that their cell fate choices during the regeneration process are dictated by both intrinsic and extrinsic mechanisms. Extrinsic cues come largely from communication with the numerous distinct stromal cell types in their niche, creating a dynamically interactive microenvironment. This Review discusses the role and regulation of satellite cells in skeletal muscle homeostasis and regeneration. In particular, we highlight the cell-intrinsic control of quiescence versus activation, the importance of satellite cell-niche communication, and deregulation of these mechanisms associated with ageing. The increasing understanding of how satellite cells are regulated will help to advance muscle regeneration and rejuvenation therapies.
Collapse
|
48
|
Sultan SHA, Dyer C, Knight RD. Notch Signaling Regulates Muscle Stem Cell Homeostasis and Regeneration in a Teleost Fish. Front Cell Dev Biol 2021; 9:726281. [PMID: 34650976 PMCID: PMC8505724 DOI: 10.3389/fcell.2021.726281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Muscle regeneration is mediated by the activity of resident muscle satellite cells (muSCs) that express Pax7. In mouse Notch signaling regulates muSCs during quiescence and promotes muSC proliferation in regeneration. It is unclear if these roles of Notch in regulating muSC biology are conserved across vertebrates or are a mammalian specific feature. We have therefore investigated the role of Notch in regulating muSC homeostasis and regeneration in a teleost fish, the zebrafish. We have also tested whether muSCs show differential sensitivity to Notch during myotome development. In an absence of injury Notch is important for preventing muSC proliferation at the vertical myoseptum. In contrast, Notch signaling promotes proliferation and prevents differentiation in the context of injury. Notch is required for the proliferative response to injury at early and later larval stages, suggesting it plays a similar role in regulating muSCs at developing and adult stages. Our results reveal a conserved role for Notch signaling in regulating muSCs under homeostasis and for promoting proliferation during regeneration in teleost fish.
Collapse
Affiliation(s)
- Sami H A Sultan
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Carlene Dyer
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Robert D Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
49
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
50
|
Yan HC, Sun Y, Zhang MY, Zhang SE, Sun JD, Dyce PW, Klinger FG, De Felici M, Shen W, Cheng SF. YAP regulates porcine skin-derived stem cells self-renewal partly by repressing Wnt/β-catenin signaling pathway. Histochem Cell Biol 2021; 157:39-50. [PMID: 34586448 DOI: 10.1007/s00418-021-02034-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of SDSCs are a hot topic. In this paper, we explore the link between the transcriptional regulator yes-associated protein (YAP) and the fate of porcine SDSCs (pSDSCs). We found that lysophosphatidylcholine (LPC) activates YAP, promotes pSDSCs pluripotency, and counteracts transdifferentiation of pSDSCs into porcine primordial germ cell-like cells (pPGCLCs). YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Oct4 and Sox2. The overexpression of YAP prevented the differentiation of pSDSCs, and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/β-catenin signaling pathway. When an activator of the Wnt/β-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP, the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939, an inhibitor of the Wnt/β-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Taken together, our results suggested that YAP and the Wnt/β-catenin signaling pathway interact to regulate the fate of pSDSCs.
Collapse
Affiliation(s)
- Hong-Chen Yan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ming-Yu Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Jia-Dong Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|