1
|
Schachter J, Alvarez CL, Bazzi Z, Faillace MP, Corradi G, Hattab C, Rinaldi DE, Gonzalez-Lebrero R, Molineris MP, Sévigny J, Ostuni MA, Schwarzbaum PJ. Extracellular ATP hydrolysis in Caco-2 human intestinal cell line. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183679. [PMID: 34216588 DOI: 10.1016/j.bbamem.2021.183679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Extracellular nucleotides and nucleosides activate signaling pathways that play major roles in the physiology and pathophysiology of the gastrointestinal tract. Ectonucleotidases hydrolyze extracellular nucleotides and thus regulate ligand exposure to purinergic receptors. In this study, we investigated the expression, localization and activities of ectonucleotidases using Caco-2 cells, a model of human intestinal epithelial cells. In addition, by studying ATP release and the rates of extracellular ATP (eATP) hydrolysis, we analyzed the contribution of these processes to the regulation of eATP in these cells. Results show that Caco-2 cells regulate the metabolism of eATP and by-products by ecto-nucleoside triphosphate diphosphohydrolase-1 and -2, a neutral ecto-phosphatase and ecto-5'-nucleotidase. All these ectoenzymes were kinetically characterized using intact cells, and their presence confirmed by denatured and native gels, western blot and cytoimmunofluorescence techniques. In addition, regulation of eATP was studied by monitoring the dynamic balance between intracellular ATP release and ectoATPase activity. Following mechanical and hypotonic stimuli, Caco-2 cells triggered a strong but transient release of intracellular ATP, with almost no energy cost, leading to a steep increase of eATP concentration, which was later reduced by ectoATPase activity. A data-driven algorithm allowed quantifying and predicting the rates of ATP release and ATP consumption contributing to the dynamic accumulation of ATP at the cell surface.
Collapse
Affiliation(s)
- J Schachter
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
| | - C L Alvarez
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Z Bazzi
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - M P Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - G Corradi
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - C Hattab
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - D E Rinaldi
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - R Gonzalez-Lebrero
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - M Pucci Molineris
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina
| | - J Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - M A Ostuni
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - P J Schwarzbaum
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
2
|
Klunder LJ, Faber KN, Dijkstra G, van IJzendoorn SCD. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027888. [PMID: 28213466 DOI: 10.1101/cshperspect.a027888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine.
Collapse
Affiliation(s)
- Leon J Klunder
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
3
|
Compartmentalized gene expression profiling of receptive endometrium reveals progesterone regulated ENPP3 is differentially expressed and secreted in glycosylated form. Sci Rep 2016; 6:33811. [PMID: 27665743 PMCID: PMC5036034 DOI: 10.1038/srep33811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
The complexity of endometrial receptivity at the molecular level needs to be explored in detail to improve the management of infertility. Here, differential expression of transcriptomes in receptive endometrial glands and stroma revealed Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 (ENPP3) as a progesterone regulated factor and confirmed by various methods, both at mRNA and protein level. The involvement of ENPP3 in embryo attachment was tested in an in vitro model for human embryo implantation. Interestingly, there was high expression of ENPP3 mRNA in stroma but not protein. Presence of N-glycosylated ENPP3 in receptive phase uterine fluid in women confirms its regulation by progesterone and makes it possible to use in a non-invasive test of endometrial receptivity.
Collapse
|
4
|
Abstract
In the respiratory system, extracellular nucleotides and nucleosides serve as signaling molecules for a wide spectrum of biological functions regulating airway defenses against infection and toxic material. Their concentrations are controlled by a complex network of cell surface enzymes named ectonucleotidases. This highly integrated metabolic network combines the activities of three dephosphorylating ectonucleotidases, namely nucleoside triphosphate diphosphohydrolases (NTPDases), nucleotide pyrophosphatase/phosphodiesterases (NPPs) and alkaline phosphatases (APs). Extracellular nucleotides are also inter-converted by the transphosphorylating activities of ecto adenylate kinase (ectoAK) and nucleoside diphosphokinase (NDPK). Different cell types use specific combinations of ectonucleotidases to regulate local concentrations of P2 receptor agonists (ATP, UTP, ADP and UDP). In addition, they provide AMP for the activity of ecto 5'-nucleotidase (ecto 5'-NT; CD73), which produces the P1 receptor agonist: adenosine (ADO). Finally, mechanisms are in place to prevent the accumulation of airway ADO, namely adenosine deaminases and nucleoside transporters. This chapter reviews the properties of each enzyme and transporter, and the current knowledge on their distribution and regulation in the airways.
Collapse
|
5
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 799] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
6
|
Papanikolaou A, Papafotika A, Christoforidis S. CD39 Reveals Novel Insights into the Role of Transmembrane Domains in Protein Processing, Apical Targeting and Activity. Traffic 2011; 12:1148-65. [DOI: 10.1111/j.1600-0854.2011.01224.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Catino MA, Paladino S, Tivodar S, Pocard T, Zurzolo C. N- andO-Glycans Are Not Directly Involved in the Oligomerization and Apical Sorting of GPI Proteins. Traffic 2008; 9:2141-50. [DOI: 10.1111/j.1600-0854.2008.00826.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Jansen S, Callewaert N, Dewerte I, Andries M, Ceulemans H, Bollen M. An Essential Oligomannosidic Glycan Chain in the Catalytic Domain of Autotaxin, a Secreted Lysophospholipase-D. J Biol Chem 2007; 282:11084-91. [PMID: 17307740 DOI: 10.1074/jbc.m611503200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autotaxin/NPP2, a secreted lysophospholipase-D, promotes cell proliferation, survival, and motility by generating the signaling molecule lysophosphatidic acid. Here we show that ectonucleotide pyrophosphatase/phosphodiesterase 2 (NPP2) is N-glycosylated on Asn-53, Asn-410, and Asn-524. Mutagenesis and deglycosylation experiments revealed that only the glycosylation of Asn-524 is essential for the expression of the catalytic and motility-stimulating activities of NPP2. The N-glycan on Asn-524 was identified as Man8/9GlcNAc2, which is rarely present on mature eukaryotic glycoproteins. Additional studies show that this Asn-524-linked glycan is not accessible to alpha-1,2-mannosidase, suggesting that its non-reducing termini are buried inside the folded protein. Consistent with a structural role for the Asn-524-linked glycan, only the mutation of Asn-524 augmented the sensitivity of NPP2 to proteolysis and increased its mobility during Blue Native PAGE. Asn-524 is phylogenetically conserved and maps to the catalytic domain of NPP2, but a structural model of this domain suggests that Asn-524 is remote from the catalytic site. Our study defines an essential role for the Asn-524-linked glycan chain of NPP2.
Collapse
Affiliation(s)
- Silvia Jansen
- Laboratory of Biosignaling and Therapeutics, Department of Molecular Cell Biology, Faculty of Medicine, Catholic University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
9
|
Delaunay JL, Breton M, Goding JW, Trugnan G, Maurice M. Differential detergent resistance of the apical and basolateral NPPases: relationship with polarized targeting. J Cell Sci 2007; 120:1009-16. [PMID: 17311850 DOI: 10.1242/jcs.002717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Targeting of glycosylphosphatidylinositol-anchored proteins to the apical surface of epithelial cells involves clustering in Triton X-100-resistant membrane microdomains or rafts. The role of these microdomains in sorting transmembrane proteins is more questionable because, unlike glycosylphosphatidylinositol-anchored proteins, apical transmembrane proteins are rather soluble in Triton X-100. They are, however, resistant to milder detergents such as Lubrol WX or Tween 20. It has been proposed that specific membrane microdomains, defined by resistance to these detergents, would carry transmembrane proteins to the apical surface. We have used MDCK cells stably transfected with the apical and basolateral pyrophosphatases/phosphodiesterases, NPP3 and NPP1, to examine the relationship between detergent resistance and apical targeting. The apically expressed wild-type NPP3 was insoluble in Lubrol WX whereas wild-type NPP1, which is expressed basolaterally, was essentially soluble. By using tail mutants and chimeric constructs that combine the cytoplasmic, transmembrane and extracellular domains of NPP1 and NPP3, we show that there is not a strict correlation between detergent resistance and apical targeting. Lubrol resistance is an intrinsic property of NPP3, which is acquired early during the biosynthetic process irrespective of its final destination, and depends on positively charged residues in its cytoplasmic tail.
Collapse
|
10
|
García-García E, Brown EJ, Rosales C. Transmembrane Mutations to FcγRIIA Alter Its Association with Lipid Rafts: Implications for Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2007; 178:3048-58. [PMID: 17312151 DOI: 10.4049/jimmunol.178.5.3048] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many immunoreceptors have been reported to associate with lipid rafts upon ligand binding. The way in which this association is regulated is still obscure. We investigated the roles for various domains of the human immunoreceptor FcgammaRIIA in regulating its association with lipid rafts by determining the resistance of unligated, or ligated and cross-linked, receptors to solubilization by the nonionic detergent Triton X-100, when expressed in RBL-2H3 cells. Deletion of the cytoplasmic domain, or destruction of the cytoplasmic palmitoylation site, had no effect on the association of the receptor with lipid rafts. A transmembrane mutant, A224S, lost the ability to associate with lipid rafts upon receptor cross-linking, whereas transmembrane mutants VA231-2MM and VVAL234-7GISF showed constitutive lipid raft association. Wild-type (WT) FcgammaRIIA and all transmembrane mutants activated Syk, regardless of their association with lipid rafts. WT FcgammaRIIA and mutants that associated with lipid rafts efficiently activated NF-kappaB, in an ERK-dependent manner. In contrast, WT FcgammaRIIA and the A224S mutant both presented efficient phagocytosis, while VA231-2MM and VVAL234-7GISF mutants presented lower phagocytosis, suggesting that phagocytosis may proceed independently of lipid raft association. These data identify the transmembrane domain of FcgammaRIIA as responsible for regulating its inducible association with lipid rafts and suggest that FcgammaRIIA-mediated responses, like NF-kappaB activation or phagocytosis, can be modulated by lipid raft association of the ligated receptor.
Collapse
Affiliation(s)
- Erick García-García
- Immunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City D.F.-04510, Mexico
| | | | | |
Collapse
|
11
|
Chmelar RS, Nathanson NM. Identification of a novel apical sorting motif and mechanism of targeting of the M2 muscarinic acetylcholine receptor. J Biol Chem 2006; 281:35381-96. [PMID: 16968700 DOI: 10.1074/jbc.m605954200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous studies have shown that the M2 receptor is localized at steady state to the apical domain in Madin-Darby canine kidney (MDCK) epithelial cells. In this study, we identify the molecular determinants governing the localization and the route of apical delivery of the M2 receptor. First, by confocal analysis of a transiently transfected glycosylation mutant in which the three putative glycosylation sites were mutated, we determined that N-glycans are not necessary for the apical targeting of the M2 receptor. Next, using a chimeric receptor strategy, we found that two independent sequences within the M2 third intracellular loop can confer apical targeting to the basolaterally targeted M4 receptor, Val270-Lys280 and Lys280-Ser350. Experiments using Triton X-100 extraction followed by OptiPrep density gradient centrifugation and cholera toxin beta-subunit-induced patching demonstrate that apical targeting is not because of association with lipid rafts. 35S-Metabolic labeling experiments with domain-specific surface biotinylation as well as immunocytochemical analysis of the time course of surface appearance of newly transfected confluent MDCK cells expressing FLAG-M2-GFP demonstrate that the M2 receptor achieves its apical localization after first appearing on the basolateral domain. Domain-specific application of tannic acid of newly transfected cells indicates that initial basolateral plasma membrane expression is required for subsequent apical localization. This is the first demonstration that a G-protein-coupled receptor achieves its apical localization in MDCK cells via transcytosis.
Collapse
Affiliation(s)
- Renée S Chmelar
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | |
Collapse
|
12
|
Stefan C, Jansen S, Bollen M. Modulation of purinergic signaling by NPP-type ectophosphodiesterases. Purinergic Signal 2006; 2:361-70. [PMID: 18404476 PMCID: PMC2254485 DOI: 10.1007/s11302-005-5303-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 11/11/2005] [Accepted: 11/11/2005] [Indexed: 12/17/2022] Open
Abstract
Extracellular nucleotides can elicit a wide array of cellular responses by binding to specific purinergic receptors. The level of ectonucleotides is dynamically controlled by their release from cells, synthesis by ectonucleoside diphosphokinases and ectoadenylate kinases, and hydrolysis by ectonucleotidases. One of the four structurally unrelated families of ectonucleotidases is represented by the NPP-type ectophosphodiesterases. Three of the seven members of the NPP family, namely NPP1–3, are known to hydrolyze nucleotides. The enzymatic action of NPP1–3 (in)directly results in the termination of nucleotide signaling, the salvage of nucleotides and/or the generation of new messengers like ADP, adenosine or pyrophosphate. NPP2 is unique in that it hydrolyzes both nucleotides and lysophospholipids and, thereby, generates products that could synergistically promote cell motility. We review here the enzymatic properties of NPPs and analyze current evidence that links their nucleotide-hydrolyzing capability to epithelial and neural functions, the immune response and cell motility.
Collapse
Affiliation(s)
- Cristiana Stefan
- Division of Biochemistry, Department of Molecular Cell Biology, Faculty of Medicine, KULeuven, B-3000, Leuven, Belgium,
| | | | | |
Collapse
|
13
|
Abstract
We review here recent advances in our knowledge on trafficking and assembly of rotavirus and rotaviral proteins in intestinal cells. Assembly of rotavirus has been extensively studied in nonpolarized kidney epithelial MA104 cells, where several data indicate that most if not all the steps of rotavirus assembly take place within the endoplasmic reticulum (ER) and that rotavirus is release upon cell lysis. We focus here on data obtained in intestinal cells that argue for another scheme of rotavirus assembly, where the final steps seem to take place outside the ER with an apically polarized release of rotavirus without significant cell lysis. One of the key observations made by different groups is that VP4 and other structural proteins interact substantially with specialized membrane microdomains enriched in cholesterol and sphingolipids termed rafts. In addition, recent data point to the fact that VP4 does not localize within the ER or the Golgi apparatus in infected intestinal cells. The mechanisms by which VP4, a cytosolic protein, may be targeted to the apical membrane in these cells and assembles with the other structural proteins are discussed. The identification of cellular proteins such as Hsp70, flotillin, rab5, PRA1 and cytoskeletal components that interact with VP4 may help to define an atypical polarized trafficking pathway to the apical membrane of intestinal cells that will be raft-dependent and by-pass the classical exocytic route.
Collapse
Affiliation(s)
- Polly Roy
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| |
Collapse
|
14
|
Stefan C, Jansen S, Bollen M. NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci 2005; 30:542-50. [PMID: 16125936 DOI: 10.1016/j.tibs.2005.08.005] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 07/25/2005] [Accepted: 08/15/2005] [Indexed: 02/07/2023]
Abstract
Nucleotide pyrophosphatase/phosphodiesterase (NPP)-type ectophosphodiesterases are found at the cell surface as type-I or type-II transmembrane proteins, but are also found extracellularly as secreted or shedded enzymes. They hydrolyze pyrophosphate or phosphodiester bonds in a variety of extracellular compounds including nucleotides, (lyso)phospholipids and choline phosphate esters. Despite their structurally related catalytic domain, each enzyme has well-defined substrate specificity. Catalysis by NPPs affects processes as diverse as cell proliferation and motility, angiogenesis, bone mineralization and digestion. In addition, there is emerging evidence for non-catalytic functions of NPPs in cell signaling. NPP-type ectophosphodiesterases are also implicated in the pathophysiology of cancer, insulin resistance and calcification diseases, and they hold great promise as easily accessible therapeutic targets.
Collapse
Affiliation(s)
- Cristiana Stefan
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
15
|
Takada T, Suzuki H, Sugiyama Y. Characterization of Polarized Expression of Point- or Deletion-Mutated Human BCRP/ABCG2 in LLC-PK1 Cells. Pharm Res 2005; 22:458-64. [PMID: 15835752 DOI: 10.1007/s11095-004-1884-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE In polarized cells, such as hepatocytes and intestinal epithelial cells, transporters are localized on the apical or basolateral membranes and play important roles in the vectorial transport of their substrates. In the current study, we have aimed to clarify the mechanism for the cellular sorting of human breast cancer resistance protein (BCRP/ABCG2), which is expressed on the apical membrane of many tissues and functions as an efflux transporter. METHODS After the expression vector, including wild type or mutants of human BCRP cDNA, was transfected into LLC-PK1 cells, immunohistochemical staining and Western blot analyses were performed to characterize the cellular localization and the status of BCRP, respectively. RESULTS The transfected cDNA product of wild-type BCRP was expressed on the apical membrane in LLC-PK1 cells. Glycosylation consensus sequences-disrupted mutants showed the apical localization as the wild type, whereas the apical-selective expression disappeared when disulfide bonds could not be formed. Furthermore, examination of the localization of deletion mutants of human BCRP emphasized the importance of some peptide sequences. The region between the N-terminal and ATP-binding cassette and proximal C-terminal region, both of which are well conserved in various animal species, were found to be significant for proper localization. CONCLUSIONS These results suggest that, although the presence of N-glycan does not affect the localization of BCRP, disulfide bonds and some peptide sequences in both the N- and C-terminals are necessary for the apical expression of BCRP.
Collapse
Affiliation(s)
- Tappei Takada
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
16
|
Delmas O, Durand-Schneider AM, Cohen J, Colard O, Trugnan G. Spike protein VP4 assembly with maturing rotavirus requires a postendoplasmic reticulum event in polarized caco-2 cells. J Virol 2004; 78:10987-94. [PMID: 15452219 PMCID: PMC521830 DOI: 10.1128/jvi.78.20.10987-10994.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rotavirus assembly is a multistep process that requires the successive association of four major structural proteins in three concentric layers. It has been assumed until now that VP4, the most external viral protein that forms the spikes of mature virions, associates with double-layer particles within the endoplasmic reticulum (ER) in conjunction with VP7 and with the help of a nonstructural protein, NSP4. VP7 and NSP4 are two glycosylated proteins. However, we recently described a strong association of VP4 with raft-type membrane microdomains, a result that makes the ER a highly questionable site for the final assembly of rotavirus, since rafts are thought to be absent from this compartment. In this study, we used tunicamycin (TM), a drug known to block the first step of protein N glycosylation, as a tool to dissect rotavirus assembly. We show that, as expected, TM blocks viral protein glycosylation and also decreases virus infectivity. In the meantime, viral particles were blocked as enveloped particles in the ER. Interestingly, TM does not prevent the targeting of VP4 to the cell surface nor its association with raft membranes, whereas the infectivity associated with the raft fractions strongly decreased. VP4 does not colocalize with the ER marker protein disulfide-isomerase even when viral particles were blocked by TM in this compartment. These results strongly support a primary role for raft membranes in rotavirus final assembly and the fact that VP4 assembly with the rest of the particle is an extrareticular event.
Collapse
Affiliation(s)
- Olivier Delmas
- INSERM-UPMC UMR 538, CHU Saint-Antoine, Université Pierre et Marie Curie, 27 Rue Chaligny, 75012 Paris, France
| | | | | | | | | |
Collapse
|
17
|
Pang S, Urquhart P, Hooper NM. N-Glycans, not the GPI anchor, mediate the apical targeting of a naturally glycosylated, GPI-anchored protein in polarised epithelial cells. J Cell Sci 2004; 117:5079-86. [PMID: 15456847 DOI: 10.1242/jcs.01386] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycosyl-phosphatidylinositol (GPI) anchor mediates the apical sorting of proteins in polarised epithelial cells through its interaction with lipid rafts. Here we investigated the signals required for the apical targeting of the naturally N-glycosylated and GPI-anchored membrane dipeptidase by selective point mutation to remove the GPI anchor addition signal or the sites for N-linked glycosylation, or both. Activity assays, immunoblotting and immunofluorescence microscopy revealed that the constructs lacking the GPI anchor were secreted from Madin-Darby canine kidney (MDCK) cells, whereas those retaining the GPI anchor were attached at the cell surface, irrespective of the glycosylation status. Wild-type membrane dipeptidase was expressed preferentially on the apical surface of both MDCK and CaCo-2 cells. By contrast, the GPI-anchored construct lacking the N-glycans was targeted preferentially to the basolateral surface of both cell types. In constructs lacking the GPI anchor, the N-glycans also targeted the protein to the apical surface. Both the apically targeted, glycosylated and the basolaterally targeted, unglycosylated GPI-anchored forms of the protein were located in detergent-insoluble lipid rafts. These data indicate that it is the N-glycans, not the association of the GPI anchor with lipid rafts, which determine apical targeting of an endogenously N-glycosylated, GPI-anchored protein in polarised epithelial cells.
Collapse
Affiliation(s)
- Susan Pang
- School of Biochemistry and Microbiology, University of Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
18
|
Abstract
In order to carry out their physiological functions, ion transport proteins must be targeted to the appropriate domains of cell membranes. Regulation of ion transport activity frequently involves the tightly controlled delivery of intracellular populations of transport proteins to the plasma membrane or the endocytic retrieval of transport proteins from the cell surface. Transport proteins carry signals embedded within their structures that specify their subcellular distributions and endow them with the capacity to participate in regulated membrane trafficking processes. Recently, a great deal has been learned about the biochemical nature of these signals, as well as about the cellular machinery that interprets them and acts upon their messages.
Collapse
Affiliation(s)
- Theodore R Muth
- Department of Biology, CUNY Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11231, USA.
| | | |
Collapse
|
19
|
Goding JW, Grobben B, Slegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:1-19. [PMID: 12757929 DOI: 10.1016/s0925-4439(03)00058-9] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) multigene family contains five members. NPP1-3 are type II transmembrane metalloenzymes characterized by a similar modular structure composed of a short intracellular domain, a single transmembrane domain and an extracellular domain containing a conserved catalytic site. The short intracellular domain of NPP1 has a basolateral membrane-targeting signal while NPP3 is targeted to the apical surface of polarized cells. NPP4-5 detected by database searches have a predicted type I membrane orientation but have not yet been functionally characterized. E-NPPs have been detected in almost all tissues often confined to specific substructures or cell types. In some cell types, NPP1 expression is constitutive or can be induced by TGF-beta and glucocorticoids, but the signal transduction pathways that control expression are poorly documented. NPP1-3 have a broad substrate specificity which may reflect their role in a host of physiological and biochemical processes including bone mineralization, calcification of ligaments and joint capsules, modulation of purinergic receptor signalling, nucleotide recycling, and cell motility. Abnormal NPP expression is involved in pathological mineralization, crystal depositions in joints, invasion and metastasis of cancer cells, and type 2 diabetes. In this review we summarize the present knowledge on the structure and the physiological and biochemical functions of E-NPP and their contribution to the pathogenesis of diseases.
Collapse
Affiliation(s)
- James W Goding
- Department of Pathology and Immunology, Monash Medical School, Monash University, 3181, Victoria, Prahran, Australia
| | | | | |
Collapse
|
20
|
Huet G, Gouyer V, Delacour D, Richet C, Zanetta JP, Delannoy P, Degand P. Involvement of glycosylation in the intracellular trafficking of glycoproteins in polarized epithelial cells. Biochimie 2003; 85:323-30. [PMID: 12770771 DOI: 10.1016/s0300-9084(03)00056-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The surface of epithelial cells is composed of apical and basolateral domains with distinct structure and function. This polarity is maintained by specific sorting mechanisms occurring in the Trans-Golgi Network. Peptidic signals are responsible for the trafficking via clathrin-coated vesicles by means of an interaction with an adaptor complex (AP). The basolateral targeting is mediated by AP-1B, which is specifically expressed in epithelial cells. In contrast, the apical targeting is proposed to occur via apical raft carriers. It is thought that apically targeted glycoproteins contain glycan signals that would be responsible for their association with rafts and for apical targeting. However, the difficulty in terms of acting specifically on a single step of glycosylation did not allow one to identify such a specific signal. The complete inhibition of the processing of N-glycans by tunicamycin often results in an intracellular accumulation of unfolded proteins in the Golgi. Similarly, inhibition of O-glycosylation can be obtained by competitive substrates which gave a complex pattern of inhibition. Therefore, it is still unknown if glycosylation acts in an indirect manner, i.e. by modifying the folding of the protein, or in a specific manner, such as an association with specific lectins.
Collapse
Affiliation(s)
- G Huet
- Unité INSERM 560, Lille, France.
| | | | | | | | | | | | | |
Collapse
|
21
|
Martín-Belmonte F, Arvan P, Alonso MA. MAL mediates apical transport of secretory proteins in polarized epithelial Madin-Darby canine kidney cells. J Biol Chem 2001; 276:49337-42. [PMID: 11673461 DOI: 10.1074/jbc.m106882200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MAL proteolipid is an integral membrane protein identified as a component of the raft machinery for apical sorting of membrane proteins in Madin-Darby canine kidney (MDCK) cells. Previous studies have implicated lipid rafts in the transport of exogenous thyroglobulin (Tg), the predominant secretory protein of thyroid epithelial cells, to the apical surface in MDCK cells. We have examined the secretion of recombinant Tg and gp80/clusterin, a major endogenous secretory protein not detected in Triton X-100 insoluble rafts, for the investigation of the involvement of MAL in the constitutive apical secretory pathway of MDCK cells. We show that MAL depletion impairs apical secretion of Tg and causes its accumulation in the Golgi. Cholesterol sequestration, which blocks apical secretion of Tg, did not alter the levels of MAL in rafts but created a block proximal to Tg entrance into rafts. Apical secretion of gp80/clusterin was also inhibited by elimination of endogenous MAL. Our results suggest a role for MAL in the transport of both endogenously and exogenously expressed apical secretory proteins in MDCK cells.
Collapse
Affiliation(s)
- F Martín-Belmonte
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
22
|
Slimane TA, Lenoir C, Bello V, Delaunay JL, Goding JW, Chwetzoff S, Maurice M, Fransen JA, Trugnan G. The cytoplasmic/transmembrane domain of dipeptidyl peptidase IV, a type II glycoprotein, contains an apical targeting signal that does not specifically interact with lipid rafts. Exp Cell Res 2001; 270:45-55. [PMID: 11597126 DOI: 10.1006/excr.2001.5337] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We investigated the signals involved in the apical targeting of dipeptidyl peptidase IV (DPP IV/CD26), an archetypal type II transmembrane glycoprotein. A secretory construct, corresponding to the DPP IV ectodomain, was first stably expressed in both the enterocytic-like cell line Caco-2 and the epithelial kidney MDCK cells. Most of the secretory form of the protein was delivered apically in MDCK cells, whereas secretion was 60% basolateral in Caco-2 cells, indicating that DPP IV ectodomain targeting is cell-type-dependent. A chimera (CTM-GFP) containing only the cytoplasmic and transmembrane domains of mouse DPP IV plus the green fluorescent protein was then studied. In both cell lines, this chimera was preferentially expressed at the apical membrane. By contrast, a secretory form of GFP was randomly secreted, indicating that GFP by itself does not contain cryptic targeting information. Comparison of the sequence of the transmembrane domain of DPP IV and several other apically targeted proteins does not show any consensus, suggesting that the apical targeting signal may be conformational. Neither the DPP IV nor the CTM-GFP chimera was enriched in lipid rafts. Together these results indicate that, besides the well-known raft-dependent apical targeting pathway, the fate of the CTM domain of DPP IV may reveal a new raft-independent apical pathway.
Collapse
Affiliation(s)
- T A Slimane
- INSERM U538, CHU St Antoine, 27 rue Chaligny, Paris Cedex 12, 75571, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bello V, Goding JW, Greengrass V, Sali A, Dubljevic V, Lenoir C, Trugnan G, Maurice M. Characterization of a di-leucine-based signal in the cytoplasmic tail of the nucleotide-pyrophosphatase NPP1 that mediates basolateral targeting but not endocytosis. Mol Biol Cell 2001; 12:3004-15. [PMID: 11598187 PMCID: PMC60151 DOI: 10.1091/mbc.12.10.3004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Enzymes of the nucleotide pyrophosphatase/phosphodiesterase (NPPase) family are expressed at opposite surfaces in polarized epithelial cells. We investigated the targeting signal of NPP1, which is exclusively expressed at the basolateral surface. Full-length NPP1 and different constructs and mutants were transfected into the polarized MDCK cell line. Expression of the proteins was analyzed by confocal microscopy and surface biotinylation. The basolateral signal of NPP1 was identified as a di-leucine motif located in the cytoplasmic tail. Mutation of either or both leucines largely redirected NPP1 to the apical surface. Furthermore, addition of the conserved sequence AAASLLAP redirected the apical nucleotide pyrophosphatase/phosphodiesterase NPP3 to the basolateral surface. Full-length NPP1 was not significantly internalized. However, when the cytoplasmic tail was deleted upstream the di-leucine motif or when the six upstream flanking amino acids were deleted, the protein was mainly found intracellularly. Endocytosis experiments indicated that these mutants were endocytosed from the basolateral surface. These results identify the basolateral signal of NPP1 as a short sequence including a di-leucine motif that is dominant over apical determinants and point to the importance of surrounding amino acids in determining whether the signal will function as a basolateral signal only or as an endocytotic signal as well.
Collapse
Affiliation(s)
- V Bello
- U538 INSERM, CHU St-Antoine, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | | | |
Collapse
|