1
|
Kimmich MJ, Geary MA, Mi-Mi L, Votra SD, Pellenz CD, Sundaramurthy S, Pruyne D. The Sole Essential Low Molecular Weight Tropomyosin Isoform of Caenorhabditis elegans Is Essential for Pharyngeal Muscle Function. Cytoskeleton (Hoboken) 2025. [PMID: 40078096 DOI: 10.1002/cm.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode Caenorhabditis elegans provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy and a single tropomyosin gene, lev-11, that produces seven isoforms. Three higher molecular weight isoforms regulate the contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U). We demonstrate here that C. elegans can survive with a single low molecular weight isoform, LEV-11E. Mutants disrupted for LEV-11E die as young larvae, whereas mutants lacking all other short isoforms are viable, with no overt phenotype. Vertebrate low molecular weight tropomyosins are often considered "nonmuscle" isoforms, but we find LEV-11E localizes to sarcomeric thin filaments in pharyngeal muscle and co-precipitates from worm extracts with the formin FHOD-1, which is also associated with thin filaments in pharyngeal muscle. Pharyngeal sarcomere organization is grossly normal in larvae lacking LEV-11E, indicating that the tropomyosin is not required to stabilize thin filaments, but pharyngeal pumping is absent, suggesting LEV-11E regulates actomyosin activity similar to higher molecular weight sarcomeric tropomyosin isoforms.
Collapse
Affiliation(s)
- Michael J Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Meaghan A Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Lei Mi-Mi
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - SarahBeth D Votra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Dube DK, Dube S, Shi H, Benz P, Randhawa S, Fan Y, Wang J, Ma Z, Sanger JW, Sanger JM, Poiesz BJ. Sarcomeric tropomyosin expression during human iPSC differentiation into cardiomyocytes. Cytoskeleton (Hoboken) 2024; 81:448-472. [PMID: 38470291 PMCID: PMC11566289 DOI: 10.1002/cm.21850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
Tropomyosin (TPM) is an essential sarcomeric component, stabilizing the thin filament and facilitating actin's interaction with myosin. In mammals, including humans, there are four TPM genes (TPM1, TPM2, TPM3, and TPM4) each of which generates a multitude of TPM isoforms via alternative splicing and using different promoters. In this study, we have examined the expression of transcripts as well as proteins of various sarcomeric TPM isoforms during human inducible pluripotent stem cell differentiation into cardiomyocytes. During the differentiation time course, we harvested cells on Days 0, 5, 10, 15, and 20 to analyze for various sarcomeric TPM transcripts by qRT-PCR and for sarcomeric TPM proteins using two-dimensional Western blot with sarcomeric TPM-specific CH1 monoclonal antibody followed by mass spectra analyses. Our results show increasing levels of total TPM transcripts and proteins during the period of differentiation, but varying levels of specific TPM isoforms during the same period. By Day 20, the rank order of TPM transcripts was TPM1α > TPM1κ > TPM2α > TPM1μ > TPM3α > TPM4α. TPM1α was the dominant protein produced with some TPM2 and much less TPM1κ and μ. Interestingly, small amounts of two lower molecular weight TPM3 isoforms were detected on Day 15. To the best of our knowledge this is the first demonstration of TPM1μ non-muscle isoform protein expression before and during cardiac differentiation.
Collapse
Affiliation(s)
- Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Huaiyu Shi
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13210, USA
| | - Patricia Benz
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Samender Randhawa
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Jusuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13210, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Jean M. Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Bernard J. Poiesz
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
3
|
Babaeenezhad E, Abdolvahabi Z, Asgharzadeh S, Abdollahi M, Shakeri S, Moradi Sarabi M, Yarahmadi S. Potential function of microRNA miRNA-206 in breast cancer pathogenesis: Mechanistic aspects and clinical implications. Pathol Res Pract 2024; 260:155454. [PMID: 39002434 DOI: 10.1016/j.prp.2024.155454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Breast cancer (BC) is a major public health problem that affects women worldwide. Growing evidence has highlighted the role of miRNA-206 in BC pathogenesis. Changes in its expression have diagnostic and prognostic potential as they are associated with clinicopathological parameters, including lymph node metastasis, overall survival, tumor size, metastatic stage, resistance to chemotherapy, and recurrence. In the present study, we summarized, assessed, and discussed the most recent understanding of the functions of miRNA-206 in BC. Unexpectedly, miRNA-206 was found to control both oncogenic and tumor-suppressive pathways. We also considered corresponding downstream effects and upstream regulators. Finally, we addressed the diagnostic and prognostic value of miRNA-206 and its potential for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zohreh Abdolvahabi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sahar Asgharzadeh
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masume Abdollahi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Shakeri
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mostafa Moradi Sarabi
- Hepatities Research Center, Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sahar Yarahmadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
4
|
Ly T, Pappas CT, Johnson D, Schlecht W, Colpan M, Galkin VE, Gregorio CC, Dong WJ, Kostyukova AS. Effects of cardiomyopathy-linked mutations K15N and R21H in tropomyosin on thin-filament regulation and pointed-end dynamics. Mol Biol Cell 2018; 30:268-281. [PMID: 30462572 PMCID: PMC6589558 DOI: 10.1091/mbc.e18-06-0406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Missense mutations K15N and R21H in striated muscle tropomyosin are linked to dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Tropomyosin, together with the troponin complex, regulates muscle contraction and, along with tropomodulin and leiomodin, controls the uniform thin-filament lengths crucial for normal sarcomere structure and function. We used Förster resonance energy transfer to study effects of the tropomyosin mutations on the structure and kinetics of the cardiac troponin core domain associated with the Ca2+-dependent regulation of cardiac thin filaments. We found that the K15N mutation desensitizes thin filaments to Ca2+ and slows the kinetics of structural changes in troponin induced by Ca2+ dissociation from troponin, while the R21H mutation has almost no effect on these parameters. Expression of the K15N mutant in cardiomyocytes decreases leiomodin’s thin-filament pointed-end assembly but does not affect tropomodulin’s assembly at the pointed end. Our in vitro assays show that the R21H mutation causes a twofold decrease in tropomyosin’s affinity for F-actin and affects leiomodin’s function. We suggest that the K15N mutation causes DCM by altering Ca2+-dependent thin-filament regulation and that one of the possible HCM-causing mechanisms by the R21H mutation is through alteration of leiomodin’s function.
Collapse
Affiliation(s)
- Thu Ly
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Dylan Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834
| | - William Schlecht
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Wen-Ji Dong
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| |
Collapse
|
5
|
Comprehensive maternal serum proteomics identifies the cytoskeletal proteins as non-invasive biomarkers in prenatal diagnosis of congenital heart defects. Sci Rep 2016; 6:19248. [PMID: 26750556 PMCID: PMC4707500 DOI: 10.1038/srep19248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022] Open
Abstract
Congenital heart defects (CHDs) are the most common group of major birth defects. Presently there are no clinically used biomarkers for prenatally detecting CHDs. Here, we performed a comprehensive maternal serum proteomics assessment, combined with immunoassays, for the discovery of non-invasive biomarkers for prenatal diagnosis of CHDs. A total of 370 women were included in this study. An isobaric tagging for relative and absolute quantification (iTRAQ) proteomic approach was used first to compare protein profiles in pooled serum collected from women who had CHD-possessing or normal fetuses, and 47 proteins displayed significant differential expressions. Targeted verifications were performed on 11 proteins using multiple reaction monitoring mass spectrometry (MRM-MS), and the resultant candidate biomarkers were then further validated using ELISA analysis. Finally, we identified a biomarker panel composed of 4 cytoskeletal proteins capable of differentiating CHD-pregnancies from normal ones [with an area under the receiver operating characteristic curve (AUC) of 0.938, P < 0.0001]. The discovery of cytoskeletal protein changes in maternal serum not only could help us in prenatal diagnosis of CHDs, but also may shed new light on CHD embryogenesis studies.
Collapse
|
6
|
miR-206 inhibits cell migration through direct targeting of the actin-binding protein coronin 1C in triple-negative breast cancer. Mol Oncol 2014; 8:1690-702. [PMID: 25074552 DOI: 10.1016/j.molonc.2014.07.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 12/31/2022] Open
Abstract
Patients with triple-negative breast cancer (TNBC) have an overall poor prognosis, which is primarily due to a high metastatic capacity of these tumors. Novel therapeutic approaches to target the signaling pathways that promote metastasis are desirable, in order to improve the outcome for these patients. A loss of function of a microRNA, miR-206, is related to increased metastasis potential in breast cancers but the mechanism is not known. In this study, we show that miR-206 was decreased in TNBC clinical tumor samples and cell lines whereas one of its predicted targets, actin-binding protein CORO1C, was increased. Expression of miR-206 significantly reduced proliferation and migration while repressing CORO1C mRNA and protein levels. We demonstrate that miR-206 interacts with the 3'-untranslated region (3'-UTR) of CORO1C and regulates this gene post-transcriptionally. This post-transcriptional regulation was dependent on two miR-206-binding sites within the 3'-UTR of CORO1C and was relieved by mutations of corresponding sites. Further, silencing of CORO1C reduced tumor cell migration and affected the actin skeleton and cell morphology, similar to miR-206 expression, but did not reduce proliferation. In accordance with this, overexpression of CORO1C rescued the inhibitory effect of miR-206 on cell migration. Our findings suggest that miR-206 represses tumor cell migration through direct targeting of CORO1C in TNBC cells which modulates the actin filaments. This pathway is a novel mechanism that offers a mechanistic basis through which the metastatic potential of TNBC tumors could be targeted.
Collapse
|
7
|
Schevzov G, Whittaker SP, Fath T, Lin JJ, Gunning PW. Tropomyosin isoforms and reagents. BIOARCHITECTURE 2011; 1:135-164. [PMID: 22069507 DOI: 10.4161/bioa.1.4.17897] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/18/2011] [Accepted: 08/26/2011] [Indexed: 12/29/2022]
Abstract
Tropomyosins are rod-like dimers which form head-to-tail polymers along the length of actin filaments and regulate the access of actin binding proteins to the filaments.1 The diversity of tropomyosin isoforms, over 40 in mammals, and their role in an increasing number of biological processes presents a challenge both to experienced researchers and those new to this field. The increased appreciation that the role of these isoforms expands beyond that of simply stabilizing actin filaments has lead to a surge of reagents and techniques to study their function and mechanisms of action. This report is designed to provide a basic guide to the genes and proteins and the availability of reagents which allow effective study of this family of proteins. We highlight the value of combining multiple techniques to better evaluate the function of different tm isoforms and discuss the limitations of selected reagents. Brief background material is included to demystify some of the unfortunate complexity regarding this multi-gene family of proteins including the unconventional nomenclature of the isoforms and the evolutionary relationships of isoforms between species. Additionally, we present step-by-step detailed experimental protocols used in our laboratory to assist new comers to the field and experts alike.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Sydney, NSW Australia
| | | | | | | | | |
Collapse
|
8
|
Beamish JA, He P, Kottke-Marchant K, Marchant RE. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:467-91. [PMID: 20334504 DOI: 10.1089/ten.teb.2009.0630] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular regulation of smooth muscle cell (SMC) behavior is reviewed, with particular emphasis on stimuli that promote the contractile phenotype. SMCs can shift reversibly along a continuum from a quiescent, contractile phenotype to a synthetic phenotype, which is characterized by proliferation and extracellular matrix (ECM) synthesis. This phenotypic plasticity can be harnessed for tissue engineering. Cultured synthetic SMCs have been used to engineer smooth muscle tissues with organized ECM and cell populations. However, returning SMCs to a contractile phenotype remains a key challenge. This review will integrate recent work on how soluble signaling factors, ECM, mechanical stimulation, and other cells contribute to the regulation of contractile SMC phenotype. The signal transduction pathways and mechanisms of gene expression induced by these stimuli are beginning to be elucidated and provide useful information for the quantitative analysis of SMC phenotype in engineered tissues. Progress in the development of tissue-engineered scaffold systems that implement biochemical, mechanical, or novel polymer fabrication approaches to promote contractile phenotype will also be reviewed. The application of an improved molecular understanding of SMC biology will facilitate the design of more potent cell-instructive scaffold systems to regulate SMC behavior.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA
| | | | | | | |
Collapse
|
9
|
Tsukada T, Pappas CT, Moroz N, Antin PB, Kostyukova AS, Gregorio CC. Leiomodin-2 is an antagonist of tropomodulin-1 at the pointed end of the thin filaments in cardiac muscle. J Cell Sci 2010; 123:3136-45. [PMID: 20736303 DOI: 10.1242/jcs.071837] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of actin filament assembly is essential for efficient contractile activity in striated muscle. Leiomodin is an actin-binding protein and homolog of the pointed-end capping protein, tropomodulin. These proteins are structurally similar, sharing a common domain organization that includes two actin-binding sites. Leiomodin also contains a unique C-terminal extension that has a third actin-binding WH2 domain. Recently, the striated-muscle-specific isoform of leiomodin (Lmod2) was reported to be an actin nucleator in cardiomyocytes. Here, we have identified a function of Lmod2 in the regulation of thin filament lengths. We show that Lmod2 localizes to the pointed ends of thin filaments, where it competes for binding with tropomodulin-1 (Tmod1). Overexpression of Lmod2 results in loss of Tmod1 assembly and elongation of the thin filaments from their pointed ends. The Lmod2 WH2 domain is required for lengthening because its removal results in a molecule that caps the pointed ends similarly to Tmod1. Furthermore, Lmod2 transcripts are first detected in the heart after it has begun to beat, suggesting that the primary function of Lmod2 is to maintain thin filament lengths in the mature heart. Thus, Lmod2 antagonizes the function of Tmod1, and together, these molecules might fine-tune thin filament lengths.
Collapse
Affiliation(s)
- Takehiro Tsukada
- Department of Cell Biology and Anatomy, and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
10
|
Pappas CT, Krieg PA, Gregorio CC. Nebulin regulates actin filament lengths by a stabilization mechanism. ACTA ACUST UNITED AC 2010; 189:859-70. [PMID: 20498015 PMCID: PMC2878950 DOI: 10.1083/jcb.201001043] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The nebulin molecular ruler hypothesis is challenged as a truncated form of nebulin can stabilize actin filaments that are longer than the mini-nebulin itself. Efficient muscle contraction requires regulation of actin filament lengths. In one highly cited model, the giant protein nebulin has been proposed to function as a molecular ruler specifying filament lengths. We directly challenged this hypothesis by constructing a unique, small version of nebulin (mini-nebulin). When endogenous nebulin was replaced with mini-nebulin in skeletal myocytes, thin filaments extended beyond the end of mini-nebulin, an observation which is inconsistent with a strict ruler function. However, under conditions that promote actin filament depolymerization, filaments associated with mini-nebulin were remarkably maintained at lengths either matching or longer than mini-nebulin. This indicates that mini-nebulin is able to stabilize portions of the filament it has no contact with. Knockdown of nebulin also resulted in more dynamic populations of thin filament components, whereas expression of mini-nebulin decreased the dynamics at both filament ends (i.e., recovered loss of endogenous nebulin). Thus, nebulin regulates thin filament architecture by a mechanism that includes stabilizing the filaments and preventing actin depolymerization.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cell Biology and Anatomy and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
11
|
Kuystermans D, Dunn MJ, Al-Rubeai M. A proteomic study of cMyc improvement of CHO culture. BMC Biotechnol 2010; 10:25. [PMID: 20307306 PMCID: PMC2859402 DOI: 10.1186/1472-6750-10-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 03/22/2010] [Indexed: 02/07/2023] Open
Abstract
Background The biopharmaceutical industry requires cell lines to have an optimal proliferation rate and a high integral viable cell number resulting in a maximum volumetric recombinant protein product titre. Nutrient feeding has been shown to boost cell number and productivity in fed-batch culture, but cell line engineering is another route one may take to increase these parameters in the bioreactor. The use of CHO-K1 cells with a c-myc plasmid allowing for over-expressing c-Myc (designated cMycCHO) gives a higher integral viable cell number. In this study the differential protein expression in cMycCHO is investigated using two-dimensional gel electrophoresis (2-DE) followed by image analysis to determine the extent of the effect c-Myc has on the cell and the proteins involved to give the new phenotype. Results Over 100 proteins that were differentially expressed in cMycCHO cells were detected with high statistical confidence, of which 41 were subsequently identified by tandem mass spectrometry (LC-MS/MS). Further analysis revealed proteins involved in a variety of pathways. Some examples of changes in protein expression include: an increase in nucleolin, involved in proliferation and known to aid in stabilising anti-apoptotic protein mRNA levels, the cytoskeleton and mitochondrial morphology (vimentin), protein biosysnthesis (eIF6) and energy metabolism (ATP synthetase), and a decreased regulation of all proteins, indentified, involved in matrix and cell to cell adhesion. Conclusion These results indicate several proteins involved in proliferation and adhesion that could be useful for future approaches to improve proliferation and decrease adhesion of CHO cell lines which are difficult to adapt to suspension culture.
Collapse
Affiliation(s)
- Darrin Kuystermans
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
12
|
Alternatively spliced N-terminal exons in tropomyosin isoforms do not act as autonomous targeting signals. J Struct Biol 2009; 170:286-93. [PMID: 20026406 DOI: 10.1016/j.jsb.2009.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/16/2009] [Accepted: 12/16/2009] [Indexed: 01/14/2023]
Abstract
Tropomyosin (Tm) polymerises head-to-tail to form a continuous polymer located in the major groove of the actin filament. Multiple Tm isoforms are generated by alternative splicing of four genes, and individual isoforms show specific localisation patterns in many cell types, and can have differing effects on the actin cytoskeleton. Fluorescently-tagged Tm isoforms and mutants were expressed in C2C12 cells to investigate the mechanisms of alternative localisation of high molecular weight (HMW) and low molecular weight (LMW) Tms. Fluorescently-tagged Tm constructs show similar localisation to endogenous Tms as observed by antibodies, with the HMW Tm3 relatively diminished at the periphery of cells compared to LMW isoforms Tm5b or Tm5NM1. Tm3 and Tm5b only differ in their N-terminal exons, but these N-terminal exons do not independently direct localisation within the cell, as chimeric mutants Tm3-Tm5NM1 and Tm5b-Tm5NM1 show an increased peripheral localisation similar to Tm5NM1. The lower abundance of Tm3 at the periphery of the cell is not a result of different protein dynamics, as Tm3 and Tm5b show similar recovery after photobleaching. The relative exclusion of Tm3 from the periphery of cells does, however, require interaction with the actin filament, as mutants with truncations at either the N-terminus or the C-terminus are unable to localise to actin stress fibres, and are present in the most peripheral regions of the cell. We conclude that it is the entire Tm molecule which is the unit of sorting, and that the alternatively spliced N-terminal exons do not act as autonomous targeting signals.
Collapse
|
13
|
Zhang C, Jia P, Huang X, Sferrazza GF, Athauda G, Achary MP, Wang J, Lemanski SL, Dube DK, Lemanski LF. Myofibril-inducing RNA (MIR) is essential for tropomyosin expression and myofibrillogenesis in axolotl hearts. J Biomed Sci 2009; 16:81. [PMID: 19728883 PMCID: PMC2752452 DOI: 10.1186/1423-0127-16-81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 09/03/2009] [Indexed: 11/23/2022] Open
Abstract
The Mexican axolotl, Ambystoma mexicanum, carries the naturally-occurring recessive mutant gene 'c' that results in a failure of homozygous (c/c) embryos to form hearts that beat because of an absence of organized myofibrils. Our previous studies have shown that a noncoding RNA, Myofibril-Inducing RNA (MIR), is capable of promoting myofibrillogenesis and heart beating in the mutant (c/c) axolotls. The present study demonstrates that the MIR gene is essential for tropomyosin (TM) expression in axolotl hearts during development. Gene expression studies show that mRNA expression of various tropomyosin isoforms in untreated mutant hearts and in normal hearts knocked down with double-stranded MIR (dsMIR) are similar to untreated normal. However, at the protein level, selected tropomyosin isoforms are significantly reduced in mutant and dsMIR treated normal hearts. These results suggest that MIR is involved in controlling the translation or post-translation of various TM isoforms and subsequently of regulating cardiac contractility.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gage MC, Keen JN, Buxton AT, Bedi MK, Findlay JBC. Proteomic Analysis of IgE-Mediated Secretion by LAD2 Mast Cells. J Proteome Res 2009; 8:4116-25. [DOI: 10.1021/pr900108w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Matthew C. Gage
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom, and Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jeffrey N. Keen
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom, and Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Anthony T. Buxton
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom, and Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Maninder K. Bedi
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom, and Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John B. C. Findlay
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom, and Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
15
|
Abstract
In order to observe the effects of nicotine on protein expression in rat vascular smooth muscle cells (SMCs), nicotine treated SMCs were studied by proteomic technologies combining two-dimensional electrophoresis (2-DE) and peptide mass fingerprinting (PMF). Real-time RT-PCR was used to validate the differentially expressed proteins. We found that 11 protein spots were significantly up-regulated and one down-regulated by nicotine treatment. The results of PMF showed that these up- and down-regulated proteins could be divided into three groups according to their functions: cytoskeleton proteins, regulatory proteins and enzymes. Simultaneously, we also verified their consistent alteration at the transcriptional level through real-time RT-PCR. The affected proteins turned out to be mainly associated with cell migration, proliferation and energy metabolism, and are responsible for nicotine-related cardiovascular damage.
Collapse
|
16
|
Iwasa JH, Mullins RD. Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr Biol 2007; 17:395-406. [PMID: 17331727 PMCID: PMC3077992 DOI: 10.1016/j.cub.2007.02.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 02/05/2007] [Accepted: 02/06/2007] [Indexed: 01/15/2023]
Abstract
BACKGROUND The leading actin network in motile cells is composed of two compartments, the lamellipod and the lamellum. Construction of the lamellipod requires a set of conserved proteins that form a biochemical cycle. The timing of this cycle and the roles of its components in determining actin network architecture in vivo, however, are not well understood. RESULTS We performed fluorescent speckle microscopy on spreading Drosophila S2 cells by using labeled derivatives of actin, the Arp2/3 complex, capping protein, and tropomyosin. We find that capping protein and the Arp2/3 complex both incorporate at the cell edge but that capping protein dissociates after covering less than half the width of the lamellipod, whereas the Arp2/3 complex dissociates after crossing two thirds of the lamellipod. The lamellipodial actin network itself persists long after the loss of the Arp2/3 complex. Depletion of capping protein by RNAi results in the displacement of the Arp2/3 complex and disappearance of the lamellipod. In contrast, depletion of cofilin, slingshot, twinfilin, and tropomyosin, all factors that control the stability of actin filaments, dramatically expanded the lamellipod at the expense of the lamellum. CONCLUSIONS The Arp2/3 complex is incorporated into the lamellipodial network at the cell edge but debranches well before the lamellipodial network itself is disassembled. Capping protein is required for the formation of a lamellipodial network but dissociates from the network precisely when filament disassembly is first detected. Cofilin, twinfilin, and tropomyosin appear to play no role in lamellipodial network assembly but function to limit its size.
Collapse
Affiliation(s)
- Janet H. Iwasa
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, School of Medicine, 600 16 Street San Francisco, California 94143
| | - R. Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, School of Medicine, 600 16 Street San Francisco, California 94143
| |
Collapse
|
17
|
Pulford K, Morris SW, Turturro F. Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol 2004; 199:330-58. [PMID: 15095281 DOI: 10.1002/jcp.10472] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The normal functions of full-length anaplastic lymphoma kinase (ALK) remain to be completely elucidated. Although considered to be important in neural development, recent studies in Drosophila also highlight a role for ALK in gut muscle differentiation. Indeed, the Drosophila model offers a future arena for the study of ALK, its ligands and signalling cascades. The discovery of activated fusion forms of the ALK tyrosine kinase in anaplastic large cell lymphoma (ALCL) has dramatically improved our understanding of the pathogenesis of these lymphomas and enhanced the pathological diagnosis of this subtype of non-Hodgkin's lymphoma (NHL). Likewise, the realisation that a high percentage of inflammatory myofibroblastic tumours express activated-ALK fusion proteins has clarified the causation of these mesenchymal neoplasms and provided for their easier discrimination from other mesenchymal-derived inflammatory myofibroblastic tumour (IMT) mimics. Recent reports of ALK expression in a range of carcinoma-derived cell lines together with its apparent role as a receptor for PTN and MK, both of which have been implicated in tumourigenesis, raise the possibility that ALK-mediated signalling could play a role in the development and/or progression of a number of common solid tumours. The therapeutic targeting of ALK may prove to have efficacy in the treatment of many of these neoplasms.
Collapse
Affiliation(s)
- K Pulford
- Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | |
Collapse
|
18
|
Mudry RE, Perry CN, Richards M, Fowler VM, Gregorio CC. The interaction of tropomodulin with tropomyosin stabilizes thin filaments in cardiac myocytes. J Cell Biol 2003; 162:1057-68. [PMID: 12975349 PMCID: PMC2172850 DOI: 10.1083/jcb.200305031] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 07/29/2003] [Indexed: 12/30/2022] Open
Abstract
Actin (thin) filament length regulation and stability are essential for striated muscle function. To determine the role of the actin filament pointed end capping protein, tropomodulin1 (Tmod1), with tropomyosin, we generated monoclonal antibodies (mAb17 and mAb8) against Tmod1 that specifically disrupted its interaction with tropomyosin in vitro. Microinjection of mAb17 or mAb8 into chick cardiac myocytes caused a dramatic loss of the thin filaments, as revealed by immunofluorescence deconvolution microscopy. Real-time imaging of live myocytes expressing green fluorescent protein-alpha-tropomyosin and microinjected with mAb17 revealed that the thin filaments depolymerized from their pointed ends. In a thin filament reconstitution assay, stabilization of the filaments before the addition of mAb17 prevented the loss of thin filaments. These studies indicate that the interaction of Tmod1 with tropomyosin is critical for thin filament stability. These data, together with previous studies, indicate that Tmod1 is a multifunctional protein: its actin filament capping activity prevents thin filament elongation, whereas its interaction with tropomyosin prevents thin filament depolymerization.
Collapse
Affiliation(s)
- Ryan E Mudry
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
19
|
Braun A, Bordoy R, Stanchi F, Moser M, Kostka G G, Ehler E, Brandau O, Fässler R. PINCH2 is a new five LIM domain protein, homologous to PINCHand localized to focal adhesions. Exp Cell Res 2003; 284:239-50. [PMID: 12651156 DOI: 10.1016/s0014-4827(02)00039-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PINCH is a five LIM domain protein involved in the regulation of integrin-mediated cell adhesion. It has been shown that PINCH interacts with integrin-linked kinase and Nck2. Here we describe a new isoform of PINCH, which we call PINCH2. Therefore, we rename PINCH to PINCH1. PINCH2 has an overall similarity of 92% to PINCH1 and contains five LIM domains like PINCH1. While protein and gene structure of the PINCH homologues are very similar and well conserved during evolution, we observed differential expression pattern of the mRNAs. Based on northern hybridization of mouse embryo RNA, PINCH1 is already detectable at E8.5. It is highly expressed during later stages of development and in all adult mouse tissues analyzed, with the highest levels in heart, lung, bladder, skin, and uterus. In contrast, significant PINCH2 expression starts at E14.5. In adult mice it is widely expressed, similar to PINCH1, but absent from spleen and thymus. In situ hybridization confirmed the Northern data and showed differential expression of PINCH1 and PINCH2 in embryonic intestine. Finally, we demonstrate that PINCH2 localizes to focal adhesions in NIH 3T3 cells and to Z-disks in primary rat cardiomyocytes.
Collapse
MESH Headings
- 3T3 Cells
- Adaptor Proteins, Signal Transducing
- Animals
- Carrier Proteins/metabolism
- Cell Membrane/metabolism
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Eukaryotic Cells/metabolism
- Eukaryotic Cells/ultrastructure
- Extracellular Matrix/metabolism
- Extracellular Matrix/ultrastructure
- Fetus
- Fibroblasts/metabolism
- Focal Adhesions/metabolism
- Focal Adhesions/ultrastructure
- LIM Domain Proteins
- Membrane Proteins
- Mice
- Molecular Sequence Data
- Myocytes, Cardiac/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/isolation & purification
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Viscera/embryology
- Viscera/metabolism
Collapse
Affiliation(s)
- Attila Braun
- Max Planck Institute for Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Grieshaber NA, Ko C, Grieshaber SS, Ji I, Ji TH. Follicle-stimulating hormone-responsive cytoskeletal genes in rat granulosa cells: class I beta-tubulin, tropomyosin-4, and kinesin heavy chain. Endocrinology 2003; 144:29-39. [PMID: 12488327 DOI: 10.1210/en.2002-220477] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FSH regulates gene expression for granulosa cell differentiation and follicular development. Therefore, FSH-responsive genes are crucial, but only a few genes have been identified for the early stage of follicular development. In particular, little is known about cytoskeletal genes, which likely play essential roles in the morphological changes such as the antrum formation, a major landmark. FSH is also known to induce the differentiation of an immature, undifferentiated rat ovary granulosa (ROG) cell line. Our data show that FSH induced massive yet distinct reorganization of microtubules and the actin cytoskeletons as well as morphological changes. To identify those genes responding to FSH during the differentiation, differential display was performed on ROG cells. Of the 80 FSH-responsive genes identified, there were three cytoskeleton-related genes (class I beta-tubulin, tropomyosin 4, and kinesin heavy chain), which are crucial for intracellular morphogenesis, transport, and differentiation. Northern blots show that the level of these gene transcripts reached a peak at 6 h after FSH treatment and subsided at 24 h. FSH induced the similar temporal expression not only in granulosa cells isolated from immature rats, but also in vivo. For instance, in situ hybridization showed that beta-tubulin mRNA was transiently expressed in the granulosa cells of large preantral and early antral follicles. Despite the same temporal expression, the regulatory mechanisms of the three genes were strikingly different. As an example, cycloheximide blocked the beta-tubulin mRNA expression, whereas it increased tropomyosin-4 (TM4) mRNA. Yet, it did not impact kinesin heavy chain (Khc) mRNA. In conclusion, FSH induces the massive reorganization of the cytoskeletons and morphological changes by the selective regulation of the gene expression, protein synthesis, and rearrangement of the cytoskeletal proteins in the ROG cells and probably, specific follicles and granulosa cells.
Collapse
Affiliation(s)
- Nicole A Grieshaber
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | | | | | | |
Collapse
|
21
|
Donner K, Ollikainen M, Ridanpää M, Christen HJ, Goebel HH, de Visser M, Pelin K, Wallgren-Pettersson C. Mutations in the beta-tropomyosin (TPM2) gene--a rare cause of nemaline myopathy. Neuromuscul Disord 2002; 12:151-8. [PMID: 11738357 DOI: 10.1016/s0960-8966(01)00252-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nemaline myopathy is a clinically and genetically heterogeneous muscle disorder. In the nebulin gene we have detected a number of autosomal recessive mutations. Both autosomal dominant and recessive mutations have been detected in the genes for alpha-actin and alpha-tropomyosin 3. A recessive mutation causing nemaline myopathy among the Old Order Amish has recently been identified in the gene for slow skeletal muscle troponin T. As linkage studies had shown that at least one further gene exists for nemaline myopathy, we investigated another tropomyosin gene expressed in skeletal muscle, the beta-tropomyosin 2 gene. Screening 66 unrelated patients, using single strand conformation polymorphism analysis and sequencing, we found four polymorphisms and two heterozygous missense mutations. Both mutations affect conserved amino acids, and in both cases, the mutant allele is expressed. We speculate that the observed mutations affect the formation of the tropomyosin dimer and its actin-binding properties.
Collapse
Affiliation(s)
- Kati Donner
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pellieux C, Foletti A, Peduto G, Aubert JF, Nussberger J, Beermann F, Brunner HR, Pedrazzini T. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J Clin Invest 2001; 108:1843-51. [PMID: 11748268 PMCID: PMC209469 DOI: 10.1172/jci13627] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
FGF-2 has been implicated in the cardiac response to hypertrophic stimuli. Angiotensin II (Ang II) contributes to maintain elevated blood pressure in hypertensive individuals and exerts direct trophic effects on cardiac cells. However, the role of FGF-2 in Ang II-induced cardiac hypertrophy has not been established. Therefore, mice deficient in FGF-2 expression were studied using a model of Ang II-dependent hypertension and cardiac hypertrophy. Echocardiographic measurements show the presence of dilated cardiomyopathy in normotensive mice lacking FGF-2. Moreover, hypertensive mice without FGF-2 developed no compensatory cardiac hypertrophy. In wild-type mice, hypertrophy was associated with a stimulation of the c-Jun N-terminal kinase, the extracellular signal regulated kinase, and the p38 kinase pathways. In contrast, mitogen-activated protein kinase (MAPK) activation was markedly attenuated in FGF-2-deficient mice. In vitro, FGF-2 of fibroblast origin was demonstrated to be essential in the paracrine stimulation of MAPK activation in cardiomyocytes. Indeed, fibroblasts lacking FGF-2 expression have a defective capacity for releasing growth factors to induce hypertrophic responses in cardiomyocytes. Therefore, these results identify the cardiac fibroblast population as a primary integrator of hypertrophic stimuli in the heart, and suggest that FGF-2 is a crucial mediator of cardiac hypertrophy via autocrine/paracrine actions on cardiac cells.
Collapse
Affiliation(s)
- C Pellieux
- Division of Hypertension, University of Lausanne Medical School, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Agarkova I, Auerbach D, Ehler E, Perriard JC. A novel marker for vertebrate embryonic heart, the EH-myomesin isoform. J Biol Chem 2000; 275:10256-64. [PMID: 10744711 DOI: 10.1074/jbc.275.14.10256] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myomesin is a structural component of the M-band that is expressed in all types of striated muscle. Its primary function may be the maintenance of the thick filament lattice and its anchoring to the elastic filament system composed of titin. Different myomesin isoforms have been described in chicken and mice, but no particular function has been assigned to them. Here we investigate the spatio-temporal expression pattern of myomesin isoforms by means of reverse transcriptase-polymerase chain reaction and isoform-specific antibodies. We find that two alternative splicing events give rise to four myomesin isoforms in chicken contrary to only one splicing event with two possible isoforms in mice. A splicing event at the C terminus results in two splice variants termed H-myomesin and S-myomesin, which represent the major myomesin species in heart and skeletal muscle of avian species, respectively. In contrast, in mammalian heart and skeletal muscle only S-myomesin is expressed. In embryonic heart of birds and mammals, alternative splicing in the central part of the molecule gives rise to the isoform that we termed EH-myomesin. It represents the major myomesin isoform at early embryonic stages of heart but is rapidly down-regulated around birth. Thus, the strict developmental regulation of the EH-myomesin makes it an ideally suited marker for embryonic heart.
Collapse
Affiliation(s)
- I Agarkova
- Institute of Cell Biology, ETH-Zürich Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
24
|
Zuppinger C, Schaub MC, Eppenberger HM. Dynamics of early contact formation in cultured adult rat cardiomyocytes studied by N-cadherin fused to green fluorescent protein. J Mol Cell Cardiol 2000; 32:539-55. [PMID: 10756112 DOI: 10.1006/jmcc.1999.1086] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated dynamic events during the formation of intercalated disc-like structures of adult rat cardiomyocytes (ARC) in long-term culture. Given the complexity of ARC cytoIarchitecture after de- and re-differentiation, and the non-uniform morphological development of individual cells, green fluorescent protein (GFP) technology was used to track N-cadherin in living cells. Sorting and functionality of the GFP fusion protein was tested in ARC. Isolated ARC were micro-injected with the expression construct at the onset of spreading in culture, and the fluorescence signals were tracked during contact formation and in fully redifferentiated living cells. The first contact sites were found to be established by cellular protrusions, which were marked by an ultrastructure similar to microspikes and probably have a role as exploratory units in the spreading phase. Subsequently, initial contact sites served as anchorage for the most prominent stress fibre-like structures. The fusion protein appeared before connexin-43 at newly established cell-cell contacts. Membrane invaginations at the sarcolemma facing the substratum of cultured ARC may be responsible for the appearance of a striped pattern of N-cadherin and other adherens junction proteins away from intercalated disc-like structures. The stripes were immobile in redifferentiated cells, while the distinct small fluorescent particles in the cell body were found to move directionally at speeds around 10 micro m/min. These results contribute to the understanding of the mechanisms of cell-cell contact formation of adult cardiomyocytes, which is a prerequisite for any future implantation technology.
Collapse
Affiliation(s)
- C Zuppinger
- Institute of Cell Biology, Federal Institute of Technology (ETH), Zurich, CH-8093, Switzerland
| | | | | |
Collapse
|
25
|
Michele DE, Albayya FP, Metzger JM. Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance. J Cell Biol 1999; 145:1483-95. [PMID: 10385527 PMCID: PMC2133172 DOI: 10.1083/jcb.145.7.1483] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1999] [Revised: 05/18/1999] [Indexed: 11/22/2022] Open
Abstract
Sarcomere maintenance, the continual process of replacement of contractile proteins of the myofilament lattice with newly synthesized proteins, in fully differentiated contractile cells is not well understood. Adenoviral-mediated gene transfer of epitope-tagged tropomyosin (Tm) and troponin I (TnI) into adult cardiac myocytes in vitro along with confocal microscopy was used to examine the incorporation of these newly synthesized proteins into myofilaments of a fully differentiated contractile cell. The expression of epitope-tagged TnI resulted in greater replacement of the endogenous TnI than the replacement of the endogenous Tm with the expressed epitope-tagged Tm suggesting that the rates of myofilament replacement are limited by the turnover of the myofilament bound protein. Interestingly, while TnI was first detected in cardiac sarcomeres along the entire length of the thin filament, the epitope-tagged Tm preferentially replaced Tm at the pointed end of the thin filament. These results support a model for sarcomeric maintenance in fully differentiated cardiac myocytes where (a) as myofilament proteins turnover within the cell they are rapidly exchanged with newly synthesized proteins, and (b) the nature of replacement of myofilament proteins (ordered or stochastic) is protein specific, primarily affected by the structural properties of the myofilament proteins, and may have important functional consequences.
Collapse
Affiliation(s)
- D E Michele
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA
| | | | | |
Collapse
|