1
|
Joshi D, Jindal P, Shetty RK, Inamdar MS. Rudhira-mediated microtubule stability controls TGFβ signaling during mouse vascular development. eLife 2025; 13:RP98257. [PMID: 40372775 PMCID: PMC12080998 DOI: 10.7554/elife.98257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
The transforming growth factor β (TGFβ) signaling pathway is critical for survival, proliferation, and cell migration, and is tightly regulated during cardiovascular development. Smads, key effectors of TGFβ signaling, are sequestered by microtubules (MTs) and need to be released for pathway function. Independently, TGFβ signaling also stabilizes MTs. Molecular details and the in vivo relevance of this cross-regulation remain unclear, understanding which is important in complex biological processes such as cardiovascular development. Here, we use rudhira/Breast Carcinoma Amplified Sequence 3 (Bcas3), an MT-associated, endothelium-restricted, and developmentally essential proto-oncogene, as a pivot to decipher cellular mechanisms in bridging TGFβ signaling and MT stability. We show that Rudhira regulates TGFβ signaling in vivo, during mouse cardiovascular development, and in endothelial cells in culture. Rudhira associates with MTs and is essential for the activation and release of Smad2/3 from MTs. Consequently, Rudhira depletion attenuates Smad2/3-dependent TGFβ signaling, thereby impairing cell migration. Interestingly, Rudhira is also a transcriptional target of Smad2/3-dependent TGFβ signaling essential for TGFβ-induced MT stability. Our study identifies an immediate early physical role and a slower, transcription-dependent role for Rudhira in cytoskeleton-TGFβ signaling crosstalk. These two phases of control could facilitate temporally and spatially restricted targeting of the cytoskeleton and/or TGFβ signaling in vascular development and disease.
Collapse
Affiliation(s)
- Divyesh Joshi
- Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Preeti Jindal
- Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Ronak K Shetty
- Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Maneesha S Inamdar
- Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| |
Collapse
|
2
|
Gottumukkala SB, Palanisamy A. Non-small cell lung cancer map and analysis: exploring interconnected oncogenic signal integrators. Mamm Genome 2025:10.1007/s00335-025-10110-6. [PMID: 39939487 DOI: 10.1007/s00335-025-10110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Non-Small Cell lung cancer (NSCLC) is known for its fast progression, metastatic potency, and a leading cause of mortality globally. At diagnosis, approximately 30-40% of NSCLC patients already present with metastasis. Epithelial to mesenchymal transition (EMT) is a developmental program implicated in cancer progression and metastasis. Transforming Growth Factor-β (TGFβ) and its signalling plays a prominent role in orchestrating the process of EMT and cancer metastasis. In present study, a comprehensive molecular interaction map of TGFβ induced EMT in NSCLC was developed through an extensive literature survey. The map encompasses 394 species interconnected through 554 reactions, representing the relationship and complex interplay between TGFβ induced SMAD dependent and independent signalling pathways (PI3K/Akt, Wnt, EGFR, JAK/STAT, p38 MAPK, NOTCH, Hypoxia). The map, built using Cell Designer and compliant with SBGN and SBML standards, was subsequently translated into a logical modelling framework using CaSQ and dynamically analysed with Cell Collective. These analyses illustrated the complex regulatory dynamics, capturing the known experimental outcomes of TGFβ induced EMT in NSCLC including the co-existence of hybrid EM phenotype during transition. Hybrid EM phenotype is known to contribute for the phenotypic plasticity during metastasis. Network-based analysis identified the crucial network level properties and hub regulators, while the transcriptome-based analysis cross validated the prognostic significance and clinical relevance of key regulators. Overall, the map developed and the subsequent analyses offer deeper understanding of the complex regulatory network governing the process of EMT in NSCLC.
Collapse
Affiliation(s)
- Sai Bhavani Gottumukkala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| |
Collapse
|
3
|
Yang C, Wang R, Hardy P. The Multifaceted Roles of MicroRNA-181 in Stem Cell Differentiation and Cancer Stem Cell Plasticity. Cells 2025; 14:132. [PMID: 39851559 PMCID: PMC11763446 DOI: 10.3390/cells14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial-mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both normal stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often coexist and are interconnected in various contexts. Cancer stem cells are a critical tumor cell population that drives tumorigenesis, cancer progression, drug resistance, and metastasis. Stem cell differentiation and the generation of cancer stem cells are regulated by numerous molecules, including microRNAs (miRNAs). These miRNAs, particularly through the modulation of EMT-associated factors, play major roles in controlling the stemness of cancer stem cells. This review presents an up-to-date summary of the regulatory roles of miR-181 in human stem cell differentiation and cancer cell stemness. We outline studies from the current literature and summarize the miR-181-controlled signaling pathways responsible for driving human stem cell differentiation or the emergence of cancer stem cells. Given its critical role in regulating cell stemness, miR-181 is a promising target for influencing human cell fate. Modulation of miR-181 expression has been found to be altered in cancer stem cells' biological behaviors and to significantly improve cancer treatment outcomes. Additionally, we discuss challenges in miRNA-based therapies and targeted delivery with nanotechnology-based systems.
Collapse
Affiliation(s)
- Chun Yang
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Rui Wang
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Pierre Hardy
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
4
|
Tang Y, Xu L, Yang Y, Qin F, Meng F, Dai L, Meng Z, Ren S. TGF-β1-mediated upregulation of LMCD1 drives corneal myofibroblast differentiation and corneal fibrosis. Exp Eye Res 2024; 249:110130. [PMID: 39426558 DOI: 10.1016/j.exer.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Transforming growth factor β1 (TGF-β1) drives corneal fibroblasts to differentiate into corneal myofibroblasts and plays a key role in corneal fibrosis. However, the role of LIM and cysteine-rich domains-1 (LMCD1) in TGF-β1-induced corneal myofibroblast differentiation and corneal fibrosis remains elusive. Thus, this study aimed to investigate the expression, regulatory mechanism, and role of LMCD1 in TGF-β1-induced corneal myofibroblast differentiation and corneal fibrosis. The expression of LMCD1 in TGF-β1-stimulated corneal fibroblasts was found to be upregulated through mRNA sequencing, quantitative PCR (qPCR), and Western blotting. Moreover, LMCD1 was identified to be upregulated in a mouse model of corneal fibrosis via qPCR and Western blotting. Additionally, our results demonstrated that the increase in LMCD1 expression induced by TGF-β1 in corneal fibroblasts was primarily regulated by the SMAD3 signaling pathway. Furthermore, LMCD1 knockdown significantly inhibited TGF-β1-induced corneal fibroblast-to-myofibroblast differentiation and simultaneously activated SMAD3, JNK, and p38 by promoting TGF-β1 transcription. These findings collectively suggest that LMCD1 could upregulate alpha-smooth muscle actin (α-SMA) expression and downregulate TGF-β1 expression in corneal myofibroblast differentiation. Consequently, upregulation of LMCD1 expression could potentially serve as a strategy to mediate the TGF-β1 signaling pathway in corneal myofibroblast differentiation and corneal fibrosis, laying a theoretical reference for corneal fibrosis and contributing to the development of effective therapeutic strategies for corneal fibrosis.
Collapse
Affiliation(s)
- Yunlan Tang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Liyan Xu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Yiran Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Fangyuan Qin
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Feiying Meng
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Lijuan Dai
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Zhihong Meng
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Shengwei Ren
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
5
|
Li K, Guo C, Li R, Yao Y, Qiang M, Chen Y, Tu K, Xu Y. Pan-cancer characterization of cellular senescence reveals its inter-tumor heterogeneity associated with the tumor microenvironment and prognosis. Comput Biol Med 2024; 182:109196. [PMID: 39362000 DOI: 10.1016/j.compbiomed.2024.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Cellular senescence (CS) is characterized by the irreversible cell cycle arrest and plays a key role in aging and diseases, such as cancer. Recent years have witnessed the burgeoning exploration of the intricate relationship between CS and cancer, with CS recognized as either a suppressing or promoting factor and officially acknowledged as one of the 14 cancer hallmarks. However, a comprehensive characterization remains absent from elucidating the divergences of this relationship across different cancer types and its involvement in the multi-facets of tumor development. Here we systematically assessed the cellular senescence of over 10,000 tumor samples from 33 cancer types, starting by defining a set of cancer-associated CS signatures and deriving a quantitative metric representing the CS status, called CS score. We then investigated the CS heterogeneity and its intricate relationship with the prognosis, immune infiltration, and therapeutic responses across different cancers. As a result, cellular senescence demonstrated two distinct prognostic groups: the protective group with eleven cancers, such as LIHC, and the risky group with four cancers, including STAD. Subsequent in-depth investigations between these two groups unveiled the potential molecular and cellular mechanisms underlying the distinct effects of cellular senescence, involving the divergent activation of specific pathways and variances in immune cell infiltrations. These results were further supported by the disparate associations of CS status with the responses to immuno- and chemo-therapies observed between the two groups. Overall, our study offers a deeper understanding of inter-tumor heterogeneity of cellular senescence associated with the tumor microenvironment and cancer prognosis.
Collapse
Affiliation(s)
- Kang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Chen Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Rufeng Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yufei Yao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Min Qiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Yungang Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
6
|
Liu Y, Zhou Q, Zou G, Zhang W. Inhibin subunit beta B (INHBB): an emerging role in tumor progression. J Physiol Biochem 2024; 80:775-793. [PMID: 39183219 DOI: 10.1007/s13105-024-01041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
The gene inhibin subunit beta B (INHBB) encodes the inhibin βB subunit, which is involved in forming protein members of the transforming growth factor-β (TGF-β) superfamily. The TGF-β superfamily is extensively involved in cell proliferation, differentiation, adhesion, movement, metabolism, communication, and death. Activins and inhibins, which belong to the TGF-β superfamily, were first discovered in ovarian follicular fluid. They were initially described as regulators of pituitary follicle-stimulating hormone (FSH) secretion both in vivo and in vitro. Later studies found that INHBB is expressed not only in reproductive organs such as the ovary, uterus, and testis but also in numerous other organs, including the brain, spinal cord, liver, kidneys, and adrenal glands. This wide distribution implies its involvement in the normal physiological functions of various organs; however, the mechanisms underlying these functions have not yet been fully elucidated. Recent studies suggest that INHBB plays a significant, yet complex role in tumorigenesis. It appears to have dual effects, promoting tumor progression in some contexts while inhibiting it in others, although these roles are not yet fully understood. In this paper, we review the different expression patterns, functions, and mechanisms of INHBB in normal and tumor tissues to illustrate the research prospects of INHBB in tumor progression.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
- Department of Clinical Laboratory, Zhengzhou Orthopedic Hospital, Zhengzhou, Henan, People's Republic of China
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Qing Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Guoying Zou
- Department of Clinical Laboratory, Brain Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Gottumukkala SB, Ganesan TS, Palanisamy A. Comprehensive molecular interaction map of TGFβ induced epithelial to mesenchymal transition in breast cancer. NPJ Syst Biol Appl 2024; 10:53. [PMID: 38760412 PMCID: PMC11101644 DOI: 10.1038/s41540-024-00378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Breast cancer is one of the prevailing cancers globally, with a high mortality rate. Metastatic breast cancer (MBC) is an advanced stage of cancer, characterised by a highly nonlinear, heterogeneous process involving numerous singling pathways and regulatory interactions. Epithelial-mesenchymal transition (EMT) emerges as a key mechanism exploited by cancer cells. Transforming Growth Factor-β (TGFβ)-dependent signalling is attributed to promote EMT in advanced stages of breast cancer. A comprehensive regulatory map of TGFβ induced EMT was developed through an extensive literature survey. The network assembled comprises of 312 distinct species (proteins, genes, RNAs, complexes), and 426 reactions (state transitions, nuclear translocations, complex associations, and dissociations). The map was developed by following Systems Biology Graphical Notation (SBGN) using Cell Designer and made publicly available using MINERVA ( http://35.174.227.105:8080/minerva/?id=Metastatic_Breast_Cancer_1 ). While the complete molecular mechanism of MBC is still not known, the map captures the elaborate signalling interplay of TGFβ induced EMT-promoting MBC. Subsequently, the disease map assembled was translated into a Boolean model utilising CaSQ and analysed using Cell Collective. Simulations of these have captured the known experimental outcomes of TGFβ induced EMT in MBC. Hub regulators of the assembled map were identified, and their transcriptome-based analysis confirmed their role in cancer metastasis. Elaborate analysis of this map may help in gaining additional insights into the development and progression of metastatic breast cancer.
Collapse
Affiliation(s)
| | - Trivadi Sundaram Ganesan
- Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India.
| |
Collapse
|
8
|
Mendoza-Martínez GD, Orzuna-Orzuna JF, Roque-Jiménez JA, Gloria-Trujillo A, Martínez-García JA, Sánchez-López N, Hernández-García PA, Lee-Rangel HA. A Polyherbal Mixture with Nutraceutical Properties for Ruminants: A Meta-Analysis and Review of BioCholine Powder. Animals (Basel) 2024; 14:667. [PMID: 38473052 PMCID: PMC11154432 DOI: 10.3390/ani14050667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
BioCholine Powder is a polyherbal feed additive composed of Achyrantes aspera, Trachyspermum ammi, Azadirachta indica, and Citrullus colocynthis. The objective of this study was to analyze published results that support the hypothesis that the polyherbal product BioCholine Powder has rumen bypass choline metabolites through a meta-analysis and effect size analysis (ES). Using Scopus, Web of Science, ScienceDirect, PubMed, and university dissertation databases, a systematic search was conducted for experiments published in scientific documents that evaluated the effects of BioCholine supplementation on the variables of interest. The analyzed data were extracted from twenty-one publications (fifteen scientific articles, three abstracts, and three graduate dissertations available in institutional libraries). The studies included lamb growing-finishing, lactating ewes and goats, calves, and dairy cows. The effects of BioCholine were analyzed using random effects statistical models to compare the weighted mean difference (WMD) between BioCholine-supplemented ruminants and controls (no BioCholine). Heterogeneity was explored, and three subgroup analyses were performed for doses [(4 (or 5 g/d), 8 (10 g/d)], supplementation in gestating and lactating ewes (pre- and postpartum supplementation), and blood metabolites by species and physiological state (lactating goats, calves, lambs, ewes). Supplementation with BioCholine in sheep increased the average daily lamb gain (p < 0.05), final body weight (p < 0.01), and daily milk yield (p < 0.05) without effects on intake or feed conversion. Milk yield was improved in small ruminants with BioCholine prepartum supplementation (p < 0.10). BioCholine supplementation decreased blood urea (p < 0.01) and increased levels of the liver enzymes alanine transaminase (ALT; p < 0.10) and albumin (p < 0.001). BioCholine doses over 8 g/d increased blood glucose, albumin (p < 0.10), cholesterol, total protein, and globulin (p < 0.05). The ES values of BioCholine in retained energy over the control in growing lambs were +7.15% NEm (p < 0.10) and +9.25% NEg (p < 0.10). In conclusion, adding BioCholine Powder to domestic ruminants' diets improves productive performance, blood metabolite indicators of protein metabolism, and liver health, showing its nutraceutical properties where phosphatidylcholine prevails as an alternative that can meet the choline requirements in ruminants.
Collapse
Affiliation(s)
- Germán David Mendoza-Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | | | - José Alejandro Roque-Jiménez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Ejido Nuevo León, Mexicali 21705, Mexico
| | - Adrián Gloria-Trujillo
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | - José Antonio Martínez-García
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | - Nallely Sánchez-López
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | | | - Héctor Aaron Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, S.L.P., Soledad de Graciano Sánchez 78000, Mexico;
| |
Collapse
|
9
|
Lin CY, Xu WB, Li BZ, Shu MA, Zhang YM. Structural and functional analysis of transforming growth factor beta regulator 1 (TBRG1) in the red swamp crayfish Procambarus clarkii: The initial insight into TBRG1's role in invertebrate immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109350. [PMID: 38168633 DOI: 10.1016/j.fsi.2023.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
The transforming growth factor beta regulator 1 (TBRG1) is a growth inhibitory protein that acts as a tumor suppressor in human cancers, gaining its name for the transcriptional regulation by TGF-β. While extensive research has been conducted on the tumor-related function of TBRG1 in mammals, its significance in invertebrates remains largely unexplored. In this study, a homolog of TBRG1 was first structurally and functionally analyzed in the red swamp crayfish Procambarus clarkii. The full-length cDNA sequence was 2143 base pairs (bp) with a 1305 bp open reading frame (ORF) encoding a deduced protein of 434 amino acids (aa). The changes of PcTBRG1 transcripts upon immune challenges indicated its involvement in innate immunity. After knocking down PcTBRG1, the decline of bacteria clearance capacity revealed the participation of PcTBRG1 in the immune response. Furthermore, the downregulation of AMPs' expression after the cotreatment of RNAi and bacteria challenge suggested that PcTBRG1 might participate in innate immunity through regulating AMPs' expression. These results provided initial insight into the immune-related function of TBRG1 in invertebrates.
Collapse
Affiliation(s)
- Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Wang S, Liu S, Zhu Y, Zhang B, Yang Y, Li L, Sun Y, Zhang L, Fan L, Hu X, Huang C. A novel and independent survival prognostic model for OSCC: the functions and prognostic values of RNA-binding proteins. Eur Arch Otorhinolaryngol 2024; 281:397-409. [PMID: 37656222 DOI: 10.1007/s00405-023-08200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC), exhibiting high morbidity and malignancy, is the most common type of oral cancer. The abnormal expression of RNA-binding proteins (RBPs) plays important roles in the occurrence and progression of cancer. The objective of the present study was to establish a prognostic assessment model of RBPs and to evaluate the prognosis of OSCC patients. METHODS Gene expression data in The Cancer Genome Atlas (TCGA) were analyzed by univariate Cox regression analysis model that established a novel nine RBPs, which were used to build a prognostic risk model. A multivariate Cox proportional regression model and the survival analysis were used to evaluate the prognostic risk model. Moreover, the receive operator curve (ROC) analysis was tested further the efficiency of prognostic risk model based on data from TCGA database and Gene Expression Omnibus (GEO). RESULTS Nine RBPs' signatures (ACO1, G3BP1, NMD3, RNGTT, ZNF385A, SARS, CARS2, YARS and SMAD6) with prognostic value were identified in OSCC patients. Subsequently, the patients were further categorized into high-risk group and low-risk in the overall survival (OS) and disease-free survival (DFS), and external validation dataset. ROC analysis was significant for both the TCGA and GEO. Moreover, GSEA revealed that patients in the high-risk group significantly enriched in many critical pathways correlated with tumorigenesis than the low, including cell cycle, adheres junctions, oocyte meiosis, spliceosome, ERBB signaling pathway and ubiquitin-mediated proteolysis. CONCLUSIONS Collectively, we developed and validated a novel robust nine RBPs for OSCC prognosis prediction. The nine RBPs could serve as an independent and reliable prognostic biomarker and guiding clinical therapy for OSCC patients.
Collapse
Affiliation(s)
- Shanshan Wang
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Shuang Liu
- Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yaomin Zhu
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Baorong Zhang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yongtao Yang
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Limei Li
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yingying Sun
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Long Zhang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Lina Fan
- Department of Stomatology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Xuegang Hu
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China.
| | - Chunyu Huang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China.
- Medical Affairs Department, University of Chinese Academy of Sciences-Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
11
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Ahmed SH, Deng AT, Huntley RP, Campbell NH, Lovering RC. Capturing heart valve development with Gene Ontology. Front Genet 2023; 14:1251902. [PMID: 37915827 PMCID: PMC10616796 DOI: 10.3389/fgene.2023.1251902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction: The normal development of all heart valves requires highly coordinated signaling pathways and downstream mediators. While genomic variants can be responsible for congenital valve disease, environmental factors can also play a role. Later in life valve calcification is a leading cause of aortic valve stenosis, a progressive disease that may lead to heart failure. Current research into the causes of both congenital valve diseases and valve calcification is using a variety of high-throughput methodologies, including transcriptomics, proteomics and genomics. High quality genetic data from biological knowledge bases are essential to facilitate analyses and interpretation of these high-throughput datasets. The Gene Ontology (GO, http://geneontology.org/) is a major bioinformatics resource used to interpret these datasets, as it provides structured, computable knowledge describing the role of gene products across all organisms. The UCL Functional Gene Annotation team focuses on GO annotation of human gene products. Having identified that the GO annotations included in transcriptomic, proteomic and genomic data did not provide sufficient descriptive information about heart valve development, we initiated a focused project to address this issue. Methods: This project prioritized 138 proteins for GO annotation, which led to the curation of 100 peer-reviewed articles and the creation of 400 heart valve development-relevant GO annotations. Results: While the focus of this project was heart valve development, around 600 of the 1000 annotations created described the broader cellular role of these proteins, including those describing aortic valve morphogenesis, BMP signaling and endocardial cushion development. Our functional enrichment analysis of the 28 proteins known to have a role in bicuspid aortic valve disease confirmed that this annotation project has led to an improved interpretation of a heart valve genetic dataset. Discussion: To address the needs of the heart valve research community this project has provided GO annotations to describe the specific roles of key proteins involved in heart valve development. The breadth of GO annotations created by this project will benefit many of those seeking to interpret a wide range of cardiovascular genomic, transcriptomic, proteomic and metabolomic datasets.
Collapse
Affiliation(s)
- Saadullah H. Ahmed
- Functional Gene Annotation, Pre-clinical and Fundamental Science, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Alexander T. Deng
- Department of Clinical Genetics, Guy’s and St Thomas’s NHS Foundation Trust, London, United Kingdom
| | - Rachael P. Huntley
- SciBite Limited, BioData Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Ruth C. Lovering
- Functional Gene Annotation, Pre-clinical and Fundamental Science, Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
13
|
Wu S, Luwor RB, Zhu HJ. Dynamics of transforming growth factor β signaling and therapeutic efficacy. Growth Factors 2023; 41:82-100. [PMID: 37229558 DOI: 10.1080/08977194.2023.2215335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Transforming growth factor β (TGFβ) is a multifunctional cytokine, and its signalling responses are exerted via integrated intracellular pathways and complex regulatory mechanisms. Due to its high potency, TGFβ signalling is tightly controlled under normal circumstances, while its dysregulation in cancer favours metastasis. The recognised potential of TGFβ as a therapeutic target led to emerging development of anti-TGFβ reagents with preclinical success, yet these therapeutics failed to recapitulate their efficacy in experimental settings. In this review, possible reasons for this inconsistency are discussed, addressing the knowledge gap between theoretical and actual behaviours of TGFβ signalling. Previous studies on oncogenic cells have demonstrated the spatiotemporal heterogeneity of TGFβ signalling intensity. Under feedback mechanisms and exosomal ligand recycling, cancer cells may achieve cyclic TGFβ signalling to facilitate dissemination and colonisation. This challenges the current presumption of persistently high TGFβ signalling in cancer, pointing to a new direction of research on TGFβ-targeted therapeutics.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Rodney Brian Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
14
|
Weckerle J, Mayr CH, Fundel-Clemens K, Lämmle B, Boryn L, Thomas MJ, Bretschneider T, Luippold AH, Huber HJ, Viollet C, Rist W, Veyel D, Ramirez F, Klee S, Kästle M. Transcriptomic and Proteomic Changes Driving Pulmonary Fibrosis Resolution in Young and Old Mice. Am J Respir Cell Mol Biol 2023; 69:422-440. [PMID: 37411041 DOI: 10.1165/rcmb.2023-0012oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis. Yet in this model, it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Old mice showed incomplete and delayed lung function recovery 8 weeks after bleomycin instillation. This shift in structural and functional repair in old bleomycin-treated mice was reflected in a temporal shift in gene and protein expression. We reveal gene signatures and signaling pathways that underpin the lung repair process. Importantly, the downregulation of WNT, BMP, and TGFβ antagonists Frzb, Sfrp1, Dkk2, Grem1, Fst, Fstl1, and Inhba correlated with lung function improvement. Those genes constitute a network with functions in stem cell pathways, wound, and pulmonary healing. We suggest that insufficient and delayed downregulation of those antagonists during fibrosis resolution in old mice explains the impaired regenerative outcome. Together, we identified signaling pathway molecules with relevance to lung regeneration that should be tested in-depth experimentally as potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | - Bärbel Lämmle
- Global Computational Biology and Digital Sciences, and
| | | | | | - Tom Bretschneider
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Andreas H Luippold
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | | | | | - Wolfgang Rist
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Daniel Veyel
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Fidel Ramirez
- Global Computational Biology and Digital Sciences, and
| | - Stephan Klee
- Department of Immunology and Respiratory Disease Research
| | - Marc Kästle
- Department of Immunology and Respiratory Disease Research
| |
Collapse
|
15
|
Shafi T, Rasool R, Ayub S, Bhat IA, Shah IH, Hussain S, Shah ZA, Baba SM, Makhdoomi R, Bashir SA. Unveiling the TGF- β1 paradox: Significant implication of TGF- β1 promoter variants and its mRNA and protein expression in atopic dermatitis. Mol Immunol 2023; 157:214-224. [PMID: 37084506 DOI: 10.1016/j.molimm.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Atopic Dermatitis (AD) is a chronic inflammatory skin disorder with evidence of lichenification in later stages. There is mounting evidence supporting the role of TGF- β1 in mediating inflammation as well as subsequent tissue remodeling, often resulting in fibrosis. Given the role of genetic variants in the differential expression of TGF-β1 in various diseases, this study seeks to ascertain the role of TGF-β1 promoter variants (rs1800469 and rs1800468) in AD susceptibility, as well as their association with TGF- β1 mRNA expression, TGF- β1 serum levels and skin prick test positivity in Atopic Dermatitis patients. METHODS An aggregate of 246 subjects including 134 AD cases and 112 matched healthy controls were genotyped for TGF-β1 promoter polymorphisms by PCR-RFLP. TGF- β1 mRNA was quantified by quantitative Real-Time PCR (qRT-PCR), Vitamin-D levels by chemiluminescence, and serum TGF- β1, and total IgE levels were determined by ELISA. In-vivo allergy testing was performed for the evaluation of allergic reactions to house dust mites and food allergens. RESULTS A higher frequency of TT genotypes of rs1800469 (OR = 7.7, p = 0.0001) and GA+AA genotypes of rs1800468 (OR-4.4, p < 0.0001) were observed in AD cases than those in controls. Haplotype analysis demonstrated that TG haplotype carriers had an increased risk of AD (p = 0.013). Quantitative analysis revealed a significant upregulation of both mRNA (p = 0.0002) and serum levels (p < 0.0001) of TGF- β1 with a substantial positive correlation between them (Correlation coefficient=0.504; p = 0.01). Moreover, serum TGF-β1 levels were associated with quality of life (p = 0.03), the severity of the disease (p = 0.03), and House dust mite allergy (p = 0.01) whereas TGF-β1 mRNA levels positively correlated with disease severity(p = 0.02). Stratification analysis revealed that the TT genotype of rs1800469 was associated with higher IgE levels (p = 0.01) and eosinophil percentage(p = 0.007) whereas the AA genotype of rs1800468 correlated with elevated serum IgE levels (p = 0.01). Besides, no significant association of genotypes with mRNA and serum expression of TGF-β1 was observed. CONCLUSION Our study indicates that TGF-β1 promoter SNPs bear a significant risk of AD development. Moreover, upregulation of TGF-β1 mRNA and serum levels and their association with disease severity, quality of life, and HDM allergy suggests its role as a diagnostic/prognostic biomarker that could help in the development of new therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Tabasum Shafi
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Roohi Rasool
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India.
| | - Sakeena Ayub
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Imtiyaz A Bhat
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Iffat Hassan Shah
- Department of Dermatology, Venereology, and Leprosy, GMC- Srinagar 190010, India
| | - Showkat Hussain
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Zafar A Shah
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Shahid M Baba
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | | | - Sheikh Adil Bashir
- Department of Plastic and Reconstructive Surgery, SKIMS, Srinagar 190011, India
| |
Collapse
|
16
|
Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer 2023; 22:40. [PMID: 36810079 PMCID: PMC9942077 DOI: 10.1186/s12943-023-01740-y] [Citation(s) in RCA: 475] [Impact Index Per Article: 237.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/22/2022] [Indexed: 02/23/2023] Open
Abstract
Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.
Collapse
Affiliation(s)
- Aritraa Lahiri
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Avik Maji
- Department of Radiation Oncology, N. R. S. Medical College & Hospital, 138 A.J.C. Bose Road, Kolkata, 700014, India
| | - Pravin D Potdar
- Department of Molecular Medicine and Stem Cell Biology, Jaslok Hospital and Research Centre, Mumbai, 400026, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Purvish Parikh
- Department of Clinical Hematology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, 302022, India
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, 400012, India
| | - Bharti Bisht
- Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Anubhab Mukherjee
- Esperer Onco Nutrition Pvt Ltd, 4BA, 4Th Floor, B Wing, Gundecha Onclave, Khairani Road, Sakinaka, Andheri East, Mumbai, Maharashtra, 400072, India.
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
17
|
Kim H, Choo H, Cha J, Jang M, Son J, Jeong T, Choi BH, Lim Y, Chai HH, Lee J, Lim D, Shin D, Park W, Park JE. Blood transcriptome comparison between sexes and their function in 4-week Rhode Island red chickens. Anim Cells Syst (Seoul) 2022; 26:358-368. [PMID: 36605592 PMCID: PMC9809412 DOI: 10.1080/19768354.2022.2146187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sex is a major biological factor in the development and physiology of a sexual reproductive organism, and its role in the growing process is needed to be investigated in various species. We compare blood transcriptome between 5 males and 5 females in 4-week-old Rhode Island Red chickens and perform functional annotation of differentially expressed genes (DEGs). The results are as follows. 141 and 109 DEGs were located in autosomes and sex chromosomes, respectively. The gene ontology (GO) terms are significantly (p < 0.05) enriched, which were limb development, inner ear development, positive regulation of dendrite development, the KEGG pathway the TGF-beta signaling pathway, and melanogenesis (p < 0.05). These pathways are related to morphological maintenance and growth of the tissues. In addition, the SMAD2W and the BMP5 were involved in the TGF-beta signaling pathway, and both play an important role in maintaining tissue development. The major DEGs related to the development of neurons and synapses include the up-regulated NRN1, GDF10, SLC1A1, BMP5, NBEA, and NRXN1. Also, 7 DEGs were validated using RT-qPCR with high correlation (r 2 = 0.74). In conclusion, the differential expression of blood tissue in the early growing chicken was enriched in TGF-beta signaling and related to the development of neurons and synapses including SMAD2W and BMP5. These results suggest that blood in the early growing stage is differentially affected in tissue development, nervous system, and pigmentation by sex. For future research, experimental characterization of DEGs and a holistic investigation of various tissues and growth stages will be required.
Collapse
Affiliation(s)
- Hana Kim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Hyojun Choo
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang, Korea
| | - Jihye Cha
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Myoungjin Jang
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Juhwan Son
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Taejoon Jeong
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Bong-Hwan Choi
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Youngjo Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Han-Ha Chai
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Jungjae Lee
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Korea
| | - Dajeong Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea
| | - Woncheoul Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea, Jong-Eun Park Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju-si, 63243, Korea; Woncheoul Park Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, 55365, Korea
| | - Jong-Eun Park
- Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju-si, Korea, Jong-Eun Park Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju-si, 63243, Korea; Woncheoul Park Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, 55365, Korea
| |
Collapse
|
18
|
Pharmacological inhibition of HDAC6 improves muscle phenotypes in dystrophin-deficient mice by downregulating TGF-β via Smad3 acetylation. Nat Commun 2022; 13:7108. [PMID: 36402791 PMCID: PMC9675748 DOI: 10.1038/s41467-022-34831-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
The absence of dystrophin in Duchenne muscular dystrophy disrupts the dystrophin-associated glycoprotein complex resulting in skeletal muscle fiber fragility and atrophy, associated with fibrosis as well as microtubule and neuromuscular junction disorganization. The specific, non-conventional cytoplasmic histone deacetylase 6 (HDAC6) was recently shown to regulate acetylcholine receptor distribution and muscle atrophy. Here, we report that administration of the HDAC6 selective inhibitor tubastatin A to the Duchenne muscular dystrophy, mdx mouse model increases muscle strength, improves microtubule, neuromuscular junction, and dystrophin-associated glycoprotein complex organization, and reduces muscle atrophy and fibrosis. Interestingly, we found that the beneficial effects of HDAC6 inhibition involve the downregulation of transforming growth factor beta signaling. By increasing Smad3 acetylation in the cytoplasm, HDAC6 inhibition reduces Smad2/3 phosphorylation, nuclear translocation, and transcriptional activity. These findings provide in vivo evidence that Smad3 is a new target of HDAC6 and implicate HDAC6 as a potential therapeutic target in Duchenne muscular dystrophy.
Collapse
|
19
|
Dadafarin S, Rodríguez TC, Carnazza MA, Tiwari RK, Moscatello A, Geliebter J. MEG3 Expression Indicates Lymph Node Metastasis and Presence of Cancer-Associated Fibroblasts in Papillary Thyroid Cancer. Cells 2022; 11:cells11193181. [PMID: 36231143 PMCID: PMC9562881 DOI: 10.3390/cells11193181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Papillary thyroid cancer is the most common endocrine malignancy, occurring at an incidence rate of 12.9 per 100,000 in the US adult population. While the overall 10-year survival of PTC nears 95%, the presence of lymph node metastasis (LNM) or capsular invasion indicates the need for extensive neck dissection with possible adjuvant radioactive iodine therapy. While imaging modalities such as ultrasound and CT are currently in use for the detection of suspicious cervical lymph nodes, their sensitivities for tumor-positive nodes are low. Therefore, advancements in preoperative detection of LNM may optimize the surgical and medical management of patients with thyroid cancer. To this end, we analyzed bulk RNA-sequencing datasets to identify candidate markers highly predictive of LNM. We identified MEG3, a long-noncoding RNA previously described as a tumor suppressor when expressed in malignant cells, as highly associated with LNM tissue. Furthermore, the expression of MEG3 was highly predictive of tumor infiltration with cancer-associated fibroblasts, and single-cell RNA-sequencing data revealed the expression of MEG3 was isolated to cancer-associated fibroblasts (CAFs) in the most aggressive form of thyroid cancers. Our findings suggest that MEG3 expression, specifically in CAFs, is highly associated with LNM and may be a driver of aggressive disease.
Collapse
Affiliation(s)
- Sina Dadafarin
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
- Correspondence: (S.D.); (J.G.)
| | - Tomás C. Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Michelle A. Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | | | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
- Correspondence: (S.D.); (J.G.)
| |
Collapse
|
20
|
Son S, Yoo SA, Nam K, Oh S, Lee KM, Yi JY, Shin I. Brain type of creatine kinase induces doxorubicin resistance via TGF-β signaling in MDA-MB-231 breast cancer cells. Anim Cells Syst (Seoul) 2022; 26:203-213. [PMID: 36275445 PMCID: PMC9586670 DOI: 10.1080/19768354.2022.2107070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Brain type of creatine kinase (CKB) regulates energy homeostasis by reversibly transferring phosphate groups between phosphocreatine and ATP at sites of high energy demand. Several types of cancer cells exhibit upregulated CKB expression, but the function of CKB in cancer cells remains unclear. In this study, we investigated the function of CKB in breast cancer by overexpressing CKB in MDA-MB-231 cells. The overexpression of CKB did not affect cell growth rate, cell cycle distribution, ATP level or key mediators of aerobic glycolysis and lactate dehydrogenase isoform levels. Meanwhile, CKB overexpression did increase resistance to doxorubicin. TGF-β-induced Smad phosphorylation and Smad-dependent transcriptional activity were significantly up-regulated by CKB expression without changes in inhibitory Smad protein levels. Moreover, treatment with TGF-β considerably enhanced cell viability during doxorubicin treatment and decreased doxorubicin-induced apoptosis in CKB-expressing MDA-MB-231 cells compared to control cells. These results suggest that CKB attenuates doxorubicin-induced apoptosis and potentiates resistance to doxorubicin by enhancing TGF-β signaling in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Seogho Son
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Seung-ah Yoo
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - KeeSoo Nam
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Sunhwa Oh
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Kyung-min Lee
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Jae Youn Yi
- Division of Radiation Effects, Korea Institute of Radiation and Medical Sciences, Seoul, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
- Natural Science Institute, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Böhnke L, Zhou-Yang L, Pelucchi S, Kogler F, Frantal D, Schön F, Lagerström S, Borgogno O, Baltazar J, Herdy JR, Kittel-Schneider S, Defrancesco M, Mertens J. Chemical Replacement of Noggin with Dorsomorphin Homolog 1 for Cost-Effective Direct Neuronal Conversion. Cell Reprogram 2022; 24:304-313. [PMID: 35877103 PMCID: PMC9587801 DOI: 10.1089/cell.2021.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The direct conversion of adult human skin fibroblasts (FBs) into induced neurons (iNs) represents a useful technology to generate donor-specific adult-like human neurons. Disease modeling studies rely on the consistently efficient conversion of relatively large cohorts of FBs. Despite the identification of several small molecular enhancers, high-yield protocols still demand addition of recombinant Noggin. To identify a replacement to circumvent the technical and economic challenges associated with Noggin, we assessed dynamic gene expression trajectories of transforming growth factor-β signaling during FB-to-iN conversion. We identified ALK2 (ACVR1) of the bone morphogenic protein branch to possess the highest initial transcript abundance in FBs and the steepest decline during successful neuronal conversion. We thus assessed the efficacy of dorsomorphin homolog 1 (DMH1), a highly selective ALK2-inhibitor, for its potential to replace Noggin. Conversion media containing DMH1 (+DMH1) indeed enhanced conversion efficiencies over basic SMAD inhibition (tSMADi), yielding similar βIII-tubulin (TUBB3) purities as conversion media containing Noggin (+Noggin). Furthermore, +DMH1 induced high yields of iNs with clear neuronal morphologies that are positive for the mature neuronal marker NeuN. Validation of +DMH1 for iN conversion of FBs from 15 adult human donors further demonstrates that Noggin-free conversion consistently yields iN cultures that display high βIII-tubulin numbers with synaptic structures and basic spontaneous neuronal activity at a third of the cost.
Collapse
Affiliation(s)
- Lena Böhnke
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Innsbruck, Tyrol, Austria.,Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lucia Zhou-Yang
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Silvia Pelucchi
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Flora Kogler
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Daniela Frantal
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Florian Schön
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Stina Lagerström
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Oliver Borgogno
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Jennifer Baltazar
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Joseph R Herdy
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Innsbruck, Tyrol, Austria.,Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Sarah Kittel-Schneider
- Center of Mental Health, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Michaela Defrancesco
- Division of Psychiatry I, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Jerome Mertens
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Innsbruck, Tyrol, Austria.,Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
22
|
Dynamics and Sensitivity of Signaling Pathways. CURRENT PATHOBIOLOGY REPORTS 2022; 10:11-22. [PMID: 36969954 PMCID: PMC10035447 DOI: 10.1007/s40139-022-00230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Purpose of Review Signaling pathways serve to communicate information about extracellular conditions into the cell, to both the nucleus and cytoplasmic processes to control cell responses. Genetic mutations in signaling network components are frequently associated with cancer and can result in cells acquiring an ability to divide and grow uncontrollably. Because signaling pathways play such a significant role in cancer initiation and advancement, their constituent proteins are attractive therapeutic targets. In this review, we discuss how signaling pathway modeling can assist with identifying effective drugs for treating diseases, such as cancer. An achievement that would facilitate the use of such models is their ability to identify controlling biochemical parameters in signaling pathways, such as molecular abundances and chemical reaction rates, because this would help determine effective points of attack by therapeutics. Recent Findings We summarize the current state of understanding the sensitivity of phosphorylation cycles with and without sequestration. We also describe some basic properties of regulatory motifs including feedback and feedforward regulation. Summary Although much recent work has focused on understanding the dynamics and particularly the sensitivity of signaling networks in eukaryotic systems, there is still an urgent need to build more scalable models of signaling networks that can appropriately represent their complexity across different cell types and tumors.
Collapse
|
23
|
Bhavani GS, Palanisamy A. SNAIL driven by a feed forward loop motif promotes TGF βinduced epithelial to mesenchymal transition. Biomed Phys Eng Express 2022; 8. [PMID: 35700712 DOI: 10.1088/2057-1976/ac7896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022]
Abstract
Epithelial to Mesenchymal Transition (EMT) plays an important role in tissue regeneration, embryonic development, and cancer metastasis. Several signaling pathways are known to regulate EMT, among which the modulation of TGFβ(Transforming Growth Factor-β) induced EMT is crucial in several cancer types. Several mathematical models were built to explore the role of core regulatory circuit of ZEB/miR-200, SNAIL/miR-34 double negative feedback loops in modulating TGFβinduced EMT. Different emergent behavior including tristability, irreversible switching, existence of hybrid EMT states were inferred though these models. Some studies have explored the role of TGFβreceptor activation, SMADs nucleocytoplasmic shuttling and complex formation. Recent experiments have revealed that MDM2 along with SMAD complex regulates SNAIL expression driven EMT. Encouraged by this, in the present study we developed a mathematical model for p53/MDM2 dependent TGFβinduced EMT regulation. Inclusion of p53 brings in an additional mechanistic perspective in exploring the EM transition. The network formulated comprises a C1FFL moderating SNAIL expression involving MDM2 and SMAD complex, which functions as a noise filter and persistent detector. The C1FFL was also observed to operate as a coincidence detector driving the SNAIL dependent downstream signaling into phenotypic switching decision. Systems modelling and analysis of the devised network, displayed interesting dynamic behavior, systems response to various inputs stimulus, providing a better understanding of p53/MDM2 dependent TGF-βinduced Epithelial to Mesenchymal Transition.
Collapse
|
24
|
Ground M, Waqanivavalagi S, Park YE, Callon K, Walker R, Milsom P, Cornish J. Fibroblast growth factor 2 inhibits myofibroblastic activation of valvular interstitial cells. PLoS One 2022; 17:e0270227. [PMID: 35714127 PMCID: PMC9205485 DOI: 10.1371/journal.pone.0270227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Heart valve disease is a growing problem worldwide. Though very common in older adults, the mechanisms behind the development of the disease aren't well understood, and at present the only therapeutic option is valve replacement. Valvular interstitial cells (VICs) may hold the answer. These cells can undergo pathological differentiation into contractile myofibroblasts or osteoblasts, leading to thickening and calcification of the valve tissue. Our study aimed to characterise the effect of fibroblast growth factor 2 (FGF-2) on the differentiation potential of VICs. We isolated VICs from diseased human valves and treated these cells with FGF-2 and TGF-β to elucidate effect of these growth factors on several myofibroblastic outcomes, in particular immunocytochemistry and gene expression. We used TGF-β as a positive control for myofibroblastic differentiation. We found that FGF-2 promotes a 'quiescent-type' morphology and inhibits the formation of α-smooth muscle actin positive myofibroblasts. FGF-2 reduced the calcification potential of VICs, with a marked reduction in the number of calcific nodules. FGF-2 interrupted the 'canonical' TGF-β signalling pathway, reducing the nuclear translocation of the SMAD2/3 complex. The panel of genes assayed revealed that FGF-2 promoted a quiescent-type pattern of gene expression, with significant downregulations in typical myofibroblast markers α smooth muscle actin, extracellular matrix proteins, and scleraxis. We did not see evidence of osteoblast differentiation: neither matrix-type calcification nor changes in osteoblast associated gene expression were observed. Our findings show that FGF-2 can reverse the myofibroblastic phenotype of VICs isolated from diseased valves and inhibit the calcification potential of these cells.
Collapse
Affiliation(s)
- Marcus Ground
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Steve Waqanivavalagi
- Green Lane Cardiothoracic Surgery Unit, Auckland City Hospital, Auckland District Health Board, Grafton, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Young-Eun Park
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Karen Callon
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Robert Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Paget Milsom
- Green Lane Cardiothoracic Surgery Unit, Auckland City Hospital, Auckland District Health Board, Grafton, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| |
Collapse
|
25
|
Jahr H, van der Windt AE, Timur UT, Baart EB, Lian WS, Rolauffs B, Wang FS, Pufe T. Physosmotic Induction of Chondrogenic Maturation Is TGF-β Dependent and Enhanced by Calcineurin Inhibitor FK506. Int J Mol Sci 2022; 23:ijms23095110. [PMID: 35563498 PMCID: PMC9100228 DOI: 10.3390/ijms23095110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing extracellular osmolarity 100 mOsm/kg above plasma level to the physiological levels for cartilage induces chondrogenic marker expression and the differentiation of chondroprogenitor cells. The calcineurin inhibitor FK506 has been reported to modulate the hypertrophic differentiation of primary chondrocytes under such conditions, but the molecular mechanism has remained unclear. We aimed at clarifying its role. Chondrocyte cell lines and primary cells were cultured under plasma osmolarity and chondrocyte-specific in situ osmolarity (+100 mOsm, physosmolarity) was increased to compare the activation of nuclear factor of activated T-cells 5 (NFAT5). The effects of osmolarity and FK506 on calcineurin activity, cell proliferation, extracellular matrix quality, and BMP- and TGF-β signaling were analyzed using biochemical, gene, and protein expression, as well as reporter and bio-assays. NFAT5 translocation was similar in chondrocyte cell lines and primary cells. High supraphysiological osmolarity compromised cell proliferation, while physosmolarity or FK506 did not, but in combination increased proteoglycan and collagen expression in chondrocytes in vitro and in situ. The expression of the TGF-β-inducible protein TGFBI, as well as chondrogenic (SOX9, Col2) and terminal differentiation markers (e.g., Col10) were affected by osmolarity. Particularly, the expression of minor collagens (e.g., Col9, Col11) was affected. The inhibition of the FK506-binding protein suggests modulation at the TGF-β receptor level, rather than calcineurin-mediated signaling, as a cause. Physiological osmolarity promotes terminal chondrogenic differentiation of progenitor cells through the sensitization of the TGF-β superfamily signaling at the type I receptor. While hyperosmolarity alone facilitates TGF-β superfamily signaling, FK506 further enhances signaling by releasing the FKBP12 break from the type I receptor to improve collagenous marker expression. Our results help explain earlier findings and potentially benefit future cell-based cartilage repair strategies.
Collapse
Affiliation(s)
- Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (U.T.T.); (T.P.)
- Department of Orthopaedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Correspondence: ; Tel.: +49-2418089525
| | - Anna E. van der Windt
- Department of Orthopaedics, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Ufuk Tan Timur
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (U.T.T.); (T.P.)
- Department of Orthopaedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Esther B. Baart
- Department of Obstetrics & Gynaecology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center, Albert-Ludwigs-University, 79085 Freiburg, Germany;
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (U.T.T.); (T.P.)
| |
Collapse
|
26
|
Zieba J, Forlenza KN, Heard K, Martin JH, Bosakova M, Cohn DH, Robertson SP, Krejci P, Krakow D. Intervertebral disc degeneration is rescued by TGFβ/BMP signaling modulation in an ex vivo filamin B mouse model. Bone Res 2022; 10:37. [PMID: 35474298 PMCID: PMC9042866 DOI: 10.1038/s41413-022-00200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Spondylocarpotarsal syndrome (SCT) is a rare musculoskeletal disorder characterized by short stature and vertebral, carpal, and tarsal fusions resulting from biallelic nonsense mutations in the gene encoding filamin B (FLNB). Utilizing a FLNB knockout mouse, we showed that the vertebral fusions in SCT evolved from intervertebral disc (IVD) degeneration and ossification of the annulus fibrosus (AF), eventually leading to full trabecular bone formation. This resulted from alterations in the TGFβ/BMP signaling pathway that included increased canonical TGFβ and noncanonical BMP signaling. In this study, the role of FLNB in the TGFβ/BMP pathway was elucidated using in vitro, in vivo, and ex vivo treatment methodologies. The data demonstrated that FLNB interacts with inhibitory Smads 6 and 7 (i-Smads) to regulate TGFβ/BMP signaling and that loss of FLNB produces increased TGFβ receptor activity and decreased Smad 1 ubiquitination. Through the use of small molecule inhibitors in an ex vivo spine model, TGFβ/BMP signaling was modulated to design a targeted treatment for SCT and disc degeneration. Inhibition of canonical and noncanonical TGFβ/BMP pathway activity restored Flnb-/- IVD morphology. These most effective improvements resulted from specific inhibition of TGFβ and p38 signaling activation. FLNB acts as a bridge for TGFβ/BMP signaling crosstalk through i-Smads and is key for the critical balance in TGFβ/BMP signaling that maintains the IVD. These findings further our understanding of IVD biology and reveal new molecular targets for disc degeneration as well as congenital vertebral fusion disorders.
Collapse
Affiliation(s)
- Jennifer Zieba
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | | | - Kelly Heard
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | - Jorge H Martin
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Daniel H Cohn
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, Los Angeles, CA, 90095, USA.
- Department of Obstetrics and Gynecology, Los Angeles, CA, 90095, USA.
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
27
|
Yuan C, Zhao X, Wangmo D, Alshareef D, Gates TJ, Subramanian S. Tumor models to assess immune response and tumor-microbiome interactions in colorectal cancer. Pharmacol Ther 2022; 231:107981. [PMID: 34480964 PMCID: PMC8844062 DOI: 10.1016/j.pharmthera.2021.107981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Despite significant advances over the past 2 decades in preventive screening and therapy aimed at improving patient survival, colorectal cancer (CRC) remains the second most common cause of cancer death in the United States. The average 5-year survival rate of CRC patients with positive regional lymph nodes is only 40%, while less than 5% of patients with distant metastases survive beyond 5 years. There is a critical need to develop novel therapies that can improve overall survival in patients with poor prognoses, particularly since 60% of them are diagnosed at an advanced stage. Pertinently, immune checkpoint blockade therapy has dramatically changed how we treat CRC patients with microsatellite-instable high tumors. Furthermore, accumulating evidence shows that changes in gut microbiota are associated with the regulation of host antitumor immune response and cancer progression. Appropriate animal models are essential to deciphering the complex mechanisms of host antitumor immune response and tumor-gut microbiome metabolic interactions. Here, we discuss various mouse models of colorectal cancer that are developed to address key questions on tumor immune response and tumor-microbiota interactions. These CRC models will also serve as resourceful tools for effective preclinical studies.
Collapse
Affiliation(s)
- Ce Yuan
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Xianda Zhao
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Dechen Wangmo
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Duha Alshareef
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Travis J Gates
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
28
|
Sun Y, Li ZJ. The multifunctional adaptor protein HIP-55 couples Smad7 to accelerate TGF-β type I receptor degradation. Acta Pharmacol Sin 2022; 43:634-644. [PMID: 34331017 PMCID: PMC8888702 DOI: 10.1038/s41401-021-00741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Transforming growth factor β (TGF-β) is a multifunctional polypeptide that plays critical roles in regulating a broad range of cellular functions and physiological processes. TGF-β signalling dysfunction contributes to many disorders, such as cardiovascular diseases, cancer and immunological diseases. The homoeostasis of negative feedback regulation is critical for signal robustness, duration and specificity, which precisely control physiological and pathophysiological processes. However, the underlying mechanism by which the negative regulation of TGF-β signalling is integrated and coordinated is still unclear. Here, we reveal that haematopoietic progenitor kinase-interacting protein of 55 kDa (HIP-55) was upregulated upon TGF-β stimulation, while the loss of HIP-55 caused TGF-β signalling overactivation and the abnormal accumulation of downstream extracellular matrix (ECM) genes. HIP-55 interacts with Smad7 and competes with Smad7/Axin complex formation to inhibit the Axin-mediated degradation of Smad7. HIP-55 further couples Smad7 to TβRI but not TβRII, driving TβRI degradation. Altogether, our findings demonstrate a new mechanism by which the effector and negative feedback functions of HIP-55 are coupled and may provide novel strategies for the treatment of TGF-β signalling-related human diseases.
Collapse
Affiliation(s)
- Yang Sun
- grid.419897.a0000 0004 0369 313XDepartment of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191 China
| | - Zi-jian Li
- grid.419897.a0000 0004 0369 313XDepartment of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191 China
| |
Collapse
|
29
|
Aprile P, Whelan IT, Sathy BN, Carroll SF, Kelly DJ. Soft Hydrogel Environments that Facilitate Cell Spreading and Aggregation Preferentially Support Chondrogenesis of Adult Stem Cells. Macromol Biosci 2022; 22:e2100365. [PMID: 35171524 DOI: 10.1002/mabi.202100365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a promising cell type for treating damaged and diseased synovial joints. The therapeutic potential of MSCs will be facilitated by the engineering of biomaterial environments capable of directing their fate. Here we explored the interplay between matrix elasticity and cell morphology in regulating the chondrogenic differentiation of MSCs when seeded onto or encapsulated within hydrogels made of interpenetrating networks (IPN) of alginate and collagen type I. This IPN system enabled the independent control of substrate stiffness (in 2D and in 3D) and cell morphology (3D only). In a 2D culture environment, the expression of chondrogenic markers SOX9, ACAN and COL2 increased on a soft substrate, which correlated with increased SMAD2/3 nuclear localization, enhanced MSCs condensation and the formation of larger cellular aggregates. The encapsulation of spread MSCs within a soft IPN dramatically increased the expression of cartilage-specific genes, which was linked to higher levels of cellular condensation and nuclear SMAD2/3 localization. Surprisingly, cells forced to adopt a more rounded morphology within the same soft IPNs expressed higher levels of the osteogenic markers RUNX2 and COL1. The insight provided by this study suggests that a mechanobiology informed approach to biomaterial development will be integral to the development of successful cartilage tissue engineering strategies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paola Aprile
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ian T Whelan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,CÚRAM Center for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Binulal N Sathy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Centre for Nanoscience and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Simon F Carroll
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,CÚRAM Center for Research in Medical Devices, National University of Ireland, Galway, Ireland.,The Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland
| |
Collapse
|
30
|
Liu ZZ(G, Taiyab A, West-Mays JA. MMP9 Differentially Regulates Proteins Involved in Actin Polymerization and Cell Migration during TGF-β-Induced EMT in the Lens. Int J Mol Sci 2021; 22:ijms222111988. [PMID: 34769418 PMCID: PMC8584335 DOI: 10.3390/ijms222111988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Fibrotic cataracts have been attributed to transforming growth factor-beta (TGF-β)-induced epithelial-to-mesenchymal transition (EMT). Using mouse knockout (KO) models, our laboratory has identified MMP9 as a crucial protein in the TGF-β-induced EMT process. In this study, we further revealed an absence of alpha-smooth muscle actin (αSMA) and filamentous-actin (F-actin) stress fibers in MMP9KO mouse lens epithelial cell explants (LECs). Expression analysis using NanoString revealed no marked differences in αSMA (ACTA2) and beta-actin (β-actin) (ACTB) mRNA between the lenses of TGF-β-overexpressing (TGF-βtg) mice and TGF-βtg mice on a MMP9KO background. We subsequently conducted a protein array that revealed differential regulation of proteins known to be involved in actin polymerization and cell migration in TGF-β-treated MMP9KO mouse LECs when compared to untreated controls. Immunofluorescence analyses using rat LECs and the novel MMP9-specific inhibitor, JNJ0966, revealed similar differential regulation of cortactin, FAK, LIMK1 and MLC2 as observed in the array. Finally, a reduction in the nuclear localization of MRTF-A, a master regulator of cytoskeletal remodeling during EMT, was observed in rat LECs co-treated with JNJ0966 and TGF-β. In conclusion, MMP9 deficiency results in differential regulation of proteins involved in actin polymerization and cell migration, and this in turn prevents TGF-β-induced EMT in the lens.
Collapse
Affiliation(s)
| | | | - Judith A. West-Mays
- Correspondence: ; Tel.: +1-(905)-525-9140 (ext. 26237); Fax: +1-(905)-525-7400
| |
Collapse
|
31
|
Masurkar SA, Deogharkar A, Bharambe HS, Shirsat NV. Downregulation of CRX, a Group 3-specific oncogenic transcription factor, inhibits TGF-β/activin signaling in medulloblastoma cells. Biochem Biophys Res Commun 2021; 568:76-82. [PMID: 34192607 DOI: 10.1016/j.bbrc.2021.06.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Medulloblastoma, the most common malignant brain tumor in children, consists of four molecular subgroups WNT, SHH, Group 3, and Group 4. Group 3 has the worst survival rate among the four subgroups and is characterized by the expression of retina-specific genes. CRX, the master regulator of the photoreceptor differentiation, is aberrantly expressed in Group 3 medulloblastomas. CRX expression increased the proliferation, anchorage-independent growth, invasion potential, and tumorigenicity of medulloblastoma cells indicating the oncogenic role of CRX in medulloblastoma pathogenesis. CRX knockdown resulted in the downregulation of expression of several retina-specific genes like IMPG2, PDC, RCVRN. and Group 3 specific genes like GABRA5, MYC, PROM1. Thus, CRX plays a major role not only in the expression of retina-specific genes but also in defining Group 3 identity. Increased expression of several pro-apoptotic genes upon CRX knockdown suggests that CRX could protect Group 3 medulloblastoma cells from cell death. Several negative regulators of the TGF-β signaling pathway like SMAD7, PMEPA1, KLF2 were upregulated upon the CRX knockdown. Western blot analysis showed a decrease in the levels of (Phospho)-SMAD2, total levels of SMAD2, SMAD4, and an increase in the levels of SMAD7 indicating inhibition of the TGF-β signaling pathway upon CRX knockdown. Copy number variations in several genes involved in the TGF-β signaling pathway occur in a subset of Group 3 tumors. Autocrine TGF-β/activin signaling has recently been reported to be active in a subset of Group 3 medulloblastomas. CRX knockdown resulting in the inhibition of the TGF-β/activin signaling pathway demonstrates an interaction between the two Group 3 specific oncogenic pathways and suggests simultaneous targeting of both CRX and TGF-β signaling as a possible therapeutic strategy.
Collapse
Affiliation(s)
- Shalaka Arun Masurkar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Akash Deogharkar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Harish Shrikrishna Bharambe
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Neelam Vishwanath Shirsat
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
32
|
Sun T, Huang Z, Liang WC, Yin J, Lin WY, Wu J, Vernes JM, Lutman J, Caplazi P, Jeet S, Wong T, Wong M, DePianto DJ, Morshead KB, Sun KH, Modrusan Z, Vander Heiden JA, Abbas AR, Zhang H, Xu M, N'Diaye EN, Roose-Girma M, Wolters PJ, Yadav R, Sukumaran S, Ghilardi N, Corpuz R, Emson C, Meng YG, Ramalingam TR, Lupardus P, Brightbill HD, Seshasayee D, Wu Y, Arron JR. TGFβ2 and TGFβ3 isoforms drive fibrotic disease pathogenesis. Sci Transl Med 2021; 13:13/605/eabe0407. [PMID: 34349032 DOI: 10.1126/scitranslmed.abe0407] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/19/2020] [Accepted: 06/06/2021] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-β (TGFβ) is a key driver of fibrogenesis. Three TGFβ isoforms (TGFβ1, TGFβ2, and TGFβ3) in mammals have distinct functions in embryonic development; however, the postnatal pathological roles and activation mechanisms of TGFβ2 and TGFβ3 have not been well characterized. Here, we show that the latent forms of TGFβ2 and TGFβ3 can be activated by integrin-independent mechanisms and have lower activation thresholds compared to TGFβ1. Unlike TGFB1, TGFB2 and TGFB3 expression is increased in human lung and liver fibrotic tissues compared to healthy control tissues. Thus, TGFβ2 and TGFβ3 may play a pathological role in fibrosis. Inducible conditional knockout mice and anti-TGFβ isoform-selective antibodies demonstrated that TGFβ2 and TGFβ3 are independently involved in mouse fibrosis models in vivo, and selective TGFβ2 and TGFβ3 inhibition does not lead to the increased inflammation observed with pan-TGFβ isoform inhibition. A cocrystal structure of a TGFβ2-anti-TGFβ2/3 antibody complex reveals an allosteric isoform-selective inhibitory mechanism. Therefore, inhibiting TGFβ2 and/or TGFβ3 while sparing TGFβ1 may alleviate fibrosis without toxicity concerns associated with pan-TGFβ blockade.
Collapse
Affiliation(s)
- Tianhe Sun
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Zhiyu Huang
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei-Ching Liang
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jianping Yin
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei Yu Lin
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jia Wu
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jean-Michel Vernes
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeff Lutman
- Department of Preclinical and Translational Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tiffany Wong
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Manda Wong
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daryle J DePianto
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Katrina B Morshead
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kai-Hui Sun
- Department of Protein Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Protein Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Vander Heiden
- Department of OMNI Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander R Abbas
- Department of OMNI Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hua Zhang
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Min Xu
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Elsa-Noah N'Diaye
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Meron Roose-Girma
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rajbharan Yadav
- Department of Preclinical and Translational Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Siddharth Sukumaran
- Department of Preclinical and Translational Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nico Ghilardi
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Racquel Corpuz
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Claire Emson
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Y Gloria Meng
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thirumalai R Ramalingam
- Department of Biomarker Discovery OMNI, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Lupardus
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yan Wu
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
33
|
Zhao L, Tang G, Xiong C, Han S, Yang C, He K, Liu Q, Luo J, Luo W, Wang Y, Li Z, Yang S. Chronic chlorpyrifos exposure induces oxidative stress, apoptosis and immune dysfunction in largemouth bass (Micropterus salmoides). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117010. [PMID: 33848913 DOI: 10.1016/j.envpol.2021.117010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/07/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
This study was undertaken to (a) evaluate the destructive effects of chronic exposure to low-dose of chlorpyrifos (CPF) on antioxidant system and immune function in largemouth bass (Micropterus salmoides), and (b) to examine whether dietary supplementation of curcumin can mitigate the adverse effects induced by CPF contamination. The experiment consisted of three groups (with three replicates, 30 fish per replicate) which lasted for 60 days: A control group (without CPF exposure or CU application), CP group (exposed to 0.004 mg/L of CPF), and CU group (exposed to 0.004 mg/L of CPF and fed a diet containing 100 mg curcumin per kg feed). The results showed that CPF contamination leads to reduced weight gain, severe histopathological lesions, decreased activity of antioxidant enzymes and down-regulated expression of antioxidant-related genes. Moreover, CPF upregulated the expression of pro-inflammatory genes such as TNF-α, IL-8, IL-15, downregulated anti-inflammatory genes TGF-β1, IL-10, and promoted apoptosis through overexpression of Caspase-3, Caspase-8, caspase-9 and Bax. In addition, curcumin supplementation showed significant improvement in oxidative stress, apoptosis and immune dysfunction, but the improved effect gradually weakened during the exposure last. Gas chromatography-mass spectrometry (GC-MS) analysis for accumulation of CPF in muscle supported the changes of general physiological structure, excessive apoptotic responses, abnormal antioxidant and immune system functions and posed potential human health risks to children based on target hazard quotient. These results suggested that chronic exposure to CPF can cause oxidative stress, apoptosis and immune dysfunction, and that curcumin have the potential to reduce pesticides residues in fish. This also highlights the importance of monitoring pesticides residues in aquatic products and aquaculture aquatic environments.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chen Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shuaishuai Han
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chunping Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
34
|
Chen K, Iwasaki N, Qiu X, Xu H, Takai Y, Tashiro K, Shimasaki Y, Oshima Y. Obesogenic and developmental effects of TBT on the gene expression of juvenile Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105907. [PMID: 34274867 DOI: 10.1016/j.aquatox.2021.105907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The widely used antifoulant tributyltin chloride (TBT) is highly toxic to aquatic organisms. In the present study, four-week-old Japanese medaka (Oryzias latipes) juveniles were orally exposed to TBT at 1 and 10 ng/g bw/d for 1, 2, and 4 weeks, respectively. Half of the tested medaka juveniles showed bone morphology alterations in both 1 and 10 ng/g bw/d TBT 4-week exposure groups. Nile Red (NR) staining showed that the juveniles exposed to 1 ng/g bw/d TBT for 2 and 4 weeks had significantly enlarged adipocyte areas. The mRNA-Seq analysis indicated that 1 ng/g bw/d TBT exposure for 2 weeks affected bone morphology through developmental processes. The GO and KEGG analyses suggested that the adipogenic effect of TBT observed in this study may be induced by metabolic processes, oxidative phosphorylation, and fatty acid degradation and metabolism pathways. Therefore, both morphological observation and mRNA-Seq analysis showed obesogenic effects and developmental toxicity of TBT to juvenile Japanese medaka.
Collapse
Affiliation(s)
- Kun Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Naoto Iwasaki
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
35
|
Suri GS, Kaur G, Jha CK, Tiwari M. Understanding idiopathic pulmonary fibrosis - Clinical features, molecular mechanism and therapies. Exp Gerontol 2021; 153:111473. [PMID: 34274426 DOI: 10.1016/j.exger.2021.111473] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung fibrosing disease with high prevalence that has a prognosis worse than many cancers. There has been a recent influx of new observations aimed at explaining the mechanisms responsible for the initiation and progression of pulmonary fibrosis. However, despite this, the pathogenesis of the disease is largely unclear. Recent progress has been made in the characterization of specific pathologic and clinical features that have enhanced the understanding of pathologically activated molecular pathways during the onset and progression of IPF. This review highlights several of the advances that have been made and focus on the pathobiology of IPF. The work also details the different factors that are responsible for the disposition of the disease - these may be internal factors such as cellular mechanisms and genetic alterations, or they may be external factors from the environment. The changes that primarily occur in epithelial cells and fibroblasts that lead to the activation of profibrotic pathways are discussed in depth. Finally, a complete repertoire of the treatment therapies that have been used in the past as well as future medications and therapies is provided.
Collapse
|
36
|
Cesaro E, Pastore A, Polverino A, Manna L, Divisato G, Quintavalle C, Di Sanzo M, Faniello MC, Grosso M, Costanzo P. ZNF224 is a mediator of TGF-β pro-oncogenic function in melanoma. Hum Mol Genet 2021; 30:2100-2109. [PMID: 34181020 DOI: 10.1093/hmg/ddab173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
The zinc finger protein ZNF224 plays a dual role in cancer, operating as both tumor suppressor and oncogenic factor depending on cellular and molecular partners. In this research we investigated the role of ZNF224 in melanoma, a highly invasive and metastatic cancer, and provided evidence for the involvement of ZNF224 in the TGF-β signaling as a mediator of the TGF-β pro-oncogenic function. Our results showed that ZNF224, whose expression increased in melanoma cell lines after TGF-β stimulation, potentiated the activation induced by TGF-β on its target genes involved in epithelial-mesenchymal transition (EMT). Accordingly, overexpression of ZNF224 enhanced the tumourigenic properties of melanoma cells, promoting cell proliferation and invasiveness, while ZNF224 knockdown had the opposite effect. Moreover, ZNF224 positively modulates the expression of TGF-β itself and its type 1 and 2 receptors (TβR1 and TβR2), thus highlighting a possible mechanism by which ZNF224 could enhance the endogenous TGFβ/Smad signalling. Our findings unveil a positive regulatory loop between TGF-β and ZNF224 to promote EMT, consequently increasing the tumour metastatic potential.
Collapse
Affiliation(s)
- Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Arianna Pastore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Alessia Polverino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Lorenzo Manna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppina Divisato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Cristina Quintavalle
- Institute of Experimental Endocrinology and Oncology (IEOS) G. Salvatore, CNR, 80131 Naples, Italy
| | - Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
37
|
Cancer Stem Cells Are Possible Key Players in Regulating Anti-Tumor Immune Responses: The Role of Immunomodulating Molecules and MicroRNAs. Cancers (Basel) 2021; 13:cancers13071674. [PMID: 33918136 PMCID: PMC8037840 DOI: 10.3390/cancers13071674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review provides a critical overview of the state of the art of the characterization of the immunological profile of a rare component of the tumors, denominated cancer stem cells (CSCs) or cancer initiating cells (CICs). These cells are endowed with the ability to form and propagate tumors and resistance to therapies, including the most innovative approaches. These investigations contribute to understanding the mechanisms regulating the interaction of CSCs/CICs with the immune system and identifying novel therapeutic approaches to render these cells visible and susceptible to immune responses. Abstract Cancer cells endowed with stemness properties and representing a rare population of cells within malignant lesions have been isolated from tumors with different histological origins. These cells, denominated as cancer stem cells (CSCs) or cancer initiating cells (CICs), are responsible for tumor initiation, progression and resistance to therapies, including immunotherapy. The dynamic crosstalk of CSCs/CICs with the tumor microenvironment orchestrates their fate and plasticity as well as their immunogenicity. CSCs/CICs, as observed in multiple studies, display either the aberrant expression of immunomodulatory molecules or suboptimal levels of molecules involved in antigen processing and presentation, leading to immune evasion. MicroRNAs (miRNAs) that can regulate either stemness properties or their immunological profile, with in some cases dual functions, can provide insights into these mechanisms and possible interventions to develop novel therapeutic strategies targeting CSCs/CICs and reverting their immunogenicity. In this review, we provide an overview of the immunoregulatory features of CSCs/CICs including miRNA profiles involved in the regulation of the interplay between stemness and immunological properties.
Collapse
|
38
|
Szu J, Wojcinski A, Jiang P, Kesari S. Impact of the Olig Family on Neurodevelopmental Disorders. Front Neurosci 2021; 15:659601. [PMID: 33859549 PMCID: PMC8042229 DOI: 10.3389/fnins.2021.659601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The Olig genes encode members of the basic helix-loop-helix (bHLH) family of transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing and mature central nervous system (CNS) and strictly regulate cellular specification and differentiation. Extensive studies have established functional roles of Olig1 and Olig2 in directing neuronal and glial formation during different stages in development. Recently, Olig2 overexpression was implicated in neurodevelopmental disorders down syndrome (DS) and autism spectrum disorder (ASD) but its influence on cognitive and intellectual defects remains unknown. In this review, we summarize the biological functions of the Olig family and how it uniquely promotes cellular diversity in the CNS. This is followed up with a discussion on how abnormal Olig2 expression impacts brain development and function in DS and ASD. Collectively, the studies described here emphasize vital features of the Olig members and their distinctive potential roles in neurodevelopmental disease states.
Collapse
Affiliation(s)
- Jenny Szu
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Alexandre Wojcinski
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States.,Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| |
Collapse
|
39
|
McArdle C, Abbah SA, Bhowmick S, Collin E, Pandit A. Localized temporal co-delivery of interleukin 10 and decorin genes using amediated by collagen-based biphasic scaffold modulates the expression of TGF-β1/β2 in a rabbit ear hypertrophic scarring model. Biomater Sci 2021; 9:3136-3149. [PMID: 33725045 DOI: 10.1039/d0bm01928c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypertrophic scarring (HS) is an intractable complication associated with cutaneous wound healing. Although transforming growth factor β1 (TGF-β1) has long been documented as a central regulatory cytokine in fibrogenesis and fibroplasia, there is currently no cure. Gene therapy is emerging as a powerful tool to attenuate the overexpression of TGF-β1 and its signaling activities. An effective approach may require transferring multiple genes to regulate different aspects of TGF-β1 signaling activities in a Spatio-temporal manner. Herein we report the additive anti-fibrotic effects of two plasmid DNAs encoding interleukin 10 (IL-10) and decorin (DCN) co-delivered via a biphasic 3D collagen scaffold reservoir platform. Combined gene therapy significantly attenuated inflammation and extracellular matrix components' accumulation in a rabbit ear ulcer model; and suppressed the expressions of genes associated with fibrogenesis, including collagen type I, as well as TGF-β1 and TGF-β2, while enhancing the genes commonly associated with regenerative healing including collagen type III. These findings may serve to provide a non-viral gene therapy platform that is safe, optimized, and effective to deliver multiple genes onto the diseased tissue in a wider range of tissue fibrosis-related maladies.
Collapse
Affiliation(s)
- Ciarstan McArdle
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Sunny Akogwu Abbah
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Sirsendu Bhowmick
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Estelle Collin
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| |
Collapse
|
40
|
Chen C, Rehnama M, Kim S, Lee CS, Zhang X, Aghaloo T, Fan J, Lee M. Enhanced Osteoinductivity of Demineralized Bone Matrix with Noggin Suppression in Polymer Matrix. Adv Biol (Weinh) 2021; 5:e202000135. [PMID: 33585837 PMCID: PMC7877805 DOI: 10.1002/adbi.202000135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Demineralized bone matrix (DBM), a potential alternative to autologous bone-graft, has been increasingly used for clinical bone repair; however, its application in larger defects isn't successful partly due to the rapid dispersion of DBM particles and relatively lower osteoinductivity. Here, a novel strategy is created to complement the osteoinductivity of DBM by incorporating DBM in biopolymer hydrogel combined with the abrogation of BMP antagonism. Combined treatment of DBM + noggin-suppression displays increased osteogenic potency of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. Injectable chitosan (MeGC)-based hydrogel with heparinization (Hep-MeGC) is further developed to localize and stabilize DBM. Noggin-suppression reveals the significant increase in osteogenesis of hBMSCs in the photopolymerizable Hep-MeGC hydrogels with the encapsulation of DBM. Moreover, the combination of DBM + noggin-suppression in the injectable Hep-MeGC hydrogel displays a robust bone healing in mouse critical-sized calvarial defects in vivo. The mechanistic analysis demonstrates that noggin-suppression increased DBM osteoinductivity by stimulating endogenous BMP/Smad signals. These results have shown promise in DBM's ability as a prominent bone grafting material while being coupled with gene editing mechanism and a localizing three-dimensional scaffold. Together, this approach poses a significant increase in the efficiency of DBM-mediated craniofacial bone repair and dental osteointegration.
Collapse
Affiliation(s)
- Chen Chen
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Matthew Rehnama
- Division of Advanced Prosthodontics, University of California, Los Angeles, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Xiao Zhang
- Division of Advanced Prosthodontics, University of California, Los Angeles, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, Department of Bioengineering, University of California, Los Angeles, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
41
|
Gestational arsenite exposure augments hepatic tumors of C3H mice by promoting senescence in F1 and F2 offspring via different pathways. Toxicol Appl Pharmacol 2020; 408:115259. [PMID: 33010264 DOI: 10.1016/j.taap.2020.115259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Previous studies showed that gestational arsenite exposure increases incidence of hepatic tumors in the F1 and F2 male offspring in C3H mice. However, the mechanisms are largely unknown. In this study, we focused on whether cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to tumor formation in C3H mice, and whether gestational arsenite exposure augments hepatic tumors through enhancement of cellular senescence. Three senescence markers (p16, p21 and p15) and two SASP factors (Cxcl1 and Mmp14) were increased in hepatic tumor tissues of 74- or 100-weeks-old C3H mice without arsenite exposure, and treatment with a senolytic drug (ABT-263) diminished hepatic tumor formation. Gestational arsenite exposure enhanced the expression of p16, p21 and Mmp14 in F1 and p15 and Cxcl1 in F2, respectively. Exploring the mechanisms by which arsenite exposure promotes cellular senescence, we found that the expression of antioxidant enzymes (Sod1 and Cat) were reduced in the tumors of F1 in the arsenite group, and Tgf-β and the receptors of Tgf-β were increased in the tumors of F2 in the arsenite group. Furthermore, the analysis of the Cancer Genome Atlas database showed that gene expression levels of the senescence markers and SASP factors were increased and associated with poor prognosis in human hepatocellular carcinoma (HCC). These results suggest that cellular senescence and SASP have important roles in hepatic tumorigenesis in C3H mice as well as HCC in humans, and gestational arsenite exposure of C3H mice enhances senescence in F1 and F2 via oxidative stress and Tgf-β activation, respectively.
Collapse
|
42
|
Huang W, Yang Y, Wu J, Niu Y, Yao Y, Zhang J, Huang X, Liang S, Chen R, Chen S, Guo L. Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-β signalling. Cell Death Differ 2020; 27:1709-1727. [PMID: 31728016 PMCID: PMC7206039 DOI: 10.1038/s41418-019-0455-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are novel RNA molecules that play important roles in chemoresistance in different cancers, including breast and gastric cancers. However, whether circRNAs are involved in the response to chemotherapy in small cell lung cancer (SCLC) remains largely unknown. In this study, we observed that cESRP1 (circular RNA epithelial splicing regulatory protein-1) expression was significantly downregulated in the chemoresistant cells compared with the parental chemosensitive cells. cESRP1 enhanced drug sensitivity by repressing miR-93-5p in SCLC. Cytoplasmic cESRP1 could directly bind to miR-93-5p and inhibit the posttranscriptional repression mediated by miR-93-5p, thereby upregulating the expression of the miR-93-5p downstream targets Smad7/p21(CDKN1A) and forming a negative feedback loop to regulate transforming growth factor-β (TGF-β) mediated epithelial-mesenchymal transition. Furthermore, cESRP1 overexpression and TGF-β pathway inhibition both altered tumour responsiveness to chemotherapy in an acquired chemoresistant patient-derived xenograft model. Importantly, cESRP1 expression was downregulated in SCLC patient tissues and was associated with survival. Our findings reveal, for the first time, that cESRP1 plays crucial a role in SCLC chemosensitivity by sponging miR-93-5p to inhibit the TGF-β pathway, suggesting that cESRP1 may serve as a valuable prognostic biomarker and a potential therapeutic target in SCLC patients.
Collapse
Affiliation(s)
- Weimei Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunchu Yang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingfang Wu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchun Niu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yao Yao
- Department of Pathology, Peking University Third Hospital, Beijing, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxian Huang
- Clinical Laboratory, Gushang Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shumei Liang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Chen
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Size Chen
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
43
|
Chen HJ, Ihara T, Yoshioka H, Itoyama E, Kitamura S, Nagase H, Murakami H, Hoshino Y, Murakami M, Tomonaga S, Matsui T, Funaba M. Expression levels of brown/beige adipocyte-related genes in fat depots of vitamin A-restricted fattening cattle1. J Anim Sci 2020; 96:3884-3896. [PMID: 29912360 DOI: 10.1093/jas/sky240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022] Open
Abstract
Brown/beige adipocytes dissipate energy as heat. We previously showed that brown/beige adipocytes are present in white adipose tissue (WAT) of fattening cattle. The present study examined the effect of vitamin A restriction on mRNA expression of brown/beige adipocyte-related genes. In Japan, fattening cattle are conventionally fed a vitamin A-restricted diet to improve beef marbling. Twelve Japanese Black steers aged 10 mo were fed control feed (n = 6) or vitamin A-restricted feed (n = 6) for 20 mo. Subcutaneous WAT (scWAT) and mesenteric WAT (mesWAT) were collected, and mRNA expression levels of molecules related to the function of brown/beige adipocytes (Ucp1, Cidea, Dio2, Cox7a, and Cox8b) as well as transcriptional regulators related to brown/beige adipogenesis (Zfp516, Nfia, Prdm16, and Pgc-1α) were evaluated. The vitamin A restriction significantly increased or tended to increase expression levels of Cidea and Pgc-1α in scWAT, and Cidea, Dio2, and Nfia in mesWAT. Previous studies revealed that the bone morphogenetic protein (Bmp) pathway was responsible for commitment of mesenchymal stem cells to brown/beige adipocyte-lineage cells. The vitamin A restriction increased expression of Bmp7 and some Bmp receptors in WAT. The interrelationship between gene expression levels indicated that expression levels of Nfia, Prdm16, and Pgc-1α were closely related to those of genes related to the function of brown/beige adipocytes in scWAT. Also, expression levels of Nfia, Prdm16, and Pgc-1α were highly correlated with those of Alk3 in scWAT. In summary, the present results suggest that the vitamin A restriction increases the number or activity of brown/beige adipocytes through regulatory expression of transcriptional regulators to induce brown/beige adipogenesis, especially in scWAT of fattening cattle, which may be governed by the Bmp pathway.
Collapse
Affiliation(s)
- Hsuan-Ju Chen
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsubasa Ihara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Kyoto University Livestock Farm, Kyotanba, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Kucuksayan H, Akgun S, Ozes ON, Alikanoglu AS, Yildiz M, Dal E, Akca H. TGF-β-SMAD-miR-520e axis regulates NSCLC metastasis through a TGFBR2-mediated negative-feedback loop. Carcinogenesis 2020; 40:695-705. [PMID: 30475986 DOI: 10.1093/carcin/bgy166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) pathway plays crucial roles during the carcinogenesis and metastasis. TGF-β receptor 2 (TGFBR2) is a key molecule for the regulation of TGF-β pathway and frequently downregulated or lost in several cancer types including non-small cell lung cancer (NSCLC), and TGF-β pathway is often regulated by negative-feedback mechanisms, but little is known about the mechanism of TGFBR2 downregulation in NSCLC. Here, we found that the expression of miR-520e is upregulated in metastatic tumor tissues compared with non-metastatic ones, and its expression is inversely correlated with that of TGFBR2 in clinical samples. We also discovered that TGF-β dramatically increased the expression of miR-520e, which targeted and downregulated TGFBR2, and the suppression of miR-520e significantly impaired TGF-β-induced TGFBR2 downregulation. Chromatin immunoprecipitation-PCR experiments further showed that miR-520e is transcriptionally induced by SMAD2/3 in response to TGF-β. Our findings reveal a novel negative-feedback mechanism in TGF-β signaling and the expression level of miR-520e could be a predictive biomarker for NSCLC metastasis.
Collapse
Affiliation(s)
- Hakan Kucuksayan
- Medical Biology Department, School of Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| | - Sakir Akgun
- Medical Biology Department, School of Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| | | | | | - Mustafa Yildiz
- Medical Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Egemen Dal
- Faculty of Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| | - Hakan Akca
- Medical Biology Department, School of Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| |
Collapse
|
45
|
Li Y, Xiong L, Tang J, Zhu G, Dai R, Li L. Mouse skin-derived precursors alleviates ultraviolet B irradiation damage via early activation of TGF-β/Smad pathway by thrombospondin1. Cell Cycle 2020; 19:492-503. [PMID: 31965893 DOI: 10.1080/15384101.2020.1717042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Our previous research implied mouse skin-derived precursors (mSKPs) possessed the capacity of anti-ultraviolet B (UVB) irradiation damage, and the mechanisms might be associated with transforming growth factor-β (TGF-β) signaling pathway activation. In this study, we investigated and compared the response to UVB irradiation between mSKPs and dermal mesenchymal stem cells (dMSCs), and explored the underlying mechanisms. Irradiation damage such as decreased cell viability, cell senescence, and cell death was observed in both mSKPs and dMSCs at 24 h after UVB exposure. In mSKPs, change in cell morphology, viability, cell senescence and death at the following time points implied the recovery of UVB irradiation damage. Additionally, thrombospondin1 (TSP1) and TGF-β1 increased significantly in mSKPs' supernatant after UVB irradiation. The gene expression of TSP1, TGF-β1, metalloproteinase 1 (MMP1), and Collagen I elevated shortly after the UVB exposure. The protein expression of TSP1, TGF-β1, MMP1, Collagen I, smad2/3, and p-smad2/3 at multiple time points after the UVB exposure was consistent with the gene expression results. In dMSCs, no obvious recovery was noticed. Together, these results revealed that in mSKPs, one of the mechanisms to attenuate the UVB irradiation damage might be the early activation of TGF-β/Smad pathway by TSP1. Given that mSKPs could differentiate into fibroblast-like SKP-derived fibroblasts (SFBs) in vivo or with the presence of serum, mSKPs might serve as a therapeutic potential for fibroblasts supplement and UVB irradiation damage treatment.Abbreviations: SKPs: skin-derived precursors; mSKPs: mouse SKPs; UVB: ultraviolet B; TGF-β/Smad: transforming growth factor-β/Smad; TSP1: thrombospondin 1; MMP 13: metalloproteinases 13; TβRII: TGF-β receptor II; SFBs: SKP-derived fibroblasts; KEGG: Kyoto encyclopedia of genes and genomes; DEGs: differentially expressed genes; dMSCs: dermal mesenchymal stem cells; LM: light microscope; CCK-8: cell counting kit 8; ELISA: Enzyme-linked immuno sorbent assay; qRT-PCR: quantitative real-time polymerase chain reaction; TSPs: thrombospondins; ECM: extracellular matrix; R-smads: receptor-regulated smads.
Collapse
Affiliation(s)
- Yiming Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, P.R.C
| | - Lidan Xiong
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, P.R.C
| | - Jie Tang
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, P.R.C
| | - Guonian Zhu
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, P.R.C
| | - Ru Dai
- Department of Dermatology, Ningbo First Hospital, Zhejiang University, Ningbo, P.R.C
| | - Li Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, P.R.C
| |
Collapse
|
46
|
Ravindran S, Rasool S, Maccalli C. The Cross Talk between Cancer Stem Cells/Cancer Initiating Cells and Tumor Microenvironment: The Missing Piece of the Puzzle for the Efficient Targeting of these Cells with Immunotherapy. CANCER MICROENVIRONMENT 2019; 12:133-148. [PMID: 31758404 PMCID: PMC6937350 DOI: 10.1007/s12307-019-00233-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
Cancer Stem Cells/Cancer Initiating Cells (CSCs/CICs) is a rare sub-population within a tumor that is responsible for tumor formation, progression and resistance to therapies. The interaction between CSCs/CICs and tumor microenvironment (TME) can sustain “stemness” properties and promote their survival and plasticity. This cross-talk is also pivotal in regulating and modulating CSC/CIC properties. This review will provide an overview of the mechanisms underlying the mutual interaction between CSCs/CICs and TME. Particular focus will be dedicated to the immunological profile of CSCs/CICs and its role in orchestrating cancer immunosurveillance. Moreover, the available immunotherapy strategies that can target CSCs/CICs and of their possible implementation will be discussed. Overall, the dissection of the mechanisms regulating the CSC/CIC-TME interaction is warranted to understand the plasticity and immunoregulatory properties of stem-like tumor cells and to achieve complete eradications of tumors through the optimization of immunotherapy.
Collapse
Affiliation(s)
- Shilpa Ravindran
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar
| | - Saad Rasool
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar
| | - Cristina Maccalli
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar.
| |
Collapse
|
47
|
Motomura M, Shimokawa F, Kobayashi T, Yamashita Y, Mizoguchi I, Sato Y, Murakami Y, Shimizu I, Matsui T, Murakami M, Funaba M. Relationships between expression levels of genes related to adipogenesis and adipocyte function in dogs. Mol Biol Rep 2019; 46:4771-4777. [PMID: 31407244 DOI: 10.1007/s11033-019-04923-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022]
Abstract
There are three kinds of adipocytes; white adipocytes accumulate excess energy as fat, whereas brown/beige adipocytes dissipate energy through expression of uncoupling protein 1 (UCP1). Obesity, a feature of excess accumulation of white adipocytes in a body, is one of the risk factors for onset of various diseases in dogs. As the first step to explore adipose genes related to dog obesity, we examined relationships among mRNA levels of putative molecules related to adipogenesis and function of adipocytes in fat of hospitalized dogs. Gonadal adipose tissues were collected from a total of 29 dogs, and the gene expression levels were examined by quantitative RT-PCR analysis. The multicollinearity analysis revealed that body condition score (BCS), which reflects adiposity, did not correlate with expression levels of any genes but correlated with age of dog. Bone morphogenetic protein (BMP) pathway stimulates not only commitment of mesenchymal stem cells to white adipocyte-lineage cells but also brown/beige adipogenesis. Some relationships between expression levels of BMP receptors were significant; especially, expression levels of activin receptor-like kinase (Alk) 3 (a BMP type I receptor) positively related to those of Alk2 (another BMP type I receptor), activin receptor type II (ActRII) A (a type II receptor to transmit BMP signal), ActRIIB (another type II receptor to transmit BMP signal) and BMP receptor type 2 (Bmpr2). PR domain containing 16 (Prdm16) expression levels strongly correlated with expression levels of ActRIIB. Although PRDM16 is known to stimulate brown/beige adipogenesis, expression levels of Ucp1 did not correlate with those of Prdm16. On the other hand, expression levels of Ucp1 correlated with those of Alk6. The present study suggests close relationships among adipose expressions of BMP signal components, and the relationships of expression levels of BMP receptor and those of Prdm16 or Ucp1 in dogs. Further studies using more dogs with various BCS potentially lead to identification of adipose factors to relate with adiposity in dogs.
Collapse
Affiliation(s)
- Mikako Motomura
- Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Kyoto, 606-8502, Japan
| | - Fumie Shimokawa
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, 252-5201, Japan
| | - Takashi Kobayashi
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, 252-5201, Japan.,Kobayashi Animal Hospital, Nagano, 380-0816, Japan
| | | | | | - Yutaka Sato
- Sato Animal Hospital, Kyoto, 605-0971, Japan
| | | | - Itoyo Shimizu
- Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Kyoto, 606-8502, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Kyoto, 606-8502, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, 252-5201, Japan.
| | - Masayuki Funaba
- Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Kyoto, 606-8502, Japan.
| |
Collapse
|
48
|
Shojaee A, Parham A, Ejeian F, Nasr Esfahani MH. Equine adipose mesenchymal stem cells (eq-ASCs) appear to have higher potential for migration and musculoskeletal differentiation. Res Vet Sci 2019; 125:235-243. [PMID: 31310927 DOI: 10.1016/j.rvsc.2019.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 05/14/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
Equine adipose-derived mesenchymal stem cells (eq-ASCs) possess excellent regeneration potential especially for treatment of musculoskeletal disorders. Besides their common characteristics, MSCs harvested from different species reveal some species-specific and donor-dependent behaviors. Hence, the molecular analysis of MSCs may shed more light on their future clinical application of these cells. This study aimed to investigate some behavioral aspects of eq-ASCs in vitro which may influence the efficacy of stem cell therapy. For this purpose, MSCs of a donor horse were isolated, characterized and expanded under normal culture conditions. During continuous culture condition, eq-ASCs were started to formed aggregated structures that was accompanied with the up-regulation of migratory related genes including transforming growth factor beta 1 (TGFB1) and its receptor 3 (TGFBR3), and snail family transcriptional repressor 1 (SNAI1), E-cadherin (CDH1) and β-catenin (CTNNB1). Moreover, the expression of a musculoskeletal progenitor marker, scleraxis bHLH transcription factor (SCX), was also increased after 3 days. In order to clarify the impact of TGFB signaling pathway on cultured cells, gain- and loss-of-function treatment by TGFB3 and SB431542 (TGFB inhibitor) were performed, respectively. We found that TGFB3 treatment exaggerated the aggregate formation effects, in some extend via induction of cytoskeletal actin rearrangement, while inhibition of TGFB signaling pathway by SB431542 reversed this phenomenon. Overall, our findings support the fact that eq-ASCs have an inherent capacity for migration, which was enhanced by TGFB3 treatment and, this ability may play crucial role in cell motility and wound healing of transplanted cells.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Alternative Regenerative Medicine Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fatemeh Ejeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
49
|
Jahangiri Moez M, Bjeije H, Soltani BM. Hsa-miR-5195-3P induces downregulation of TGFβR1, TGFβR2, SMAD3 and SMAD4 supporting its tumor suppressive activity in HCT116 cells. Int J Biochem Cell Biol 2019; 109:1-7. [DOI: 10.1016/j.biocel.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 11/24/2022]
|
50
|
Exogenous GDF11 attenuates non-canonical TGF-β signaling to protect the heart from acute myocardial ischemia-reperfusion injury. Basic Res Cardiol 2019; 114:20. [PMID: 30900023 DOI: 10.1007/s00395-019-0728-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor beta 1 (TGF-β1) superfamily that reverses age-related cardiac hypertrophy, improves muscle regeneration and angiogenesis, and maintains progenitor cells in injured tissue. Recently, targeted myocardial delivery of the GDF11 gene in aged mice was found to reduce heart failure and enhance the proliferation of cardiac progenitor cells after myocardial ischemia-reperfusion (I-R). No investigations have as yet explored the cardioprotective effect of exogenous recombinant GDF11 in acute I-R injury, despite the convenience of its clinical application. We sought to determine whether exogenous recombinant GDF11 protects against acute myocardial I-R injury and investigate the underlying mechanism in Sprague-Dawley rats. We found that GDF11 reduced arrhythmia severity and successfully attenuated myocardial infarction; GDF11 also increased cardiac function after I-R, enhanced HO-1 expression and decreased oxidative damage. GDF11 activated the canonical TGF-β signaling pathway and inactivated the non-canonical pathways, ERK and JNK signaling pathways. Moreover, administration of GDF11 prior to reperfusion protected the heart from reperfusion damage. Notably, pretreatment with the activin-binding protein, follistatin (FST), inhibited the cardioprotective effects of GDF11 by blocking its activation of Smad2/3 signaling and its inactivation of detrimental TGF-β signaling. Our data suggest that exogenous GDF11 has cardioprotective effects and may have morphologic and functional recovery in the early stage of myocardial I-R injury. GDF11 may be an innovative therapeutic approach for reducing myocardial I-R injury.
Collapse
|