1
|
Clearman KR, Timpratoom N, Patel D, Rains AB, Haycraft CJ, Croyle MJ, Reiter JF, Yoder BK. Rab35 Is Required for Embryonic Development and Kidney and Ureter Homeostasis through Regulation of Epithelial Cell Junctions. J Am Soc Nephrol 2024; 35:719-732. [PMID: 38530365 PMCID: PMC11164122 DOI: 10.1681/asn.0000000000000335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Key Points Loss of Rab35 leads to nonobstructive hydronephrosis because of loss of ureter epithelium. Rab35 regulates kidney and ureter epithelial cell adhesion and polarity. Rab35 is required for embryonic development. Background Rab35 is a member of a GTPase family of endocytic trafficking proteins. Studies in cell lines have indicated that Rab35 participates in cell adhesion, polarity, cytokinesis, and primary cilia length and composition. In addition, sea urchin Rab35 regulates actin organization and is required for gastrulation. In mice, loss of Rab35 in the central nervous system disrupts hippocampal development and neuronal organization. Outside of the central nervous system, the functions of mammalian Rab35 in vivo are unknown. Methods We generated and analyzed the consequences of both congenital and conditional null Rab35 mutations in mice. Using a LacZ reporter allele, we assessed Rab35 expression during development and postnatally. We assessed Rab35 loss in the kidney and ureter using histology, immunofluorescence microscopy, and western blotting. Results Congenital Rab35 loss of function caused embryonic lethality: homozygous mutants arrested at E7.5 with cardiac edema. Conditional loss of Rab35, either during gestation or postnatally, caused hydronephrosis. The kidney and ureter phenotype were associated with disrupted actin cytoskeletal architecture, altered Arf6 epithelial polarity, reduced adherens junctions, loss of tight junction formation, defects in epithelial growth factor receptor expression and localization, disrupted cell differentiation, and shortened primary cilia. Conclusions Rab35 may be essential for mammalian development and the maintenance of kidney and ureter architecture. Loss of Rab35 leads to nonobstructive hydronephrosis, making the Rab35 mutant mouse a novel mammalian model to study mechanisms underlying this disease.
Collapse
Affiliation(s)
- Kelsey R. Clearman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Napassawon Timpratoom
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dharti Patel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Addison B. Rains
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Courtney J. Haycraft
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mandy J. Croyle
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California
- Chan Zuckerberg Biohub, San Francisco, California
| | - Bradley K. Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
2
|
Ferreira A, Castanheira P, Escrevente C, Barral DC, Barona T. Membrane trafficking alterations in breast cancer progression. Front Cell Dev Biol 2024; 12:1350097. [PMID: 38533085 PMCID: PMC10963426 DOI: 10.3389/fcell.2024.1350097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women, and remains one of the major causes of death in women worldwide. It is now well established that alterations in membrane trafficking are implicated in BC progression. Indeed, membrane trafficking pathways regulate BC cell proliferation, migration, invasion, and metastasis. The 22 members of the ADP-ribosylation factor (ARF) and the >60 members of the rat sarcoma (RAS)-related in brain (RAB) families of small GTP-binding proteins (GTPases), which belong to the RAS superfamily, are master regulators of membrane trafficking pathways. ARF-like (ARL) subfamily members are involved in various processes, including vesicle budding and cargo selection. Moreover, ARFs regulate cytoskeleton organization and signal transduction. RABs are key regulators of all steps of membrane trafficking. Interestingly, the activity and/or expression of some of these proteins is found dysregulated in BC. Here, we review how the processes regulated by ARFs and RABs are subverted in BC, including secretion/exocytosis, endocytosis/recycling, autophagy/lysosome trafficking, cytoskeleton dynamics, integrin-mediated signaling, among others. Thus, we provide a comprehensive overview of the roles played by ARF and RAB family members, as well as their regulators in BC progression, aiming to lay the foundation for future research in this field. This research should focus on further dissecting the molecular mechanisms regulated by ARFs and RABs that are subverted in BC, and exploring their use as therapeutic targets or prognostic markers.
Collapse
|
3
|
Clearman KR, Timpratoom N, Patel D, Rains AB, Haycraft CJ, Croyle MJ, Reiter JF, Yoder BK. Rab35 is required for embryonic development and kidney and ureter homeostasis through regulation of epithelial cell junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.556924. [PMID: 37745459 PMCID: PMC10515836 DOI: 10.1101/2023.09.11.556924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Rab35 is a member of a GTPase family of endocytic trafficking proteins. Studies in cell lines have indicated that Rab35 participates in cell adhesion, polarity, cytokinesis, and primary cilia length and composition. Additionally, sea urchin Rab35 regulates actin organization and is required for gastrulation. In mice, loss of Rab35 in the CNS disrupts hippocampal development and neuronal organization. Outside of the CNS, the functions of mammalian Rab35 in vivo are unknown. Methods We generated and analyzed the consequences of both congenital and conditional null Rab35 mutations in mice. Using a LacZ reporter allele, we assessed Rab35 expression during development and postnatally. We assessed Rab35 loss in the kidney and ureter using histology, immunofluorescence microscopy, and western blotting. Results Congenital Rab35 loss of function caused embryonic lethality: homozygous mutants arrested at E7.5 with cardiac edema. Conditional loss of Rab35, either during gestation or postnatally, caused hydronephrosis. The kidney and ureter phenotype were associated with disrupted actin cytoskeletal architecture, altered Arf6 epithelial polarity, reduced adherens junctions, loss of tight junction formation, defects in EGFR expression and localization, disrupted cell differentiation, and shortened primary cilia. Conclusion Rab35 is essential for mammalian development and the maintenance of kidney and ureter architecture. Loss of Rab35 leads to non-obstructive hydronephrosis, making the Rab35 mutant mouse a novel mammalian model to study mechanisms underlying this disease.
Collapse
Affiliation(s)
- Kelsey R. Clearman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Napassawon Timpratoom
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dharti Patel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Addison B. Rains
- Department of Craniofacial Biology at the University of Colorado Anschutz Medical Campus, Denver, Co, United States
| | - Courtney J. Haycraft
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J. Croyle
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Bradley K. Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Dou D, Bi M, Li X, Zhang N, Xu M, Guo A, Li F, Zhu W. ADP Ribosylation Factor 6 Relieves Airway Inflammation and Remodeling by Inhibiting Ovalbumin Induced-Epithelial Mesenchymal Transition in Experimental Asthma, Possibly by Regulating of E2F Transcription Factor 8. Immunol Invest 2023:1-18. [PMID: 37326141 DOI: 10.1080/08820139.2023.2222778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Childhood asthma is a major global health concern. ADP-ribosylation factor 6 (ARF6) is a low-molecular-weight GTPase; however, its role in childhood asthma remains unclear. METHODS Ovalbumin (OVA)-challenged neonatal mice and transforming growth factor-β1 (TGF-β1)-induced BEAS-2B cells were used as in vivo and in vitro models of childhood asthma, respectively. RESULTS Upon OVA stimulation, ARF6 expression was upregulated in the lung tissue. Neonatal mice administered SehinH3 (an ARF6 inhibitor) exhibited improved pulmonary pathological injury, along with reduced inflammatory cell infiltration in the lungs and cytokine release in bronchial alveolar lavage fluid and serum (interleukin [IL]-3, IL-5, IL-13, IgE, and OVA-specific IgE). SehinH3 treatment restrained epithelial - mesenchymal transition (EMT) in the lungs of asthmatic mice, as evidenced by increased E-cadherin and decreased N-cadherin and α-smooth muscle actin expression. Different TGF-β1 exposures to BEAS-2B cells induced a time- and dose-dependent increase in ARF6 expression in vitro. Upon TGF-β1 stimulation, ARF6 knockdown repressed EMT and SehinH3 treatment caused similar results in BEAS-2B cells. The transcription factor E2F8 is involved in diverse biological functions and its increased expression was confirmed in vivo and in vitro. Dual-luciferase assays confirmed that E2F8 binds to the ARF6 promoter and promotes its transcriptional activity. In vitro results revealed that E2F8 silencing suppressed EMT, whereas rescue experiments showed that ARF6 overexpression partly reversed these phenomena. CONCLUSION Our study showed that ARF6 is associated with childhood asthma progression and may be positively regulated by E2F8. These results provide insight into the pathogenesis and treatment of childhood asthma.
Collapse
Affiliation(s)
- Dongdong Dou
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Meirong Bi
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Xiuyun Li
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Nan Zhang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Mi Xu
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Aili Guo
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Feng Li
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Weiwei Zhu
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Xu R, Wan M, Shi X, Ma S, Zhang L, Yi P, Zhang R. A Rab10-ACAP1-Arf6 GTPases cascade modulates M4 muscarinic acetylcholine receptor trafficking and signaling. Cell Mol Life Sci 2023; 80:87. [PMID: 36917255 PMCID: PMC11072986 DOI: 10.1007/s00018-023-04722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/16/2023]
Abstract
Membrane trafficking processes regulate the G protein-coupled receptor activity. The muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, but the cellular machineries that control the trafficking of these receptors remain largely elusive. Here, we revealed the role of the small GTPase Rab10 as a negative regulator for the post-activation trafficking of M4 mAChR and the underlying mechanism. We show that constitutively active Rab10 arrests the receptor within Rab5-positive early endosomes and significantly hinders the resensitization of M4-mediated Ca2+ signaling. Mechanistically, M4 binds to Rab10-GTP, which requires the motif 386RKKRQMAA393 (R386-A393) within the third intracellular loop. Moreover, Rab10-GTP inactivates Arf6 by recruiting the Arf6 GTPase-activating protein, ACAP1. Strikingly, deletion of the motif R386-A393 causes M4 to bypass the control by Rab10 and switch to the Rab4-facilitated fast recycling pathway, thus reusing the receptor. Therefore, Rab10 couples the cargo sorting and membrane trafficking regulation through cycle between GTP-bound and GDP-bound state. Our findings suggest a model that Rab10 binds to the M4 like a molecular brake and controls the receptor's transport through endosomes, thus modulating the signaling, and this regulation is specific among the mAChR subtypes.
Collapse
Affiliation(s)
- Rongmei Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Wan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| | - Xuemeng Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shumin Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lina Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Wang Y, Arnold ML, Smart AJ, Wang G, Androwski RJ, Morera A, Nguyen KCQ, Schweinsberg PJ, Bai G, Cooper J, Hall DH, Driscoll M, Grant BD. Large vesicle extrusions from C. elegans neurons are consumed and stimulated by glial-like phagocytosis activity of the neighboring cell. eLife 2023; 12:e82227. [PMID: 36861960 PMCID: PMC10023159 DOI: 10.7554/elife.82227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
Caenorhabditis elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor-associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Meghan Lee Arnold
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Anna Joelle Smart
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Rebecca J Androwski
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Andres Morera
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ken CQ Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Peter J Schweinsberg
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Jason Cooper
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
- Rutgers Center for Lipid ResearchNew BrunswickUnited States
| |
Collapse
|
7
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
TRX2/Rab35 Interaction Impairs Exosome Secretion by Inducing Rab35 Degradation. Int J Mol Sci 2022; 23:ijms23126557. [PMID: 35743001 PMCID: PMC9224307 DOI: 10.3390/ijms23126557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Given that exosomes mediate intercellular communication by delivering cellular components to recipient cells or tissue, they have the potential to be engineered to deliver therapeutic payloads. However, the regulatory mechanism of exosome secretion is poorly understood. In addition, mitochondrial components have been found in exosomes, suggesting communication between mitochondria and exosomes. However, the molecular mechanism of the mitochondria and vesicle interaction remains unclear. Here, we showed that mitochondrial thioredoxin 2 (TRX2) decreased exosome concentrations and inhibited HCT116 cell migration. Coimmunoprecipitation/mass spectrometry (Co-IP/MS) showed that TRX2 interacted with Rab35. TRX2 and Rab35 bound to each other at their N-terminal motifs and colocalized on mitochondria. Furthermore, TRX2 induced Rab35 degradation, resulting in impaired exosome secretion. Additionally, Rab35 mediated the suppressive effects of TRX2 on cell migration, and TRX2 suppressed cell migration through exosomes. Taken together, this study first found an interaction between TRX2 and Rab35. These results revealed a new role for TRX2 in the regulation of exosome secretion and cell migration and explained the upstream regulatory mechanism of Rab35. Furthermore, these findings also provide new molecular evidence for communication between mitochondria and vesicles.
Collapse
|
9
|
Molnár M, Sőth Á, Simon-Vecsei Z. Pathways of integrins in the endo-lysosomal system. Biol Futur 2022; 73:171-185. [DOI: 10.1007/s42977-022-00120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022]
Abstract
AbstractIn this review, we present recent scientific advances about integrin trafficking in the endo-lysosomal system. In the last few years, plenty of new information has emerged about the endo-lysosomal system, integrins, and the mechanism, how exactly the intracellular trafficking of integrins is regulated. We review the internalization and recycling pathways of integrins, and we provide information about the possible ways of lysosomal degradation through the endosomal and autophagic system. The regulation of integrin internalization and recycling proved to be a complex process worth studying. Trafficking of integrins, together with the regulation of their gene expression, defines cellular adhesion and cellular migration through bidirectional signalization and ligand binding. Thus, any malfunction in this system can potentially (but not necessarily) lead to tumorigenesis or metastasis. Hence, extensive examinations of integrins in the endo-lysosomal system raise the possibility to identify potential new medical targets. Furthermore, this knowledge can also serve as a basis for further determination of integrin signaling- and adhesion-related processes.
Collapse
|
10
|
Rab35 and glucocorticoids regulate APP and BACE1 trafficking to modulate Aβ production. Cell Death Dis 2021; 12:1137. [PMID: 34876559 PMCID: PMC8651661 DOI: 10.1038/s41419-021-04433-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
Chronic stress and elevated glucocorticoids (GCs), the major stress hormones, are risk factors for Alzheimer’s disease (AD) and promote AD pathomechanisms, including overproduction of toxic amyloid-β (Aβ) peptides and intraneuronal accumulation of hyperphosphorylated Tau protein. The latter is linked to downregulation of the small GTPase Rab35, which mediates Tau degradation via the endolysosomal pathway. Whether Rab35 is also involved in Aβ overproduction remains an open question. Here, we find that hippocampal Rab35 levels are decreased not only by stress/GC but also by aging, another AD risk factor. Moreover, we show that Rab35 negatively regulates Aβ production by sorting amyloid precursor protein (APP) and β-secretase (BACE1) out of the endosomal network, where they interact to produce Aβ. Interestingly, Rab35 coordinates distinct intracellular trafficking steps for BACE1 and APP, mediated by its effectors OCRL and ACAP2, respectively. Finally, we demonstrate that Rab35 overexpression prevents the amyloidogenic trafficking of APP and BACE1 induced by high GC levels. These studies identify Rab35 as a key regulator of APP processing and suggest that its downregulation may contribute to stress-related and AD-related amyloidogenesis.
Collapse
|
11
|
Villagomez FR, Diaz-Valencia JD, Ovalle-García E, Antillón A, Ortega-Blake I, Romero-Ramírez H, Cerna-Cortes JF, Rosales-Reyes R, Santos-Argumedo L, Patiño-López G. TBC1D10C is a cytoskeletal functional linker that modulates cell spreading and phagocytosis in macrophages. Sci Rep 2021; 11:20946. [PMID: 34686741 PMCID: PMC8536695 DOI: 10.1038/s41598-021-00450-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cell spreading and phagocytosis are notably regulated by small GTPases and GAP proteins. TBC1D10C is a dual inhibitory protein with GAP activity. In immune cells, TBC1D10C is one of the elements regulating lymphocyte activation. However, its specific role in macrophages remains unknown. Here, we show that TBC1D10C engages in functions dependent on the cytoskeleton and plasma membrane reorganization. Using ex vivo and in vitro assays, we found that elimination and overexpression of TBC1D10C modified the cytoskeletal architecture of macrophages by decreasing and increasing the spreading ability of these cells, respectively. In addition, TBC1D10C overexpression contributed to higher phagocytic activity against Burkholderia cenocepacia and to increased cell membrane tension. Furthermore, by performing in vitro and in silico analyses, we identified 27 TBC1D10C-interacting proteins, some of which were functionally classified as protein complexes involved in cytoskeletal dynamics. Interestingly, we identified one unreported TBC1D10C-intrinsically disordered region (IDR) with biological potential at the cytoskeleton level. Our results demonstrate that TBC1D10C shapes macrophage activity by inducing reorganization of the cytoskeleton-plasma membrane in cell spreading and phagocytosis. We anticipate our results will be the basis for further studies focused on TBC1D10C. For example, the specific molecular mechanism in Burkholderia cenocepacia phagocytosis and functional analysis of TBC1D10C-IDR are needed to further understand its role in health and disease.
Collapse
Affiliation(s)
- Fabian R Villagomez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico.,Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Juan D Diaz-Valencia
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico
| | - Erasmo Ovalle-García
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad De México, Mexico
| | - Jorge F Cerna-Cortes
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Roberto Rosales-Reyes
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental de la Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad De México, Mexico
| | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Borchers AC, Langemeyer L, Ungermann C. Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J Cell Biol 2021; 220:212549. [PMID: 34383013 PMCID: PMC8366711 DOI: 10.1083/jcb.202105120] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic endomembrane system consists of multiple interconnected organelles. Rab GTPases are organelle-specific markers that give identity to these membranes by recruiting transport and trafficking proteins. During transport processes or along organelle maturation, one Rab is replaced by another, a process termed Rab cascade, which requires at its center a Rab-specific guanine nucleotide exchange factor (GEF). The endolysosomal system serves here as a prime example for a Rab cascade. Along with endosomal maturation, the endosomal Rab5 recruits and activates the Rab7-specific GEF Mon1-Ccz1, resulting in Rab7 activation on endosomes and subsequent fusion of endosomes with lysosomes. In this review, we focus on the current idea of Mon1-Ccz1 recruitment and activation in the endolysosomal and autophagic pathway. We compare identified principles to other GTPase cascades on endomembranes, highlight the importance of regulation, and evaluate in this context the strength and relevance of recent developments in in vitro analyses to understand the underlying foundation of organelle biogenesis and maturation.
Collapse
Affiliation(s)
- Ann-Christin Borchers
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
13
|
Belicova L, Repnik U, Delpierre J, Gralinska E, Seifert S, Valenzuela JI, Morales-Navarrete HA, Franke C, Räägel H, Shcherbinina E, Prikazchikova T, Koteliansky V, Vingron M, Kalaidzidis YL, Zatsepin T, Zerial M. Anisotropic expansion of hepatocyte lumina enforced by apical bulkheads. J Cell Biol 2021; 220:212522. [PMID: 34328499 PMCID: PMC8329733 DOI: 10.1083/jcb.202103003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Lumen morphogenesis results from the interplay between molecular pathways and mechanical forces. In several organs, epithelial cells share their apical surfaces to form a tubular lumen. In the liver, however, hepatocytes share the apical surface only between adjacent cells and form narrow lumina that grow anisotropically, generating a 3D network of bile canaliculi (BC). Here, by studying lumenogenesis in differentiating mouse hepatoblasts in vitro, we discovered that adjacent hepatocytes assemble a pattern of specific extensions of the apical membrane traversing the lumen and ensuring its anisotropic expansion. These previously unrecognized structures form a pattern, reminiscent of the bulkheads of boats, also present in the developing and adult liver. Silencing of Rab35 resulted in loss of apical bulkheads and lumen anisotropy, leading to cyst formation. Strikingly, we could reengineer hepatocyte polarity in embryonic liver tissue, converting BC into epithelial tubes. Our results suggest that apical bulkheads are cell-intrinsic anisotropic mechanical elements that determine the elongation of BC during liver tissue morphogenesis.
Collapse
Affiliation(s)
- Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Urska Repnik
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julien Delpierre
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Christian Franke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Helin Räägel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Nelson Laboratories LLC, Salt Lake City, UT
| | | | | | | | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
14
|
Clague MJ, Urbé S. Data mining for traffic information. Traffic 2021; 21:162-168. [PMID: 31596015 DOI: 10.1111/tra.12702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/23/2022]
Abstract
Modern cell biology is now rich with data acquired at the whole genome and proteome level. We can add value to this data through integration and application of specialist knowledge. To illustrate, we will focus on the SNARE and RAB proteins; key regulators of intracellular fusion specificity and organelle identity. We examine published mass spectrometry data to gain an estimate of protein copy number and organelle distribution in HeLa cells for each family member. We also survey recent global CRISPR/Cas9 screens for essential genes from these families. We highlight instances of co-essentiality with other genes across a large panel of cell lines that allows for the identification of functionally coherent clusters. Examples of such correlations include RAB10 with the SNARE protein Syntaxin4 (STX4) and RAB7/RAB21 with the WASH and the CCC (COMMD/CCDC22/CCDC93) complexes, both of which are linked to endosomal recycling pathways.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Kulasekaran G, Chaineau M, Piscopo VEC, Verginelli F, Fotouhi M, Girard M, Tang Y, Dali R, Lo R, Stifani S, McPherson PS. An Arf/Rab cascade controls the growth and invasiveness of glioblastoma. J Cell Biol 2021; 220:e202004229. [PMID: 33443570 PMCID: PMC7812876 DOI: 10.1083/jcb.202004229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is the most common and deadly malignant brain cancer. We now demonstrate that loss of function of the endosomal GTPase Rab35 in human brain tumor initiating cells (BTICs) increases glioblastoma growth and decreases animal survival following BTIC implantation in mouse brains. Mechanistically, we identify that the GTPase Arf5 interacts with the guanine nucleotide exchange factor (GEF) for Rab35, DENND1/connecdenn, and allosterically enhances its GEF activity toward Rab35. Knockdown of either Rab35 or Arf5 increases cell migration, invasiveness, and self-renewal in culture and enhances the growth and invasiveness of BTIC-initiated brain tumors in mice. RNAseq of the tumors reveals up-regulation of the tumor-promoting transcription factor SPOCD1, and disruption of the Arf5/Rab35 axis in glioblastoma cells leads to strong activation of the epidermal growth factor receptor, with resulting enhancement of SPOCD1 levels. These discoveries reveal an unexpected cascade between an Arf and a Rab and indicate a role for the cascade, and thus endosomal trafficking, in brain tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Rozés-Salvador V, González-Billault C, Conde C. The Recycling Endosome in Nerve Cell Development: One Rab to Rule Them All? Front Cell Dev Biol 2020; 8:603794. [PMID: 33425908 PMCID: PMC7793921 DOI: 10.3389/fcell.2020.603794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Endocytic recycling is an intracellular process that returns internalized molecules back to the plasma membrane and plays crucial roles not only in the reuse of receptor molecules but also in the remodeling of the different components of this membrane. This process is required for a diversity of cellular events, including neuronal morphology acquisition and functional regulation, among others. The recycling endosome (RE) is a key vesicular component involved in endocytic recycling. Recycling back to the cell surface may occur with the participation of several different Rab proteins, which are master regulators of membrane/protein trafficking in nerve cells. The RE consists of a network of interconnected and functionally distinct tubular subdomains that originate from sorting endosomes and transport their cargoes along microtubule tracks, by fast or slow recycling pathways. Different populations of REs, particularly those formed by Rab11, Rab35, and Arf6, are associated with a myriad of signaling proteins. In this review, we discuss the cumulative evidence suggesting the existence of heterogeneous domains of REs, controlling different aspects of neurogenesis, with a particular focus on the commonalities and singularities of these REs and their contribution to nerve development and differentiation in several animal models.
Collapse
Affiliation(s)
- Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina.,Instituto de Ciencias Básicas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Cecilia Conde
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
17
|
Lakoduk AM, Kadlecova Z, Schmid SL. A functionally neutral single chain antibody to measure beta-1 integrin uptake and recycling. Traffic 2020; 21:590-602. [PMID: 32613646 PMCID: PMC7442622 DOI: 10.1111/tra.12754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Integrin‐mediated cell adhesion and signaling are critical for many physiological processes. The dynamic turnover of integrins and their associated adhesion complexes through endocytic and recycling pathways has emerged as an important mechanism for controlling cell migration and invasion in cancer. Thus, the regulation of integrin trafficking and how this may be altered by disease‐specific molecular mechanisms has generated considerable interest. However, current tools available to study integrin trafficking may cause artifacts and/or do not provide adequate kinetic information. Here, we report the generation of a functionally neutral and monovalent single chain antibody to quantitatively and qualitatively measure β1 integrin trafficking in cells. Our novel probe can be used in a variety of assays and allows for the biochemical characterization of rapid recycling of endogenous integrins. We also demonstrate its potential utility in live cell imaging, providing proof of principle to guide future integrin probe design. The dynamic turnover of integrins through endocytic trafficking pathways has emerged as a key mechanism for cell migration and invasion. Lakoduk et al. report the generation of a functionally neutral and monovalent antibody‐based probe to track and measure endogenous beta‐1 integrin uptake and fast recycling in multiple cell types. Their tool, scFvK20, serves as proof of principle inspiration for future integrin probe design.
Collapse
Affiliation(s)
- Ashley M Lakoduk
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zuzana Kadlecova
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sandra L Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Yokoyama R, Kojima H, Takai R, Ohta T, Maeda H, Miyashita K, Mutoh M, Terasaki M. Effects of CLIC4 on Fucoxanthinol-Induced Apoptosis in Human Colorectal Cancer Cells. Nutr Cancer 2020; 73:889-898. [PMID: 33703973 DOI: 10.1080/01635581.2020.1779760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fucoxanthin is a marine xanthophyll found in edible brown algae, and a metabolite, fucoxanthinol (FxOH), possesses a potent apoptosis inducing effect in many cancer cells. Chloride intracellular channel 4 (CLIC4) is a member of the CLIC family that plays an important role in cancer development and apoptosis. However, the role of CLIC4 in FxOH-induced apoptosis is not well understood. In this study, we investigated whether CLIC4 affects the apoptotic properties of FxOH in human colorectal cancer (CRC) cells under FxOH treatment. Treating human CRC DLD-1 cells with 5.0 μmol/L FxOH significantly induced apoptosis. FxOH downregulated CLIC4, integrin β1, NHERF2 and pSmad2 (Ser465/467) by 0.6-, 0.7-, 0.7-, and 0.5-fold, respectively, compared with control cells without alteration of Rab35 expression. No colocalizing change was observed in CLIC4-related proteins in either control or FxOH-treated cells. CLIC4 knockdown suppressed cell growth and apoptosis. Interestingly, apoptosis induction by FxOH almost disappeared with CLIC4 knockdown. Our findings suggested that CLIC4 could be involved in FxOH-induced apoptosis in human CRC.
Collapse
Affiliation(s)
- Reo Yokoyama
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Rie Takai
- Research Institute of Health Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Tohru Ohta
- Research Institute of Health Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kazuo Miyashita
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Michihiro Mutoh
- Epidemiology and Preventions Group, Center for Public Health Sciences, National Cancer Center, Chuo-ku, Tokyo, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan.,Cancer Prevention Laboratories, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
19
|
Sawade L, Grandi F, Mignanelli M, Patiño-López G, Klinkert K, Langa-Vives F, Di Guardo R, Echard A, Bolino A, Haucke V. Rab35-regulated lipid turnover by myotubularins represses mTORC1 activity and controls myelin growth. Nat Commun 2020; 11:2835. [PMID: 32503983 PMCID: PMC7275063 DOI: 10.1038/s41467-020-16696-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/18/2020] [Indexed: 01/21/2023] Open
Abstract
Inherited peripheral neuropathies (IPNs) represent a broad group of disorders including Charcot-Marie-Tooth (CMT) neuropathies characterized by defects primarily arising in myelin, axons, or both. The molecular mechanisms by which mutations in nearly 100 identified IPN/CMT genes lead to neuropathies are poorly understood. Here we show that the Ras-related GTPase Rab35 controls myelin growth via complex formation with the myotubularin-related phosphatidylinositol (PI) 3-phosphatases MTMR13 and MTMR2, encoded by genes responsible for CMT-types 4B2 and B1 in humans, and found that it downregulates lipid-mediated mTORC1 activation, a pathway known to crucially regulate myelin biogenesis. Targeted disruption of Rab35 leads to hyperactivation of mTORC1 signaling caused by elevated levels of PI 3-phosphates and to focal hypermyelination in vivo. Pharmacological inhibition of phosphatidylinositol 3,5-bisphosphate synthesis or mTORC1 signaling ameliorates this phenotype. These findings reveal a crucial role for Rab35-regulated lipid turnover by myotubularins to repress mTORC1 activity and to control myelin growth. Charcot-Marie-Tooth (CMT) is an inherited peripheral neuropathy. Here, the authors show that Rab35 forms a complex with genes implicated in CMT, MTMR13 and MTMR2, which regulates myelin growth by controlling mTORC1 signaling through lipid turnover.
Collapse
Affiliation(s)
- Linda Sawade
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Federica Grandi
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Marianna Mignanelli
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.,San Raffaele Vita-Salute University, Via Olgettina 60, 20132, Milan, Italy
| | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez. C.P, 06720, Ciudad de México, México
| | - Kerstin Klinkert
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, F-75015, Paris, France.,Sorbonne Université, Collège doctoral, F-75005, Paris, France
| | - Francina Langa-Vives
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Roberta Di Guardo
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Alessandra Bolino
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Freie Universität Berlin, Faculty of Biology, Chemistry and Pharmacy, 14195, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, NeuroCure Cluster of Excellence, 10117, Berlin, Germany.
| |
Collapse
|
20
|
Assessment of Arf6 Deletion in PLB-985 Differentiated in Neutrophil-Like Cells and in Mouse Neutrophils: Impact on Adhesion and Migration. Mediators Inflamm 2020; 2020:2713074. [PMID: 32322163 PMCID: PMC7166286 DOI: 10.1155/2020/2713074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Chemoattractant sensing, adhesiveness, and migration are critical events underlying the recruitment of neutrophils (PMNs) to sites of inflammation or infection. Defects in leukocyte adhesion or migration result in immunodeficiency disorders characterized by recurrent infections. In this study, we evaluated the role of Arf6 on PMN adhesion in vitro and on migration to inflammatory sites using PMN-Arf6 conditional knockout (cKO) mice. In PMN-like PLB-985 silenced for Arf6 fMLP-mediated adhesion to the β2 integrin ligands, ICAM-1 and fibrinogen or the β1/β2 integrin ligand fibronectin was significantly reduced. Furthermore, overexpression of wild-type Arf6 promoted basal and fMLP-induced adhesion to immobilized integrin ligands, while overexpression of the dominant-negative Arf6 has the opposite effects. Using the Elane-Cre deleting mouse strains, we report that the level of Arf6 deletion in inflammatory PMNs isolated from the dorsal air pouches was stronger when compared to naïve cells isolated from the bone marrow. In PMN-Arf6 cKO mice, the recruitment of PMNs into the dorsal air pouch injected with LPS or the chemoattractant fMLP was significantly diminished. Impaired cell migration correlated with reduced cell surface expression of CD11a and CD11b in Arf6 cKO PMNs. Our results highlight that Arf6 regulates the activity and possibly the recycling of PMN integrins, and this compromises PMN migration to inflammatory sites.
Collapse
|
21
|
Blum IR, Behling-Hess C, Padilla-Rodriguez M, Momtaz S, Cox C, Wilson JM. Rab22a regulates the establishment of epithelial polarity. Small GTPases 2020; 12:282-293. [PMID: 32281471 DOI: 10.1080/21541248.2020.1754104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Membrane trafficking establishes and maintains epithelial polarity. Rab22a has a polarized distribution in activated T-cells, but its role in epithelial polarity has not been investigated. We showed previously that Rab14 acts upstream of Arf6 to establish the apical membrane initiation site (AMIS), but its interaction with Rab22a is unknown. Here we show that Rab14 and Rab22a colocalize in endosomes of both unpolarized and polarized MDCK cells and Rab22a localizes to the cell:cell interface of polarizing cell pairs. Knockdown of Rab22a results in a multi-lumen phenotype in three-dimensional culture. Further, overexpression of Rab22a in Rab14 knockdown cells rescues the multi-lumen phenotype observed with Rab14 knockdown, suggesting that Rab22a is downstream of Rab14. Because of the relationship between Rab14 and Arf6, we investigated the effect of Rab22a knockdown on Arf6. We find that Rab22a knockdown results in decreased active Arf6 and that Rab22a co-immunoprecipitates with the Arf6 GEF EFA6. In addition, EFA6 is retained in intracellular puncta in Rab22a KD cells. These results suggest that Rab22a acts downstream of Rab14 to traffic EFA6 to the AMIS to regulate Arf6 in the establishment of polarity.
Collapse
Affiliation(s)
- Isabella R Blum
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | | | | | - Samina Momtaz
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Christopher Cox
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
22
|
Haley R, Zhou Z. The small GTPase RAB-35 facilitates the initiation of phagosome maturation and acts as a robustness factor for apoptotic cell clearance. Small GTPases 2019; 12:188-201. [PMID: 31607221 DOI: 10.1080/21541248.2019.1680066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We recently identified the novel function of the small GTPase RAB-35 in apoptotic cell clearance in Caenorhabditis elegans, a process in which dying cells are engulfed and degraded inside phagosomes. We have found that RAB-35 functions in two separate steps of cell corpse clearance, cell corpse recognition and the initiation of phagosome maturation. During the latter process, RAB-35 facilitates the removal of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) from the membranes of nascent phagosomes and the simultaneous production of phosphatidylinositol-3-P (PI(3)P) on these same membranes, a process that we have coined the PI(4,5)P2 to PI(3)P shift. RAB-35 also promotes the recruitment of the small GTPase RAB-5 to the phagosomal surface. During these processes, the activity of RAB-35 is controlled by the candidate GTPase-activating protein (GAP) TBC-10 and the candidate guanine nucleotide exchange factor (GEF) FLCN-1. Overall, RAB-35 leads a third pathway during cell corpse clearance that functions in parallel to the two known pathways, one led by the phagocytic receptor CED-1 and the other led by the CED-10/Rac1 GTPase. Here, we further report that RAB-35 acts as a robustness factor that maintains the clearance activity and embryonic viability under conditions of heat stress. Moreover, we obtained additional evidence suggesting that RAB-35 acts upstream of RAB-5 and RAB-7. To establish a precise temporal pattern for its own dissociation from phagosomal surfaces, RAB-35 controls the removal of its own GAP. We propose that RAB-35 defines a largely unexplored initial phase of phagosome maturation.
Collapse
Affiliation(s)
- Ryan Haley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Kuhns S, Seixas C, Pestana S, Tavares B, Nogueira R, Jacinto R, Ramalho JS, Simpson JC, Andersen JS, Echard A, Lopes SS, Barral DC, Blacque OE. Rab35 controls cilium length, function and membrane composition. EMBO Rep 2019; 20:e47625. [PMID: 31432619 PMCID: PMC6776896 DOI: 10.15252/embr.201847625] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Rab and Arl guanine nucleotide-binding (G) proteins regulate trafficking pathways essential for the formation, function and composition of primary cilia, which are sensory devices associated with Sonic hedgehog (Shh) signalling and ciliopathies. Here, using mammalian cells and zebrafish, we uncover ciliary functions for Rab35, a multitasking G protein with endocytic recycling, actin remodelling and cytokinesis roles. Rab35 loss via siRNAs, morpholinos or knockout reduces cilium length in mammalian cells and the zebrafish left-right organiser (Kupffer's vesicle) and causes motile cilia-associated left-right asymmetry defects. Consistent with these observations, GFP-Rab35 localises to cilia, as do GEF (DENND1B) and GAP (TBC1D10A) Rab35 regulators, which also regulate ciliary length and Rab35 ciliary localisation. Mammalian Rab35 also controls the ciliary membrane levels of Shh signalling regulators, promoting ciliary targeting of Smoothened, limiting ciliary accumulation of Arl13b and the inositol polyphosphate 5-phosphatase (INPP5E). Rab35 additionally regulates ciliary PI(4,5)P2 levels and interacts with Arl13b. Together, our findings demonstrate roles for Rab35 in regulating cilium length, function and membrane composition and implicate Rab35 in pathways controlling the ciliary levels of Shh signal regulators.
Collapse
Affiliation(s)
- Stefanie Kuhns
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Cecília Seixas
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Sara Pestana
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Bárbara Tavares
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Renata Nogueira
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Raquel Jacinto
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - José S Ramalho
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Jeremy C Simpson
- School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
| | - Jens S Andersen
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | | | - Susana S Lopes
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Duarte C Barral
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Oliver E Blacque
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
24
|
Pampalakis G, Zingkou E, Sidiropoulos KG, Diamandis EP, Zoumpourlis V, Yousef GM, Sotiropoulou G. Biochemical pathways mediated by KLK6 protease in breast cancer. Mol Oncol 2019; 13:2329-2343. [PMID: 30980596 PMCID: PMC6822253 DOI: 10.1002/1878-0261.12493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Kallikrein-related peptidase 6 (KLK6) is a serine protease normally expressed in mammary tissue and aberrantly regulated in breast cancer. At physiological levels, KLK6 functions as a suppressor of breast cancer, while its aberrant overexpression (> 50-fold higher than normal) is characteristic of a subset of breast cancers and has been linked to accelerated growth of primary breast tumors in severe combined immunodeficiency mice (Pampalakis et al. Cancer Res 2009, 69, 3779). Here, we investigated the molecular mechanisms underlying the concentration-dependent functions of KLK6 by comparing MDA-MB-231 stable transfectants expressing increasing levels of KLK6 in in vitro and in vivo tumorigenicity assays (soft agar, xenograft growth, tail vein metastasis). Quantitative proteomics was applied to identify proteins that are altered upon re-expression of KLK6 in MDA-MB-231 at normal or constitutive levels. Overexpression of KLK6 is associated with increased metastatic ability of breast cancer cells into lungs, increased expression of certain S100 proteins (S100A4, S100A11) and keratins (KRT), and downregulation of the apoptosis-related proteases CASP7 and CASP8, and RABs. On the other hand, KLK6 re-expression at physiological levels leads to inhibition of lung metastases associated with suppression of S100 proteins (S100A4, S100A10, S100A13, S100A16) and induced CASP7 and CASP8 expression. As this is the first report that KLK6 expression is associated with S100 proteins, caspases, RABs, and KRTs, we validated this finding in clinical datasets. By integrating proteomics and microarray data from breast cancer patients, we generated two composite scores, KLK6 + S100B-S100A7 and KLK6 + S100B-S100A14-S100A16, to predict long-term survival of breast cancer patients. We present previously unknown pathways implicating KLK6 in breast cancer. The findings promise to aid our understanding of the functional roles of KLK6 in breast cancer and may yield new biomarkers for the cancer types in which KLK6 is known to be aberrantly upregulated.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Konstantinos Gus Sidiropoulos
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | | | | | - George M Yousef
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
25
|
Miao H, Vanderleest TE, Jewett CE, Loerke D, Blankenship JT. Cell ratcheting through the Sbf RabGEF directs force balancing and stepped apical constriction. J Cell Biol 2019; 218:3845-3860. [PMID: 31562231 PMCID: PMC6829657 DOI: 10.1083/jcb.201905082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/05/2019] [Accepted: 08/17/2019] [Indexed: 01/02/2023] Open
Abstract
Miao et al. show that a membrane trafficking pathway centered on Sbf and Rab35 is essential for the irreversibility of pulsed contractile events during apical constriction. Sbf/Rab35 disruption leads to a convoluted cell surface, suggesting that membrane remodeling is essential for the construction of effective actomyosin networks. During Drosophila melanogaster gastrulation, the invagination of the prospective mesoderm is driven by the pulsed constriction of apical surfaces. Here, we address the mechanisms by which the irreversibility of pulsed events is achieved while also permitting uniform epithelial behaviors to emerge. We use MSD-based analyses to identify contractile steps and find that when a trafficking pathway initiated by Sbf is disrupted, contractile steps become reversible. Sbf localizes to tubular, apical surfaces and associates with Rab35, where it promotes Rab GTP exchange. Interestingly, when Sbf/Rab35 function is compromised, the apical plasma membrane becomes deeply convoluted, and nonuniform cell behaviors begin to emerge. Consistent with this, Sbf/Rab35 appears to prefigure and organize the apical surface for efficient Myosin function. Finally, we show that Sbf/Rab35/CME directs the plasma membrane to Rab11 endosomes through a dynamic interaction with Rab5 endosomes. These results suggest that periodic ratcheting events shift excess membrane from cell apices into endosomal pathways to permit reshaping of actomyosin networks and the apical surface.
Collapse
Affiliation(s)
- Hui Miao
- Department of Biological Sciences, University of Denver, Denver, CO
| | | | - Cayla E Jewett
- Department of Biological Sciences, University of Denver, Denver, CO
| | - Dinah Loerke
- Department of Physics, University of Denver, Denver, CO
| | | |
Collapse
|
26
|
Ghosh M, Lo R, Ivic I, Aguilera B, Qendro V, Devarakonda C, Shapiro LH. CD13 tethers the IQGAP1-ARF6-EFA6 complex to the plasma membrane to promote ARF6 activation, β1 integrin recycling, and cell migration. Sci Signal 2019; 12:12/579/eaav5938. [PMID: 31040262 DOI: 10.1126/scisignal.aav5938] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell attachment to the extracellular matrix (ECM) requires a balance between integrin internalization and recycling to the surface that is mediated by numerous proteins, emphasizing the complexity of these processes. Upon ligand binding in various cells, the β1 integrin is internalized, traffics to early endosomes, and is returned to the plasma membrane through recycling endosomes. This trafficking process depends on the cyclical activation and inactivation of small guanosine triphosphatases (GTPases) by their specific guanine exchange factors (GEFs) and their GTPase-activating proteins (GAPs). In this study, we found that the cell surface antigen CD13, a multifunctional transmembrane molecule that regulates cell-cell adhesion and receptor-mediated endocytosis, also promoted cell migration and colocalized with β1 integrin at sites of cell adhesion and at the leading edge. A lack of CD13 resulted in aberrant trafficking of internalized β1 integrin to late endosomes and its ultimate degradation. Our data indicate that CD13 promoted ARF6 GTPase activity by positioning the ARF6-GEF EFA6 at the cell membrane. In migrating cells, a complex containing phosphorylated CD13, IQGAP1, GTP-bound (active) ARF6, and EFA6 at the leading edge promoted the ARF6 GTPase cycling and cell migration. Together, our findings uncover a role for CD13 in the fundamental cellular processes of receptor recycling, regulation of small GTPase activities, cell-ECM interactions, and cell migration.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
| | - Robin Lo
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Ivan Ivic
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Brian Aguilera
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Veneta Qendro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Charan Devarakonda
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Linda H Shapiro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
27
|
Lin L, Shi Y, Wang M, Wang C, Zhu J, Zhang R. Rab35/ACAP2 and Rab35/RUSC2 Complex Structures Reveal Molecular Basis for Effector Recognition by Rab35 GTPase. Structure 2019; 27:729-740.e3. [PMID: 30905672 DOI: 10.1016/j.str.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/03/2019] [Accepted: 02/24/2019] [Indexed: 11/16/2022]
Abstract
Rab35, a master regulator of membrane trafficking, regulates diverse cellular processes and is associated with various human diseases. Although a number of effectors have been identified, the molecular basis of Rab35-effector interactions remains unclear. Here, we provide the high-resolution crystal structures of Rab35 in complex with its two specific effectors ACAP2 and RUSC2, respectively. In the Rab35/ACAP2 complex structure, Rab35 binds to the terminal ankyrin repeat and a C-terminal extended α helix of ACAP2, revealing a previously uncharacterized binding mode both for Rabs and ankyrin repeats. In the Rab35/RUSC2 complex structure, Arg1015 of RUSC2 functions as a "pseudo-arginine finger" that stabilizes the GTP-bound Rab35, thus facilitating the assembly of Rab35/RUSC2 complex. The structural analysis allows us to design specific Rab35 mutants capable of eliminating Rab35/ACAP2 and Rab35/RUSC2 interactions, but not interfering with other effector bindings. The atomic structures also offer possible explanations to disease-associated mutants identified at the Rab35-effector interfaces.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China
| | - Yingdong Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mengli Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jinwei Zhu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China.
| | - Rongguang Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China.
| |
Collapse
|
28
|
Moreno-Layseca P, Icha J, Hamidi H, Ivaska J. Integrin trafficking in cells and tissues. Nat Cell Biol 2019; 21:122-132. [PMID: 30602723 PMCID: PMC6597357 DOI: 10.1038/s41556-018-0223-z] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022]
Abstract
Cell adhesion to the extracellular matrix is fundamental to metazoan multicellularity and is accomplished primarily through the integrin family of cell-surface receptors. Integrins are internalized and enter the endocytic-exocytic pathway before being recycled back to the plasma membrane. The trafficking of this extensive protein family is regulated in multiple context-dependent ways to modulate integrin function in the cell. Here, we discuss recent advances in understanding the mechanisms and cellular roles of integrin endocytic trafficking.
Collapse
Affiliation(s)
- Paulina Moreno-Layseca
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jaroslav Icha
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
29
|
Coordinated Regulation of Intracellular Fascin Distribution Governs Tumor Microvesicle Release and Invasive Cell Capacity. Mol Cell Biol 2019; 39:MCB.00264-18. [PMID: 30397076 DOI: 10.1128/mcb.00264-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor cell invasion is one result of the bidirectional interactions occurring between tumor cells and the surrounding milieu. The ability of tumor cells to invade through the extracellular matrix is in part regulated by the formation of a class of protease-loaded extracellular vesicles, called tumor microvesicles (TMVs), which are released directly from the cell surface. Here we show that the actin bundling protein, fascin, redistributes to the cell periphery in a ternary complex with podocalyxin and ezrin, where it promotes TMV release. The peripheral localization of fascin is prompted by the loss of Rab35 signaling, which in turn unleashes ARF6 activation. The result is a mechanism through which Rab35 and ARF6 cooperatively and simultaneously regulate the distribution and localization of fascin and promote oncogenic signaling, which leads to TMV release while inhibiting invadopodium formation. These studies are clinically significant as fascin-loaded TMVs can be detected in bodily fluids and elevated fascin expression coupled with low Rab35 levels correlates with poor overall survival in some cancers.
Collapse
|
30
|
Borys S, Ludwig-Slomczynska AH, Seweryn M, Hohendorff J, Koblik T, Machlowska J, Kiec-Wilk B, Wolkow P, Malecki MT. Negative pressure wound therapy in the treatment of diabetic foot ulcers may be mediated through differential gene expression. Acta Diabetol 2019; 56:115-120. [PMID: 30221321 PMCID: PMC6346079 DOI: 10.1007/s00592-018-1223-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 01/20/2023]
Abstract
AIMS Negative pressure wound therapy (NPWT) has been successfully used as a treatment for diabetic foot ulceration (DFU). Its mechanism of action on the molecular level, however, is not fully understood. We assessed the effect of NPWT on gene expression in patients with type 2 diabetes (T2DM) and DFU. METHODS We included two cohorts of patients-individuals treated with either NPWT or standard therapy. The assignment to NWPT was non-randomized and based on wound characteristics. Differential gene expression profiling was performed using Illumina gene expression arrays and R Bioconductor pipelines based on the 'limma' package. RESULTS The final cohort encompassed 21 patients treated with NPWT and 8 with standard therapy. The groups were similar in terms of age (69.0 versus 67.5 years) and duration of T2DM (14.5 versus 14.4 years). We identified four genes differentially expressed between the two study arms post-treatment, but not pre-treatment: GFRA2 (GDNF family receptor alpha-2), C1QBP (complement C1q binding protein), RAB35 (member of RAS oncogene family) and SYNJ1 (synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1). Interestingly, all four genes seemed to be functionally involved in wound healing by influencing re-epithelialization and angiogenesis. Subsequently, we utilized co-expression analysis in publicly available RNA-seq data to reveal the molecular functions of GFRA2 and C1QBP, which appeared to be through direct protein-protein interactions. CONCLUSIONS We found initial evidence that the NPWT effect on DFUs may be mediated through differential gene expression. A discovery of the specific molecular mechanisms of NPWT is potentially valuable for its clinical application and development of new therapies.
Collapse
Affiliation(s)
- S Borys
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501, Kraków, Poland
- University Hospital, Kraków, Poland
| | - A H Ludwig-Slomczynska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - M Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - J Hohendorff
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501, Kraków, Poland
- University Hospital, Kraków, Poland
| | - T Koblik
- University Hospital, Kraków, Poland
| | - J Machlowska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - B Kiec-Wilk
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501, Kraków, Poland
- University Hospital, Kraków, Poland
| | - P Wolkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501, Kraków, Poland.
- University Hospital, Kraków, Poland.
| |
Collapse
|
31
|
Wilson BJ, Allen JL, Caswell PT. Vesicle trafficking pathways that direct cell migration in 3D matrices and in vivo. Traffic 2018; 19:899-909. [PMID: 30054969 PMCID: PMC6282850 DOI: 10.1111/tra.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cell migration is a vital process in development and disease, and while the mechanisms that control motility are relatively well understood on two-dimensional surfaces, the control of cell migration in three dimensions (3D) and in vivo has only recently begun to be understood. Vesicle trafficking pathways have emerged as a key regulatory element in migration and invasion, with the endocytosis and recycling of cell surface cargos, including growth factor and chemokine receptors, adhesion receptors and membrane-associated proteases, being of major importance. We highlight recent advances in our understanding of how endocytic trafficking controls the availability and local activity of these cargoes to influence the movement of cells in 3D matrix and in developing organisms. In particular, we discuss how endocytic trafficking of different receptor classes spatially restricts signals and activity, usually to the leading edge of invasive cells.
Collapse
Affiliation(s)
- Beverley J. Wilson
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Jennifer L. Allen
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
32
|
Ye B, Duan B, Deng W, Wang Y, Chen Y, Cui J, Sun S, Zhang Y, Du J, Gu L, Lin L, Tang Y. EGF Stimulates Rab35 Activation and Gastric Cancer Cell Migration by Regulating DENND1A-Grb2 Complex Formation. Front Pharmacol 2018; 9:1343. [PMID: 30524285 PMCID: PMC6261971 DOI: 10.3389/fphar.2018.01343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Aims: The aim of this study was to reveal the specific molecular mechanisms by which DENND1A accepts EGF signaling and activates Rab35 in gastric cancer. Methods: The expression of proteins related to DENND1A was examined by western blot analysis. Activation of Rab35 was assessed by GST-pulldown. The interaction of DENND1A and Grb2 was assessed by GST-pulldown and co-immunoprecipitation assays. The relationship between DENND1A and cell migration and invasion was detected using wound healing and transwell by gene overexpression and RNA interference. Results: EGF stimulation significantly promoted cell migration, whereas transfection with siRab35 partially inhibited EGF-promoted cell migration. DENND1A is also involved in these processes and active Rab35. Moreover, DENND1A binds to the N-terminal and C-terminal SH3 domains of Grb2 through PRD. Of special interest is the observation that EGFR can recruit Grb2-DENND1A complex under EGF stimulation. Further results reveal that the higher the expression of DENND1A, the shorter progression-free survival of gastric cancer patients. Conclusion: In summary, we confirmed that EGF-Grb2-DENND1A-Rab35 signaling pathway with the interaction of DENND1A and Grb2 as a regulatory center could regulate gastric cancer cell migration and invasion. Ultimately, the expression level of DENND1A predicts the survival status of gastric cancer patients and may become one of the important targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Bixing Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Wenjie Deng
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Jie Cui
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yurong Tang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Kutscher LM, Keil W, Shaham S. RAB-35 and ARF-6 GTPases Mediate Engulfment and Clearance Following Linker Cell-Type Death. Dev Cell 2018; 47:222-238.e6. [PMID: 30220571 PMCID: PMC6200590 DOI: 10.1016/j.devcel.2018.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/18/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022]
Abstract
Clearance of dying cells is essential for development and homeostasis. Conserved genes mediate apoptotic cell removal, but whether these genes control non-apoptotic cell removal is a major open question. Linker cell-type death (LCD) is a prevalent non-apoptotic developmental cell death process with features conserved from C. elegans to vertebrates. Using microfluidics-based long-term in vivo imaging, we show that unlike apoptotic cells, the C. elegans linker cell, which dies by LCD, is competitively phagocytosed by two neighboring cells, resulting in cell splitting. Subsequent cell elimination does not require apoptotic engulfment genes. Rather, we find that RAB-35 GTPase is a key coordinator of competitive phagocytosis onset and cell degradation. RAB-35 binds CNT-1, an ARF-6 GTPase activating protein, and removes ARF-6, a degradation inhibitor, from phagosome membranes. This facilitates phosphatidylinositol-4,5-bisphosphate removal from phagosome membranes, promoting phagolysosome maturation. Our studies suggest that RAB-35 and ARF-6 drive a conserved program eliminating cells dying by LCD.
Collapse
Affiliation(s)
- Lena M Kutscher
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Wolfgang Keil
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA; Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
34
|
Zobel M, Disanza A, Senic-Matuglia F, Franco M, Colaluca IN, Confalonieri S, Bisi S, Barbieri E, Caldieri G, Sigismund S, Pece S, Chavrier P, Di Fiore PP, Scita G. A NUMB-EFA6B-ARF6 recycling route controls apically restricted cell protrusions and mesenchymal motility. J Cell Biol 2018; 217:3161-3182. [PMID: 30061108 PMCID: PMC6123001 DOI: 10.1083/jcb.201802023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/17/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
The endocytic protein NUMB has been implicated in the control of various polarized cellular processes, including the acquisition of mesenchymal migratory traits through molecular mechanisms that have only been partially defined. Here, we report that NUMB is a negative regulator of a specialized set of understudied, apically restricted, actin-based protrusions, the circular dorsal ruffles (CDRs), induced by either PDGF or HGF stimulation. Through its PTB domain, NUMB binds directly to an N-terminal NPLF motif of the ARF6 guanine nucleotide exchange factor, EFA6B, and promotes its exchange activity in vitro. In cells, a NUMB-EFA6B-ARF6 axis regulates the recycling of the actin regulatory cargo RAC1 and is critical for the formation of CDRs that mark the acquisition of a mesenchymal mode of motility. Consistently, loss of NUMB promotes HGF-induced cell migration and invasion. Thus, NUMB negatively controls membrane protrusions and the acquisition of mesenchymal migratory traits by modulating EFA6B-ARF6 activity.
Collapse
Affiliation(s)
- Martina Zobel
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Andrea Disanza
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Michel Franco
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | | | - Sara Bisi
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Elisa Barbieri
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Giusi Caldieri
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sara Sigismund
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Salvatore Pece
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Philippe Chavrier
- Institut Curie, PSL Research University, Paris, France
- Centre National de la Recherche Scientifique UMR 144, Membrane and Cytoskeleton Dynamics Team, Paris, France
| | - Pier Paolo Di Fiore
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
35
|
TBC1d24-ephrinB2 interaction regulates contact inhibition of locomotion in neural crest cell migration. Nat Commun 2018; 9:3491. [PMID: 30154457 PMCID: PMC6113226 DOI: 10.1038/s41467-018-05924-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 08/02/2018] [Indexed: 11/08/2022] Open
Abstract
Although Eph-ephrin signalling has been implicated in the migration of cranial neural crest (CNC) cells, it is still unclear how ephrinB transduces signals regulating this event. We provide evidence that TBC1d24, a putative Rab35-GTPase activating protein (Rab35 GAP), complexes with ephrinB2 via the scaffold Dishevelled (Dsh) and mediates a signal affecting contact inhibition of locomotion (CIL) in CNC cells. Moreover, we found that, in migrating CNC, the interaction between ephrinB2 and TBC1d24 negatively regulates E-cadherin recycling in these cells via Rab35. Upon engagement of the cognate Eph receptor, ephrinB2 is tyrosine phosphorylated, which disrupts the ephrinB2/Dsh/TBC1d24 complex. The dissolution of this complex leads to increasing E-cadherin levels at the plasma membrane, resulting in loss of CIL and disrupted CNC migration. Our results indicate that TBC1d24 is a critical player in ephrinB2 control of CNC cell migration via CIL.
Collapse
|
36
|
Bae EJ, Kim DK, Kim C, Mante M, Adame A, Rockenstein E, Ulusoy A, Klinkenberg M, Jeong GR, Bae JR, Lee C, Lee HJ, Lee BD, Di Monte DA, Masliah E, Lee SJ. LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nat Commun 2018; 9:3465. [PMID: 30150626 PMCID: PMC6110743 DOI: 10.1038/s41467-018-05958-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Propagation of α-synuclein aggregates has been suggested as a contributing factor in Parkinson's disease (PD) progression. However, the molecular mechanisms underlying α-synuclein aggregation are not fully understood. Here, we demonstrate in cell culture, nematode, and rodent models of PD that leucine-rich repeat kinase 2 (LRRK2), a PD-linked kinase, modulates α-synuclein propagation in a kinase activity-dependent manner. The PD-linked G2019S mutation in LRRK2, which increases kinase activity, enhances propagation efficiency. Furthermore, we show that the role of LRRK2 in α-synuclein propagation is mediated by RAB35 phosphorylation. Constitutive activation of RAB35 overrides the reduced α-synuclein propagation phenotype in lrk-1 mutant C. elegans. Finally, in a mouse model of synucleinopathy, administration of an LRRK2 kinase inhibitor reduced α-synuclein aggregation via enhanced interaction of α-synuclein with the lysosomal degradation pathway. These results suggest that LRRK2-mediated RAB35 phosphorylation is a potential therapeutic target for modifying disease progression.
Collapse
Affiliation(s)
- Eun-Jin Bae
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dong-Kyu Kim
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Mante
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anthony Adame
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Edward Rockenstein
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Michael Klinkenberg
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Ga Ram Jeong
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jae Ryul Bae
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Cheolsoon Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - Byung-Dae Lee
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seung-Jae Lee
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
37
|
Clancy JW, Sheehan CS, Tricarico CJ, D'Souza-Schorey C. Aberrant endocytosis leads to the loss of normal mitotic spindle orientation during epithelial glandular morphogenesis. J Biol Chem 2018; 293:12095-12104. [PMID: 29903910 DOI: 10.1074/jbc.ra117.001640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/30/2018] [Indexed: 11/06/2022] Open
Abstract
Epithelial cells form tissues with many functions, including secretion and environmental separation and protection. Glandular epithelial tissues comprise cysts and tubules that are formed from a polarized, single-epithelial cell layer surrounding a central, fluid-filled lumen. The pathways regulating key processes in epithelial tissue morphogenesis such as mitotic spindle formation are incompletely understood, but are important to investigate, as their dysregulation is a signature of epithelial tumors. Here, we describe a signaling axis that manifests in a defect in mitotic spindle orientation during epithelial growth and cystogenesis. We found that activation of the small GTPase ADP-ribosylation factor 6 (ARF6) results in the sustained internalization of cell-surface components such as the cMet receptor and the cell-adhesion molecule E-cadherin. The spindle orientation defect arising from elevated levels of ARF6-GTP required an increase in cMet endocytosis, but was independent of E-cadherin internalization or elevated extracellular signal-regulated kinase (ERK) activity resulting from internalized receptor signaling on endosomes. Misorientation of the mitotic spindle resulted in the development of epithelial cysts with structural abnormalities, the most conspicuous of which was the presence of multiple intercellular lumens. Abnormal mitotic spindle orientation was necessary but insufficient to disrupt glandular development, as blocking the strong prosurvival signal resulting from ERK hyperactivation yielded structurally normal cysts despite continued manifestation of spindle orientation defects. Our findings highlight a previously unknown link between ARF6 activation, cMet receptor internalization, and mitotic spindle orientation during epithelial glandular morphogenesis.
Collapse
Affiliation(s)
- James W Clancy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Colin S Sheehan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | | | | |
Collapse
|
38
|
Naslavsky N, Caplan S. The enigmatic endosome - sorting the ins and outs of endocytic trafficking. J Cell Sci 2018; 131:131/13/jcs216499. [PMID: 29980602 DOI: 10.1242/jcs.216499] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The early endosome (EE), also known as the sorting endosome (SE) is a crucial station for the sorting of cargoes, such as receptors and lipids, through the endocytic pathways. The term endosome relates to the receptacle-like nature of this organelle, to which endocytosed cargoes are funneled upon internalization from the plasma membrane. Having been delivered by the fusion of internalized vesicles with the EE or SE, cargo molecules are then sorted to a variety of endocytic pathways, including the endo-lysosomal pathway for degradation, direct or rapid recycling to the plasma membrane, and to a slower recycling pathway that involves a specialized form of endosome known as a recycling endosome (RE), often localized to the perinuclear endocytic recycling compartment (ERC). It is striking that 'the endosome', which plays such essential cellular roles, has managed to avoid a precise description, and its characteristics remain ambiguous and heterogeneous. Moreover, despite the rapid advances in scientific methodologies, including breakthroughs in light microscopy, overall, the endosome remains poorly defined. This Review will attempt to collate key characteristics of the different types of endosomes and provide a platform for discussion of this unique and fascinating collection of organelles. Moreover, under-developed, poorly understood and important open questions will be discussed.
Collapse
Affiliation(s)
- Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA .,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
39
|
Cui Y, Song X, Li S, He B, Yuan L, Dai W, Zhang H, Wang X, Yang B, Zhang Q. The impact of receptor recycling on the exocytosis of αvβ3 integrin targeted gold nanoparticles. Oncotarget 2018; 8:38618-38630. [PMID: 28454098 PMCID: PMC5503558 DOI: 10.18632/oncotarget.16955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/29/2017] [Indexed: 11/25/2022] Open
Abstract
Among the diverse factors that may influence the therapeutic outcomes, the exocytosis of targeted drug delivery systems (TDDS) and its relationship with the corresponding receptor receive little attentions. In this study, cRGDfK modified gold nanoparticles (cRGDfK-PEG-AuNPs) were synthesized, and their cellular transportation including endocytosis and exocytosis, as well as the potential relations with αvβ3 integrin were carefully studied. The results showed that the enhanced and fast internalization of cRGDfK-PEG-AuNPs into U87 cells was associated with the high expression level of αvβ3 integrin. Importantly, the significant exocytosis of cRGDfK-PEG-AuNPs, but not the PEG conjugated gold nanoparticles (PEG-AuNPs), was found under the in vivo-simulated serum containing conditions. Interestingly, the exocytosis kinetics of nanoparticles was demonstrated to be tightly related with the recycling of the αvβ3 integrin, although the exocytosis of cRGDfK-PEG-AuNPs slightly lagged behind the receptor recycling. In effect, our findings uncover a new underlying behavior of receptor mediated TDDS and have implication for their rational design and application in the future.
Collapse
Affiliation(s)
- Yanan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,School of Pharmacy, Jining Medicinal University, Jining 272067, China
| | - Xiaoning Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Suxin Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lan Yuan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bin Yang
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
40
|
Villagomez FR, Medina-Contreras O, Cerna-Cortes JF, Patino-Lopez G. The role of the oncogenic Rab35 in cancer invasion, metastasis, and immune evasion, especially in leukemia. Small GTPases 2018; 11:334-345. [PMID: 29781368 PMCID: PMC7549652 DOI: 10.1080/21541248.2018.1463895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The study of cancer has allowed researchers to describe some biological characteristics that tumor cells acquire during their development, known as the “hallmarks of cancer” but more research is needed to expand our knowledge about cancer biology and to generate new strategies of treatment. The role that RabGTPases might play in some hallmarks of cancer represents interesting areas of study since these proteins are frequently altered in cancer. However, their participation is not well known. Recently, Rab35was recognized as an oncogenic RabGTPase and and because of its association with different cellular functions, distinctly important in immune cells, a possible role of Rab35 in leukemia can be suggested. Nevertheless, the involvement of Rab35 in cancer remains poorly understood and its possible specific role in leukemia remains unknown. In this review, we analyze general aspects of the participation of RabGTPases in cancer, and especially, the plausible role of Rab35 in leukemia.
Collapse
Affiliation(s)
- Fabian R Villagomez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México.,Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas , Ciudad de México, México
| | - Oscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México
| | - Jorge Francisco Cerna-Cortes
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas , Ciudad de México, México
| | - Genaro Patino-Lopez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México
| |
Collapse
|
41
|
Shaughnessy R, Echard A. Rab35 GTPase and cancer: Linking membrane trafficking to tumorigenesis. Traffic 2018; 19:247-252. [PMID: 29314576 DOI: 10.1111/tra.12546] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Rab35 is a small GTPase that is involved in many cellular processes, including membrane trafficking, cell polarity, lipid homeostasis, immunity, phagocytosis and cytokinesis. Recent studies showed that activating mutations confer Rab35 with oncogenic properties. Conversely, downregulation of Rab35 inverts apico-basal cell polarity and promotes cell migration. Here we review Rab35's known functions in membrane trafficking and signaling, cell division and cell migration in cancer cells and discuss the importance of Rab35-dependent membrane trafficking in cancer progression.
Collapse
Affiliation(s)
- Ronan Shaughnessy
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| |
Collapse
|
42
|
Zheng J, Duan B, Sun S, Cui J, Du J, Zhang Y. Folliculin Interacts with Rab35 to Regulate EGF-Induced EGFR Degradation. Front Pharmacol 2017; 8:688. [PMID: 29018350 PMCID: PMC5622982 DOI: 10.3389/fphar.2017.00688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022] Open
Abstract
Aims and Hypothesis: This study aims to investigate the mechanism involved in intracellular regulation of EGFR degradation induced by EGF. Methods: Phosphorylation of proteins related to EGFR signaling was examined by western blot analysis. Activation, connection between Rab35 and folliculin (FLCN) were assessed by pulldown, coimmunoprecipitation assays separately. The relationship between FLCN and cell growth was detected using gene overexpression and knock-down techniques. Results: Here, we demonstrate that interfering with FLCN, a tumor suppressor, reduces the rate of EGF-induced EGFR degradation, resulting in prolonged activation of downstream signaling. Rab35 is also involved in these processes. Moreover, C-terminal of FLCN binds to and activates Rab35. Of special interest is the observation that erlotinib, a selective EGFR inhibitor, not only obstructs the EGFR-mediated cellular signaling, but also abolishes EGF-stimulated EGFR degradation. Further results reveal that EGF facilitates the activation of Rab35, and FLCN modulates EGF-dependent Rab35 activation and cell growth. Conclusions: Taken together, our study proposes a negative-feedback regulation model in which FLCN mediates EGF-induced Rab35 activation, thereby increasing EGFR degradation and attenuating EGFR signaling.
Collapse
Affiliation(s)
- Jianchao Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Cui
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Argenzio E, Moolenaar WH. Emerging biological roles of Cl- intracellular channel proteins. J Cell Sci 2017; 129:4165-4174. [PMID: 27852828 DOI: 10.1242/jcs.189795] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cl- intracellular channels (CLICs) are a family of six evolutionary conserved cytosolic proteins that exist in both soluble and membrane-associated forms; however, their functions have long been elusive. Soluble CLICs adopt a glutathione S-transferase (GST)-fold, can induce ion currents in artificial membranes and show oxidoreductase activity in vitro, but there is no convincing evidence of CLICs having such activities in vivo. Recent studies have revealed a role for CLIC proteins in Rho-regulated cortical actin dynamics as well as vesicular trafficking and integrin recycling, the latter of which are under the control of Rab GTPases. In this Commentary, we discuss the emerging roles of CLIC proteins in these processes and the lessons learned from gene-targeting studies. We also highlight outstanding questions regarding the molecular function(s) of these important but still poorly understood proteins.
Collapse
Affiliation(s)
- Elisabetta Argenzio
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Wouter H Moolenaar
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
44
|
Biesemann A, Gorontzi A, Barr F, Gerke V. Rab35 protein regulates evoked exocytosis of endothelial Weibel-Palade bodies. J Biol Chem 2017; 292:11631-11640. [PMID: 28566286 PMCID: PMC5512060 DOI: 10.1074/jbc.m116.773333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/15/2017] [Indexed: 12/22/2022] Open
Abstract
Weibel–Palade bodies (WPB) are secretory organelles of endothelial cells that undergo evoked exocytosis following intracellular Ca2+ or cAMP elevation, thereby supplying the vasculature with factors controlling hemostasis. Several cytosolic and membrane-associated proteins, including the Rab family members Rab3, Rab15, and Rab27a, have been implicated in regulating the acute exocytosis of WPB. Here, we carried out a genome-wide screen to identify Rab pathways affecting WPB exocytosis. Overexpression of a specific subset of Rab GTPase–activating proteins (RabGAPs) inhibited histamine-evoked, Ca2+-dependent WPB exocytosis, presumably by inactivating the target Rab GTPases. Among these RabGAPs, we concentrated on TBC1D10A and showed that the inhibitory effect depends on its GAP activity. We confirmed that Rab35 was a target Rab of TBC1D10A in human endothelial cells; Rab35 interacted with TBC1D10A, and expression of the GAP-insensitive Rab35(Q67A) mutant rescued the inhibitory effect of TBC1D10A overexpression on WPB exocytosis. Furthermore, knockdown of Rab35 and expression of a dominant-negative Rab35 mutant both inhibited histamine-evoked secretion of the WPB cargos von Willebrand factor and P-selectin. Pulldown and co-immunoprecipitation experiments identified the ArfGAP with coiled-coil, Ank repeat, and pleckstrin homology domain–containing protein ACAP2 as an Rab35 effector in endothelial cells, and depletion as well as overexpression approaches revealed that ACAP2 acts as a negative regulator of WPB exocytosis. Interestingly, a known ACAP2 target, the small GTPase Arf6, supported histamine-evoked WPB exocytosis, as shown by knockdown and overexpression of a dominant-negative Arf6 mutant. Our data identify Rab35 as a novel regulator of WPB exocytosis, most likely acting through the downstream effectors ACAP2 and Arf6.
Collapse
Affiliation(s)
- Anja Biesemann
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany
| | - Alexandra Gorontzi
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany
| | - Francis Barr
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
45
|
Stepicheva NA, Dumas M, Kobi P, Donaldson JG, Song JL. The small GTPase Arf6 regulates sea urchin morphogenesis. Differentiation 2017; 95:31-43. [PMID: 28188999 DOI: 10.1016/j.diff.2017.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022]
Abstract
The small GTPase Arf6 is a conserved protein that is expressed in all metazoans. Arf6 remodels cytoskeletal actin and mediates membrane protein trafficking between the plasma membrane in its active form and endosomal compartments in its inactive form. While a rich knowledge exists for the cellular functions of Arf6, relatively little is known about its physiological role in development. This study examines the function of Arf6 in mediating cellular morphogenesis in early development. We dissect the function of Arf6 with a loss-of-function morpholino and constitutively active Arf6-Q67L construct. We focus on the two cell types that undergo active directed migration: the primary mesenchyme cells (PMCs) that give rise to the sea urchin skeleton and endodermal cells that form the gut. Our results indicate that Arf6 plays an important role in skeleton formation and PMC migration, in part due to its ability to remodel actin. We also found that embryos injected with Arf6 morpholino have gastrulation defects and embryos injected with constitutively active Arf6 have endodermal cells detached from the gut epithelium with decreased junctional cadherin staining, indicating that Arf6 may mediate the recycling of cadherin. Thus, Arf6 impacts cells that undergo coordinated movement to form embryonic structures in the developing embryo.
Collapse
Affiliation(s)
- Nadezda A Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Megan Dumas
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Priscilla Kobi
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Julie G Donaldson
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
46
|
Sotthibundhu A, McDonagh K, von Kriegsheim A, Garcia-Munoz A, Klawiter A, Thompson K, Chauhan KD, Krawczyk J, McInerney V, Dockery P, Devine MJ, Kunath T, Barry F, O'Brien T, Shen S. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res Ther 2016; 7:166. [PMID: 27846905 PMCID: PMC5109678 DOI: 10.1186/s13287-016-0425-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/18/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cellular reprogramming is a stressful process, which requires cells to engulf somatic features and produce and maintain stemness machineries. Autophagy is a process to degrade unwanted proteins and is required for the derivation of induced pluripotent stem cells (iPSCs). However, the role of autophagy during iPSC maintenance remains undefined. METHODS Human iPSCs were investigated by microscopy, immunofluorescence, and immunoblotting to detect autophagy machinery. Cells were treated with rapamycin to activate autophagy and with bafilomycin to block autophagy during iPSC maintenance. High concentrations of rapamycin treatment unexpectedly resulted in spontaneous formation of round floating spheres of uniform size, which were analyzed for differentiation into three germ layers. Mass spectrometry was deployed to reveal altered protein expression and pathways associated with rapamycin treatment. RESULTS We demonstrate that human iPSCs express high basal levels of autophagy, including key components of APMKα, ULK1/2, BECLIN-1, ATG13, ATG101, ATG12, ATG3, ATG5, and LC3B. Block of autophagy by bafilomycin induces iPSC death and rapamycin attenuates the bafilomycin effect. Rapamycin treatment upregulates autophagy in iPSCs in a dose/time-dependent manner. High concentration of rapamycin reduces NANOG expression and induces spontaneous formation of round and uniformly sized embryoid bodies (EBs) with accelerated differentiation into three germ layers. Mass spectrometry analysis identifies actin cytoskeleton and adherens junctions as the major targets of rapamycin in mediating iPSC detachment and differentiation. CONCLUSIONS High levels of basal autophagy activity are present during iPSC derivation and maintenance. Rapamycin alters expression of actin cytoskeleton and adherens junctions, induces uniform EB formation, and accelerates differentiation. IPSCs are sensitive to enzyme dissociation and require a lengthy differentiation time. The shape and size of EBs also play a role in the heterogeneity of end cell products. This research therefore highlights the potential of rapamycin in producing uniform EBs and in shortening iPSC differentiation duration.
Collapse
Affiliation(s)
- Areechun Sotthibundhu
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Chulabhorn International College of Medicine, Thammasat University, Patumthani, 12120, Thailand
| | - Katya McDonagh
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | - Amaya Garcia-Munoz
- Systems Biology Ireland, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Agnieszka Klawiter
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Kapil Dev Chauhan
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Janusz Krawczyk
- Department of Haematology, Galway University Hospital, Galway, Ireland
| | - Veronica McInerney
- HRB Clinical Research Facility, National University of Ireland Galway, University Road, Galway, Ireland
| | - Peter Dockery
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Michael J Devine
- MRC Center for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK.,Department of Molecular Neuroscience, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Tilo Kunath
- MRC Center for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Frank Barry
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
47
|
Abstract
Integrins are a family of heterodimeric receptors that bind to components of the extracellular matrix and influence cellular processes as varied as proliferation and migration. These effects are achieved by tight spatiotemporal control over intracellular signalling pathways, including those that mediate cytoskeletal reorganisation. The ability of integrins to bind to ligands is governed by integrin conformation, or activity, and this is widely acknowledged to be an important route to the regulation of integrin function. Over the last 15 years, however, the pathways that regulate endocytosis and recycling of integrins have emerged as major players in controlling integrin action, and studying integrin trafficking has revealed fresh insight into the function of this fascinating class of extracellular matrix receptors, in particular in the context of cell migration and invasion. Here, we review our current understanding of the contribution of integrin trafficking to cell motility.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK.
| |
Collapse
|
48
|
Mrozowska PS, Fukuda M. Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells. Small GTPases 2016; 7:231-238. [PMID: 27463697 DOI: 10.1080/21541248.2016.1211068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The characteristic feature of polarity establishment in MDCK II cells is transcytosis of apical glycoprotein podocalyxin (PCX) from the outer plasma membrane to the newly formed apical domain. This transcytotic event consists of multiple steps, including internalization from the plasma membrane, transport through early endosomes and Rab11-positive recycling endosomes, and delivery to the apical membrane. These steps are known to be tightly coordinated by Rab small GTPases, which act as molecular switches cycling between active GTP-bound and inactive GDP-bound states. However, our knowledge regarding which sets of Rabs regulate particular steps of PCX trafficking was rather limited. Recently, we have performed a comprehensive analysis of Rab GTPase engagement in the transcytotic pathway of PCX during polarity establishment in 2-dimensional (2D) and 3-dimensional (3D) MDCK II cell cultures. In this Commentary we summarize our findings and set them in the context of previous reports.
Collapse
Affiliation(s)
- Paulina S Mrozowska
- a Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences , Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi , Japan
| | - Mitsunori Fukuda
- a Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences , Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi , Japan
| |
Collapse
|
49
|
Deng W, Wang Y, Gu L, Duan B, Cui J, Zhang Y, Chen Y, Sun S, Dong J, Du J. MICAL1 controls cell invasive phenotype via regulating oxidative stress in breast cancer cells. BMC Cancer 2016; 16:489. [PMID: 27430308 PMCID: PMC4950114 DOI: 10.1186/s12885-016-2553-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/13/2016] [Indexed: 11/18/2022] Open
Abstract
Background Molecules Interacting with CasL (MICAL1), a multidomain flavoprotein monoxygenase, is strongly involved in the mechanisms that promote cancer cell proliferation and survival. Activation of MICAL1 causes an up-regulation of reactive oxygen species (ROS) in HeLa cells. ROS can function as a signaling molecule that modulates protein phosphorylation, leading to malignant phenotypes of cancer cells such as invasion and metastasis. Herein, we tested whether MICAL1 could control cell migration and invasion through regulating ROS in breast cancer cell lines. Methods The effects of depletion/overexperssion of MICAL1 on cell invasion rate were measured by matrigel-based transwell assays. The contents of ROS in breast cancer cells were evaluated by CM2-DCFHDA staining and enhanced lucigenin chemiluminescence method. RAB35 activity was assessed by pulldown assay. The relationship of RAB35 and MICAL1 was evaluated by immunofluorescence, coimmunoprecipitation, immunoblotting and co-transfection techniques. Immunoblotting assays were also used to analyze Akt phosphorylation level. Results In this study, we found that depletion of MICAL1 reduced cell migration and invasion as well as ROS generation. Phosphorylation of Akt was also attenuated by MICAL1 depletion. Likewise, the over-expression of MICAL1 augmented the generation of ROS, increased Akt phosphorylation, and favored invasive phenotype of breast cancer cells. Moreover, we investigated the effect of EGF signaling on MICAL1 function. We demonstrated that EGF increased RAB35 activation and activated form of RAB35 could bind to MICAL1. Silencing of RAB35 repressed ROS generation, prevented Akt phosphorylation and inhibited cell invasion in response to EGF. Conclusions Taken together, our results provide evidence that MICAL1 plays an essential role in the activation of ROS/Akt signaling and cell invasive phenotype and identify a novel link between RAB35 and MICAL1 in regulating breast cancer cell invasion. These findings may provide a basis for designing future therapeutic strategy for blocking breast cancer metastasis.
Collapse
Affiliation(s)
- Wenjie Deng
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Cui
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Dong
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
50
|
Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 2016; 214:197-213. [PMID: 27402952 PMCID: PMC4949450 DOI: 10.1083/jcb.201601025] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites.
Collapse
Affiliation(s)
- Seema Sinha
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | | | - Nan Hyung Hong
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232 Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|