1
|
Radi A, Nasrah S, Auer M, Renigunta A, Weber S, Seaayfan E, Kömhoff M. MAGED2 Enhances Expression and Function of NCC at the Cell Surface via cAMP Signaling Under Hypoxia. Cells 2025; 14:175. [PMID: 39936967 PMCID: PMC11818053 DOI: 10.3390/cells14030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Mutations in MAGED2 cause transient antenatal Bartter syndrome (tBS) characterized by excessive amounts of amniotic fluid due to impaired renal salt transport via NKCC2 and NCC, high perinatal mortality, and pre-term birth. Surprisingly, renal salt handling completely normalizes after birth. Previously, we demonstrated that, under hypoxic conditions, MAGED2 depletion enhances endocytosis of GalphaS (Gαs), reducing adenylate cyclase (AC) activation and cAMP production. This impaired cAMP signaling likely contributes to the dysfunction of salt transporters NKCC2 and NCC, explaining salt wasting and the subsequent recovery with renal oxygenation after birth. In this study, we show that MAGED2 depletion significantly decreases both total cellular and plasma membrane NCC expression and activity. We further demonstrate that MAGED2 depletion disrupts NCC trafficking by reducing exocytosis, increasing endocytosis, and promoting lysosomal degradation via enhanced ubiquitination. Additionally, forskolin (FSK), which increases cAMP production by activating AC, rescues NCC expression and localization in MAGED2-depleted cells. Conversely, MAGED2 overexpression increases NCC expression and membrane localization, although this effect is diminished in Gαs-depleted cells, indicating that Gαs acts downstream of MAGED2. In summary, our findings reveal the essential role of MAGED2 in regulating NCC function and trafficking under hypoxic conditions, providing new insights into the mechanisms behind salt loss in tBS and identifying potential therapeutic targets.
Collapse
|
2
|
Chaudhari S, Yazdizadeh Shotorbani P, Tao Y, Kasetti R, Zode G, Mathis KW, Ma R. Neogenin pathway positively regulates fibronectin production by glomerular mesangial cells. Am J Physiol Cell Physiol 2022; 323:C226-C235. [PMID: 35704698 DOI: 10.1152/ajpcell.00359.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neogenin, a transmembrane receptor, was recently found in kidney cells and immune cells. However, the function of neogenin signaling in kidney is not clear. Mesangial cells (MCs) are a major source of extracellular matrix (ECM) proteins in glomerulus. In many kidney diseases, MCs are impaired and manifest myofibroblast phenotype. Over production of ECM by the injured MCs promotes renal injury and accelerates the progression of kidney diseases. The present study was aimed to determine if neogenin receptor was expressed in MCs and if the receptor signaling regulated ECM protein production by MCs. We showed that neogenin was expressed in the glomerular MCs. Deletion of neogenin using CRISPR/Cas9 lentivirus system, significantly reduced the abundance of fibronectin, an ECM protein. Netrin-1, a ligand for neogenin, also significantly decreased fibronectin production by MCs and decreased neogenin protein expression in MCs. Furthermore, treatment of human MCs with high glucose (25 mM) significantly increased the protein abundance of neogenin as early as 8 h. Consistently, neogenin expression in glomerulus significantly increased in the eNOS-/- db/db diabetic mice starting as early as the age of 8 weeks and this increase sustained at least to the age of 24 weeks. We further found that the HG induced increase in neogenin abundance was blunted by antioxidant PEG-catalase and N-acetyl cysteine. Taken together, our results suggest a new mechanism of regulation of fibronectin production by MCs. This previously unrecognized neogenin-fibronectin pathway may contribute to glomerular injury responses during the course of diabetic nephropathy.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Dept. of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | | | - Yu Tao
- Dept. of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ramesh Kasetti
- The North Texas Eye Research Institute and Dept. of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, United States
| | - Gulab Zode
- The North Texas Eye Research Institute and Dept. of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, United States
| | - Keisa W Mathis
- Dept. of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rong Ma
- Dept. of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
3
|
Zhang Y, Zhao Q, Wu D, Li S, Wu M, Li S, Zheng X, Lan H. The Cellular Behavior, Intracellular Signaling Profile and Nuclear-Targeted Potential Functions of Porcine Growth Hormone (pGH) in Swine Testicular Cells. Cell Biochem Biophys 2022; 80:403-414. [PMID: 35171434 DOI: 10.1007/s12013-022-01068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
Porcine growth hormone (pGH) has many important biological functions and roles, and the biological activity of pGH is closely related with its cell behavior and characteristics. However, so far, the behavior of pGH in swine testicular cell remains unclear. For this, in the current work, the swine testicular cell line (ST) was used as an in vitro model, and CLSM (Confocal laser scanning microscope), IFA (Indirect immunofluorescence assay), FCM (Flow cytometry) and WB (Western-blotting) were used to explore the pGH's cell behivior and function, and the results showed that pGH and GHR could internalize into ST cell and transported to the nucleus. Furthermore, we studied the internalization kinetics of pGH and GHR on ST cell, and found that pGH and GHR internalizes into ST cell in a time-dependent manner. More importantly, we also investigated the potential molecular functions of pGH-GHR after it entered into the cell nuclei. The results indicated that nuclear-localized GHR could participate in cell proliferation by regulating the signal intensity of STAT5. In summary, our current research shows that the nuclear-localized pGH-GHR participates in the cell proliferation of ST cell, which lays a solid foundation for further research on the regulatory effect of pGH on testicular tissue.
Collapse
Affiliation(s)
- Yan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China, 130118
| | - Qingrong Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China, 130118
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China, 130118
| | - Shichun Li
- The Third Operating Room, Jilin University First Hospital, Changchun, China, 130118
| | - Min Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China, 130118
| | - Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China, 130118
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China, 130118
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China, 130118.
| |
Collapse
|
4
|
Tian W, Maresh ME, Trader DJ. Approaches to Evaluate the Impact of a Small-Molecule Binder to a Noncatalytic Site of the Proteasome. Chembiochem 2021; 22:1961-1965. [PMID: 33617657 DOI: 10.1002/cbic.202100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Indexed: 11/11/2022]
Abstract
Proteasome activity is crucial for cell survival and proliferation. In recent years, small molecules have been discovered that can affect the catalytic activity of the proteasome. Rather than targeting the active sites of the proteasome, it might be possible to affect ubiquitin-dependent degradation of proteins by limiting the association of the 19S regulatory particle (19S RP) with the 20S core particle (20S CP) of the proteasome. We recently described the discovery of TXS-8, a peptoid that binds to Rpn-6. Rpn-6 is a proteasome-associated protein that makes critical contacts with the 19S RP and the 20S CP. Herein, we present a general workflow to evaluate the impact of a small-molecule binder on proteasome activity by using TXS-8 as an example. This workflow contains three steps in which specific probes or overexpressed proteins in cells are used to determine whether the hydrolysis activity of the proteasome is affected. Although, in our case, TXS-8 did not affect proteasome activity, our workflow is highly amenable to studying a variety of small-molecule-proteasome subunit interactions.
Collapse
Affiliation(s)
- Wenzhi Tian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
5
|
Chhabra Y, Lee CMM, Müller AF, Brooks AJ. GHR signalling: Receptor activation and degradation mechanisms. Mol Cell Endocrinol 2021; 520:111075. [PMID: 33181235 DOI: 10.1016/j.mce.2020.111075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) actions via initiating cell signalling through the GH receptor (GHR) are important for many physiological processes, in addition to its well-known role in regulating growth. The activation of JAK-STAT signalling by GH is well characterized, however knowledge on GH activation of SRC family kinases (SFKs) is still limited. In this review we summarise the collective knowledge on the activation, regulation, and downstream signalling of GHR. We highlight studies on GH activation of SFKs and the important outcome of this signalling pathway with a focus on the different degradation mechanisms that can regulate GHR availability since this is an area that warrants further study considering its role in tumour progression.
Collapse
Affiliation(s)
- Yash Chhabra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Christine M M Lee
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Alexandra Franziska Müller
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
6
|
Melatonin potentiates the cytotoxic effect of Neratinib in HER2 + breast cancer through promoting endocytosis and lysosomal degradation of HER2. Oncogene 2021; 40:6273-6283. [PMID: 34556812 PMCID: PMC8566236 DOI: 10.1038/s41388-021-02015-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Complete blockade of the HER2 protein itself and HER signaling network is critical to achieving effective HER2-targeted therapies. Despite the success of HER2-targeted therapies, the diseases will relapse in a significant fraction of patients with HER2+ breast cancers. How to improve the therapeutic efficacy of existing HER2-targeted agents remains an unmet clinical need. Here, we uncover a role of Melatonin in diminishing HER2-mediated signaling by destruction of HER2 protein. Mechanistically, Melatonin treatment attenuated the protective effect of the HSP90 chaperone complex on its client protein HER2, triggering ubiquitylation and subsequent endocytic lysosomal degradation of HER2. The inhibitory effect of Melatonin on HER2 signaling substantially enhanced the cytotoxic effects of the pan-HER inhibitor Neratinib in HER2+ breast cancer cells. Lastly, we demonstrate that dual inhibition of HER2 by combined use of Melatonin and Neratinib effectively blocked the growth of HER2+ breast tumor xenografts in vivo. Our findings shed light on the potential use of Melatonin in a novel dual HER2 blockade strategy for HER2+ breast cancer treatment.
Collapse
|
7
|
Baldauf S, Schauenburg D, Bode JW. A Threonine‐Forming Oxazetidine Amino Acid for the Chemical Synthesis of Proteins through KAHA Ligation. Angew Chem Int Ed Engl 2019; 58:12599-12603. [DOI: 10.1002/anie.201906486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Simon Baldauf
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied biosciencesETH Zürich Wolfgang Pauli Strasse 10 8093 Zürich Switzerland
| | - Dominik Schauenburg
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied biosciencesETH Zürich Wolfgang Pauli Strasse 10 8093 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied biosciencesETH Zürich Wolfgang Pauli Strasse 10 8093 Zürich Switzerland
- Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University, Chisuka Nagoya 464-8602 Japan
| |
Collapse
|
8
|
Baldauf S, Schauenburg D, Bode JW. Eine Threonin‐bildende Oxazetidinaminosäure für die chemische Synthese von Proteinen mittels KAHA‐Ligation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon Baldauf
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied biosciencesETH Zürich Wolfgang-Pauli-Strasse 10 8093 Zürich Schweiz
| | - Dominik Schauenburg
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied biosciencesETH Zürich Wolfgang-Pauli-Strasse 10 8093 Zürich Schweiz
| | - Jeffrey W. Bode
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied biosciencesETH Zürich Wolfgang-Pauli-Strasse 10 8093 Zürich Schweiz
- Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University, Chisuka Nagoya 464-8602 Japan
| |
Collapse
|
9
|
Shu B, Jia J, Zhang J, Sethuraman V, Yi X, Zhong G. DnaJ homolog subfamily A member1 (DnaJ1) is a newly discovered anti-apoptotic protein regulated by azadirachtin in Sf9 cells. BMC Genomics 2018; 19:413. [PMID: 29843605 PMCID: PMC5975434 DOI: 10.1186/s12864-018-4801-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
Background Azadirachtin, one of the most promising botanical insecticides, has been widely used for pest control. Azadirachtin induces apoptosis in insect cell lines, including Sf9, SL-1 and BTI-Tn-5B1–4. Mitochondrial and lysosomal pathways are likely involved in the azadirachtin-induced apoptosis, however, detailed molecular mechanisms remain largely undefined. Results Azadirachtin-induced apoptosis in Sf9 cells was verified by morphological observation, Hoechst 33258 staining, and a Caspase-3-based analysis. Comparative two-dimensional gel electrophoresis (2-DE) coupled with a linear ion trap quadrupole (LTQ)-MS/MS analysis identified 12 prominent, differentially expressed proteins following azadirachtin treatment. These differentially expressed genes are involved in regulating cytoskeleton development, signal transduction, gene transcription, and cellular metabolism. Knockdown gene expression of a gene encoding a DnaJ homolog enhanced apoptosis induced by azadirachtin in Sf9 cells. Conclusion Azadirachtin treatment induces apoptosis in Sf9 cells and affects expression of multiple genes with functions in cytoskeleton development, signal transduction, gene regulation, and cellular metabolisms. Azadirachtin induces apoptosis at least partially by down-regulation of Sf-DnaJ in Sf9 cells. Electronic supplementary material The online version of this article (10.1186/s12864-018-4801-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benshui Shu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.,Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jianwen Jia
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Veeran Sethuraman
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China. .,Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Soave CL, Guerin T, Liu J, Dou QP. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev 2017; 36:717-736. [PMID: 29047025 PMCID: PMC5722705 DOI: 10.1007/s10555-017-9705-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past 15 years, the proteasome has been validated as an anti-cancer drug target and 20S proteasome inhibitors (such as bortezomib and carfilzomib) have been approved by the FDA for the treatment of multiple myeloma and some other liquid tumors. However, there are shortcomings of clinical proteasome inhibitors, including severe toxicity, drug resistance, and no effect in solid tumors. At the same time, extensive research has been conducted in the areas of natural compounds and old drug repositioning towards the goal of discovering effective, economical, low toxicity proteasome-inhibitory anti-cancer drugs. A variety of dietary polyphenols, medicinal molecules, metallic complexes, and metal-binding compounds have been found to be able to selectively inhibit tumor cellular proteasomes and induce apoptotic cell death in vitro and in vivo, supporting the clinical success of specific 20S proteasome inhibitors bortezomib and carfilzomib. Therefore, the discovery of natural proteasome inhibitors and researching old drugs with proteasome-inhibitory properties may provide an alternative strategy for improving the current status of cancer treatment and even prevention.
Collapse
Affiliation(s)
- Claire L Soave
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA
| | - Tracey Guerin
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA
| | - Jinbao Liu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA.
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
11
|
Faller EM, Ghazawi FM, Cavar M, MacPherson PA. IL-7 induces clathrin-mediated endocytosis of CD127 and subsequent degradation by the proteasome in primary human CD8 T cells. Immunol Cell Biol 2015; 94:196-207. [PMID: 26272555 DOI: 10.1038/icb.2015.80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022]
Abstract
Interleukin-7 (IL-7), a key immunoregulatory cytokine, plays an essential role in peripheral T-cell homeostasis and function. Signaling via the IL-7 receptor is tightly regulated and we and others have shown IL-7 provides negative feedback on its own signaling by downregulating expression of the IL-7 receptor alpha-chain (CD127) through both suppression of CD127 gene transcription and by internalization of existing CD127 proteins from the cell membrane. We show here for the first time in primary human CD8 T cells that upon stimulation with IL-7, CD127 is internalized through clathrin-coated pits, a process dependent on both lipid-raft formation and the activity of dynamin. As visualized by confocal microscopy, CD127 shows increased co-localization with clathrin within 5 min of IL-7 stimulation and within 15-30 min is seen in multiple intracellular punctae co-localizing with the early endosomal marker EEA1. By 2 h after addition of IL-7, CD127 staining associates with the late endosomal marker RAB7 and with the proteasomal 20S subunit. By inducing receptor internalization and translocation from early endosomes to the proteasome, IL-7 directly influences its receptor density on the cell surface and thus regulates the intensity of its own signaling cascades. Given the important role IL-7 plays in T-cell development, homeostasis and function, deciphering how expression of its receptor is controlled on the cell surface is essential in understanding how T-cell activity can be regulated in different microenvironments and in response to different pathogens.
Collapse
Affiliation(s)
| | - Feras M Ghazawi
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marko Cavar
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul A MacPherson
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Division of Infectious Diseases, Department of Medicine, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Vildhede A, Wiśniewski JR, Norén A, Karlgren M, Artursson P. Comparative Proteomic Analysis of Human Liver Tissue and Isolated Hepatocytes with a Focus on Proteins Determining Drug Exposure. J Proteome Res 2015; 14:3305-14. [PMID: 26167961 DOI: 10.1021/acs.jproteome.5b00334] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.
Collapse
Affiliation(s)
| | - Jacek R Wiśniewski
- §Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | - Per Artursson
- ∥Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical Biology Consortium, Science for Life Laboratory, 750 03 Uppsala, Sweden
| |
Collapse
|
13
|
Major histocompatibility complex class I downregulation induced by equine herpesvirus type 1 pUL56 is through dynamin-dependent endocytosis. J Virol 2014; 88:12802-15. [PMID: 25165105 DOI: 10.1128/jvi.02079-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Equine herpesvirus type 1 (EHV-1) downregulates cell surface expression of major histocompatibility complex class I (MHC-I) in infected cells. We have previously shown that pUL56 encoded by the EHV-1 ORF1 gene regulates the process (G. Ma, S. Feineis, N. Osterrieder, and G. R. Van de Walle, J. Virol. 86:3554-3563, 2012, doi:http://dx.doi.org/10.1128/JVI.06994-11). Here, we report that cell surface MHC-I in EHV-1-infected cells is internalized and degraded in the lysosomal compartment in a pUL56-dependent fashion. pUL56-induced MHC-I endocytosis required dynamin and tyrosine kinase but was independent of clathrin and caveolin-1, the main constituents of the clathrin- and raft/caveola-mediated endocytosis pathways, respectively. Downregulation of cell surface MHC-I was significantly inhibited by the ubiquitin-activating enzyme E1 inhibitor PYR41, indicating that ubiquitination is essential for the process. Finally, we show that downregulation is not specific for MHC-I and that other molecules, including CD46 and CD63, are also removed from the cell surface in a pUL56-dependent fashion. IMPORTANCE We show that alphaherpesvirus induces MHC-I downregulation through endocytosis, which is mediated by pUL56. The dynamin-dependent endocytic pathway is responsible for MHC-I internalization in infected cells. Furthermore, we discovered that this endocytic process can be disrupted by the inhibiting ubiquitin-activating E1 enzyme, which is indispensable for ubiquitination. Finally, pUL56 action extends to a number of cell surface molecules that are significant for host immunity. Therefore, the protein may exert a more general immunomodulatory effect.
Collapse
|
14
|
The proteasome-ubiquitin system is required for efficient killing of intracellular Streptococcus pneumoniae by brain endothelial cells. mBio 2014; 5:e00984-14. [PMID: 24987087 PMCID: PMC4161243 DOI: 10.1128/mbio.00984-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a Gram-positive bacterium that causes serious invasive diseases, such as pneumonia, bacteremia, and meningitis, with high morbidity and mortality throughout the world. Before causing invasive disease, S. pneumoniae encounters cellular barriers, which are often composed of endothelial cells, like the alveolar-capillary barrier and the blood-brain barrier. S. pneumoniae adheres to endothelial cells and may invade them, which requires an efficient host response to the intracellular bacteria. The precise intracellular fate of S. pneumoniae during infection still remains a subject of debate. The proteasome-ubiquitin system is largely responsible for the degradation of misfolded, damaged, or no-longer-useful proteins. Recently, the role of the proteasome-ubiquitin system in the clearing of invading bacteria and viruses has been more closely studied. In this study, we show that inhibition of the proteasome-ubiquitin system leads to a marked increase in S. pneumoniae survival inside host cells. Immunofluorescence analysis showed that intracellular pneumococci colocalized with proteasome and ubiquitin in human endothelial cells in vitro. Confocal imaging analysis demonstrated that in the brains of mice intravenously infected with S. pneumoniae, the bacteria were inside endothelial cells, where they colocalized with proteasome and ubiquitin signals. In conclusion, our data indicate that a fully functional proteasome-ubiquitin system in endothelial cells is crucial for efficient killing of intracellular S. pneumoniae. Importance: Bacterial meningitis is a serious invasive disease with high morbidity and mortality. How bacteria traverse the blood-brain barrier in vivo and what mechanisms are employed by the host to prevent invasion are still unclear. Our data show that inhibition of the proteasome-ubiquitin system in vitro leads to a significant increase in S. pneumoniae survival inside brain endothelial cells. Confocal imaging analysis of brain tissue from mice intravenously infected with pneumococci demonstrated that the bacteria are inside brain microvascular endothelial cells, where they associate with the proteasome and ubiquitin. This is, as far as we know, the first report that demonstrates that Streptococcus pneumoniae invades endothelial cells of the blood-brain barrier in vivo. The host requires the proteasome-ubiquitin system for an efficient decimation of intracellular S. pneumoniae.
Collapse
|
15
|
Sangith N, Srinivasaraghavan K, Sahu I, Desai A, Medipally S, Somavarappu AK, Verma C, Venkatraman P. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules. FEBS Open Bio 2014; 4:571-83. [PMID: 25009770 PMCID: PMC4087146 DOI: 10.1016/j.fob.2014.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/21/2022] Open
Abstract
The structure and functions of PSMD9, a proteasomal chaperone, are uncharacterized. PDZ-like domain of PSMD9 may recognize C-terminal residues in proteins. Using conserved C-terminal motifs in human proteome, we identify novel binding partners. hnRNPA1, GH, IL6-receptor, S14 and E12 interact with PSMD9 via a specific C-terminal motif. We predict and confirm residues in the PDZ domain that are involved in this interaction.
PSMD9 (Proteasome Macropain non-ATPase subunit 9), a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a) proteins with conserved C-termini may share common functions and (b) PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein), S14 (a ribosomal protein), CSH1 (a growth hormone), E12 (a transcription factor) and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM) at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions.
Collapse
Affiliation(s)
- Nikhil Sangith
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Kannan Srinivasaraghavan
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; Experimental Therapeutics Centre (A*STAR), 31 Biopolis Street, #03-01 Helios, Singapore 138669, Singapore
| | - Indrajit Sahu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Ankita Desai
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Spandana Medipally
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Arun Kumar Somavarappu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Chandra Verma
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore ; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Prasanna Venkatraman
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| |
Collapse
|
16
|
Profiling of the yak skeletal muscle tissue gene expression and comparison with the domestic cattle by genome array. Animal 2013; 8:28-35. [PMID: 24229734 DOI: 10.1017/s1751731113001948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Of all the mammals of the world, the yak lives at the highest altitude area of more than 3000 m. Comparison between yak and cattle of the low-altitude areas will be informative in studying animal adaptation to higher altitudes. To investigate the molecular mechanism involved in meat quality differences between the two Chinese special varieties Qinghai yak and Qinchuan cattle, 12 chemical-physical characteristics of the longissimus dorsi muscle related to meat quality were compared at the age of 36 months, and the gene expression profiles were constructed by utilizing the bovine genome array. Significant analysis of microarrays was used to identify the differentially expressed genes. Gene ontology and pathway analysis were performed by a free Web-based Molecular Annotation System 2.0. The results reveal ~11 000 probes representing about 10 000 genes that were detected in both the Qinghai yak and Qinchuan cattle. A total of 1922 genes were shown to be differentially expressed, 633 probes were upregulated and 1259 probes were downregulated in the muscle tissue of Qinghai yak that were mainly involved in ubiquitin-mediated proteolysis, muscle growth regulation, glucose metabolism, immune response and so on. Quantitative real-time PCR (qRT-PCR) was performed to validate some differentially expressed genes identified by microarray. Further analysis implied that animals living at a high altitude may supply energy by more active protein catabolism and glycolysis compared with those living in the plain areas. Our results establish the groundwork for further studies on yaks' meat quality and will be beneficial in improving the yaks' breeding by molecular biotechnology.
Collapse
|
17
|
Shen H, Liao K, Zhang W, Wu H, Shen B, Xu Z. Differential expression of peroxiredoxin 6, annexin A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1 in testis of rat fetuses after maternal exposure to di-n-butyl phthalate. Reprod Toxicol 2013; 39:76-84. [DOI: 10.1016/j.reprotox.2013.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 03/28/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022]
|
18
|
Cui Z, Zhang S. Regulation of the human ether-a-go-go-related gene (hERG) channel by Rab4 protein through neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2). J Biol Chem 2013; 288:21876-86. [PMID: 23792956 DOI: 10.1074/jbc.m113.461715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes the pore-forming α-subunit of the rapidly activating delayed rectifier K(+) channel in the heart, which plays a critical role in cardiac action potential repolarization. Dysfunction of IKr causes long QT syndrome, a cardiac electrical disorder that predisposes affected individuals to fatal arrhythmias and sudden death. The homeostasis of hERG channels in the plasma membrane depends on a balance between protein synthesis and degradation. Our recent data indicate that hERG channels undergo enhanced endocytic degradation under low potassium (hypokalemia) conditions. The GTPase Rab4 is known to mediate rapid recycling of various internalized proteins to the plasma membrane. In the present study, we investigated the effect of Rab4 on the expression level of hERG channels. Our data revealed that overexpression of Rab4 decreases the expression level of hERG in the plasma membrane. Rab4 does not affect the expression level of the Kv1.5 or EAG K(+) channels. Mechanistically, our data demonstrate that overexpression of Rab4 increases the expression level of endogenous Nedd4-2, a ubiquitin ligase that targets hERG but not Kv1.5 or EAG channels for ubiquitination and degradation. Nedd4-2 undergoes self- ubiquitination and degradation. Rab4 interferes with Nedd4-2 degradation, resulting in an increased expression level of Nedd4-2, which targets hERG. In summary, the present study demonstrates a novel pathway for hERG regulation; Rab4 decreases the hERG density at the plasma membrane by increasing the endogenous Nedd4-2 expression.
Collapse
Affiliation(s)
- Zhi Cui
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
19
|
Fujita H, Iwabu Y, Tokunaga K, Tanaka Y. Membrane-associated RING-CH (MARCH) 8 mediates the ubiquitination and lysosomal degradation of the transferrin receptor. J Cell Sci 2013; 126:2798-809. [PMID: 23606747 DOI: 10.1242/jcs.119909] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transferrin receptor (TfR) mediates the uptake of transferrin (Tf)-bound iron from the plasma into the cells of peripheral tissues. The TfR continuously recycles between the plasma membrane and early/recycling endosomes. TfR expression is tightly controlled by the intracellular iron concentration through the regulation of TfR mRNA stability. However, much less is known about the mechanism by which TfR is degraded in cells. Previously, we reported a correlation between TfR ubiquitination and its iron-induced lysosomal degradation. The identification and characterization of a specific ubiquitin ligase for TfR is important in understanding the mechanism of iron homeostasis. Here, we show that membrane-associated RING-CH (MARCH) 8 ubiquitinates TfR and promotes its lysosomal degradation. Similar to other RING-type ubiquitin ligases, the RING-CH domain of MARCH8, which is located in the N-terminal cytoplasmic domain, is essential for the ubiquitination and downregulation of TfR. MARCH8 specifically recognizes the transmembrane domain of TfR and mediates ubiquitination of its cytoplasmic domain. In addition, the six-amino-acid sequence located in the C-terminal domain of MARCH8, which is highly conserved among different species, is required for the downregulation of TfR. Finally, and most importantly, TfR expression was markedly increased by siRNA-mediated knockdown of endogenous MARCH8. These findings demonstrate that the endogenous level of MARCH8 regulates TfR protein turnover through the downregulation and ubiquitination of TfR.
Collapse
Affiliation(s)
- Hideaki Fujita
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
20
|
Ikeda K, Inoue S. Trim Proteins as Ring Finger E3 Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:27-37. [DOI: 10.1007/978-1-4614-5398-7_3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Rosenfeld JL, Knoll BJ, Moore RH. Regulation of G-Protein-Coupled Receptor Activity by Rab GTPases. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820212398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Jung JE, Pierson NA, Marquardt A, Scheffner M, Przybylski M, Clemmer DE. Differentiation of compact and extended conformations of di-ubiquitin conjugates with lysine-specific isopeptide linkages by ion mobility-mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1463-1471. [PMID: 21953201 DOI: 10.1007/s13361-011-0158-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 05/31/2023]
Abstract
Modification of ubiquitin, a key cellular regulatory polypeptide of 76 amino acids, to polyubiquitin conjugates by lysine-specific isopeptide linkage at one of its seven lysine residues has been recognized as a central pathway determining its biochemical properties and cellular functions. Structural details and differences of distinct lysine-isopeptidyl ubiquitin conjugates that reflect their different functions and reactivities, however, are only partially understood. Ion mobility spectrometry (IMS) combined with mass spectrometry (MS) has recently emerged as a powerful tool for probing conformations and topology involved in protein interactions by an electric field-driven separation of polypeptide ions through a drift gas. Here we report the conformational characterization and differentiation of Lys63- and Lys48-linked ubiquitin conjugates by IMS-MS. Lys63- and Lys48-linked di-ubiquitin conjugates were prepared by recombinant bacterial expression and by chemical synthesis using a specific chemical ligation strategy, and characterized by high-resolution Fourier transform ion cyclotron resonance mass spectrometry, circular dichroism spectroscopy, and molecular modeling. IMS-MS was found to be an effective tool for the identification of structural differences of ubiquitin complexes in the gas phase. The comparison of collision cross-sections of Lys63- and Lys48-linked di-ubiquitin conjugates showed a more elongated conformation of Lys63-linked di-ubiquitin. In contrast, the Lys48-linked di-ubiquitin conjugate showed a more compact conformation. The IMS-MS results are consistent with published structural data and a comparative molecular modeling study of the Lys63- and Lys48-linked conjugates. The results presented here suggest IMS techniques can provide information that complements MS measurements in differentiating higher-order polyubiquitins and other isomeric protein linkages.
Collapse
Affiliation(s)
- Ji Eun Jung
- Laboratories of Analytical Chemistry and Biochemistry, and Graduate School, Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Mannose receptor polyubiquitination regulates endosomal recruitment of p97 and cytosolic antigen translocation for cross-presentation. Proc Natl Acad Sci U S A 2011; 108:9933-8. [PMID: 21628571 DOI: 10.1073/pnas.1102397108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms regulating noncanonical protein transport across cellular membranes are poorly understood. Cross-presentation of exogenous antigens on MHC I molecules by dendritic cells (DCs) generally requires antigen translocation from the endosomal compartment into the cytosol for proteasomal degradation. In this study, we demonstrate that such translocation is controlled by the endocytic receptor and regulated by ubiquitination. Antigens internalized by the mannose receptor (MR), an endocytic receptor that targets its ligands specifically toward cross-presentation, were translocated into the cytosol only after attachment of a lysin48-linked polyubiquitin chain to the cytosolic region of the MR. Furthermore, we identify TSG101 as a central regulator of MR ubiquitination and antigen translocation. Importantly, we demonstrate that MR polyubiquitination mediates the recruitment of p97, a member of the ER-associated degradation machinery that provides the driving force for antigen translocation, toward the endosomal membrane, proving the central role of the endocytic receptor and its ubiquitination in antigen translocation.
Collapse
|
24
|
Goel S, Mahla RS, Suman SK, Reddy N, Imai H. UCHL-1 protein expression specifically marks spermatogonia in wild bovid testis. EUR J WILDLIFE RES 2010. [DOI: 10.1007/s10344-010-0454-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Benedet S, Andersson E, Mittelholzer C, Taranger GL, Björnsson BT. Pituitary and plasma growth hormone dynamics during sexual maturation of female Atlantic salmon. Gen Comp Endocrinol 2010; 167:77-85. [PMID: 20171221 DOI: 10.1016/j.ygcen.2010.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
Growth hormone in fish regulates many important physiological processes including growth, metabolism and potentially reproduction. In salmonid fish, GH secretion is episodic with irregularly spaced GH peaks. Plasma GH reflects secretion episodes as well as the clearance rate of the hormone, and plasma levels may thus not always reflect the level of activation of the GH axis. This study measured the production dynamics of GH over a 17-month period in sexually maturing female Atlantic salmon which included final maturation and spawning. For the first time, the level of pituitary GH mRNA, pituitary GH protein and plasma GH protein were analyzed concurrently in the same individuals. mRNA and protein were extracted in parallel from the same samples with subsequent real time quantitative PCR to measure mRNA transcripts and radioimmunoassay to measure pituitary and plasma GH protein. Further, the effects of photoperiod manipulation on these parameters were studied. The results show no correlation between mRNA and protein levels except at some time points, and indicate that it is inappropriate to correlate pooled temporal data and averages in time series unless the relationship among the variables is stable over time. The results indicate complex and shifting relationships between pituitary GH mRNA expression, pituitary GH content and plasma GH levels, which could result from changes in clearance rather than secretion rate at different times and its episodic secretion. The study also suggests that there is a functionally important activation of the GH system during spring leading up to maturation and spawning.
Collapse
Affiliation(s)
- Susana Benedet
- Fish Endocrinology Laboratory, Department of Zoology/Zoophysiology, University of Gothenburg, Box 463, SE 40530 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Yoshimura SH, Iwasaka S, Schwarz W, Takeyasu K. Fast degradation of the auxiliary subunit of Na+/K+-ATPase in the plasma membrane of HeLa cells. J Cell Sci 2008; 121:2159-68. [PMID: 18522992 DOI: 10.1242/jcs.022905] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell-surface expression and function of multisubunit plasma membrane proteins are regulated via interactions between catalytic subunits and auxiliary subunits. Subunit assembly in the endoplasmic reticulum is required for the cell-surface expression of the enzyme, but little is known about subunit interactions once it reaches the plasma membrane. Here we performed highly quantitative analyses of the catalytic (alpha1) and auxiliary (beta1 and beta3) subunits of Na(+)/K(+)-ATPase in the HeLa cell plasma membrane using isoform-specific antibodies and a cell-surface protein labeling procedure. Our results indicate that although the beta-subunit is required for the cell-surface expression of the alpha-subunit, the plasma membrane contains more alpha-subunits than beta-subunits. Pulse-labeling and chasing of the cell-surface proteins revealed that degradation of the beta-subunits was much faster than that of the alpha1-subunit. Ubiquitylation, as well as endocytosis, was involved in the fast degradation of the beta1-subunit. Double knockdown of the beta1- and beta3-subunits by RNAi resulted in the disappearance of these beta-subunits but not the alpha1-subunit in the plasma membrane. All these results indicate that the alpha- and beta-subunits of Na(+)/K(+)-ATPase are assembled in the endoplasmic reticulum, but are disassembled in the plasma membrane and undergo different degradation processes.
Collapse
Affiliation(s)
- Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | | | | | | |
Collapse
|
27
|
Dada LA, Welch LC, Zhou G, Ben-Saadon R, Ciechanover A, Sznajder JI. Phosphorylation and ubiquitination are necessary for Na,K-ATPase endocytosis during hypoxia. Cell Signal 2007; 19:1893-8. [PMID: 17532187 PMCID: PMC2039720 DOI: 10.1016/j.cellsig.2007.04.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 04/30/2007] [Indexed: 01/11/2023]
Abstract
As a cellular adaptative response, hypoxia decreases Na,K-ATPase activity by triggering the endocytosis of its alpha(1) subunit in alveolar epithelial cells. Here, we present evidence that the ubiquitin conjugating system is important in the Na,K-ATPase endocytosis during hypoxia and that ubiquitination of Na,K-ATPase alpha(1) subunit occurs at the basolateral membrane. Endocytosis and ubiquitination were prevented when the Ser 18 in the PKC phosphorylation motif of the Na,K-ATPase alpha(1) subunit was mutated to an alanine, suggesting that phosphorylation at Ser-18 is required for ubiquitination. Mutation of the four lysines surrounding Ser 18 to arginine prevented Na,K-ATPase ubiquitination and endocytosis during hypoxia; however, only one of them was sufficient to restore hypoxia-induced endocytosis. We provide evidence that ubiquitination plays an important role in cellular adaptation to hypoxia by regulating Na,K-ATPase alpha(1)-subunit endocytosis.
Collapse
Affiliation(s)
- Laura A. Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Lynn C. Welch
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Guofei Zhou
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ronen Ben-Saadon
- Center for Vascular and Tumor Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Aaron Ciechanover
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Center for Vascular and Tumor Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
28
|
Díaz-Blanco NL, Rodríguez-Medina JR. Dosage rescue by UBC4 restores cell wall integrity in Saccharomyces cerevisiae lacking the myosin type II gene MYO1. Yeast 2007; 24:343-55. [PMID: 17397110 PMCID: PMC3699406 DOI: 10.1002/yea.1481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Myosin II is important for normal cytokinesis and cell wall maintenance in yeast cells. Myosin II-deficient (myo1) strains of the budding yeast Saccharomyces cerevisiae are hypersensitive to nikkomycin Z (NZ), a competitive inhibitor of chitin synthase III (Chs3p), a phenotype that is consistent with compromised cell wall integrity in this mutant. To explain this observation, we hypothesized that the absence of myosin type II will alter the normal levels of proteins that regulate cell wall integrity and that this deficiency can be overcome by the overexpression of their corresponding genes. We further hypothesized that such genes would restore normal (wild-type) NZ resistance. A haploid myo1 strain was transformed with a yeast pRS316-GAL1-cDNA expression library and the cells were positively selected with an inhibitory dose of NZ. We found that high expression of the ubiquitin-conjugating protein cDNA, UBC4, restores NZ resistance to myo1 cells. Downregulation of the cell wall stress pathway and changes in cell wall properties in these cells suggested that changes in cell wall architecture were induced by overexpression of UBC4. UBC4-dependent resistance to NZ in myo1 cells was not prevented by the proteasome inhibitor clasto-lactacystin-beta-lactone and required the expression of the vacuolar protein sorting gene VPS4, suggesting that rescue of cell wall integrity involves sorting of ubiquitinated proteins to the PVC/LE-vacuole pathway. These results point to Ubc4p as an important enzyme in the process of cell wall remodelling in myo1 cells.
Collapse
Affiliation(s)
| | - José R. Rodríguez-Medina
- Correspondence to: José R. Rodríguez-Medina, Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-5067, Puerto Rico.
| |
Collapse
|
29
|
Bonaventure J, Gibbs L, Horne WC, Baron R. The localization of FGFR3 mutations causing thanatophoric dysplasia type I differentially affects phosphorylation, processing and ubiquitylation of the receptor. FEBS J 2007; 274:3078-93. [PMID: 17509076 DOI: 10.1111/j.1742-4658.2007.05835.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recurrent missense fibroblast growth factor receptor 3 (FGFR3) mutations have been ascribed to skeletal dysplasias of variable severity including the lethal neonatal thanatophoric dysplasia types I (TDI) and II (TDII). To elucidate the role of activating mutations causing TDI on receptor trafficking and endocytosis, a series of four mutants located in different domains of the receptor were generated and transiently expressed. The putatively elongated X807R receptor was identified as three isoforms. The fully glycosylated mature isoform was constitutively but mildly phosphorylated. Similarly, mutations affecting the extracellular domain (R248C and Y373C) induced moderate constitutive receptor phosphorylation. By contrast, the K650M mutation affecting the tyrosine kinase 2 (TK2) domain produced heavy phosphorylation of the nonglycosylated and mannose-rich isoforms that impaired receptor trafficking through the Golgi network. This resulted in defective expression of the mature isoform at the cell surface. Normal processing was rescued by tyrosine kinase inhibitor treatment. Internalization of the R248C and Y373C mutant receptors, which form stable disulfide-bonded dimers at the cell surface was less efficient than the wild-type, whereas ubiquitylation was markedly increased but apparently independent of the E3 ubiquitin-ligase casitas B-lineage lymphoma (c-Cbl). Constitutive phosphorylation of c-Cbl by the K650M mutant appeared to be related to the intracellular retention of the receptor. Therefore, although mutation K650M affecting the TK2 domain induces defective targeting of the overphosphorylated receptor, a different mechanism characterized by receptor retention at the plasma membrane, excessive ubiquitylation and reduced degradation results from mutations that affect the extracellular domain and the stop codon.
Collapse
Affiliation(s)
- Jacky Bonaventure
- Institut Curie, Université Paris Sud, Orsay, and Department of Medical Genetics INSERM U393, Hôpital Necker, Paris, France.
| | | | | | | |
Collapse
|
30
|
Zingg JM. Modulation of signal transduction by vitamin E. Mol Aspects Med 2007; 28:481-506. [PMID: 17320164 DOI: 10.1016/j.mam.2006.12.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 12/16/2006] [Indexed: 01/22/2023]
Abstract
The ability of vitamin E to modulate signal transduction and gene expression has been observed in numerous studies; however, the detailed molecular mechanisms involved are often not clear. The eight natural vitamin E analogues and synthetic derivatives affect signal transduction with different potency, possibly reflecting their different ability to interact with specific proteins. Vitamin E modulates the activity of several enzymes involved in signal transduction, such as protein kinase C, protein kinase B, protein tyrosine kinases, 5-, 12-, and 15-lipoxygenases, cyclooxygenase-2, phospholipase A2, protein phosphatase 2A, protein tyrosine phosphatase, and diacylglycerol kinase. Activation of some these enzymes after stimulation of cell surface receptors with growth factors or cytokines can be normalized by vitamin E. At the molecular level, the translocation of several of these enzymes to the plasma membrane is affected by vitamin E, suggesting that the modulation of protein-membrane interactions may be a common theme for vitamin E action. In this review the main effects of vitamin E on enzymes involved in signal transduction are summarized and the possible mechanisms leading to enzyme modulation evaluated. The elucidation of the molecular and cellular events affected by vitamin E could reveal novel strategies and molecular targets for developing similarly acting compounds.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
31
|
Ewan LC, Jopling HM, Jia H, Mittar S, Bagherzadeh A, Howell GJ, Walker JH, Zachary IC, Ponnambalam S. Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic 2006; 7:1270-82. [PMID: 17004325 DOI: 10.1111/j.1600-0854.2006.00462.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human endothelial vascular endothelial growth factor receptor 2 (VEGFR2/kinase domain region, KDR/fetal liver kinase-1, Flk-1) tyrosine kinase receptor is essential for VEGF-mediated physiological responses including endothelial cell proliferation, migration and survival. How VEGFR2 kinase activation and trafficking are co-coordinated in response to VEGF-A is not known. Here, we elucidate a mechanism for endothelial VEGFR2 response to VEGF-A dependent on constitutive endocytosis co-ordinated with ligand-activated ubiquitination and proteolysis. The selective VEGFR kinase inhibitor, SU5416, blocked the endosomal sorting required for VEGFR2 trafficking and degradation. Inhibition of VEGFR2 tyrosine kinase activity did not block plasma membrane internalization but led to endosomal accumulation. Lysosomal protease activity was required for ligand-stimulated VEGFR2 degradation. Activated VEGFR2 codistributed with the endosomal hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)/signal-transducing adaptor molecule (STAM) complex in a ligand and time-dependent manner, implying a role for this factor in sorting of ubiquitinated VEGFR2. Increased tyrosine phosphorylation of the Hrs subunit in response to VEGF-A links VEGFR2 activation and Hrs/STAM function. In contrast, VEGFR2 in quiescent cells was present on both the endothelial plasma membrane and early endosomes, suggesting constitutive recycling between these two compartments. This pathway was clathrin-linked and dependent on the AP2 adaptor complex as the A23 tyrphostin inhibited VEGFR2 trafficking. We propose a mechanism whereby the transition of endothelial VEGFR2 from a constitutive recycling itinerary to a degradative pathway explains ligand-activated receptor degradation in endothelial cells. This study outlines a mechanism to control the VEGF-A-mediated response within the vascular system.
Collapse
Affiliation(s)
- Lorna C Ewan
- Endothelial Cell Biology Unit, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gillette TG, Yu S, Zhou Z, Waters R, Johnston SA, Reed SH. Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair. EMBO J 2006; 25:2529-38. [PMID: 16675952 PMCID: PMC1478203 DOI: 10.1038/sj.emboj.7601120] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 04/06/2006] [Indexed: 01/15/2023] Open
Abstract
The Rad23/Rad4 nucleotide excision repair (NER) protein complex functions at an early stage of the NER reaction, possibly promoting the recognition of damaged DNA. Here we show that Rad4 protein is ubiquitinated and degraded in response to ultraviolet (UV) radiation, and identify a novel cullin-based E3 ubiquitin ligase required for this process. We also show that this novel ubiquitin ligase is required for optimal NER. Our results demonstrate that optimal NER correlates with the ubiquitination of Rad4 following UV radiation, but not its subsequent degradation. Furthermore, we show that the ubiquitin-proteasome pathway (UPP) regulates NER via two distinct mechanisms. The first occurs independently of de novo protein synthesis, and requires Rad23 and a nonproteolytic function of the 19S regulatory complex of the 26S proteasome. The second requires de novo protein synthesis, and relies on the activity of the newly identified E3 ubiquitin ligase. These studies reveal that, following UV radiation, NER is mediated by nonproteolytic activities of the UPP, via the ubiquitin-like domain of Rad23 and UV radiation-induced ubiquitination of Rad4.
Collapse
Affiliation(s)
- Thomas G Gillette
- The Center for Biomedical Inventions, Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shirong Yu
- Department of Pathology, School of Medicine, Cardiff University, Cardiff, UK
| | - Zheng Zhou
- Department of Pathology, School of Medicine, Cardiff University, Cardiff, UK
| | - Raymond Waters
- Department of Pathology, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephen Albert Johnston
- The Center for Biomedical Inventions, Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Simon H Reed
- Department of Pathology, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
33
|
López-Avalos MD, Duvivier-Kali VF, Xu G, Bonner-Weir S, Sharma A, Weir GC. Evidence for a role of the ubiquitin-proteasome pathway in pancreatic islets. Diabetes 2006; 55:1223-31. [PMID: 16644676 DOI: 10.2337/db05-0450] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ubiquitin-proteasome pathway is crucial for protein turnover. Part of the pathway involves deubiquitination, which is carried out by cystein proteases known as ubiquitin COOH-terminal hydrolases. The isoform Uch-L1 was found to be present in large amounts in rat islets by immunostaining, Western blot analysis, and RT-PCR. Culturing islets in high glucose concentrations (16.7 mmol/l) for 24 h led to decreased gene expression. Exposure to chronic hyperglycemia following 90% partial pancreatectomy also led to reduced Uch-L1 expression. Expression of other members of the ubiquitin-proteasome pathway studied after culturing islets at high glucose concentrations revealed little change except for modest declines in parkin, human ubiquitin-conjugating enzyme 5 (UbcH5), and beta-TRCP (transducin repeat-containing protein). With the pancreatectomy model, expression of polyubiquitin-B and c-Cbl were increased and E6-associated protein was reduced. Further insight about the proteasome pathway was obtained with the proteasome inhibitor lactacystin, which in short-term 2-h experiments enhanced glucose-induced insulin secretion. An important role for the ubiquitin-proteasome pathways in beta-cells is suggested by the findings that changes in glucose concentration influence expression of genes in the pathway and that blockade of the proteasome degradation machinery enhances glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- María D López-Avalos
- Section on Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Belouzard S, Rouillé Y. Ubiquitylation of leptin receptor OB-Ra regulates its clathrin-mediated endocytosis. EMBO J 2006; 25:932-42. [PMID: 16482222 PMCID: PMC1409713 DOI: 10.1038/sj.emboj.7600989] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 01/17/2006] [Indexed: 01/17/2023] Open
Abstract
Leptin receptors are constitutively endocytosed in a ligand-independent manner. To study their endocytosis, leptin receptors OB-Ra and OB-Rb were expressed in HeLa cells. Both receptor isoforms were ubiquitylated, internalized by clathrin-mediated endocytosis and transported to Hrs-positive endosomes after their internalization. Proteasome inhibitors inhibited OB-Ra but not OB-Rb internalization from the cell surface. OB-Ra ubiquitylation occurred on lysine residues K877 and K889 in the cytoplasmic tail, the mutation of which abolished OB-Ra internalization. Fusion of an ubiquitin molecule at the C-terminus of an OB-Ra construct defective both in ubiquitylation and endocytosis restored clathrin-dependent endocytosis of the receptor. The internalization of this constitutively mono-ubiquitylated construct was no longer sensitive to proteasome inhibitors, which inhibited OB-Ra endocytosis by blocking its ubiquitylation. Fusion of an ubiquitin molecule to a transferrin receptor deleted from its own endocytosis motif restored clathrin-mediated endocytosis. We propose that mono-ubiquitin conjugates act as internalization motifs for clathrin-dependent endocytosis of leptin receptor OB-Ra.
Collapse
Affiliation(s)
- Sandrine Belouzard
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 2511, Institut Pasteur de Lille, Lille Cedex, France
| | - Yves Rouillé
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 2511, Institut Pasteur de Lille, Lille Cedex, France
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 2511, Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP 447, 59021 Lille Cedex, France. E-mail:
| |
Collapse
|
35
|
Kim J, Chen CP, Rice KG. The proteasome metabolizes peptide-mediated nonviral gene delivery systems. Gene Ther 2006; 12:1581-90. [PMID: 16034460 DOI: 10.1038/sj.gt.3302575] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The proteasome is a multisubunit cytosolic protein complex responsible for degrading cytosolic proteins. Several studies have implicated its involvement in the processing of viral particles used for gene delivery, thereby limiting the efficiency of gene transfer. Peptide-based nonviral gene delivery systems are sufficiently similar to viral particles in their size and surface properties and thereby could also be recognized and metabolized by the proteasome. The present study utilized proteasome inhibitors (MG 115 and MG 132) to establish that peptide DNA condensates are metabolized by the proteasome, thereby limiting their gene transfer efficiency. Transfection of HepG2 or cystic fibrosis/T1 (CF/T1) cells with CWK18 DNA condensates in the presence of MG 115 or MG 132 resulted in significantly enhanced gene expression. MG 115 and MG 132 increased luciferase expression 30-fold in a dose-dependent manner in HepG2 and CF/T1. The enhanced gene expression correlated directly with proteasome inhibition, and was not the result of lysosomal enzyme inhibition. The enhanced transfection was specific for peptide DNA condensates, whereas Lipofectamine- and polyethylenimine-mediated gene transfer were significantly blocked. A series of novel gene transfer peptides containing intrinsic GA proteasome inhibitors (CWK18(GA)n, where n=4, 6, 8 and 10) were synthesized and found to inhibit the proteasome. The gene transfer efficiency mediated by these peptides in four different cell lines established that a GA repeat of four is sufficient to block the proteasome and significantly enhance the gene transfer. Together, these results implicate the proteasome as a previously undiscovered route of metabolism of peptide-based nonviral gene delivery systems and provide a rationale for the use of proteasome inhibition to increase gene transfer efficiency.
Collapse
Affiliation(s)
- J Kim
- Division of Medicinal and Natural Product Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
36
|
Huang J, Xu LG, Liu T, Zhai Z, Shu HB. The p53-inducible E3 ubiquitin ligase p53RFP induces p53-dependent apoptosis. FEBS Lett 2006; 580:940-7. [PMID: 16427630 DOI: 10.1016/j.febslet.2005.09.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/20/2005] [Accepted: 09/20/2005] [Indexed: 11/19/2022]
Abstract
Recently, it has been shown that really interesting new gene (RING)-in between ring finger (IBR)-RING domain-containing proteins, such as Parkin and Parc, are E3 ubiquitin ligases and are involved in regulation of apoptosis. In this report, we show that p53-inducible RING-finger protein (p53RFP), a p53-inducible E3 ubiquitin ligase, induces p53-dependent but caspase-independent apoptosis. p53RFP contains an N-terminal RING-IBR-RING domain and an uncharacterized, evolutionally highly conserved C-terminal domain. p53RFP interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8 but not with UbcH5, and this interaction is mediated through the RING-IBR-RING domain of p53RFP. Interestingly, the conserved C-terminal domain of p53RFP is required and sufficient for p53RFP-mediated apoptosis, suggesting p53RFP-mediated apoptosis does not require its E3 ubiquitin ligase activity. Together with a recent report showing that p53RFP is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, our findings suggest that p53RFP is involved in switching a cell from p53-mediated growth arrest to apoptosis.
Collapse
Affiliation(s)
- Jun Huang
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
37
|
Molfetta R, Belleudi F, Peruzzi G, Morrone S, Leone L, Dikic I, Piccoli M, Frati L, Torrisi MR, Santoni A, Paolini R. CIN85 regulates the ligand-dependent endocytosis of the IgE receptor: a new molecular mechanism to dampen mast cell function. THE JOURNAL OF IMMUNOLOGY 2005; 175:4208-16. [PMID: 16177060 DOI: 10.4049/jimmunol.175.7.4208] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ligation of the high-affinity receptor for IgE (Fc epsilonRI), constitutively expressed on mast cells and basophils, promotes cell activation and immediate release of allergic mediators. Furthermore, Fc epsilonRI up-regulation on APC from atopic donors is involved in the pathophysiology of allergic diseases. In consideration of the clinical relevance of the IgE receptor, the down-modulation of Fc epsilonRI expression in mast cells may represent a potential target for handling atopic diseases. In an effort to identify new molecular mechanisms involved in attenuating Fc epsilonRI expression and signaling, we focused our attention on CIN85, a scaffold molecule that regulates, in concert with the ubiquitin ligase Cbl, the clathrin-mediated endocytosis of several receptor tyrosine kinases. In the present study, we show that endogenous CIN85 is recruited in Cbl-containing complexes after engagement of the Fc epsilonRI on a mast cell line and drives ligand-induced receptor internalization. By confocal microscopic analysis, we provide evidence that CIN85 directs a more rapid receptor sorting in early endosomes and delivery to a lysosomal compartment. Furthermore, biochemical studies indicate that CIN85 plays a role in reducing the expression of receptor complex. Finally, we demonstrate that CIN85-overexpressing mast cells are dramatically impaired in their ability to degranulate following Ag stimulation, suggesting that the accelerated internalization of activated receptors by perturbing the propagation of Fc epsilonRI signaling may contribute to dampen the functional response. This role of CIN85 could be extended to include other multimeric immune receptors, such as the T and B cell receptors, providing a more general molecular mechanism for attenuating immune responses.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Experimental Medicine and Pathology, Institute Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Steverding D. Ubiquitination of plasma membrane ectophosphatase in bloodstream forms of Trypanosoma brucei. Parasitol Res 2005; 98:157-61. [PMID: 16308729 DOI: 10.1007/s00436-005-0045-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Bloodstream forms of Trypanosoma brucei contain plasma-membrane-integral acidic ectophosphatase. Here, it is shown by N-terminal sequencing that the ectophosphatase found in ricin-binding material was modified by ubiquitin. Three different ubiquitinated species corresponding to single, double and triple ubiquitinated forms of the enzyme were identified. Immunofluorescence studies with live bloodstream-form parasites showed that the ectophosphatase was localized in the flagellar pocket-the sole site for endocytosis in trypanosomes. As ubiquitin modification of plasma membrane proteins serves as an internalization signal, it is suggested that ubiquitinated ectophosphatase is labelled for endocytosis.
Collapse
Affiliation(s)
- D Steverding
- Abteilung Parasitologie, Hygiene-Institut der Ruprecht-Karls-Universtät, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Kim TH, Lee HK, Seo IA, Bae HR, Suh DJ, Wu J, Rao Y, Hwang KG, Park HT. Netrin induces down-regulation of its receptor, Deleted in Colorectal Cancer, through the ubiquitin-proteasome pathway in the embryonic cortical neuron. J Neurochem 2005; 95:1-8. [PMID: 16181408 PMCID: PMC2683579 DOI: 10.1111/j.1471-4159.2005.03314.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proper regulation of temporal and spatial expression of the axon guidance cues and their receptors is critical for the normal wiring of nervous system during development. Netrins, a family of secreted guidance cues, are involved in the midline crossing of spinal commissural axons and in the guidance of cortical efferents. Axons normally lose the responsiveness to their attractants when they arrive at their targets, where the attractant is produced. However the molecular mechanism is still unknown. We investigated the molecular mechanism of down-regulation of netrin-1 signaling in the embryonic cortical neurons. Netrin-1 induced the ubiquitination and proteolytic cleavage of Deleted in Colorectal Cancer (DCC), a transmembrane receptor for netrin, in dissociated cortical neurons. A dramatic decrease of DCC level particularly on the cell surface was also observed after netrin-1 stimulation. Specific ubiquitin-proteasome inhibitors prevented the netrin-induced DCC cleavage and decrease of cell surface DCC. We suggest that the ligand-mediated down-regulation of DCC might participate in the loss of netrin-responsiveness in the developing nervous system.
Collapse
Affiliation(s)
- Tae-Hong Kim
- Department of Pediatrics, Institute of Medical Science, College of Medicine, Dong-A University, Busan, South Korea
| | - Hyun Kyoung Lee
- Department of Physiology, Institute of Medical Science, College of Medicine, Dong-A University, Busan, South Korea
| | - In Ae Seo
- Department of Physiology, Institute of Medical Science, College of Medicine, Dong-A University, Busan, South Korea
| | - Hae Rahn Bae
- Department of Physiology, Institute of Medical Science, College of Medicine, Dong-A University, Busan, South Korea
| | - Duk Joon Suh
- Department of Physiology, Institute of Medical Science, College of Medicine, Dong-A University, Busan, South Korea
| | - Jane Wu
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yi Rao
- Department of Neurology & Institute for Neuroscience, North-western University, Chicago, Illinois, USA
| | - Kyu-Geun Hwang
- Department of Pediatrics, Institute of Medical Science, College of Medicine, Dong-A University, Busan, South Korea
| | - Hwan Tae Park
- Department of Physiology, Institute of Medical Science, College of Medicine, Dong-A University, Busan, South Korea
| |
Collapse
|
40
|
Tengowski MW, Sutovsky P, Hedlund LW, Guyot DJ, Burkhardt JE, Thompson WE, Sutovsky M, Johnson GA. Reproductive cytotoxicity is predicted by magnetic resonance microscopy and confirmed by ubiquitin-proteasome immunohistochemistry in a theophylline-induced model of rat testicular and epididymal toxicity. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2005; 11:300-12. [PMID: 16079014 DOI: 10.1017/s143192760505021x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Accepted: 08/25/2004] [Indexed: 05/03/2023]
Abstract
This study investigated the testicular changes in the rat induced by the nonspecific phosphodiesterase inhibitor, theophylline using magnetic resonance microscopy (MRM) and ubiquitin immunostaining techniques. In vivo T1- and T2-weighted images were acquired at 2 T under anesthesia. Increased signal observed in the theophylline-treated rats suggests that leakage of MRM contrast was occurring. In vivo MRM results indicate that day 16 testis displayed an increased T1-weighted water signal in the area of the seminiferous tubule that decreased by day 32. These findings were validated by histopathology, suggesting that in vivo MRM has the sensitivity to predict changes in testis and epididymal tissues. The participation of the ubiquitin system was investigated, using probes for various markers of the ubiquitin-proteasome pathway. MRM can be used to detect subtle changes in the vascular perfusion of organ systems, and the up-regulation/mobilization of ubiquitin-proteasome pathway may be one of the mechanisms used in theophylline-treated epididymis to remove damaged cells before storage in the cauda epididymis. The combined use of in vivo MRM and subsequent tissue or seminal analysis for the presence of ubiquitin in longitudinal studies may become an important biomarker for assessing testis toxicities drug studies.
Collapse
Affiliation(s)
- M W Tengowski
- Safety Sciences Groton, Pfizer Global Research and Development, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Tle liver has a number of important functions in innate and adaptive immunity. Contributions to the innate (nonspecific) immune system include production of acute phase proteins, nonspecific phagocytosis of particles, nonspecific pinocytosis of molecules, and nonspecific cell killing. Hepatic involvement in innate immunity contributes to the systemic response to local inflammation, clearance of particles and soluble molecules from the circulation, and killing of invading cells such as neoplastic cells. Liver involvement in the adaptive (specific) immune system includes deletion of activated T cells, induction of tolerance to ingested and self-antigens, extrathymic proliferation of T cells, and deletion of many of the signaling and effector molecules. Hepatic involvement in adaptive immunity allows clearance of activated T cells and signaling molecules following inflammatory reactions, and promotes immunologic tolerance toward potentially antigenic proteins that are absorbed from the intestinal tract. The liver is a major site of extrathymic T cell development, which assumes increasing significance with aging in mammals. Perturbations in hepatic structure or function can result in significant ramifications in both the innate and adaptive immune systems.
Collapse
|
42
|
Munteanu A, Zingg JM, Ricciarelli R, Azzi A. CD36 overexpression in ritonavir-treated THP-1 cells is reversed by alpha-tocopherol. Free Radic Biol Med 2005; 38:1047-56. [PMID: 15780763 DOI: 10.1016/j.freeradbiomed.2004.12.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/21/2004] [Accepted: 12/23/2004] [Indexed: 11/29/2022]
Abstract
Therapies with antiretroviral protease inhibitors (ARPI) are correlated with a higher risk for dyslipidemia, hypercholesterolemia, and atherosclerosis. The original aim of this study was to establish whether alpha-tocopherol can reduce CD36 scavenger receptor overexpression occurring after treatment of monocytes with the ARPI ritonavir. We show here that treatment of THP-1 monocytes with ritonavir increases total protein and surface expression of CD36; however, only weak changes are observed at the mRNA level, suggesting that CD36 overexpression occurs mainly at the posttranscriptional level. Concentrations of ritonavir that upregulate CD36 expression inhibit proteasome activity in THP-1 cells, indicating a possible regulatory role of the proteasome in CD36 overexpression. Similar to ritonavir, the proteasome inhibitor ALLN increases the CD36 surface expression on THP-1 cells. alpha-Tocopherol efficiently normalizes CD36 protein overexpression after ritonavir treatment and reduces oxLDL uptake. Furthermore, in THP-1 monocytes, alpha-tocopherol reverses the proteasome activity inhibited by ritonavir. This study indicates that an increased CD36 protein expression in THP-1 monocytes induced by ritonavir can be normalized by alpha-tocopherol. CD36 overexpression is caused by inhibition of proteasome activity by ritonavir, which is efficiently restored by alpha-tocopherol.
Collapse
Affiliation(s)
- Adelina Munteanu
- Institute of Biochemistry and Molecular Biology, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | | | | |
Collapse
|
43
|
Kwon J, Mochida K, Wang YL, Sekiguchi S, Sankai T, Aoki S, Ogura A, Yoshikawa Y, Wada K. Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biol Reprod 2005; 73:29-35. [PMID: 15744022 DOI: 10.1095/biolreprod.104.037077] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Ubiquitination is required throughout all developmental stages of mammalian spermatogenesis. Ubiquitin C-terminal hydrolase (UCH) L1 is thought to associate with monoubiquitin to control ubiquitin levels. Previously, we found that UCHL1-deficient testes of gad mice have reduced ubiquitin levels and are resistant to cryptorchid stress-related injury. Here, we analyzed the function of UCHL1 during the first round of spermatogenesis and during sperm maturation, both of which are known to require ubiquitin-mediated proteolysis. Testicular germ cells in the immature testes of gad mice were resistant to the early apoptotic wave that occurs during the first round of spermatogenesis. TUNEL staining and cell quantitation demonstrated decreased germ cell apoptosis and increased numbers of premeiotic germ cells in gad mice between Postnatal Days 7 and 14. Expression of the apoptotic proteins TRP53, Bax, and caspase-3 was also significantly lower in the immature testes of gad mice. In adult gad mice, cauda epididymidis weight, sperm number in the epididymis, and sperm motility were reduced. Moreover, the number of defective spermatozoa was significantly increased; however, complete infertility was not detected. These data indicate that UCHL1 is required for normal spermatogenesis and sperm quality control and demonstrate the importance of UCHL1-dependent apoptosis in spermatogonial cell and sperm maturation.
Collapse
Affiliation(s)
- Jungkee Kwon
- Department of Degenerative Neurological Disease, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dupré S, Urban-Grimal D, Haguenauer-Tsapis R. Ubiquitin and endocytic internalization in yeast and animal cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:89-111. [PMID: 15571811 DOI: 10.1016/j.bbamcr.2004.09.024] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Endocytosis is involved in a wide variety of cellular processes, and the internalization step of endocytosis has been extensively studied in both lower and higher eukaryotic cells. Studies in mammalian cells have described several endocytic pathways, with the main emphasis on clathrin-dependent endocytosis. Genetic studies in yeast have underlined the critical role of actin and actin-binding proteins, lipid modification, and the ubiquitin conjugation system. The combined results of studies of endocytosis in higher and lower eukaryotic cells reveal an interesting interplay in the two systems, including a crucial role for ubiquitin-associated events. The ubiquitylation of yeast cell-surface proteins clearly acts as a signal triggering their internalization. Mammalian cells display variations on the common theme of ubiquitin-linked endocytosis, according to the cell-surface protein considered. Many plasma membrane channels, transporters and receptors undergo cell-surface ubiquitylation, required for the internalization or later endocytic steps of some cell-surface proteins, whereas for others, internalization involves interaction with the ubiquitin conjugation system or with ancillary proteins, which are themselves ubiquitylated. Epsins and Eps15 (or Eps15 homologs), are commonly involved in the process of endocytosis in all eukaryotes, their critical role in this process stemming from their capacity to bind ubiquitin, and to undergo ubiquitylation.
Collapse
Affiliation(s)
- S Dupré
- Institut Jacques Monod-CNRS Universités Paris VI and Paris VII, 2 place Jussieu 75005 Paris, France
| | | | | |
Collapse
|
45
|
Yu GY, Lai MMC. The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry. J Virol 2005; 79:644-8. [PMID: 15596861 PMCID: PMC538694 DOI: 10.1128/jvi.79.1.644-648.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin-proteasome system is involved in cellular endocytosis and maturation of some viruses. In this study, we found that proteasome inhibitors blocked mouse hepatitis virus replication at an early step in the viral life cycle. In the presence of MG132, the entering viruses accumulated in both the endosome and denser lysosome, suggesting that the ubiquitin-proteasome system is involved in the release of virus from the endosome to the cytosol during the virus entry step.
Collapse
Affiliation(s)
- Guann-Yi Yu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-1054, USA
| | | |
Collapse
|
46
|
Harhaj NS, Antonetti DA. Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 2004; 36:1206-37. [PMID: 15109567 DOI: 10.1016/j.biocel.2003.08.007] [Citation(s) in RCA: 407] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Accepted: 08/21/2003] [Indexed: 12/16/2022]
Abstract
The mechanism by which epithelial and endothelial cells interact to form polarized tissue is of fundamental importance to multicellular organisms. Dysregulation of these barriers occurs in a variety of diseases, destroying the normal cellular environments and leading to organ failure. Increased levels of growth factors are a common characteristic of diseases exhibiting tissue permeability, suggesting that growth factors play a direct role in elevating permeability. Of particular concern for this laboratory, increased expression of vascular endothelial growth factor may enhance vascular permeability in diabetic retinopathy, leading to vision impairment and blindness. However, the mechanism by which growth factors increase permeability is unclear. Polarized cells form strong barriers through the development of tight junctions, which are specialized regions of the junctional complex. Tight junctions are composed of three types of transmembrane proteins, a number of peripheral membrane structural proteins, and are associated with a variety of regulatory proteins. Recent data suggest that growth factor-stimulated alterations in tight junctions contribute to permeability in a variety of disease states. The goal of this review was to elucidate potential mechanisms by which elevated growth factors elicit deregulated paracellular permeability via altered regulation of tight junctions, with particular emphasis on the tight junction proteins occludin and ZO-1, protein kinase C signaling, and endocytosis of junctional proteins. Understanding the molecular mechanisms underlying growth factor-mediated regulation of tight junctions will facilitate the development of novel treatments for diseases such as brain tumors, diabetic retinopathy and other diseases with compromised tight junction barriers.
Collapse
Affiliation(s)
- Nicole S Harhaj
- Penn State Retina Research Group, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
47
|
Rosenzweig SD, Schwartz OM, Brown MR, Leto TL, Holland SM. Characterization of a dipeptide motif regulating IFN-gamma receptor 2 plasma membrane accumulation and IFN-gamma responsiveness. THE JOURNAL OF IMMUNOLOGY 2004; 173:3991-9. [PMID: 15356148 DOI: 10.4049/jimmunol.173.6.3991] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IFN-gammaR complex is composed of two IFN-gammaR1 and two IFN-gammaR2 polypeptide chains. Although IFN-gammaR1 is constitutively expressed on all nucleated cells, IFN-gammaR2 membrane display is selective and tightly regulated. We created a series of fluorescent-tagged IFN-gammaR2 expression constructs to follow the molecule's cell surface expression and intracellular distribution. Truncation of the receptor immediately upstream of Leu-Ile 255-256 (254X) created a receptor devoid of signaling that overaccumulated on the cell surface. In addition, this truncated receptor inhibited wild-type IFN-gammaR2 activity and therefore exerted a dominant negative effect. In-frame deletion (255Delta2) or alanine substitution (LI255-256AA) of these amino acids created mutants that overaccumulated on the plasma membrane, but had enhanced function. Single amino acid substitutions (L255A or I256A) had a more modest effect. In-frame deletions upstream (253Delta2), but not downstream (257Delta2), of Leu-Ile 255-256 also led to overaccumulation. A truncation within the IFN-gammaR2 Jak2 binding site (270X) led to a mutant devoid of function that did not overaccumulate and did not affect wild-type IFN-gammaR2 signaling. We have created a series of novel mutants of IFN-gammaR2 that have facilitated the identification of intracellular domains that control IFN-gammaR2 accumulation and IFN-gamma responsiveness. In contrast to IFN-gammaR1, not only dominant negative, but also dominant gain-of-function, mutations were created through manipulation of IFN-gammaR2 Leu-Ile 255-256. These IFN-gammaR2 mutants will allow fine dissection of the role of IFN-gamma signaling in immunity.
Collapse
Affiliation(s)
- Sergio D Rosenzweig
- Laboratory of Host Defenses, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
48
|
Vuong BQ, Arenzana TL, Showalter BM, Losman J, Chen XP, Mostecki J, Banks AS, Limnander A, Fernandez N, Rothman PB. SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome. Mol Cell Biol 2004; 24:9092-101. [PMID: 15456882 PMCID: PMC517868 DOI: 10.1128/mcb.24.20.9092-9101.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Revised: 02/13/2004] [Accepted: 06/15/2004] [Indexed: 01/09/2023] Open
Abstract
The regulation of cytokine signaling is critical for controlling cellular proliferation and activation during an immune response. SOCS-1 is a potent inhibitor of Jak kinase activity and of signaling initiated by several cytokines. SOCS-1 protein levels are tightly regulated, and recent data suggest that SOCS-1 may regulate the protein levels of some signaling proteins by the ubiquitin proteasome pathway; however, the cellular mechanism by which SOCS-1 directs proteins for degradation is unknown. In this report, SOCS-1 is found to colocalize and biochemically copurify with the microtubule organizing complex (MTOC) and its associated 20S proteasome. The SOCS-1 SH2 domain is required for the localization of SOCS-1 to the MTOC. Overexpression of SOCS-1 targets Jak1 in an SH2-dependent manner to a perinuclear distribution resembling the MTOC-associated 20S proteasome. Analysis of MTOCs fractionated from SOCS-1-deficient cells demonstrates that SOCS-1 may function redundantly to regulate the localization of Jak1 to the MTOC. Nocodazole inhibits the protein turnover of SOCS-1, demonstrating that the minus-end transport of SOCS-1 to the MTOC-associated 20S proteasome is required to regulate SOCS-1 protein levels. These data link SOCS-1 directly with the proteasome pathway and suggest another function for the SH2 domain of SOCS-1 in the regulation of Jak/STAT signaling.
Collapse
Affiliation(s)
- Bao Q Vuong
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, USA [corrected]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Leithe E, Rivedal E. Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment. J Biol Chem 2004; 279:50089-96. [PMID: 15371442 DOI: 10.1074/jbc.m402006200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gap junctions are specialized plasma membrane domains enriched in connexin proteins that form channels between adjacent cells. Gap junctions are highly dynamic, and modulation of the connexin turnover rate is considered to play an important role in the regulation of gap junctional intercellular communication. In the present study, we show that the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces ubiquitination of connexin-43 (Cx43) in IAR20 rat liver epithelial cells. The accelerated ubiquitination of Cx43 in response to TPA occurred concomitantly with Cx43 hyperphosphorylation and inhibition of cell-cell communication via gap junctions. The TPA-induced ubiquitination of Cx43 was mediated via protein kinase C and partly involved the mitogen-activated protein kinase pathway. Following ubiquitination, Cx43 was internalized and degraded. The loss of Cx43 protein was counteracted by ammonium chloride, indicating that acidification of internalized Cx43 gap junctions is a prerequisite for its degradation. Furthermore, the Cx43 degradation was partly counteracted by leupeptin, an inhibitor of cathepsin B, H, and L. Cx43 internalization and subsequent degradation were blocked by inhibitors of the proteasome. Evidence is provided that Cx43 is modified by multiple monoubiquitins rather than a polyubiquitin chain in response to TPA. Moreover, the TPA-induced ubiquitination of Cx43 was blocked by proteasomal inhibitors. Taken together, the data indicate that Cx43 ubiquitination is a highly regulated process. Moreover, the results suggest that the proteasome might play an indirect role in Cx43 degradation by affecting the level of monoubiquitin conjugation and trafficking of Cx43 to endosomal compartments.
Collapse
Affiliation(s)
- Edward Leithe
- Institute for Cancer Research at The Norwegian Radium Hospital, N-0310 Oslo, Norway.
| | | |
Collapse
|
50
|
Hislop JN, Marley A, Von Zastrow M. Role of mammalian vacuolar protein-sorting proteins in endocytic trafficking of a non-ubiquitinated G protein-coupled receptor to lysosomes. J Biol Chem 2004; 279:22522-31. [PMID: 15024011 DOI: 10.1074/jbc.m311062200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many signaling receptors require covalent modification by ubiquitin for agonist-induced down-regulation via endocytic trafficking to lysosomes, a process that is mediated by a conserved set of endosome-associating proteins also required for vacuolar protein-sorting (VPS) in yeast. The delta opioid receptor (DOR) is a G protein-coupled receptor that can undergo agonist-induced proteolysis via endocytic trafficking to lysosomes but does not require covalent modification by ubiquitin to do so. This raises the question of whether lysosomal down-regulation of this "ubiquitination-independent" GPCR is mediated by a completely distinct biochemical mechanism or if similar VPS machinery is involved. Agonist-induced proteolysis of DOR was significantly inhibited by dominant negative mutant versions of Vps4/Skd1, an AAA-family ATPase required for a late step in lysosomal sorting of ubiquitinated membrane cargo. Furthermore, overexpression and interfering RNA-mediated knockdown indicated that lysosomal trafficking of opioid receptors is also dependent on Hrs, a VPS protein that mediates an early step in lysosomal sorting of ubiquitinated cargo. However, interfering RNA-mediated knockdown of Tsg101, a VPS protein that is essential for an intermediate step of the conserved lysosomal sorting mechanism, did not detectably affect agonist-induced proteolysis of DOR in the same cells in which (ubiquitination-dependent) lysosomal trafficking of epidermal growth factor receptors was clearly inhibited. These results indicate that opioid receptors, despite their ability to undergo efficient agonist-induced trafficking to lysosomes in the absence of covalent modification by ubiquitin, utilize some (Vps4 and Hrs) but perhaps not all (Tsg101) of the VPS machinery required for lysosomal sorting of ubiquitinated membrane cargo.
Collapse
Affiliation(s)
- James N Hislop
- Department of Psychiatry, University of California, San Francisco, California 94143-2140, USA.
| | | | | |
Collapse
|