1
|
Deng H, Jia G, Li P, Tang Y, Zhao L, Yang Q, Zhao J, Wang J, Tu Y, Yong X, Zhang S, Mo X, Billadeau DD, Su Z, Jia D. The WDR11 complex is a receptor for acidic-cluster-containing cargo proteins. Cell 2024; 187:4272-4288.e20. [PMID: 39013469 PMCID: PMC11316641 DOI: 10.1016/j.cell.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Vesicle trafficking is a fundamental process that allows for the sorting and transport of specific proteins (i.e., "cargoes") to different compartments of eukaryotic cells. Cargo recognition primarily occurs through coats and the associated proteins at the donor membrane. However, it remains unclear whether cargoes can also be selected at other stages of vesicle trafficking to further enhance the fidelity of the process. The WDR11-FAM91A1 complex functions downstream of the clathrin-associated AP-1 complex to facilitate protein transport from endosomes to the TGN. Here, we report the cryo-EM structure of human WDR11-FAM91A1 complex. WDR11 directly and specifically recognizes a subset of acidic clusters, which we term super acidic clusters (SACs). WDR11 complex assembly and its binding to SAC-containing proteins are indispensable for the trafficking of SAC-containing proteins and proper neuronal development in zebrafish. Our studies thus uncover that cargo proteins could be recognized in a sequence-specific manner downstream of a protein coat.
Collapse
Affiliation(s)
- Huaqing Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guowen Jia
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Ping Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yingying Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jia Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhaoming Su
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, China.
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Duncan SM, Nagar R, Damerow M, Yashunsky DV, Buzzi B, Nikolaev AV, Ferguson MAJ. A Trypanosoma brucei β3 glycosyltransferase superfamily gene encodes a β1-6 GlcNAc-transferase mediating N-glycan and GPI anchor modification. J Biol Chem 2021; 297:101153. [PMID: 34478712 PMCID: PMC8477195 DOI: 10.1016/j.jbc.2021.101153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
The parasite Trypanosoma brucei exists in both a bloodstream form (BSF) and a procyclic form (PCF), which exhibit large carbohydrate extensions on the N-linked glycans and glycosylphosphatidylinositol (GPI) anchors, respectively. The parasite's glycoconjugate repertoire suggests at least 38 glycosyltransferase (GT) activities, 16 of which are currently uncharacterized. Here, we probe the function(s) of the uncharacterized GT67 glycosyltransferase family and a β3 glycosyltransferase (β3GT) superfamily gene, TbGT10. A BSF-null mutant, created by applying the diCre/loxP method in T. brucei for the first time, showed a fitness cost but was viable in vitro and in vivo and could differentiate into the PCF, demonstrating nonessentiality of TbGT10. The absence of TbGT10 impaired the elaboration of N-glycans and GPI anchor side chains in BSF and PCF parasites, respectively. Glycosylation defects included reduced BSF glycoprotein binding to the lectin ricin and monoclonal antibodies mAb139 and mAbCB1. The latter bind a carbohydrate epitope present on lysosomal glycoprotein p67 that we show here consists of (-6Galβ1-4GlcNAcβ1-)≥4 poly-N-acetyllactosamine repeats. Methylation linkage analysis of Pronase-digested glycopeptides isolated from BSF wild-type and TbGT10 null parasites showed a reduction in 6-O-substituted- and 3,6-di-O-substituted-Gal residues. These data define TbGT10 as a UDP-GlcNAc:βGal β1-6 GlcNAc-transferase. The dual role of TbGT10 in BSF N-glycan and PCF GPI-glycan elaboration is notable, and the β1-6 specificity of a β3GT superfamily gene product is unprecedented. The similar activities of trypanosome TbGT10 and higher-eukaryote I-branching enzyme (EC 2.4.1.150), which belong to glycosyltransferase families GT67 and GT14, respectively, in elaborating N-linked glycans, are a novel example of convergent evolution.
Collapse
Affiliation(s)
- Samuel M Duncan
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Rupa Nagar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Manuela Damerow
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dmitry V Yashunsky
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Benedetta Buzzi
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrei V Nikolaev
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
3
|
Zoltner M, Campagnaro GD, Taleva G, Burrell A, Cerone M, Leung KF, Achcar F, Horn D, Vaughan S, Gadelha C, Zíková A, Barrett MP, de Koning HP, Field MC. Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. J Biol Chem 2020; 295:8331-8347. [PMID: 32354742 PMCID: PMC7294092 DOI: 10.1074/jbc.ra120.012355] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/21/2020] [Indexed: 12/27/2022] Open
Abstract
Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite's invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs' cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Gustavo D Campagnaro
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gergana Taleva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alana Burrell
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Michela Cerone
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ka-Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom .,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Jinnelov A, Ali L, Tinti M, Güther MLS, Ferguson MAJ. Single-subunit oligosaccharyltransferases of Trypanosoma brucei display different and predictable peptide acceptor specificities. J Biol Chem 2017; 292:20328-20341. [PMID: 28928222 PMCID: PMC5724017 DOI: 10.1074/jbc.m117.810945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2017] [Indexed: 11/10/2022] Open
Abstract
Trypanosoma brucei causes African trypanosomiasis and contains three full-length oligosaccharyltransferase (OST) genes; two of which, TbSTT3A and TbSTT3B, are expressed in the bloodstream form of the parasite. These OSTs have different peptide acceptor and lipid-linked oligosaccharide donor specificities, and trypanosomes do not follow many of the canonical rules developed for other eukaryotic N-glycosylation pathways, raising questions as to the basic architecture and detailed function of trypanosome OSTs. Here, we show by blue-native gel electrophoresis and stable isotope labeling in cell culture proteomics that the TbSTT3A and TbSTT3B proteins associate with each other in large complexes that contain no other detectable protein subunits. We probed the peptide acceptor specificities of the OSTs in vivo using a transgenic glycoprotein reporter system and performed glycoproteomics on endogenous parasite glycoproteins using sequential endoglycosidase H and peptide:N-glycosidase-F digestions. This allowed us to assess the relative occupancies of numerous N-glycosylation sites by endoglycosidase H-resistant N-glycans originating from Man5GlcNAc2-PP-dolichol transferred by TbSTT3A, and endoglycosidase H-sensitive N-glycans originating from Man9GlcNAc2-PP-dolichol transferred by TbSTT3B. Using machine learning, we assessed the features that best define TbSTT3A and TbSTT3B substrates in vivo and built an algorithm to predict the types of N-glycan most likely to predominate at all the putative N-glycosylation sites in the parasite proteome. Finally, molecular modeling was used to suggest why TbSTT3A has a distinct preference for sequons containing and/or flanked by acidic amino acid residues. Together, these studies provide insights into how a highly divergent eukaryote has re-wired protein N-glycosylation to provide protein sequence-specific N-glycan modifications. Data are available via ProteomeXchange with identifiers PXD007236, PXD007267, and PXD007268.
Collapse
Affiliation(s)
- Anders Jinnelov
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Liaqat Ali
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Maria Lucia S Güther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
5
|
Manna PT, Obado SO, Boehm C, Gadelha C, Sali A, Chait BT, Rout MP, Field MC. Lineage-specific proteins essential for endocytosis in trypanosomes. J Cell Sci 2017; 130:1379-1392. [PMID: 28232524 PMCID: PMC5399782 DOI: 10.1242/jcs.191478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 02/13/2017] [Indexed: 01/05/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is the most evolutionarily ancient endocytic mechanism known, and in many lineages the sole mechanism for internalisation. Significantly, in mammalian cells CME is responsible for the vast bulk of endocytic flux and has likely undergone multiple adaptations to accommodate specific requirements by individual species. In African trypanosomes, we previously demonstrated that CME is independent of the AP-2 adaptor protein complex, that orthologues to many of the animal and fungal CME protein cohort are absent, and that a novel, trypanosome-restricted protein cohort interacts with clathrin and drives CME. Here, we used a novel cryomilling affinity isolation strategy to preserve transient low-affinity interactions, giving the most comprehensive trypanosome clathrin interactome to date. We identified the trypanosome AP-1 complex, Trypanosoma brucei (Tb)EpsinR, several endosomal SNAREs plus orthologues of SMAP and the AP-2 associated kinase AAK1 as interacting with clathrin. Novel lineage-specific proteins were identified, which we designate TbCAP80 and TbCAP141. Their depletion produced extensive defects in endocytosis and endomembrane system organisation, revealing a novel molecular pathway subtending an early-branching and highly divergent form of CME, which is conserved and likely functionally important across the kinetoplastid parasites. Summary: Endocytosis is a vital process in most cells, and here we identify important proteins required for this process in trypanosomes. Significantly, these are unique and not present in animals, fungi or plants.
Collapse
Affiliation(s)
- Paul T Manna
- School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Samson O Obado
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Cordula Boehm
- School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham NG2 7UH, UK
| | - Andrej Sali
- California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA
| | - Brian T Chait
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Michael P Rout
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| |
Collapse
|
6
|
Zoltner M, Leung KF, Alsford S, Horn D, Field MC. Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes. PLoS Pathog 2015; 11:e1005236. [PMID: 26492041 PMCID: PMC4619645 DOI: 10.1371/journal.ppat.1005236] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/28/2015] [Indexed: 12/29/2022] Open
Abstract
Recently we identified multiple suramin-sensitivity genes with a genome wide screen in Trypanosoma brucei that includes the invariant surface glycoprotein ISG75, the adaptin-1 (AP-1) complex and two deubiquitylating enzymes (DUBs) orthologous to ScUbp15/HsHAUSP1 and pVHL-interacting DUB1 (type I), designated TbUsp7 and TbVdu1, respectively. Here we have examined the roles of these genes in trafficking of ISG75, which appears key to suramin uptake. We found that, while AP-1 does not influence ISG75 abundance, knockdown of TbUsp7 or TbVdu1 leads to reduced ISG75 abundance. Silencing TbVdu1 also reduced ISG65 abundance. TbVdu1 is a component of an evolutionarily conserved ubiquitylation switch and responsible for rapid receptor modulation, suggesting similar regulation of ISGs in T. brucei. Unexpectedly, TbUsp7 knockdown also blocked endocytosis. To integrate these observations we analysed the impact of TbUsp7 and TbVdu1 knockdown on the global proteome using SILAC. For TbVdu1, ISG65 and ISG75 are the only significantly modulated proteins, but for TbUsp7 a cohort of integral membrane proteins, including the acid phosphatase MBAP1, that is required for endocytosis, and additional ISG-related proteins are down-regulated. Furthermore, we find increased expression of the ESAG6/7 transferrin receptor and ESAG5, likely resulting from decreased endocytic activity. Therefore, multiple ubiquitylation pathways, with a complex interplay with trafficking pathways, control surface proteome expression in trypanosomes. The mechanisms by which pathogens interact with their environment are of major importance, both for fulfilling the basic needs of the parasite and understanding immune evasion. For African trypanosomes, the surface is dominated by the variant surface glycoprotein (VSG), but recent data has demonstrated an important role for ubiquitylation in mediating turnover of invariant surface glycoproteins (ISGs) and maintaining ISG copy number independent of VSG. Further, ISG expression is required for suramin-sensitivity. Here we describe mechanisms mediating ISG turnover, uncovered using a screen for genes involved in sensitivity to suramin. These involve multiple aspects of the ubiquitylation machinery, and connect ISG turnover with additional surface proteins. Our data provide a first insight into the complexity of regulation of the ISG family, identifying further aspects to the control of a drug-sensitivity pathway in trypanosomes, and offering insights into metabolism of the parasite surface proteome.
Collapse
Affiliation(s)
- Martin Zoltner
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - David Horn
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Huang G, Ulrich PN, Storey M, Johnson D, Tischer J, Tovar JA, Moreno SNJ, Orlando R, Docampo R. Proteomic analysis of the acidocalcisome, an organelle conserved from bacteria to human cells. PLoS Pathog 2014; 10:e1004555. [PMID: 25503798 PMCID: PMC4263762 DOI: 10.1371/journal.ppat.1004555] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/05/2014] [Indexed: 01/12/2023] Open
Abstract
Acidocalcisomes are acidic organelles present in a diverse range of organisms from bacteria to human cells. In this study acidocalcisomes were purified from the model organism Trypanosoma brucei, and their protein composition was determined by mass spectrometry. The results, along with those that we previously reported, show that acidocalcisomes are rich in pumps and transporters, involved in phosphate and cation homeostasis, and calcium signaling. We validated the acidocalcisome localization of seven new, putative, acidocalcisome proteins (phosphate transporter, vacuolar H+-ATPase subunits a and d, vacuolar iron transporter, zinc transporter, polyamine transporter, and acid phosphatase), confirmed the presence of six previously characterized acidocalcisome proteins, and validated the localization of five novel proteins to different subcellular compartments by expressing them fused to epitope tags in their endogenous loci or by immunofluorescence microscopy with specific antibodies. Knockdown of several newly identified acidocalcisome proteins by RNA interference (RNAi) revealed that they are essential for the survival of the parasites. These results provide a comprehensive insight into the unique composition of acidocalcisomes of T. brucei, an important eukaryotic pathogen, and direct evidence that acidocalcisomes are especially adapted for the accumulation of polyphosphate.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Paul N Ulrich
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Melissa Storey
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Darryl Johnson
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Julie Tischer
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Javier A Tovar
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
8
|
Alsford S, Field MC, Horn D. Receptor-mediated endocytosis for drug delivery in African trypanosomes: fulfilling Paul Ehrlich's vision of chemotherapy. Trends Parasitol 2013; 29:207-12. [PMID: 23601931 DOI: 10.1016/j.pt.2013.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 12/15/2022]
Abstract
Bloodstream-form cells of Trypanosoma brucei exhibit massively increased endocytic activity relative to the insect midgut stage, enabling rapid recycling of variant surface glycoprotein and antibody clearance from the surface. In addition, recent advances have identified a role for receptor-mediated endocytosis in the uptake of the antitrypanosomal drug, suramin, via invariant surface glycoprotein 75, and in the uptake of trypanosome lytic factor 1 via haptoglobin-haemoglobin receptor. Here, we argue that receptor-mediated endocytosis represents both a validated drug target and a promising route for the delivery of novel therapeutics into trypanosomes.
Collapse
Affiliation(s)
- Sam Alsford
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | |
Collapse
|
9
|
Mehlert A, Wormald MR, Ferguson MAJ. Modeling of the N-glycosylated transferrin receptor suggests how transferrin binding can occur within the surface coat of Trypanosoma brucei. PLoS Pathog 2012; 8:e1002618. [PMID: 22496646 PMCID: PMC3320590 DOI: 10.1371/journal.ppat.1002618] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 02/13/2012] [Indexed: 12/17/2022] Open
Abstract
The transferrin receptor of bloodstream form Trypanosoma brucei is a heterodimer encoded by expression site associated genes 6 and 7. This low-abundance glycoprotein with a single glycosylphosphatidylinositol membrane anchor and eight potential N-glycosylation sites is located in the flagellar pocket. The receptor is essential for the parasite, providing its only source of iron by scavenging host transferrin from the bloodstream. Here, we demonstrate that both receptor subunits contain endoglycosidase H-sensitive and endoglycosidase H-resistant N-glycans. Lectin blotting of the purified receptor and structural analysis of the released N-glycans revealed oligomannose and paucimannose structures but, contrary to previous suggestions, no poly-N-acetyllactosamine structures were found. Overlay experiments suggest that the receptor can bind to other trypanosome glycoproteins, which may explain this discrepancy. Nevertheless, these data suggest that a current model, in which poly-N-acetyllactosamine glycans are directly involved in receptor-mediated endocytosis in bloodstream form Trypanosoma brucei, should be revised. Sequential endoglycosidase H and peptide-N-glycosidase F treatment, followed by tryptic peptide analysis, allowed the mapping of oligomannose and paucimannose structures to four of the receptor N-glycosylation sites. These results are discussed with respect to the current model for protein N-glycosylation in the parasite. Finally, the glycosylation data allowed the creation of a molecular model for the parasite transferrin receptor. This model, when placed in the context of a model for the dense variant surface glycoprotein coat in which it is embedded, suggests that receptor N-glycosylation may play an important role in providing sufficient space for the approach and binding of transferrin to the receptor, without significantly disrupting the continuity of the protective variant surface glycoprotein coat. The tsetse fly transmitted parasite that causes human African trypanosomiasis, or sleeping sickness, scavenges iron from the bloodstream of the infected individual so that it can live, multiply and ultimately cause disease. To do this, it places a glycoprotein (a protein with carbohydrate chains attached) called the transferrin receptor on its surface to capture circulating human transferrin, an iron transport protein. It then internalizes transferrin receptor/transferrin complex and digests the transferrin part, releasing the iron for its own use. By analyzing the parasite transferrin receptor, we have been able to describe the carbohydrate chains of the transferrin receptor and thus complete a molecular model of this important glycoprotein. We have further built models of how we expect this low abundance glycoprotein will sit in the surface coat of the parasite, which is made of millions of copies of another glycoprotein. The results provide a ‘molecule's eye view’ of how the carbohydrate chains of the transferrin receptor provide the space necessary for the transferrin to bind to it without disrupting the protective coat.
Collapse
Affiliation(s)
- Angela Mehlert
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark R. Wormald
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, Turner DJ, Field MC, Berriman M, Horn D. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 2012; 482:232-6. [PMID: 22278056 PMCID: PMC3303116 DOI: 10.1038/nature10771] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/07/2011] [Indexed: 01/24/2023]
Abstract
The concept of disease-specific chemotherapy was developed a century ago. Dyes and arsenical compounds that displayed selectivity against trypanosomes were central to this work, and the drugs that emerged remain in use for treating human African trypanosomiasis (HAT). The importance of understanding the mechanisms underlying selective drug action and resistance for the development of improved HAT therapies has been recognized, but these mechanisms have remained largely unknown. Here we use all five current HAT drugs for genome-scale RNA interference target sequencing (RIT-seq) screens in Trypanosoma brucei, revealing the transporters, organelles, enzymes and metabolic pathways that function to facilitate antitrypanosomal drug action. RIT-seq profiling identifies both known drug importers and the only known pro-drug activator, and links more than fifty additional genes to drug action. A bloodstream stage-specific invariant surface glycoprotein (ISG75) family mediates suramin uptake, and the AP1 adaptin complex, lysosomal proteases and major lysosomal transmembrane protein, as well as spermidine and N-acetylglucosamine biosynthesis, all contribute to suramin action. Further screens link ubiquinone availability to nitro-drug action, plasma membrane P-type H(+)-ATPases to pentamidine action, and trypanothione and several putative kinases to melarsoprol action. We also demonstrate a major role for aquaglyceroporins in pentamidine and melarsoprol cross-resistance. These advances in our understanding of mechanisms of antitrypanosomal drug efficacy and resistance will aid the rational design of new therapies and help to combat drug resistance, and provide unprecedented molecular insight into the mode of action of antitrypanosomal drugs.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sabine Eckert
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Nicola Baker
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Lucy Glover
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Daniel J. Turner
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Matthew Berriman
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - David Horn
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
11
|
Izquierdo L, Mehlert A, Ferguson MAJ. The lipid-linked oligosaccharide donor specificities of Trypanosoma brucei oligosaccharyltransferases. Glycobiology 2012; 22:696-703. [PMID: 22241825 PMCID: PMC3311286 DOI: 10.1093/glycob/cws003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently presented a model for site-specific protein N-glycosylation in Trypanosoma brucei whereby the TbSTT3A oligosaccharyltransferase (OST) first selectively transfers biantennary Man(5)GlcNAc(2) from the lipid-linked oligosaccharide (LLO) donor Man(5)GlcNAc(2)-PP-Dol to N-glycosylation sequons in acidic to neutral peptide sequences and TbSTT3B selectively transfers triantennary Man(9)GlcNAc(2) to any remaining sequons. In this paper, we investigate the specificities of the two OSTs for their preferred LLO donors by glycotyping the variant surface glycoprotein (VSG) synthesized by bloodstream-form T. brucei TbALG12 null mutants. The TbALG12 gene encodes the α1-6-mannosyltransferase that converts Man(7)GlcNAc(2)-PP-Dol to Man(8)GlcNAc(2)-PP-Dol. The VSG synthesized by the TbALG12 null mutant in the presence and the absence of α-mannosidase inhibitors was characterized by electrospray mass spectrometry both intact and as pronase glycopetides. The results show that TbSTT3A is able to transfer Man(7)GlcNAc(2) as well as Man(5)GlcNAc(2) to its preferred acidic glycosylation site at Asn263 and that, in the absence of Man(9)GlcNAc(2)-PP-Dol, TbSTT3B transfers both Man(7)GlcNAc(2) and Man(5)GlcNAc(2) to the remaining site at Asn428, albeit with low efficiency. These data suggest that the preferences of TbSTT3A and TbSTT3B for their LLO donors are based on the c-branch of the Man(9)GlcNAc(2) oligosaccharide, such that the presence of the c-branch prevents recognition and/or transfer by TbSTT3A, whereas the presence of the c-branch enhances recognition and/or transfer by TbSTT3B.
Collapse
Affiliation(s)
- Luis Izquierdo
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
12
|
Atwood JA, Minning T, Ludolf F, Nuccio A, Weatherly DB, Alvarez-Manilla G, Tarleton R, Orlando R. Glycoproteomics of Trypanosoma cruzi trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling. J Proteome Res 2007; 5:3376-84. [PMID: 17137339 DOI: 10.1021/pr060364b] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we detail the first glycoproteomic analysis of a human pathogen. We describe an approach that enables the identification of organelle and cell surface N-linked glycoproteins from Trypanosoma cruzi, the causative agent of Chagas' disease. This approach is based on a subcellular fractionation protocol to produce fractions enriched in either organelle or plasma membrane/cytoplasmic proteins. Through lectin affinity capture of the glycopeptides from each subcellular fraction and stable isotope labeling of the glycan attachment sites with H(2)18O, we unambiguously identified 36 glycosylation sites on 35 glycopeptides which mapped to 29 glycoproteins. We also present the first expression evidence for 11 T. cruzi specific glycoproteins and provide experimental data indicating that the mucin associated surface protein family (MASP) and dispersed gene family (DGF-1) are post-translationally modified by N-linked glycans.
Collapse
Affiliation(s)
- James A Atwood
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602-4712, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Jiang DW, Werbovetz KA, Varadhachary A, Cole RN, Englund PT. Purification and identification of a fatty acyl-CoA synthetase from Trypanosoma brucei. Mol Biochem Parasitol 2005; 135:149-52. [PMID: 15287596 DOI: 10.1016/j.molbiopara.2004.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- David W Jiang
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
14
|
Aksoy N, Ozbilge H, Keles S, Iriadam M, Vural H, Akcay F. A preliminary approach to the separation ofLeishmaniacell-surface antigens. J Sep Sci 2004; 27:1011-6. [PMID: 15352720 DOI: 10.1002/jssc.200401747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of the current study was to characterize Leishmania cell-surface antigens by two different methods established for the purification of glycoproteins and proteins, and to point out a useful approach to define their size and mass heterogeneity. L. tropica parasites were initially isolated from patients with active cutaneous leishmaniasis and were then cultured in vitro. The parasite-cell layer was solubilised with 6 M guanidinium chloride (GuHCl) and subsequently prepared for the purification procedure. The methods used in this work were gel filtration chromatography and isopycnic density-gradient centrifugation. Because of the presence of a substantial amount of non-specific proteins in the culture medium, these methods were not effective alone in distinguishing these antigens. However, a good idea of their N-glycosylated structures could be obtained by using Periodic acid-Schiffs (PAS) and Con A lectin, and also size and mass heterogeneity. A combination of these methods effected a clear separation of the antigens. Amino acid analysis of the purified antigens was performed to positively identify them as well-known Leishmania cell-surface antigen gene products. The results confirmed the presence of more than one cell-surface antigen on the Leishmania parasite and the combination of gel chromatography and density-gradient centrifugation could be useful for their isolation.
Collapse
Affiliation(s)
- Nurten Aksoy
- Department of Biochemistry, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | | | | | | | | | | |
Collapse
|
15
|
Murata CE, Goldberg DE. Plasmodium falciparum falcilysin: an unprocessed food vacuole enzyme. Mol Biochem Parasitol 2003; 129:123-6. [PMID: 12798513 DOI: 10.1016/s0166-6851(03)00098-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Christina E Murata
- Departments of Molecular Microbiology and Medicine, Howard Hughes Medical Institute, Washington University Medical School, Campus Box 8230, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
16
|
Waller RF, McConville MJ. Developmental changes in lysosome morphology and function Leishmania parasites. Int J Parasitol 2002; 32:1435-45. [PMID: 12392909 DOI: 10.1016/s0020-7519(02)00140-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endocytic pathway of Leishmania parasites has recently come under intense research focus through the development of several markers for various compartments of this pathway. Through these studies a novel multivesicular tubule lysosome has been discovered in promastigote-stage parasites. This organelle has a highly dynamic role during parasite growth and differentiation. This review discusses recent insights into the Leishmania lysosome with respect to its organisation within the endocytic pathway, stage-specific functions, and biogenesis.
Collapse
Affiliation(s)
- Ross F Waller
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic 3010, Australia
| | | |
Collapse
|
17
|
Alexander DL, Schwartz KJ, Balber AE, Bangs JD. Developmentally regulated trafficking of the lysosomal membrane protein p67 in Trypanosoma brucei. J Cell Sci 2002; 115:3253-63. [PMID: 12140257 DOI: 10.1242/jcs.115.16.3253] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p67 is a lysosomal type I membrane glycoprotein of Trypanosoma brucei. In procyclic stage cells p67 trafficks to the lysosome without modification, but in the bloodstream stage Golgi processing adds poly-N-acetyllactosamine to N-glycans. In both stages proteolytic fragmentation occurs in the lysosome, but turnover is approximately nine times faster in bloodstream cells. Trafficking of wildtype p67 and mutants missing the cytoplasmic (p67ΔCD) or cytoplasmic/transmembrane domains (p67ΔTM) was monitored by pulse-chase,surface biotinylation and immunofluorescence. Overexpressed wildtype p67 trafficks normally in procyclics, but some leaks to the cell surface suggesting that the targeting machinery is saturable. p67ΔCD and p67ΔTM are delivered to the cell surface and secreted, respectively. The membrane/cytoplasmic domains function correctly in procyclic cells when fused to GFP indicating that these domains are sufficient for stage-specific lysosomal targeting. In contrast, p67 wildtype and deletion reporters are overwhelmingly targeted to the lysosome and degraded in bloodstream cells. These findings suggest that either redundant developmentally regulated targeting signals/machinery are operative in this stage or that the increased endocytic activity of bloodstream cells prevents export of the deletion reporters.
Collapse
Affiliation(s)
- David L Alexander
- The Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Medical School, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
18
|
Roper JR, Guther MLS, Milne KG, Ferguson MAJ. Galactose metabolism is essential for the African sleeping sickness parasite Trypanosoma brucei. Proc Natl Acad Sci U S A 2002; 99:5884-9. [PMID: 11983889 PMCID: PMC122871 DOI: 10.1073/pnas.092669999] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2001] [Indexed: 11/18/2022] Open
Abstract
The tsetse fly-transmitted protozoan parasite Trypanosoma brucei is the causative agent of human African sleeping sickness and the cattle disease Nagana. The bloodstream form of the parasite uses a dense cell-surface coat of variant surface glycoprotein to escape the innate and adaptive immune responses of the mammalian host and a highly glycosylated transferrin receptor to take up host transferrin, an essential growth factor. These glycoproteins, as well as other flagellar pocket, endosomal, and lysosomal glycoproteins, are known to contain galactose. The parasite is unable to take up galactose, suggesting that it may depend on the action of UDP-glucose 4'-epimerase for the conversion of UDP-Glc to UDP-Gal and subsequent incorporation of galactose into glycoconjugates via UDP-Gal-dependent galactosyltransferases. In this paper, we describe the cloning of T. brucei galE, encoding T. brucei UDP-Glc-4'-epimerase, and functional characterization by complementation of a galE-deficient Escherichia coli mutant and enzymatic assay of recombinant protein. A tetracycline-inducible conditional galE null mutant of T. brucei was created using a transgenic parasite expressing the TETR tetracycline repressor protein gene. Withdrawal of tetracycline led to a cessation of cell division and substantial cell death, demonstrating that galactose metabolism in T. brucei proceeds via UDP-Glc-4'-epimerase and is essential for parasite growth. After several days without tetracycline, cultures spontaneously recovered. These cells were shown to have undergone a genetic rearrangement that deleted the TETR gene. The results show that enzymes and transporters involved in galactose metabolism may be considered as potential therapeutic targets against African trypanosomiasis.
Collapse
Affiliation(s)
- Janine R Roper
- Division of Biological Chemistry and Molecular Microbiology, The Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, DD1 5EH Dundee, Scotland, United Kingdom
| | | | | | | |
Collapse
|
19
|
McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD. Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 2002; 66:122-54; table of contents. [PMID: 11875130 PMCID: PMC120783 DOI: 10.1128/mmbr.66.1.122-154.2002] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Trypanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles in the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory transport and protein glycosylation that may be exploited in developing new antiparasite drugs.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
20
|
Dutoya S, Gibert S, Lemercier G, Santarelli X, Baltz D, Baltz T, Bakalara N. A novel C-terminal kinesin is essential for maintaining functional acidocalcisomes in Trypanosoma brucei. J Biol Chem 2001; 276:49117-24. [PMID: 11581257 DOI: 10.1074/jbc.m105962200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinesins are cytoskeletal motor proteins that play roles in a variety of fundamental cellular processes including cell division and the anterograde transport of vesicles and organelles. We purified, cloned, and functionally characterized in Trypanosoma brucei a new member of the C-terminal kinesin family, TbKIFC1. Kinetic constants of the recombinant motor domain of TbKIFC1 were estimated at 0.56 microm for the microtubule dissociation constant (K(d)) with a k(cat) of 0.2 s(-1). Immunolocalization analysis showed an association of TbKIFC1 with punctate structures. Because they were rapidly transported to the negative pole of the microtubule after NH(4)Cl treatment, these structures were considered to be associated with acidic vesicles. To determine the role of the kinesin in vivo, we produced an inducible kinesin-deficient strain by double-stranded RNA interference methodology. Mutant cells were loaded with the fluorescent reagent fura2/acetoxymethylester to measure intracellular free calcium ([Ca(2+)](i)). The resting [Ca(2+)](i) was unchanged in mutant cells; however, alkalinization of acidic vesicles induced by NH(4)Cl or nigericin was not followed by release of Ca(2+). These data and the relative importance of the ionomycin-releasable and the ionomycin-plus-NH(4)Cl-releasable Ca(2+) pools suggest a lower Ca(2+) content in acidocalcisomes and dysfunctional Ca(2+) release.
Collapse
Affiliation(s)
- S Dutoya
- Laboratoire de Parasitologie Moléculaire UMR CNRS 5016, Université Victor Segalen, Bordeaux II, 33076 France
| | | | | | | | | | | | | |
Collapse
|
21
|
Yang H, Russell DG, Zheng B, Eiki M, Lee MG. Sequence requirements for trafficking of the CRAM transmembrane protein to the flagellar pocket of African trypanosomes. Mol Cell Biol 2000; 20:5149-63. [PMID: 10866671 PMCID: PMC85964 DOI: 10.1128/mcb.20.14.5149-5163.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CRAM is a cysteine-rich acidic transmembrane protein, highly expressed in the procyclic form of Trypanosoma brucei. Cell surface expression of CRAM is restricted to the flagellar pocket of trypanosomes, the only place where receptor mediated endocytosis takes place in the parasite. CRAM can function as a receptor and was hypothesized to be a lipoprotein receptor of trypanosomes. We study mechanisms involved in the presentation and routing of CRAM to the flagellar pocket of insect- and bloodstream-form trypanosomes. By deletional mutagenesis, we found that deleting up to four amino acids from the C terminus of CRAM did not affect the localization of CRAM at the flagellar pocket. Shortening the CRAM protein by 8 and 19 amino acids from the C terminus resulted in the distribution of the CRAM protein in the endoplasmic reticulum (ER) (the CRAM protein is no longer uniquely sequestered at the flagellar pocket). This result indicates that the truncation of the CRAM C terminus affected the transport efficiency of CRAM from the ER to the flagellar pocket. However, when CRAM was truncated between 29 and 40 amino acids from the C terminus, CRAM was not only distributed in the ER but also located to the flagellar pocket and spread to the cell surface and the flagellum. Replacing the CRAM transmembrane domain with the invariant surface glycoprotein 65-derived transmembrane region did not affect the flagellar pocket location of CRAM. These results indicate that the CRAM cytoplasmic extension may exhibit two functional domains: one domain near the C terminus is important for efficient export of CRAM from the ER, while the second domain is of importance for confining CRAM to the flagellar pocket membrane.
Collapse
Affiliation(s)
- H Yang
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|