1
|
Irdianto SA, Fadhillah F, Lestari R, Fadilah F, Bowolaksono A, Dwiranti A. Extrachromosomal DNA in Breast Cancer Cell Lines: Detection and Characterization. Microsc Res Tech 2025; 88:1239-1247. [PMID: 39733336 DOI: 10.1002/jemt.24780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/31/2024]
Abstract
This study delves into the intriguing world of extrachromosomal DNA (ecDNA) in breast cancer, uncovering its pivotal role in cancer's aggressiveness and genetic variability. ecDNA, a form of circular DNA found outside chromosomes, is known to play a significant role in cancer progression by increasing oncogene expression. Focusing on two contrasting cell lines, MDA-MB-231 (triple-negative) and MCF-7 (Luminal-A), we utilized advanced microscopy and fluorescence techniques to detect and characterize ecDNA. Our findings reveal a stark difference: MDA-MB-231 cells, known for their high metastatic potential, exhibit a striking abundance of ecDNA, manifested as double minutes and single form with intense fluorescence signals. In contrast, the less aggressive MCF-7 cells harbor significantly fewer ecDNA. This disparity highlights the potential of ecDNA as a key player in cancer progression and a promising target for novel therapies. This research sheds light on the unseen genetic forces driving breast cancer and opens the door to new strategies in cancer treatment. Further research is necessary to understand the mechanisms of ecDNA formation and its role in different breast cancer subtypes.
Collapse
Affiliation(s)
- Shadira Anindieta Irdianto
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Fadhillah Fadhillah
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Retno Lestari
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Fadilah Fadilah
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Astari Dwiranti
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| |
Collapse
|
2
|
Nichols A, Norman R, Chen Y, Choi Y, Striepen J, Salataj E, Toufektchan E, Koche R, Maciejowski J. Mitotic transcription ensures ecDNA inheritance through chromosomal tethering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637945. [PMID: 39990406 PMCID: PMC11844496 DOI: 10.1101/2025.02.12.637945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extrachromosomal DNA (ecDNA) are circular DNA bodies that play critical roles in tumor progression and treatment resistance by amplifying oncogenes across a wide range of cancer types. ecDNA lack centromeres and are thus not constrained by typical Mendelian segregation, enabling their unequal accumulation within daughter cells and associated increases in copy number. Despite intrinsic links to their oncogenic potential, the fidelity and mechanisms of ecDNA inheritance are poorly understood. Here, we show that ecDNA are protected against cytosolic mis-segregation through mitotic clustering and by tethering to the telomeric and subtelomeric regions of mitotic chromosomes. ecDNA-chromosome tethering depends on BRD4 transcriptional co-activation and mitotic transcription of the long non-coding RNA PVT1 , which is co-amplified with MYC in colorectal and prostate cancer cell lines. Disruption of ecDNA-chromosome tethering through BRD4 inhibition, PVT1 depletion, or inhibiting mitotic transcription results in cytosolic mis-segregation, ecDNA reintegration, and the formation of homogeneously staining regions (HSRs). We propose that nuclear inheritance of ecDNA is facilitated by an RNA-mediated physical tether that links ecDNA to mitotic chromosomes and thus protects against cytosolic mis-segregation and chromosomal integration.
Collapse
|
3
|
Vicars H, Mills A, Karg T, Sullivan W. Acentric chromosome congression and alignment on the metaphase plate via kinetochore-independent forces. Genetics 2025; 229:iyae188. [PMID: 39552081 PMCID: PMC11796462 DOI: 10.1093/genetics/iyae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Chromosome congression and alignment on the metaphase plate involves lateral and microtubule plus-end interactions with the kinetochore. Here we take advantage of our ability to efficiently generate a GFP-marked acentric X chromosome fragment in Drosophila neuroblasts to identify forces acting on chromosome arms that drive congression and alignment. We find acentrics efficiently congress and align on the metaphase plate, often more rapidly than kinetochore-bearing chromosomes. Unlike intact chromosomes, the paired sister acentrics oscillate as they move to and reside on the metaphase plate in a plane distinct and significantly further from the main mass of intact chromosomes. Consequently, at anaphase onset, acentrics are oriented either parallel or perpendicular to the spindle. Parallel-oriented sisters separate by sliding while those oriented perpendicularly separate via unzipping. This oscillation, together with the fact that in the presence of spindles with disrupted interpolar microtubules acentrics are rapidly shunted away from the poles, indicates that distributed plus-end-directed forces are primarily responsible for acentric migration. This conclusion is supported by the observation that reduction of EB1 preferentially disrupts acentric alignment. Taken together, these studies suggest that plus-end forces mediated by the outer interpolar microtubules contribute significantly to acentric congression and alignment. Surprisingly, we observe disrupted telomere pairing and alignment of sister acentrics indicating that the kinetochore is required to ensure proper gene-to-gene alignment of sister chromatids. Finally, we demonstrate that like mammalian cells, the Drosophila congressed chromosomes on occasion exhibit a toroid configuration.
Collapse
Affiliation(s)
- Hannah Vicars
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alison Mills
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| | - Travis Karg
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| | - William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Yang QL, Xie Y, Qiao K, Lim JYS, Wu S. Modern biology of extrachromosomal DNA: A decade-long voyage of discovery. Cell Res 2025; 35:11-22. [PMID: 39748050 PMCID: PMC11701097 DOI: 10.1038/s41422-024-01054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025] Open
Abstract
Genomic instability is a hallmark of cancer and is a major driving force of tumorigenesis. A key manifestation of genomic instability is the formation of extrachromosomal DNAs (ecDNAs) - acentric, circular DNA molecules ranging from 50 kb to 5 Mb in size, distinct from chromosomes. Ontological studies have revealed that ecDNA serves as a carrier of oncogenes, immunoregulatory genes, and enhancers, capable of driving elevated transcription of its cargo genes and cancer heterogeneity, leading to rapid tumor evolution and therapy resistance. Although ecDNA was documented over half a century ago, the past decade has witnessed a surge in breakthrough discoveries about its biological functions. Here, we systematically review the modern biology of ecDNA uncovered over the last ten years, focusing on how discoveries during this pioneering stage have illuminated our understanding of ecDNA-driven transcription, heterogeneity, and cancer progression. Furthermore, we discuss ongoing efforts to target ecDNA as a novel approach to cancer therapy. This burgeoning field is entering a new phase, poised to reshape our knowledge of cancer biology and therapeutic strategies.
Collapse
Affiliation(s)
- Qing-Lin Yang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yipeng Xie
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kailiang Qiao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Yi Stanley Lim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Greitens C, Leroux JC, Burger M. The intracellular visualization of exogenous DNA in fluorescence microscopy. Drug Deliv Transl Res 2024; 14:2242-2261. [PMID: 38526634 PMCID: PMC11208204 DOI: 10.1007/s13346-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
In the development of non-viral gene delivery vectors, it is essential to reliably localize and quantify transfected DNA inside the cell. To track DNA, fluorescence microscopy methods are commonly applied. These mostly rely on fluorescently labeled DNA, DNA binding proteins fused to a fluorescent protein, or fluorescence in situ hybridization (FISH). In addition, co-stainings are often used to determine the colocalization of the DNA in specific cellular compartments, such as the endolysosomes or the nucleus. We provide an overview of these DNA tracking methods, advice on how they should be combined, and indicate which co-stainings or additional methods are required to draw precise conclusions from a DNA tracking experiment. Some emphasis is given to the localization of exogenous DNA inside the nucleus, which is the last step of DNA delivery. We argue that suitable tools which allow for the nuclear detection of faint signals are still missing, hampering the rational development of more efficient non-viral transfection systems.
Collapse
Affiliation(s)
- Christina Greitens
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
6
|
Vicars H, Karg T, Mills A, Sullivan W. Acentric chromosome congression and alignment on the metaphase plate via kinetochore-independent forces in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567057. [PMID: 38798431 PMCID: PMC11118298 DOI: 10.1101/2023.11.14.567057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Chromosome congression and alignment on the metaphase plate involves lateral and microtubule plus-end interactions with the kinetochore. Here we take advantage of our ability to efficiently generate a GFP-marked acentric X chromosome fragment in Drosophila neuroblasts to identify forces acting on chromosome arms that drive congression and alignment. We find acentrics efficiently align on the metaphase plate, often more rapidly than kinetochore-bearing chromosomes. Unlike intact chromosomes, the paired sister acentrics oscillate as they move to and reside on the metaphase plate in a plane distinct and significantly further from the main mass of intact chromosomes. Consequently, at anaphase onset acentrics are oriented either parallel or perpendicular to the spindle. Parallel-oriented sisters separate by sliding while those oriented perpendicularly separate via unzipping. This oscillation, together with the fact that in monopolar spindles acentrics are rapidly shunted away from the poles, indicates that distributed plus-end directed forces are primarily responsible for acentric migration. This conclusion is supported by the observation that reduction of EB1 preferentially disrupts acentric alignment. In addition, reduction of Klp3a activity, a gene required for the establishment of pole-to-pole microtubules, preferentially disrupts acentric alignment. Taken together these studies suggest that plus-end forces mediated by the outer pole-to-pole microtubules are primarily responsible for acentric metaphase alignment. Surprisingly, we find that a small fraction of sister acentrics are anti-parallel aligned indicating that the kinetochore is required to ensure parallel alignment of sister chromatids. Finally, we find induction of acentric chromosome fragments results in a global reorganization of the congressed chromosomes into a torus configuration. Article Summary The kinetochore serves as a site for attaching microtubules and allows for successful alignment, separation, and segregation of replicated sister chromosomes during cell division. However, previous studies have revealed that sister chromosomes without kinetochores (acentrics) often align to the metaphase plate, undergo separation and segregation, and are properly transmitted to daughter cells. In this study, we discuss the forces acting on chromosomes, independent of the kinetochore, underlying their successful alignment in early mitosis.
Collapse
|
7
|
Deng E, Fan X. Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer. Biomolecules 2024; 14:488. [PMID: 38672504 PMCID: PMC11048305 DOI: 10.3390/biom14040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA), a double-stranded circular DNA molecule found in multiple organisms, has garnered an increasing amount of attention in recent years due to its close association with the initiation, malignant progression, and heterogeneous evolution of cancer. The presence of eccDNA in serum assists in non-invasive tumor diagnosis as a biomarker that can be assessed via liquid biopsies. Furthermore, the specific expression patterns of eccDNA provide new insights into personalized cancer therapy. EccDNA plays a pivotal role in tumorigenesis, development, diagnosis, and treatment. In this review, we comprehensively outline the research trajectory of eccDNA, discuss its role as a diagnostic and prognostic biomarker, and elucidate its regulatory mechanisms in cancer. In particular, we emphasize the potential application value of eccDNA in cancer diagnosis and treatment and anticipate the development of novel tumor diagnosis strategies based on serum eccDNA in the future.
Collapse
Affiliation(s)
- Enze Deng
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Xiaoying Fan
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510005, China
| |
Collapse
|
8
|
Yan X, Mischel P, Chang H. Extrachromosomal DNA in cancer. Nat Rev Cancer 2024; 24:261-273. [PMID: 38409389 DOI: 10.1038/s41568-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Extrachromosomal DNA (ecDNA) has recently been recognized as a major contributor to cancer pathogenesis that is identified in most cancer types and is associated with poor outcomes. When it was discovered over 60 years ago, ecDNA was considered to be rare, and its impact on tumour biology was not well understood. The application of modern imaging and computational techniques has yielded powerful new insights into the importance of ecDNA in cancer. The non-chromosomal inheritance of ecDNA during cell division results in high oncogene copy number, intra-tumoural genetic heterogeneity and rapid tumour evolution that contributes to treatment resistance and shorter patient survival. In addition, the circular architecture of ecDNA results in altered patterns of gene regulation that drive elevated oncogene expression, potentially enabling the remodelling of tumour genomes. The generation of clusters of ecDNAs, termed ecDNA hubs, results in interactions between enhancers and promoters in trans, yielding a new paradigm in oncogenic transcription. In this Review, we highlight the rapid advancements in ecDNA research, providing new insights into ecDNA biogenesis, maintenance and transcription and its role in promoting tumour heterogeneity. To conclude, we delve into a set of unanswered questions whose answers will pave the way for the development of ecDNA targeted therapeutic approaches.
Collapse
Affiliation(s)
- Xiaowei Yan
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Paul Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Howard Chang
- Department of Dermatology, Stanford University, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Huang Q, Zhang S, Wang G, Han J. Insight on ecDNA-mediated tumorigenesis and drug resistance. Heliyon 2024; 10:e27733. [PMID: 38545177 PMCID: PMC10966608 DOI: 10.1016/j.heliyon.2024.e27733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
Extrachromosomal DNAs (ecDNAs) are a pervasive feature found in cancer and contain oncogenes and their corresponding regulatory elements. Their unique structural properties allow a rapid amplification of oncogenes and alter chromatin accessibility, leading to tumorigenesis and malignant development. The uneven segregation of ecDNA during cell division enhances intercellular genetic heterogeneity, which contributes to tumor evolution that might trigger drug resistance and chemotherapy tolerance. In addition, ecDNA has the ability to integrate into or detach from chromosomal DNA, such progress results into structural alterations and genomic rearrangements within cancer cells. Recent advances in multi-omics analysis revealing the genomic and epigenetic characteristics of ecDNA are anticipated to make valuable contributions to the development of precision cancer therapy. Herein, we conclud the mechanisms of ecDNA generation and the homeostasis of its dynamic structure. In addition to the latest techniques in ecDNA research including multi-omics analysis and biochemical validation methods, we also discuss the role of ecDNA in tumor development and treatment, especially in drug resistance, and future challenges of ecDNA in cancer therapy.
Collapse
Affiliation(s)
| | | | - Guosong Wang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Hung KL, Jones MG, Wong ITL, Lange JT, Luebeck J, Scanu E, He BJ, Brückner L, Li R, González RC, Schmargon R, Dörr JR, Belk JA, Bafna V, Werner B, Huang W, Henssen AG, Mischel PS, Chang HY. Coordinated inheritance of extrachromosomal DNA species in human cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549597. [PMID: 37503111 PMCID: PMC10371175 DOI: 10.1101/2023.07.18.549597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The chromosomal theory of inheritance has dominated human genetics, including cancer genetics. Genes on the same chromosome segregate together while genes on different chromosomes assort independently, providing a fundamental tenet of Mendelian inheritance. Extrachromosomal DNA (ecDNA) is a frequent event in cancer that drives oncogene amplification, dysregulated gene expression and intratumoral heterogeneity, including through random segregation during cell division. Distinct ecDNA sequences, herein termed ecDNA species, can co-exist to facilitate intermolecular cooperation in cancer cells. However, how multiple ecDNA species within a tumor cell are assorted and maintained across somatic cell generations to drive cancer cell evolution is not known. Here we show that cooperative ecDNA species can be coordinately inherited through mitotic co-segregation. Imaging and single-cell analyses show that multiple ecDNAs encoding distinct oncogenes co-occur and are correlated in copy number in human cancer cells. EcDNA species are coordinately segregated asymmetrically during mitosis, resulting in daughter cells with simultaneous copy number gains in multiple ecDNA species prior to any selection. Computational modeling reveals the quantitative principles of ecDNA co-segregation and co-selection, predicting their observed distributions in cancer cells. Finally, we show that coordinated inheritance of ecDNAs enables co-amplification of specialized ecDNAs containing only enhancer elements and guides therapeutic strategies to jointly deplete cooperating ecDNA oncogenes. Coordinated inheritance of ecDNAs confers stability to oncogene cooperation and novel gene regulatory circuits, allowing winning combinations of epigenetic states to be transmitted across cell generations.
Collapse
Affiliation(s)
- King L. Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Matthew G. Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Ivy Tsz-Lo Wong
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Joshua T. Lange
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Elisa Scanu
- Department of Mathematics, Queen Mary University of London, London, UK
| | - Britney Jiayu He
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Lotte Brückner
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Rocío Chamorro González
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Rachel Schmargon
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jan R. Dörr
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Julia A. Belk
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Benjamin Werner
- Evolutionary Dynamics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Weini Huang
- Department of Mathematics, Queen Mary University of London, London, UK
- Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Anton G. Henssen
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Berlin Institute of Health, Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Paul S. Mischel
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Arshadi A, Tolomeo D, Venuto S, Storlazzi CT. Advancements in Focal Amplification Detection in Tumor/Liquid Biopsies and Emerging Clinical Applications. Genes (Basel) 2023; 14:1304. [PMID: 37372484 PMCID: PMC10298061 DOI: 10.3390/genes14061304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Focal amplifications (FAs) are crucial in cancer research due to their significant diagnostic, prognostic, and therapeutic implications. FAs manifest in various forms, such as episomes, double minute chromosomes, and homogeneously staining regions, arising through different mechanisms and mainly contributing to cancer cell heterogeneity, the leading cause of drug resistance in therapy. Numerous wet-lab, mainly FISH, PCR-based assays, next-generation sequencing, and bioinformatics approaches have been set up to detect FAs, unravel the internal structure of amplicons, assess their chromatin compaction status, and investigate the transcriptional landscape associated with their occurrence in cancer cells. Most of them are tailored for tumor samples, even at the single-cell level. Conversely, very limited approaches have been set up to detect FAs in liquid biopsies. This evidence suggests the need to improve these non-invasive investigations for early tumor detection, monitoring disease progression, and evaluating treatment response. Despite the potential therapeutic implications of FAs, such as, for example, the use of HER2-specific compounds for patients with ERBB2 amplification, challenges remain, including developing selective and effective FA-targeting agents and understanding the molecular mechanisms underlying FA maintenance and replication. This review details a state-of-the-art of FA investigation, with a particular focus on liquid biopsies and single-cell approaches in tumor samples, emphasizing their potential to revolutionize the future diagnosis, prognosis, and treatment of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (D.T.); (S.V.)
| |
Collapse
|
12
|
Lu S, Hou Y, Zhang XE, Gao Y. Live cell imaging of DNA and RNA with fluorescent signal amplification and background reduction techniques. Front Cell Dev Biol 2023; 11:1216232. [PMID: 37342234 PMCID: PMC10277805 DOI: 10.3389/fcell.2023.1216232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Illuminating DNA and RNA dynamics in live cell can elucidate their life cycle and related biochemical activities. Various protocols have been developed for labeling the regions of interest in DNA and RNA molecules with different types of fluorescent probes. For example, CRISPR-based techniques have been extensively used for imaging genomic loci. However, some DNA and RNA molecules can still be difficult to tag and observe dynamically, such as genomic loci in non-repetitive regions. In this review, we will discuss the toolbox of techniques and methodologies that have been developed for imaging DNA and RNA. We will also introduce optimized systems that provide enhanced signal intensity or low background fluorescence for those difficult-to-tag molecules. These strategies can provide new insights for researchers when designing and using techniques to visualize DNA or RNA molecules.
Collapse
Affiliation(s)
- Song Lu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yu Hou
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
13
|
Lin YF, Hu Q, Mazzagatti A, Valle-Inclán JE, Maurais EG, Dahiya R, Guyer A, Sanders JT, Engel JL, Nguyen G, Bronder D, Bakhoum SF, Cortés-Ciriano I, Ly P. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 2023; 618:1041-1048. [PMID: 37165191 PMCID: PMC10307639 DOI: 10.1038/s41586-023-05974-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/17/2023] [Indexed: 05/12/2023]
Abstract
Complex genome rearrangements can be generated by the catastrophic pulverization of missegregated chromosomes trapped within micronuclei through a process known as chromothripsis1-5. As each chromosome contains a single centromere, it remains unclear how acentric fragments derived from shattered chromosomes are inherited between daughter cells during mitosis6. Here we tracked micronucleated chromosomes with live-cell imaging and show that acentric fragments cluster in close spatial proximity throughout mitosis for asymmetric inheritance by a single daughter cell. Mechanistically, the CIP2A-TOPBP1 complex prematurely associates with DNA lesions within ruptured micronuclei during interphase, which poises pulverized chromosomes for clustering upon mitotic entry. Inactivation of CIP2A-TOPBP1 caused acentric fragments to disperse throughout the mitotic cytoplasm, stochastically partition into the nucleus of both daughter cells and aberrantly misaccumulate as cytoplasmic DNA. Mitotic clustering facilitates the reassembly of acentric fragments into rearranged chromosomes lacking the extensive DNA copy-number losses that are characteristic of canonical chromothripsis. Comprehensive analysis of pan-cancer genomes revealed clusters of DNA copy-number-neutral rearrangements-termed balanced chromothripsis-across diverse tumour types resulting in the acquisition of known cancer driver events. Thus, distinct patterns of chromothripsis can be explained by the spatial clustering of pulverized chromosomes from micronuclei.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elizabeth G Maurais
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alison Guyer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Interdisciplinary Biomedical Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob T Sanders
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giaochau Nguyen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Bronder
- Human Oncology and Pathogenesis Program, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Chen Y, Qiu Q, She J, Yu J. Extrachromosomal circular DNA in colorectal cancer: biogenesis, function and potential as therapeutic target. Oncogene 2023; 42:941-951. [PMID: 36859558 PMCID: PMC10038807 DOI: 10.1038/s41388-023-02640-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Extrachromosomal circular DNA (ecDNA) has gained renewed interest since its discovery more than half a century ago, emerging as critical driver of tumor evolution. ecDNA is highly prevalent in many types of cancers, including colorectal cancer (CRC), which is one of the most deadly cancers worldwide. ecDNAs play an essential role in regulating oncogene expression, intratumor heterogeneity, and resistance to therapy independently of canonical chromosomal alterations in CRC. Furthermore, the existence of ecDNAs is attributed to the patient's prognosis, since ecDNA-based oncogene amplification adversely affects clinical outcomes. Recent understanding of ecDNA put an extra layer of complexity in the pathogenesis of CRC. In this review, we will discuss the current understanding on mechanisms of biogenesis, and distinctive features of ecDNA in CRC. In addition, we will examine how ecDNAs mediate oncogene overexpression, gene regulation, and topological interactions with active chromatin, which facilitates genetic heterogeneity, accelerates CRC malignancy, and enhances rapid adaptation to therapy resistance. Finally, we will discuss the potential diagnostic and therapeutic implications of ecDNAs in CRC.
Collapse
Affiliation(s)
- Yinnan Chen
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Quanpeng Qiu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jun Yu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
15
|
Warecki B, Bast I, Tajima M, Sullivan W. Connections between sister and non-sister telomeres of segregating chromatids maintain euploidy. Curr Biol 2023; 33:58-74.e5. [PMID: 36525974 PMCID: PMC9839490 DOI: 10.1016/j.cub.2022.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
The complete separation of sister chromatids during anaphase is a fundamental requirement for successful mitosis. Therefore, divisions with either persistent DNA-based connections or lagging chromosome fragments threaten aneuploidy if unresolved. Here, we demonstrate the existence of an anaphase mechanism in normally dividing cells in which pervasive connections between telomeres of segregating chromosomes aid in rescuing lagging chromosome fragments. We observe that in a large proportion of Drosophila melanogaster neuronal stem cell divisions, early anaphase sister and non-sister chromatids remain connected by thin telomeric DNA threads. Normally, these threads are resolved in mid-to-late anaphase via a spatial mechanism. However, we find that the presence of a nearby unrepaired DNA break recruits histones, BubR1 kinase, Polo kinase, Aurora B kinase, and BAF to the telomeric thread of the broken chromosome, stabilizing it. Stabilized connections then aid lagging chromosome rescue. These results suggest a model in which pervasive anaphase telomere-telomere connections that are normally resolved quickly can instead be stabilized to retain wayward chromosome fragments. Thus, the liability of persistent anaphase inter-chromosomal connections in normal divisions may be offset by their ability to maintain euploidy in the face of chromosome damage and genome loss.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Ian Bast
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Matthew Tajima
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
16
|
Yi E, Chamorro González R, Henssen AG, Verhaak RGW. Extrachromosomal DNA amplifications in cancer. Nat Rev Genet 2022; 23:760-771. [PMID: 35953594 PMCID: PMC9671848 DOI: 10.1038/s41576-022-00521-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 12/19/2022]
Abstract
Extrachromosomal DNA (ecDNA) amplification is an important driver alteration in cancer. It has been observed in most cancer types and is associated with worse patient outcome. The functional impact of ecDNA has been linked to its unique properties, such as its circular structure that is associated with altered chromatinization and epigenetic regulatory landscape, as well as its ability to randomly segregate during cell division, which fuels intercellular copy number heterogeneity. Recent investigations suggest that ecDNA is structurally more complex than previously anticipated and that it localizes to specialized nuclear bodies (hubs) and can act in trans as an enhancer for genes on other ecDNAs or chromosomes. In this Review, we synthesize what is currently known about how ecDNA is generated and how its genetic and epigenetic architecture affects proto-oncogene deregulation in cancer. We discuss how recently identified ecDNA functions may impact oncogenesis but also serve as new therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Eunhee Yi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Rocío Chamorro González
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
| | - Anton G Henssen
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany.
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
- German Cancer Consortium (DKTK), partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Wanchai V, Jenjaroenpun P, Leangapichart T, Arrey G, Burnham CM, Tümmler MC, Delgado-Calle J, Regenberg B, Nookaew I. CReSIL: accurate identification of extrachromosomal circular DNA from long-read sequences. Brief Bioinform 2022; 23:bbac422. [PMID: 36198068 PMCID: PMC10144670 DOI: 10.1093/bib/bbac422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) of chromosomal origin is found in many eukaryotic species and cell types, including cancer, where eccDNAs with oncogenes drive tumorigenesis. Most studies of eccDNA employ short-read sequencing for their identification. However, short-read sequencing cannot resolve the complexity of genomic repeats, which can lead to missing eccDNA products. Long-read sequencing technologies provide an alternative to constructing complete eccDNA maps. We present a software suite, Construction-based Rolling-circle-amplification for eccDNA Sequence Identification and Location (CReSIL), to identify and characterize eccDNA from long-read sequences. CReSIL's performance in identifying eccDNA, with a minimum F1 score of 0.98, is superior to the other bioinformatic tools based on simulated data. CReSIL provides many useful features for genomic annotation, which can be used to infer eccDNA function and Circos visualization for eccDNA architecture investigation. We demonstrated CReSIL's capability in several long-read sequencing datasets, including datasets enriched for eccDNA and whole genome datasets from cells containing large eccDNA products. In conclusion, the CReSIL suite software is a versatile tool for investigating complex and simple eccDNA in eukaryotic cells.
Collapse
Affiliation(s)
- Visanu Wanchai
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thongpan Leangapichart
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Gerard Arrey
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Charles M Burnham
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Maria C Tümmler
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, College of Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Birgitte Regenberg
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
18
|
Noorani I, Mischel PS, Swanton C. Leveraging extrachromosomal DNA to fine-tune trials of targeted therapy for glioblastoma: opportunities and challenges. Nat Rev Clin Oncol 2022; 19:733-743. [PMID: 36131011 DOI: 10.1038/s41571-022-00679-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma evolution is facilitated by intratumour heterogeneity, which poses a major hurdle to effective treatment. Evidence indicates a key role for oncogene amplification on extrachromosomal DNA (ecDNA) in accelerating tumour evolution and thus resistance to treatment, particularly in glioblastomas. Oncogenes contained within ecDNA can reach high copy numbers and expression levels, and their unequal segregation can result in more rapid copy number changes in response to therapy than is possible through natural selection of intrachromosomal genomic loci. Notably, targeted therapies inhibiting oncogenic pathways have failed to improve glioblastoma outcomes. In this Perspective, we outline reasons for this disappointing lack of clinical translation and present the emerging evidence implicating ecDNA as an important driver of tumour evolution. Furthermore, we suggest that through detection of ecDNA, patient selection for clinical trials of novel agents can be optimized to include those most likely to benefit based on current understanding of resistance mechanisms. We discuss the challenges to successful translation of this approach, including accurate detection of ecDNA in tumour tissue with novel technologies, development of faithful preclinical models for predicting the efficacy of novel agents in the presence of ecDNA oncogenes, and understanding the mechanisms of ecDNA formation during cancer evolution and how they could be attenuated therapeutically. Finally, we evaluate the feasibility of routine ecDNA characterization in the clinic and how this process could be integrated with other methods of molecular stratification to maximize the potential for clinical translation of precision medicines.
Collapse
Affiliation(s)
- Imran Noorani
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine and Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
19
|
Wu M, Rai K. Demystifying extrachromosomal DNA circles: Categories, biogenesis, and cancer therapeutics. Comput Struct Biotechnol J 2022; 20:6011-6022. [PMID: 36382182 PMCID: PMC9647416 DOI: 10.1016/j.csbj.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Since the advent of sequencing technologies in the 1990s, researchers have focused on the association between aberrations in chromosomal DNA and disease. However, not all forms of the DNA are linear and chromosomal. Extrachromosomal circular DNAs (eccDNAs) are double-stranded, closed-circled DNA constructs free from the chromosome that reside in the nuclei. Although widely overlooked, the eccDNAs have recently gained attention for their potential roles in physiological response, intratumoral heterogeneity and cancer therapeutics. In this review, we summarize the history, classifications, biogenesis, and highlight recent progresses on the emerging topic of eccDNAs and comment on their potential application as biomarkers in clinical settings.
Collapse
Affiliation(s)
- Manrong Wu
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunal Rai
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Ilić M, Zaalberg IC, Raaijmakers JA, Medema RH. Life of double minutes: generation, maintenance, and elimination. Chromosoma 2022; 131:107-125. [PMID: 35487993 PMCID: PMC9470669 DOI: 10.1007/s00412-022-00773-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.
Collapse
Affiliation(s)
- Mila Ilić
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Irene C Zaalberg
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg, 100, 3584, CG Utrecht, The Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Arrey G, Keating ST, Regenberg B. A unifying model for extrachromosomal circular DNA load in eukaryotic cells. Semin Cell Dev Biol 2022; 128:40-50. [PMID: 35292190 DOI: 10.1016/j.semcdb.2022.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Extrachromosomal circular DNA (eccDNA) with exons and whole genes are common features of eukaryotic cells. Work from especially tumours and the yeast Saccharomyces cerevisiae has revealed that eccDNA can provide large selective advantages and disadvantages. Besides the phenotypic effect due to expression of an eccDNA fragment, eccDNA is different from other mutations in that it is released from 1:1 segregation during cell division. This means that eccDNA can quickly change copy number, pickup secondary mutations and reintegrate into a chromosome to establish substantial genetic variation that could not have evolved via canonical mechanisms. We propose a unifying 5-factor model for conceptualizing the eccDNA load of a eukaryotic cell, emphasizing formation, replication, segregation, selection and elimination. We suggest that the magnitude of these sequential events and their interactions determine the copy number of eccDNA in mitotically dividing cells. We believe that our model will provide a coherent framework for eccDNA research, to understand its biology and the factors that can be manipulated to modulate eccDNA load in eukaryotic cells.
Collapse
Affiliation(s)
- Gerard Arrey
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Samuel T Keating
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Regenberg
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Ashique S, Upadhyay A, Garg A, Mishra N, Hussain A, Negi P, Hing GB, Bhatt S, Ali MK, Gowthamarajan K, Singh SK, Gupta G, Chellappan DK, Dua K. Impact of ecDNA: A mechanism that directs tumorigenesis in cancer drug Resistance-A review. Chem Biol Interact 2022; 363:110000. [DOI: 10.1016/j.cbi.2022.110000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/16/2022]
|
23
|
Karami Fath M, Karimfar N, Fazlollahpour Naghibi A, Shafa S, Ghasemi Shiran M, Ataei M, Dehghanzadeh H, Nabi Afjadi M, Ghadiri T, Payandeh Z, Tarhriz V. Revisiting characteristics of oncogenic extrachromosomal DNA as mobile enhancers on neuroblastoma and glioma cancers. Cancer Cell Int 2022; 22:200. [PMID: 35614494 PMCID: PMC9131661 DOI: 10.1186/s12935-022-02617-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer can be induced by a variety of possible causes, including tumor suppressor gene failure and proto-oncogene hyperactivation. Tumor-associated extrachromosomal circular DNA has been proposed to endanger human health and speed up the progression of cancer. The amplification of ecDNA has raised the oncogene copy number in numerous malignancies according to whole-genome sequencing on distinct cancer types. The unusual structure and function of ecDNA, and its potential role in understanding current cancer genome maps, make it a hotspot to study tumor pathogenesis and evolution. The discovery of the basic mechanisms of ecDNA in the emergence and growth of malignancies could lead researchers to develop new cancer therapies. Despite recent progress, different aspects of ecDNA require more investigation. We focused on the features, and analyzed the bio-genesis, and origin of ecDNA in this review, as well as its functions in neuroblastoma and glioma cancers.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nastaran Karimfar
- Faculty of Veterinary Medicine, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | | | - Shahriyar Shafa
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Melika Ghasemi Shiran
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehran Ataei
- Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran. .,Neurosiences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Noer JB, Hørsdal OK, Xiang X, Luo Y, Regenberg B. Extrachromosomal circular DNA in cancer: history, current knowledge, and methods. Trends Genet 2022; 38:766-781. [PMID: 35277298 DOI: 10.1016/j.tig.2022.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
Extrachromosomal circular DNA (eccDNA) is a closed-circle, nuclear, nonplasmid DNA molecule found in all tested eukaryotes. eccDNA plays important roles in cancer pathogenesis, evolution of tumor heterogeneity, and therapeutic resistance. It is known under many names, including very large cancer-specific circular extrachromosomal DNA (ecDNA), which carries oncogenes and is often amplified in cancer cells. Our understanding of eccDNA has historically been limited and fragmented. To provide better a context of new and previous research on eccDNA, in this review we give an overview of the various names given to eccDNA at different times. We describe the different mechanisms for formation of eccDNA and the methods used to study eccDNA thus far. Finally, we explore the potential clinical value of eccDNA.
Collapse
Affiliation(s)
- Julie B Noer
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Oskar K Hørsdal
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Xi Xiang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | | |
Collapse
|
25
|
van Leen E, Brückner L, Henssen AG. The genomic and spatial mobility of extrachromosomal DNA and its implications for cancer therapy. Nat Genet 2022; 54:107-114. [PMID: 35145302 DOI: 10.1038/s41588-021-01000-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Extrachromosomal DNA (ecDNA) amplification has been observed in at least 30 different cancer types and is associated with worse patient outcomes. This has been linked to increased oncogene dosage because both oncogenes and associated enhancers can occupy ecDNA. New data challenge the view that only oncogene dosage is affected by ecDNA, and raises the possibility that ecDNA could disrupt genome-wide gene expression. Recent investigations suggest that ecDNA localizes to specialized nuclear bodies (hubs) in which they can act in trans as ectopic enhancers for genes on other ecDNA or chromosomes. Moreover, ecDNA can reintegrate into the genome, possibly further disrupting the gene regulatory landscape in tumor cells. In this Perspective, we discuss the emerging properties of ecDNA and highlight promising avenues to exploit this new knowledge for the development of ecDNA-directed therapies for cancer.
Collapse
Affiliation(s)
- Eric van Leen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Lotte Brückner
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Anton G Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany. .,Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany. .,Berlin Institute of Health, Berlin, Germany. .,German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
26
|
Wu S, Bafna V, Chang HY, Mischel PS. Extrachromosomal DNA: An Emerging Hallmark in Human Cancer. ANNUAL REVIEW OF PATHOLOGY 2022; 17:367-386. [PMID: 34752712 PMCID: PMC9125980 DOI: 10.1146/annurev-pathmechdis-051821-114223] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human genes are arranged on 23 pairs of chromosomes, but in cancer, tumor-promoting genes and regulatory elements can free themselves from chromosomes and relocate to circular, extrachromosomal pieces of DNA (ecDNA). ecDNA, because of its nonchromosomal inheritance, drives high-copy-number oncogene amplification and enables tumors to evolve their genomes rapidly. Furthermore, the circular ecDNA architecture fundamentally alters gene regulation and transcription, and the higher-order organization of ecDNA contributes to tumor pathogenesis. Consequently, patients whose cancers harbor ecDNA have significantly shorter survival. Although ecDNA was first observed more than 50 years ago, its critical importance has only recently come to light. In this review, we discuss the current state of understanding of how ecDNAs form and function as well as how they contribute to drug resistance and accelerated cancer evolution.
Collapse
Affiliation(s)
- Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California, USA
| |
Collapse
|
27
|
Gene Amplification and the Extrachromosomal Circular DNA. Genes (Basel) 2021; 12:genes12101533. [PMID: 34680928 PMCID: PMC8535887 DOI: 10.3390/genes12101533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Oncogene amplification is closely linked to the pathogenesis of a broad spectrum of human malignant tumors. The amplified genes localize either to the extrachromosomal circular DNA, which has been referred to as cytogenetically visible double minutes (DMs), or submicroscopic episome, or to the chromosomal homogeneously staining region (HSR). The extrachromosomal circle from a chromosome arm can initiate gene amplification, resulting in the formation of DMs or HSR, if it had a sequence element required for replication initiation (the replication initiation region/matrix attachment region; the IR/MAR), under a genetic background that permits gene amplification. In this article, the nature, intracellular behavior, generation, and contribution to cancer genome plasticity of such extrachromosomal circles are summarized and discussed by reviewing recent articles on these topics. Such studies are critical in the understanding and treating human cancer, and also for the production of recombinant proteins such as biopharmaceuticals by increasing the recombinant genes in the cells.
Collapse
|
28
|
Gu X, Yu J, Chai P, Ge S, Fan X. Novel insights into extrachromosomal DNA: redefining the onco-drivers of tumor progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:215. [PMID: 33046109 PMCID: PMC7552444 DOI: 10.1186/s13046-020-01726-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Extrachromosomal DNA (ecDNA), gene-encoding extrachromosomal particles of DNA, is often present in tumor cells. Recent studies have revealed that oncogene amplification via ecDNA is widespread across a diverse range of cancers. ecDNA is involved in increasing tumor heterogeneity, reverting tumor phenotypes, and enhancing gene expression and tumor resistance to chemotherapy, indicating that it plays a significant role in tumorigenesis. In this review, we summarize the characteristics and genesis of ecDNA, connect these characteristics with their concomitant influences on tumorigenesis, enumerate the oncogenes encoded by ecDNA in multiple cancers, elaborate the roles of ecDNA in tumor pathogenesis and progression, and propose the considerable research and therapeutic prospects of ecDNA in cancer.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China.
| |
Collapse
|
29
|
Warecki B, Sullivan W. Mechanisms driving acentric chromosome transmission. Chromosome Res 2020; 28:229-246. [PMID: 32712740 DOI: 10.1007/s10577-020-09636-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore-microtubule association is a core, conserved event that drives chromosome transmission during mitosis. Failure to establish this association on even a single chromosome results in aneuploidy leading to cell death or the development of cancer. However, although many chromosomes lacking centromeres, termed acentrics, fail to segregate, studies in a number of systems reveal robust alternative mechanisms that can drive segregation and successful poleward transport of acentrics. In contrast to the canonical mechanism that relies on end-on microtubule attachments to kinetochores, mechanisms of acentric transmission largely fall into three categories: direct attachments to other chromosomes, kinetochore-independent lateral attachments to microtubules, and long-range tether-based attachments. Here, we review these "non-canonical" methods of acentric chromosome transmission. Just as the discovery and exploration of cell cycle checkpoints provided insight into both the origins of cancer and new therapies, identifying mechanisms and structures specifically involved in acentric segregation may have a significant impact on basic and applied cancer research.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
30
|
Tanaka H, Watanabe T. Mechanisms Underlying Recurrent Genomic Amplification in Human Cancers. Trends Cancer 2020; 6:462-477. [PMID: 32383436 PMCID: PMC7285850 DOI: 10.1016/j.trecan.2020.02.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022]
Abstract
Focal copy-number increases (genomic amplification) pinpoint oncogenic driver genes and therapeutic targets in cancer genomes. With the advent of genomic technologies, recurrent genomic amplification has been mapped throughout the genome. Recurrent amplification could be solely due to positive selection for the tumor-promoting effects of amplified gene products. Alternatively, recurrence could result from the susceptibility of the loci to amplification. Distinguishing between these possibilities requires a full understanding of the amplification mechanisms. Two mechanisms, the formation of double minute (DM) chromosomes and breakage-fusion-bridge (BFB) cycles, have been repeatedly linked to genomic amplification, and the impact of both mechanisms has been confirmed in cancer genomics data. We review the details of these mechanisms and discuss the mechanisms underlying recurrence.
Collapse
Affiliation(s)
- Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA.
| | - Takaaki Watanabe
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
31
|
Oobatake Y, Shimizu N. Double-strand breakage in the extrachromosomal double minutes triggers their aggregation in the nucleus, micronucleation, and morphological transformation. Genes Chromosomes Cancer 2020; 59:133-143. [PMID: 31569279 DOI: 10.1002/gcc.22810] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/27/2019] [Accepted: 09/15/2019] [Indexed: 01/09/2023] Open
Abstract
Gene amplification plays a pivotal role in malignant transformation. Amplified genes often reside on extrachromosomal double minutes (DMs). Low-dose hydroxyurea induces DM aggregation in the nucleus which, in turn, generates micronuclei composed of DMs. Low-dose hydroxyurea also induces random double-strand breakage throughout the nucleus. In the present study, we found that double-strand breakage in DMs is sufficient for induction of DM aggregation. Here, we used CRISPR/Cas9 to introduce specific breakages in both natural and artificially tagged DMs of human colorectal carcinoma COLO 320DM cells. Aggregation occurred in the S phase but not in the G1 phase within 4 hours after breakage, which suggested the possible involvement of homologous recombination in the aggregation of numerous DMs. Simultaneous detection of DMs and the phosphorylated histone H2AX revealed that the aggregation persisted after breakage repair. Thus, the aggregate generated cytoplasmic micronuclei at the next interphase. Our data also suggested that micronuclear entrapment eliminated the DMs or morphologically transformed them into giant DMs or homogeneously staining regions (HSRs). In this study, we obtained a model explaining the consequences of DMs after double-strand breakage in cancer cells. Because double-strand breakage is frequently involved in cancer therapy, the model suggests how it affects gene amplification.
Collapse
Affiliation(s)
- Yoshihiro Oobatake
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
32
|
Tandon I, Pal R, Pal JK, Sharma NK. Extrachromosomal circular DNAs: an extra piece of evidence to depict tumor heterogeneity. Future Sci OA 2019; 5:FSO390. [PMID: 31285839 PMCID: PMC6609892 DOI: 10.2144/fsoa-2019-0024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
The tumor microenvironment (TME) comprises a heterogeneous number and type of cellular and noncellular components that vary in the context of molecular, genomic and epigenomic levels. The genotypic diversity and plasticity within cancer cells are known to be affected by genomic instability and genome alterations. Besides genomic instability within the chromosomal linear DNA, an extra factor appears in the form of extrachromosomal circular DNAs (eccDNAs; 2-20 kbp) and microDNAs (200-400 bp). This extra heterogeneity within cancer cells in the form of an abundance of eccDNAs adds another dimension to the expression of procancer players, such as oncoproteins, acting as a driver for cancer cell survival and proliferation. This article reviews research into eccDNAs centering around cancer plasticity and hallmarks, and discusses these facts in light of therapeutics and biomarker development.
Collapse
Affiliation(s)
- Ishita Tandon
- Cancer & Translational Research Lab, Dr DY Patil Biotechnology & Bioinformatics Institute, Dr DY Patil Vidyapeeth, Pune, Maharashtra 411033, India
| | - Roshni Pal
- Cancer & Translational Research Lab, Dr DY Patil Biotechnology & Bioinformatics Institute, Dr DY Patil Vidyapeeth, Pune, Maharashtra 411033, India
| | - Jayanta K Pal
- Cancer & Translational Research Lab, Dr DY Patil Biotechnology & Bioinformatics Institute, Dr DY Patil Vidyapeeth, Pune, Maharashtra 411033, India
| | - Nilesh K Sharma
- Cancer & Translational Research Lab, Dr DY Patil Biotechnology & Bioinformatics Institute, Dr DY Patil Vidyapeeth, Pune, Maharashtra 411033, India
| |
Collapse
|
33
|
Shimizu N, Kapoor R, Naniwa S, Sakamaru N, Yamada T, Yamamura YK, Utani KI. Generation and maintenance of acentric stable double minutes from chromosome arms in inter-species hybrid cells. BMC Mol Cell Biol 2019; 20:2. [PMID: 31041889 PMCID: PMC6446505 DOI: 10.1186/s12860-019-0186-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extrachromosomal acentric double minutes (DMs) contribute to human malignancy by carrying amplified oncogenes. Recent cancer genomics revealed that the pulverization of defined chromosome arms (chromothripsis) may generate DMs, however, nobody had actually generated DMs from chromosome arm in culture. Human chromosomes are lost in human-rodent hybrid cells. RESULTS We found that human acentric DMs with amplified c-myc were stable in human-rodent hybrid cells, although the degree of stability depended on the specific rodent cell type. Based on this finding, stable human-rodent hybrids were efficiently generated by tagging human DMs with a plasmid with drug-resistance gene. After cell fusion, human chromosomes were specifically pulverised and lost. Consistent with chromothripsis, pulverization of human chromosome arms was accompanied by the incorporation into micronuclei. Such micronucleus showed different replication timing from the main nucleus. Surprisingly, we found that the hybrid cells retained not only the original DMs, but also new DMs without plasmid-tag and c-myc, but with human Alu. These DMs were devoid of telomeres and centromeres, and were stable in culture for more than 3 months. Microarray analysis showed that the new DMs were generated from several human chromosomal regions containing genes advantageous for cellular growth. Such regions were completely different from the original DMs. CONCLUSIONS The inter-species hybrid mimics the chromothripsis in culture. This is the first report that experimentally demonstrates the generation of multiple stable acentric DMs from the chromosome arm.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan.
| | - Rita Kapoor
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Shuhei Naniwa
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Naoto Sakamaru
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Taku Yamada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - You-Ki Yamamura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Koh-Ichi Utani
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan.,Present address; Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
34
|
Koo DH, Molin WT, Saski CA, Jiang J, Putta K, Jugulam M, Friebe B, Gill BS. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proc Natl Acad Sci U S A 2018; 115:3332-3337. [PMID: 29531028 PMCID: PMC5879691 DOI: 10.1073/pnas.1719354115] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements that usually contain autonomously replicating extrachromosomal circular DNA molecules (eccDNAs). Amaranthus palmeri, a crop weed, can develop herbicide resistance to glyphosate [N-(phosphonomethyl) glycine] by amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the molecular target of glyphosate. However, biological questions regarding the source of the amplified EPSPS, the nature of the amplified DNA structures, and mechanisms responsible for maintaining this gene amplification in cells and their inheritance remain unknown. Here, we report that amplified EPSPS copies in glyphosate-resistant (GR) A. palmeri are present in the form of eccDNAs with various conformations. The eccDNAs are transmitted during cell division in mitosis and meiosis to the soma and germ cells and the progeny by an as yet unknown mechanism of tethering to mitotic and meiotic chromosomes. We propose that eccDNAs are one of the components of McClintock's postulated innate systems [McClintock B (1978) Stadler Genetics Symposium] that can rapidly produce soma variation, amplify EPSPS genes in the sporophyte that are transmitted to germ cells, and modulate rapid glyphosate resistance through genome plasticity and adaptive evolution.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - William T Molin
- Crop Production Systems Research Unit, US Department of Agriculture-Agricultural Research Services, Stoneville, MS 38776
| | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Karthik Putta
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Bernd Friebe
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Bikram S Gill
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506;
| |
Collapse
|
35
|
Ly P, Cleveland DW. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis. Trends Cell Biol 2017; 27:917-930. [PMID: 28899600 DOI: 10.1016/j.tcb.2017.08.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
Abstract
Cancer genome sequencing has identified chromothripsis, a complex class of structural genomic rearrangements involving the apparent shattering of an individual chromosome into tens to hundreds of fragments. An initial error during mitosis, producing either chromosome mis-segregation into a micronucleus or chromatin bridge interconnecting two daughter cells, can trigger the catastrophic pulverization of the spatially isolated chromosome. The resultant chromosomal fragments are religated in random order by DNA double-strand break repair during the subsequent interphase. Chromothripsis scars the cancer genome with localized DNA rearrangements that frequently generate extensive copy number alterations, oncogenic gene fusion products, and/or tumor suppressor gene inactivation. Here we review emerging mechanisms underlying chromothripsis with a focus on the contribution of cell division errors caused by centromere dysfunction.
Collapse
Affiliation(s)
- Peter Ly
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
36
|
Karg T, Elting MW, Vicars H, Dumont S, Sullivan W. The chromokinesin Klp3a and microtubules facilitate acentric chromosome segregation. J Cell Biol 2017; 216:1597-1608. [PMID: 28500183 PMCID: PMC5461011 DOI: 10.1083/jcb.201604079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 02/03/2017] [Accepted: 04/07/2017] [Indexed: 11/23/2022] Open
Abstract
Although chromosome fragments lacking a centromere would be expected to show severe defects in their segregation during anaphase, they do exhibit poleward movement by an unclear mechanism. Karg et al. now show how microtubules and the chromokinesin Klp3a can work together to successfully segregate chromosome fragments to daughter nuclei. Although poleward segregation of acentric chromosomes is well documented, the underlying mechanisms remain poorly understood. Here, we demonstrate that microtubules play a key role in poleward movement of acentric chromosome fragments generated in Drosophila melanogaster neuroblasts. Acentrics segregate with either telomeres leading or lagging in equal frequency and are preferentially associated with peripheral bundled microtubules. In addition, laser ablation studies demonstrate that segregating acentrics are mechanically associated with microtubules. Finally, we show that successful acentric segregation requires the chromokinesin Klp3a. Reduced Klp3a function results in disorganized interpolar microtubules and shortened spindles. Normally, acentric poleward segregation occurs at the periphery of the spindle in association with interpolar microtubules. In klp3a mutants, acentrics fail to localize and segregate along the peripheral interpolar microtubules and are abnormally positioned in the spindle interior. These studies demonstrate an unsuspected role for interpolar microtubules in driving acentric segregation.
Collapse
Affiliation(s)
- Travis Karg
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Mary Williard Elting
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Hannah Vicars
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Sophie Dumont
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
37
|
Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B, Arden K, Ren B, Nathanson DA, Kornblum HI, Taylor MD, Kaushal S, Cavenee WK, Wechsler-Reya R, Furnari FB, Vandenberg SR, Rao PN, Wahl GM, Bafna V, Mischel PS. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 2017; 543:122-125. [PMID: 28178237 PMCID: PMC5334176 DOI: 10.1038/nature21356] [Citation(s) in RCA: 511] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/23/2016] [Indexed: 02/06/2023]
Abstract
Human cells have twenty-three pairs of chromosomes. In cancer, however, genes can be amplified in chromosomes or in circular extrachromosomal DNA (ecDNA), although the frequency and functional importance of ecDNA are not understood. We performed whole-genome sequencing, structural modelling and cytogenetic analyses of 17 different cancer types, including analysis of the structure and function of chromosomes during metaphase of 2,572 dividing cells, and developed a software package called ECdetect to conduct unbiased, integrated ecDNA detection and analysis. Here we show that ecDNA was found in nearly half of human cancers; its frequency varied by tumour type, but it was almost never found in normal cells. Driver oncogenes were amplified most commonly in ecDNA, thereby increasing transcript level. Mathematical modelling predicted that ecDNA amplification would increase oncogene copy number and intratumoural heterogeneity more effectively than chromosomal amplification. We validated these predictions by quantitative analyses of cancer samples. The results presented here suggest that ecDNA contributes to accelerated evolution in cancer.
Collapse
Affiliation(s)
- Kristen M. Turner
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Viraj Deshpande
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Doruk Beyter
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Tomoyuki Koga
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Jessica Rusert
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Catherine Lee
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Bin Li
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Karen Arden
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - David A. Nathanson
- Department of Medical and Molecular Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Harley I. Kornblum
- Department of Medical and Molecular Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
- Neuropsychiatric Institute–Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharmeela Kaushal
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Robert Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Scott R. Vandenberg
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - P. Nagesh Rao
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Geoffrey M. Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - Paul S. Mischel
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
- Department of Pathology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
38
|
TRF2 recruits ORC through TRFH domain dimerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:191-201. [DOI: 10.1016/j.bbamcr.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/23/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
|
39
|
Rahayu R, Ohsaki E, Omori H, Ueda K. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes. Virology 2016; 496:51-58. [PMID: 27254595 DOI: 10.1016/j.virol.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 01/25/2023]
Abstract
In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy-electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division.
Collapse
Affiliation(s)
- Retno Rahayu
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Eriko Ohsaki
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroko Omori
- Central Instrumentation Laboratory Research Institute for Microbial Diseases (BIKEN), Osaka University, Osaka 565-0871, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
40
|
Kanda T, Horikoshi N, Murata T, Kawashima D, Sugimoto A, Narita Y, Kurumizaka H, Tsurumi T. Interaction between basic residues of Epstein-Barr virus EBNA1 protein and cellular chromatin mediates viral plasmid maintenance. J Biol Chem 2013; 288:24189-99. [PMID: 23836915 DOI: 10.1074/jbc.m113.491167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) genome is episomally maintained in latently infected cells. The viral protein EBNA1 is a bridging molecule that tethers EBV episomes to host mitotic chromosomes as well as to interphase chromatin. EBNA1 localizes to cellular chromosomes (chromatin) via its chromosome binding domains (CBDs), which are rich in glycine and arginine residues. However, the molecular mechanism by which the CBDs of EBNA1 attach to cellular chromatin is still under debate. Mutation analyses revealed that stepwise substitution of arginine residues within the CBD1 (amino acids 40-54) and CBD2 (amino acids 328-377) regions with alanines progressively impaired chromosome binding activity of EBNA1. The complete arginine-to-alanine substitutions within the CBD1 and -2 regions abolished the ability of EBNA1 to stably maintain EBV-derived oriP plasmids in dividing cells. Importantly, replacing the same arginines with lysines had minimal effect, if any, on chromosome binding of EBNA1 as well as on its ability to stably maintain oriP plasmids. Furthermore, a glycine-arginine-rich peptide derived from the CBD1 region bound to reconstituted nucleosome core particles in vitro, as did a glycine-lysine rich peptide, whereas a glycine-alanine rich peptide did not. These results support the idea that the chromosome binding of EBNA1 is mediated by electrostatic interactions between the basic amino acids within the CBDs and negatively charged cellular chromatin.
Collapse
Affiliation(s)
- Teru Kanda
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yuen KWY, Nabeshima K, Oegema K, Desai A. Rapid de novo centromere formation occurs independently of heterochromatin protein 1 in C. elegans embryos. Curr Biol 2011; 21:1800-7. [PMID: 22018540 DOI: 10.1016/j.cub.2011.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/30/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022]
Abstract
DNA injected into the Caenorhabditis elegans germline forms extrachromosomal arrays that segregate during cell division [1, 2]. The mechanisms underlying array formation and segregation are not known. Here, we show that extrachromosomal arrays form de novo centromeres at high frequency, providing unique access to a process that occurs with extremely low frequency in other systems [3-8]. De novo centromerized arrays recruit centromeric chromatin and kinetochore proteins and autonomously segregate on the spindle. Live imaging following DNA injection revealed that arrays form after oocyte fertilization via homologous recombination and nonhomologous end-joining. Individual arrays gradually transition from passive inheritance to active segregation during the early embryonic divisions. The heterochromatin protein 1 (HP1) family proteins HPL-1 and HPL-2 are dispensable for de novo centromerization even though arrays become strongly enriched for the heterochromatin-associated H3K9me3 modification over time. Partial inhibition of HP1 family proteins accelerates the acquisition of segregation competence. In addition to reporting the first direct visualization of new centromere formation in living cells, these findings reveal that naked DNA rapidly builds de novo centromeres in C. elegans embryos in an HP1-independent manner and suggest that, rather than being a prerequisite, HP1-dependent heterochromatin antagonizes de novo centromerization.
Collapse
Affiliation(s)
- Karen W Y Yuen
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
42
|
Shimizu N. Molecular mechanisms of the origin of micronuclei from extrachromosomal elements. Mutagenesis 2011; 26:119-23. [PMID: 21164192 DOI: 10.1093/mutage/geq053] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In addition to micronuclei that are formed from chromosomal material (the chromosome-type micronuclei), there are also micronuclei formed from extrachromosomal elements [the double minute (DM)-type micronuclei]. These two types of micronuclei are distinct entities, which exist and arise independently in a cell. A DM is a large extrachromosomal element that consists of amplified genes that are commonly seen in cancer cells; the aggregates of DMs can eventually be expressed as DM-type micronuclei. The question of how the DM-type micronuclei arise was answered by uncovering the quite unique intracellular behaviour of DMs during the cell cycle progression. This behaviour of DMs appeared to be common among the broad spectrum of extrachromosomal elements of endogenous, exogenous or artificial origin. Therefore, studying the biology of DM-type micronuclei will enable us to understand how these extrachromosomal structures may be retained within a cell or expelled from the nucleus and eliminated from the cell. This knowledge could also be used for the treatment of cancers and the development of a new mammalian host-vector system.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521 Japan.
| |
Collapse
|
43
|
Brewer BJ, Payen C, Raghuraman MK, Dunham MJ. Origin-dependent inverted-repeat amplification: a replication-based model for generating palindromic amplicons. PLoS Genet 2011; 7:e1002016. [PMID: 21437266 PMCID: PMC3060070 DOI: 10.1371/journal.pgen.1002016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bonita J Brewer
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
44
|
Royou A, Gagou ME, Karess R, Sullivan W. BubR1- and Polo-coated DNA tethers facilitate poleward segregation of acentric chromatids. Cell 2010; 140:235-45. [PMID: 20141837 PMCID: PMC2969851 DOI: 10.1016/j.cell.2009.12.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/13/2009] [Accepted: 12/21/2009] [Indexed: 11/29/2022]
Abstract
The mechanisms that safeguard cells against chromosomal instability (CIN) are of great interest, as CIN contributes to tumorigenesis. To gain insight into these mechanisms, we studied the behavior of cells entering mitosis with damaged chromosomes. We used the endonuclease I-CreI to generate acentric chromosomes in Drosophila larvae. While I-CreI expression produces acentric chromosomes in the majority of neuronal stem cells, remarkably, it has no effect on adult survival. Our live studies reveal that acentric chromatids segregate efficiently to opposite poles. The acentric chromatid poleward movement is mediated through DNA tethers decorated with BubR1, Polo, INCENP, and Aurora-B. Reduced BubR1 or Polo function results in abnormal segregation of acentric chromatids, a decrease in acentric chromosome tethering, and a great reduction in adult survival. We propose that BubR1 and Polo facilitate the accurate segregation of acentric chromatids by maintaining the integrity of the tethers that connect acentric chromosomes to their centric partners.
Collapse
Affiliation(s)
- Anne Royou
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | | | |
Collapse
|
45
|
Telomere loss provokes multiple pathways to apoptosis and produces genomic instability in Drosophila melanogaster. Genetics 2008; 180:1821-32. [PMID: 18845846 DOI: 10.1534/genetics.108.093625] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomere loss was produced during development of Drosophila melanogaster by breakage of an induced dicentric chromosome. The most prominent outcome of this event is cell death through Chk2 and Chk1 controlled p53-dependent apoptotic pathways. A third p53-independent apoptotic pathway is additionally utilized when telomere loss is accompanied by the generation of significant aneuploidy. In spite of these three lines of defense against the proliferation of cells with damaged genomes a small fraction of cells that have lost a telomere escape apoptosis and divide repeatedly. Evasion of apoptosis is accompanied by the accumulation of karyotypic abnormalites that often typify cancer cells, including end-to-end chromosome fusions, anaphase bridges, aneuploidy, and polyploidy. There was clear evidence of bridge-breakage-fusion cycles, and surprisingly, chromosome segments without centromeres could persist and accumulate to high-copy number. Cells manifesting these signs of genomic instability were much more frequent when the apoptotic mechanisms were crippled. We conclude that loss of a single telomere is sufficient to generate at least two phenotypes of early cancer cells: genomic instability that involves multiple chromosomes and aneuploidy. This aneuploidy may facilitate the continued escape of such cells from the normal checkpoint mechanisms.
Collapse
|
46
|
Binomial mitotic segregation of MYCN-carrying double minutes in neuroblastoma illustrates the role of randomness in oncogene amplification. PLoS One 2008; 3:e3099. [PMID: 18769732 PMCID: PMC2518122 DOI: 10.1371/journal.pone.0003099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/08/2008] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Amplification of the oncogene MYCN in double minutes (DMs) is a common finding in neuroblastoma (NB). Because DMs lack centromeric sequences it has been unclear how NB cells retain and amplify extrachromosomal MYCN copies during tumour development. PRINCIPAL FINDINGS We show that MYCN-carrying DMs in NB cells translocate from the nuclear interior to the periphery of the condensing chromatin at transition from interphase to prophase and are preferentially located adjacent to the telomere repeat sequences of the chromosomes throughout cell division. However, DM segregation was not affected by disruption of the telosome nucleoprotein complex and DMs readily migrated from human to murine chromatin in human/mouse cell hybrids, indicating that they do not bind to specific positional elements in human chromosomes. Scoring DM copy-numbers in ana/telophase cells revealed that DM segregation could be closely approximated by a binomial random distribution. Colony-forming assay demonstrated a strong growth-advantage for NB cells with high DM (MYCN) copy-numbers, compared to NB cells with lower copy-numbers. In fact, the overall distribution of DMs in growing NB cell populations could be readily reproduced by a mathematical model assuming binomial segregation at cell division combined with a proliferative advantage for cells with high DM copy-numbers. CONCLUSION Binomial segregation at cell division explains the high degree of MYCN copy-number variability in NB. Our findings also provide a proof-of-principle for oncogene amplification through creation of genetic diversity by random events followed by Darwinian selection.
Collapse
|
47
|
Classification of chromosome segregation errors in cancer. Chromosoma 2008; 117:511-9. [PMID: 18528701 DOI: 10.1007/s00412-008-0169-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Revised: 05/11/2008] [Accepted: 05/13/2008] [Indexed: 01/05/2023]
Abstract
Abnormal chromosome segregation at mitosis is one way by which neoplastic cells accumulate the many genetic abnormalities required for tumour development. In this paper, a straightforward morphology-based classification of chromosome segregation errors in cancer is suggested. This classification distinguishes between abnormalities in spindle symmetry (spindle multipolarity, size-asymmetry of ana-telophase poles) and abnormalities in sister chromatid segregation (chromosome bridges, chromatid bridges, chromosome lagging, acentric fragment lagging). Often, these categories of errors must be combined to accurately describe the events in a single abnormal mitotic cell. The suggested categories can to some extent be distinguished by standard chromatin staining. However, labelling of abnormal mitotic figures by fluorescence in situ hybridization and immunofluorescence enhances the accuracy of classification and also allows visualisation of the segregation of individual chromosomes, making it possible to detect non-disjunction also in the absence of gross alterations in mitotic morphology. Further characterisation of the molecular alterations leading to abnormal chromosome segregation together with the current developments in nano-level and real-time imaging will undoubtedly lead to an improved understanding of chromosome dynamics in cancer cells. Any morphology-based classification of chromosome segregation errors in cancer must therefore be taken as provisional, anticipating a satisfactory integration of morphology and molecular biology.
Collapse
|
48
|
Reddy K. Double minutes (dmin) and homogeneously staining regions (hsr) in myeloid disorders: a new case suggesting that dmin form hsr in vivo. Cytogenet Genome Res 2007; 119:53-9. [DOI: 10.1159/000109619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 06/04/2007] [Indexed: 12/21/2022] Open
|
49
|
Narath R, Ambros IM, Kowalska A, Bozsaky E, Boukamp P, Ambros PF. Induction of senescence in MYCN amplified neuroblastoma cell lines by hydroxyurea. Genes Chromosomes Cancer 2007; 46:130-42. [PMID: 17106870 DOI: 10.1002/gcc.20393] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recently, it was shown that MYCN amplified cells spontaneously expulse extrachromosomally amplified gene copies by micronuclei formation. Furthermore, it was shown that these cells lose their malignant phenotype and start to age. We tested whether it is possible to encourage neuroblastoma tumor cells to enter the senescence pathway by low concentrations of the micronuclei-inducing drug hydroxyurea (HU). We studied the effect of HU on 12 neuroblastoma cell lines with extra- or intrachromosomally amplified MYCN copies and without amplification. Two extrachromosomally amplified neuroblastoma cell lines (with double minutes) were investigated in detail. Already after 3 weeks of HU treatment, the BrdU uptake dropped to 25% of the starting cells. After 4 weeks, enlarged and flattened cells (F-cells) and increased granularity in the majority of cells were observed. A drastic reduction of the MYCN copy number-down to one copy per cell-associated with CD44 and MHCI upregulation in up to 100% of the HU treated neuroblastoma cells was found after 5-8 weeks. Telomere length was reduced to half the length within 8 weeks of HU treatment, and telomerase activity was not detectable at this time, while being strongly expressed at the beginning. All these features and the expression of senescence-associated-beta-galactosidase (SA-beta-GAL) in up to 100% of the cells support the hypothesis that these cells entered the senescence pathway. Thus, low-dose HU is a potent senescence elicitor for tumor cells with gene amplification, possibly representing an attractive additional strategy for treatment of this subset of tumors.
Collapse
Affiliation(s)
- R Narath
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
50
|
Hashizume T, Shimizu N. Dissection of mammalian replicators by a novel plasmid stability assay. J Cell Biochem 2007; 101:552-65. [PMID: 17226771 DOI: 10.1002/jcb.21210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A plasmid, bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR) was previously shown to be efficiently amplified to high copy number in mammalian cells and to generate chromosomal homogeneously staining regions (HSRs). The amplification mechanism was suggested to entail a head-on collision at the MAR between the transcription machinery and the hypothetical replication fork arriving from the IR, leading to double strand breakage (DSB) that triggered HSR formation. The experiments described here show that such plasmids are stabilized if collisions involving not only promoter-driven transcription but also promoter-independent transcription are avoided, and stable plasmids appeared to persist as submicroscopic episomes. These findings suggest that the IR sequence that promotes HSR generation may correspond to the sequence that supports replication initiation (replicator). Thus, we developed a "plasmid stability assay" that sensitively detects the activity of HSR generation in a test sequence. The assay was used to dissect two replicator regions, derived from the c-myc and DHFR ori-beta loci. Consequently, minimum sequences that efficiently promoted HSR generation were identified. They included several sequence elements, most of which coincided with reported replicator elements. These data and this assay will benefit studies of replication initiation and applications that depend on plasmid amplification.
Collapse
Affiliation(s)
- Toshihiko Hashizume
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | | |
Collapse
|