1
|
Serrano-León IM, Prieto P, Aguilar M. Telomere and subtelomere high polymorphism might contribute to the specificity of homologous recognition and pairing during meiosis in barley in the context of breeding. BMC Genomics 2023; 24:642. [PMID: 37884878 PMCID: PMC10601145 DOI: 10.1186/s12864-023-09738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Barley (Hordeum vulgare) is one of the most popular cereal crops globally. Although it is a diploid species, (2n = 2x = 14) the study of its genome organization is necessary in the framework of plant breeding since barley is often used in crosses with other cereals like wheat to provide them with advantageous characters. We already have an extensive knowledge on different stages of the meiosis, the cell division to generate the gametes in species with sexual reproduction, such as the formation of the synaptonemal complex, recombination, and chromosome segregation. But meiosis really starts with the identification of homologous chromosomes and pairing initiation, and it is still unclear how chromosomes exactly choose a partner to appropriately pair for additional recombination and segregation. In this work we present an exhaustive molecular analysis of both telomeres and subtelomeres of barley chromosome arms 2H-L, 3H-L and 5H-L. As expected, the analysis of multiple features, including transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots, G4 quadruplexes, genes and targeted sequence motifs for key DNA-binding proteins, revealed a high degree of variability both in telomeres and subtelomeres. The molecular basis for the specificity of homologous recognition and pairing occurring in the early chromosomal interactions at the start of meiosis in barley may be provided by these polymorphisms. A more relevant role of telomeres and most distal part of subtelomeres is suggested.
Collapse
Affiliation(s)
- I M Serrano-León
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain
| | - P Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain.
| | - M Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 3ª Planta, Córdoba, Spain
| |
Collapse
|
2
|
Bouquet Formation Failure in Meiosis of F1 Wheat–Rye Hybrids with Mitotic-Like Division. PLANTS 2022; 11:plants11121582. [PMID: 35736732 PMCID: PMC9229938 DOI: 10.3390/plants11121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 12/05/2022]
Abstract
Bouquet formation is believed to be involved in initiating homologous chromosome pairings in meiosis. A bouquet is also formed in the absence of chromosome pairing, such as in F1 wheat–rye hybrids. In some hybrids, meiosis is characterized by a single, mitotic-like division that leads to the formation of unreduced gametes. In this study, FISH with the telomere and centromere-specific probe, and immunoFISH with ASY1, CENH3 and rye subtelomere repeat pSc200 were employed to perform a comparative analysis of early meiotic prophase nuclei in four combinations of wheat–rye hybrids. One of these, with disomic rye chromosome 2R, is known to undergo normal meiosis, and here, 78.9% of the meiocytes formed a normal-appearing telomere bouquet and rye subtelomeres clustered in 83.2% of the meiocytes. In three combinations with disomic rye chromosomes 1R, 5R and 6R, known to undergo a single division of meiosis, telomeres clustered in 11.4%, 44.8% and 27.6% of the meiocytes, respectively. In hybrids with chromosome 1R, rye subtelomeres clustered in 12.19% of the meiocytes. In the remaining meiocytes, telomeres and subtelomeres were scattered along the nucleus circumference, forming large and small groups. We conclude that in wheat–rye hybrids with mitotic-like meiosis, chromosome behavior is altered already in the early prophase.
Collapse
|
3
|
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Vieira MLC. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes (Basel) 2021; 12:genes12101517. [PMID: 34680912 PMCID: PMC8535482 DOI: 10.3390/genes12101517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the Ph1 (wheat) and PrBn (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
Collapse
Affiliation(s)
- Nina Reis Soares
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Marcelo Mollinari
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA;
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7555, USA
| | - Gleicy K. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Guilherme S. Pereira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Correspondence:
| |
Collapse
|
4
|
Lenykó-Thegze A, Fábián A, Mihók E, Makai D, Cseh A, Sepsi A. Pericentromeric chromatin reorganisation follows the initiation of recombination and coincides with early events of synapsis in cereals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1585-1602. [PMID: 34171148 DOI: 10.1111/tpj.15391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The reciprocal exchange of genetic information between homologous chromosomes during meiotic recombination is essential to secure balanced chromosome segregation and to promote genetic diversity. The chromosomal position and frequency of reciprocal genetic exchange shapes the efficiency of breeding programmes and influences crop improvement under a changing climate. In large genome cereals, such as wheat and barley, crossovers are consistently restricted to subtelomeric chromosomal regions, thus preventing favourable allele combinations being formed within a considerable proportion of the genome, including interstitial and pericentromeric chromatin. Understanding the key elements driving crossover designation is therefore essential to broaden the regions available for crossovers. Here, we followed early meiotic chromatin dynamism in cereals through the visualisation of a homologous barley chromosome arm pair stably transferred into the wheat genetic background. By capturing the dynamics of a single chromosome arm at the same time as detecting the undergoing events of meiotic recombination and synapsis, we showed that subtelomeric chromatin of homologues synchronously transitions to an open chromatin structure during recombination initiation. By contrast, pericentromeric and interstitial regions preserved their closed chromatin organisation and become unpackaged only later, concomitant with initiation of recombinatorial repair and the initial assembly of the synaptonemal complex. Our results raise the possibility that the closed pericentromeric chromatin structure in cereals may influence the fate decision during recombination initiation, as well as the spatial development of synapsis, and may also explain the suppression of crossover events in the proximity of the centromeres.
Collapse
Affiliation(s)
- Andrea Lenykó-Thegze
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Attila Fábián
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Edit Mihók
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Diána Makai
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - András Cseh
- Department of Molecular Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Adél Sepsi
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
- Department of Applied Biotechnology and Food Science (ABÉT), BME, Budapest University of Technology and Economics, Műegyetem rkp. 3-9, Budapest, 1111, Hungary
| |
Collapse
|
5
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|
6
|
Aguilar M, Prieto P. Sequence analysis of wheat subtelomeres reveals a high polymorphism among homoeologous chromosomes. THE PLANT GENOME 2020; 13:e20065. [PMID: 33029942 DOI: 10.1002/tpg2.20065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 05/23/2023]
Abstract
Bread wheat, Triticum aestivum L., is one of the most important crops in the world. Understanding its genome organization (allohexaploid; AABBDD; 2n = 6x = 42) is essential for geneticists and plant breeders. Particularly, the knowledge of how homologous chromosomes (equivalent chromosomes from the same genome) specifically recognize each other to pair at the beginning of meiosis, the cellular process to generate gametes in sexually reproducing organisms, is fundamental for plant breeding and has a big influence on the fertility of wheat plants. Initial homologous chromosome interactions contribute to specific recognition and pairing between homologues at the onset of meiosis. Understanding the molecular basis of these critical processes can help to develop genetic tools in a breeding context to promote interspecific chromosome associations in hybrids or interspecific genetic crosses to facilitate the transfer of desirable agronomic traits from related species into a crop like wheat. The terminal regions of chromosomes, which include telomeres and subtelomeres, participate in chromosome recognition and pairing. We present a detailed molecular analysis of subtelomeres of wheat chromosome arms 1AS, 4AS, 7AS, 7BS and 7DS. Results showed a high polymorphism in the subtelomeric region among homoeologues (equivalent chromosomes from related genomes) for all the features analyzed, including genes, transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots and targeted sequence motifs for relevant DNA-binding proteins. These polymorphisms might be the molecular basis for the specificity of homologous recognition and pairing in initial chromosome interactions at the beginning of meiosis in wheat.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal. Universidad de Córdoba. Campus de Rabanales, edif. C4, 3a planta, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, Córdoba, 14080, Spain
| |
Collapse
|
7
|
Sepsi A, Schwarzacher T. Chromosome-nuclear envelope tethering - a process that orchestrates homologue pairing during plant meiosis? J Cell Sci 2020; 133:jcs243667. [PMID: 32788229 PMCID: PMC7438012 DOI: 10.1242/jcs.243667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During prophase I of meiosis, homologous chromosomes pair, synapse and exchange their genetic material through reciprocal homologous recombination, a phenomenon essential for faithful chromosome segregation. Partial sequence identity between non-homologous and heterologous chromosomes can also lead to recombination (ectopic recombination), a highly deleterious process that rapidly compromises genome integrity. To avoid ectopic exchange, homology recognition must be extended from the narrow position of a crossover-competent double-strand break to the entire chromosome. Here, we review advances on chromosome behaviour during meiotic prophase I in higher plants, by integrating centromere- and telomere dynamics driven by cytoskeletal motor proteins, into the processes of homologue pairing, synapsis and recombination. Centromere-centromere associations and the gathering of telomeres at the onset of meiosis at opposite nuclear poles create a spatially organised and restricted nuclear state in which homologous DNA interactions are favoured but ectopic interactions also occur. The release and dispersion of centromeres from the nuclear periphery increases the motility of chromosome arms, allowing meiosis-specific movements that disrupt ectopic interactions. Subsequent expansion of interstitial synapsis from numerous homologous interactions further corrects ectopic interactions. Movement and organisation of chromosomes, thus, evolved to facilitate the pairing process, and can be modulated by distinct stages of chromatin associations at the nuclear envelope and their collective release.
Collapse
Affiliation(s)
- Adél Sepsi
- Department of Plant Cell Biology, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- BME Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science (ABÉT), 1111, Budapest, Mu˝ egyetem rkp. 3-9., Hungary
| | - Trude Schwarzacher
- University of Leicester, Department of Genetics and Genome Biology, University Road, Leicester LE1 7RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
8
|
|
9
|
Pereira HS, Delgado M, Viegas W, Rato JM, Barão A, Caperta AD. Rye (Secale cereale) supernumerary (B) chromosomes associated with heat tolerance during early stages of male sporogenesis. ANNALS OF BOTANY 2017; 119:325-337. [PMID: 27818381 PMCID: PMC5314639 DOI: 10.1093/aob/mcw206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/03/2016] [Accepted: 08/23/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Rye supernumerary (B) chromosomes have an accumulation mechanism involving the B subtelomeric domain highly enriched in D1100- and E3900-related sequences. In this work, the effects of heat stress during the early stages of male meiosis in 0B and +B plants were studied. METHODS In-depth cytological analyses of chromatin structure and behaviour were performed on staged rye meiocytes utilizing DAPI, fluorescence in situ hybridization and 5-methylcytosine immune labelling. Quantitative real-time PCR was used to measure heat effects on the expression of the Hsp101 gene as well as the 3·9- and 2·7-kb E3900 forms in various tissues and meiotic stages. KEY RESULTS AND CONCLUSIONS Quantitative real-time PCR established that heat induced equal up-regulation of the Hsp101 gene in 0B and 2B plants, with a marked peak in anthers with meiocytes staged at pachytene. Heat also resulted in significant up-regulation of E3900-related transcripts, especially at pachytene and for the truncated 2·7-kb form of E3900. Cytological heat-induced anomalies in prophase I, measured as the frequency of anomalous meiocytes, were significantly greater in 0B plants. Whereas telomeric sequences were widely distributed in a manner close to normal in the majority of 2B pachytene cells, most 0B meiocytes displayed abnormally clustered telomeres after chromosome pairing had occurred. Relevantly, bioinformatic analysis revealed a significantly high-density heat responsive cis regulatory sequence on E3900, clearly supporting stress-induced response of transcription for the truncated variant. Taken together, these results are the first indication that rye B chromosomes have implications on heat tolerance and may protect meiocytes against heat stress-induced damage.
Collapse
Affiliation(s)
- H Sofia Pereira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Margarida Delgado
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Wanda Viegas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - João M Rato
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Augusta Barão
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana D Caperta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
10
|
Calderón MDC, Rey MD, Cabrera A, Prieto P. The subtelomeric region is important for chromosome recognition and pairing during meiosis. Sci Rep 2014; 4:6488. [PMID: 25270583 PMCID: PMC4180820 DOI: 10.1038/srep06488] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/10/2014] [Indexed: 12/26/2022] Open
Abstract
The process of meiosis results in the formation of haploid daughter cells, each of which inherit a half of the diploid parental cells' genetic material. The ordered association of homologues (identical chromosomes) is a critical prerequisite for a successful outcome of meiosis. Homologue recognition and pairing are initiated at the chromosome ends, which comprise the telomere dominated by generic repetitive sequences, and the adjacent subtelomeric region, which harbours chromosome-specific sequences. In many organisms telomeres are responsible for bringing the ends of the chromosomes close together during early meiosis, but little is known regarding the role of the subtelomeric region sequence during meiosis. Here, the observation of homologue pairing between a pair of Hordeum chilense chromosomes lacking the subtelomeric region on one chromosome arm indicates that the subtelomeric region is important for the process of homologous chromosome recognition and pairing.
Collapse
Affiliation(s)
- María del Carmen Calderón
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| | - María-Dolores Rey
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| | - Adoración Cabrera
- Department of Genetics, ETSIAM, University of Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, 14071 Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| |
Collapse
|
11
|
Dolmatovich TV, Malyshev SV, Sosnikhina SP, Tsvetkova NV, Kartel NA, Voylokov AV. Mapping of meiotic genes in rye (Secale cereale L.): Localization of sy18 mutation with impaired homologous synapsis using microsatellite markers. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413040030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Phillips D, Nibau C, Wnetrzak J, Jenkins G. High resolution analysis of meiotic chromosome structure and behaviour in barley (Hordeum vulgare L.). PLoS One 2012; 7:e39539. [PMID: 22761818 PMCID: PMC3382580 DOI: 10.1371/journal.pone.0039539] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/25/2012] [Indexed: 12/11/2022] Open
Abstract
Reciprocal crossing over and independent assortment of chromosomes during meiosis generate most of the genetic variation in sexually reproducing organisms. In barley, crossovers are confined primarily to distal regions of the chromosomes, which means that a substantial proportion of the genes of this crop rarely, if ever, engage in recombination events. There is potentially much to be gained by redistributing crossovers to more proximal regions, but our ability to achieve this is dependent upon a far better understanding of meiosis in this species. This study explores the meiotic process by describing with unprecedented resolution the early behaviour of chromosomal domains, the progression of synapsis and the structure of the synaptonemal complex (SC). Using a combination of molecular cytogenetics and advanced fluorescence imaging, we show for the first time in this species that non-homologous centromeres are coupled prior to synapsis. We demonstrate that at early meiotic prophase the loading of the SC-associated structural protein ASY1, the cluster of telomeres, and distal synaptic initiation sites occupy the same polarised region of the nucleus. Through the use of advanced 3D image analysis, we show that synapsis is driven predominantly from the telomeres, and that new synaptic initiation sites arise during zygotene. In addition, we identified two different SC configurations through the use of super-resolution 3D structured illumination microscopy (3D-SIM).
Collapse
Affiliation(s)
- Dylan Phillips
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Candida Nibau
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Joanna Wnetrzak
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Kumar P, Singhal VK. Erratic male meiosis resulting in 2n pollen grain formation in a 4x cytotype (2n = 28) of Ranunculus laetus Wall. ex Royle. ScientificWorldJournal 2012; 2012:691545. [PMID: 22629184 PMCID: PMC3353565 DOI: 10.1100/2012/691545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/07/2011] [Indexed: 11/17/2022] Open
Abstract
Two accessions were studied for male meiosis in Ranunculus laetus from the cold regions of Northwest Himalayas. One accession showed the presence of 14 bivalents at diakinesis and regular segregation of bivalents at anaphase I which lead to normal tetrad formation with four n microspores and consequently n pollen grains and 100% pollen fertility. Second accession from the same locality revealed the erratic meiosis characterized by the presence of all the 28 chromosomes as univalents in meiocytes at metaphase I. Univalent chromosomes failed to segregate during anaphases and produced restitution nuclei at meiosis I and II. These restitution nuclei resulted into dyads and triads which subsequently produced two types of apparently fertile pollen grains. On the basis of size, the two types of pollen grains were categorized as n (normal reduced) and 2n (unreduced, 1.5-times larger than the n pollen grains). The estimated frequency of 2n pollen grains from dyads and triads (61.59%) was almost the same as that of the observed one (59.90%), which indicated that 2n pollen grains in R. laetus were the result of dyads and triads. The present paper herein may provide an insight into the mechanisms of the formation of various intraspecific polyploids through sexual polyploidization in R. laetus.
Collapse
|
14
|
Mikhailova EI, Lovtsyus AV, Sosnikhina SP. Some features of meiosis key events in rye and its synaptic mutants. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410100170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Golubtsov SV, Sosnikhina SP, Iordanskaya IV, Voilokov AV, Mikhailova EI, Kolomiets OL, Bogdanov YF. Semisterile meiotic mutant sy11 with heterologous chromosome synapsis in rye Secale cereale L. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410060086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Meier I, Brkljacic J. The Arabidopsis nuclear pore and nuclear envelope. THE ARABIDOPSIS BOOK 2010; 8:e0139. [PMID: 22303264 PMCID: PMC3244964 DOI: 10.1199/tab.0139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and-through the nuclear envelope lumen-the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research-predominantly focusing on Arabidopsis as a model-is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration.
Collapse
Affiliation(s)
- Iris Meier
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
- Address correspondence to
| | - Jelena Brkljacic
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
| |
Collapse
|
17
|
Malyshev SV, Dolmatovich TV, Voylokov AV, Sosnikhina SP, Tsvetkova NV, Lovtsus AV, Kartel’ NA. Molecular genetic mapping of the sy1 and sy9 asynaptic genes in rye (Secale cereale L.) using microsatellite and isozyme markers. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409120060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Jenkins G, Phillips D, Mikhailova EI, Timofejeva L, Jones RN. Meiotic genes and proteins in cereals. Cytogenet Genome Res 2008; 120:291-301. [PMID: 18504358 DOI: 10.1159/000121078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2007] [Indexed: 12/20/2022] Open
Abstract
We review the current status of our understanding and knowledge of the genes and proteins controlling meiosis in five major cereals, rye, wheat, barley, rice and maize. For each crop, we describe the genetic and genomic infrastructure available to investigators, before considering the inventory of genes and proteins that have roles to play in this process. Emphasis is given throughout as to how translational genomic and proteomic approaches have enabled us to circumvent some of the intractable features of this important group of plants.
Collapse
Affiliation(s)
- G Jenkins
- Institute of Biological Sciences, University of Wales, Aberystwyth, UK.
| | | | | | | | | |
Collapse
|
19
|
Naranjo T, Corredor E. Nuclear architecture and chromosome dynamics in the search of the pairing partner in meiosis in plants. Cytogenet Genome Res 2008; 120:320-30. [PMID: 18504361 DOI: 10.1159/000121081] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2007] [Indexed: 10/22/2022] Open
Abstract
The formation of haploid gametes in organisms with sexual reproduction requires regular bivalent chromosome pairing in meiosis. In many species, homologous chromosomes occupy separate territories at the onset of meiosis. To be paired at metaphase I, they need to be brought into a close proximity for interactions that include homology recognition and the establishment of some form of bonds. How homologues find each other is one of the least understood meiotic events. Plant species with large or medium sized genomes, such as wheat or maize, are excellent materials for the cytological analysis of chromosome dynamics at early meiosis, but genes that control meiosis have been identified mainly in small genome species such as Arabidopsis thaliana. This review is focused on the contribution studies on plants are providing to the knowledge of the initial steps of the meiotic process.
Collapse
Affiliation(s)
- T Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.
| | | |
Collapse
|
20
|
Corredor E, Naranjo T. Effect of colchicine and telocentric chromosome conformation on centromere and telomere dynamics at meiotic prophase I in wheat-rye additions. Chromosome Res 2007; 15:231-45. [PMID: 17308890 DOI: 10.1007/s10577-006-1117-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/30/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
Association of telomeres in a bouquet and clustering of centromere regions have been proposed to be involved in the search and recognition of homologous partners. We have analysed the role of these structures in meiotic chromosome pairing in wheat-rye addition lines by applying colchicine for disturbing presynaptic telomere movements and by modifying the centromere position from submetacentric to telocentric for studying centromere effects. Rye chromosomes, wheat and rye centromeres, and telomeres were identified by fluorescence in-situ hybridization. Presynaptic association of centromeres in pairs or in more complex structures involved mainly non-homologous chromosomes as deduced from the behaviour of rye centromeres. While centromere association was not affected by colchicine, colchicine inhibited bouquet formation, which caused failure of homologous synapsis. Homologous centromeres of rye telocentrics associated earlier than those of rye submetacentric chromosomes, indicating that migration of the telocentrics' centromeres to the telomere pole during bouquet formation facilitated their association. Homologous chromosomes associated in premeiotic interphase can recognize each other and initiate synapsis at zygotene. However, telomere convergence is needed for bringing together the majority of homologous pairs that normally occupy separate territories in premeiotic nuclei.
Collapse
Affiliation(s)
- Eduardo Corredor
- Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040, Madrid, Spain
| | | |
Collapse
|
21
|
Bogdanov YF, Grishaeva TM, Dadashev SY. Similarity of the domain structure of proteins as a basis for the conservation of meiosis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 257:83-142. [PMID: 17280896 DOI: 10.1016/s0074-7696(07)57003-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Meiosis is conserved in all eucaryotic kingdoms, and homologous rows of variability are revealed for the cytological traits of meiosis. To find the nature of these phenomenons, we reviewed the most-studied meiosis-specific proteins and studied them with the methods of bioinformatics. We found that synaptonemal complex proteins have no homology of amino-acid sequence, but are similar in the domain organization and three-dimensional (3D) structure of functionally important domains in budding yeast, nematode, Drosophila, Arabidopsis, and human. Recombination proteins of Rad51/Dmc1 family are conserved to the extent which permits them to make filamentous single-strand deoxyribonucleic acid (ssDNA)-protein intermediates of meiotic recombination. The same structural principles are valid for conservation of the ultrastructure of kinetochores, cell gap contacts, and nuclear pore complexes, such as in the cases when ultrastructure 3D parameters are important for the function. We suggest that self-assembly of protein molecules plays a significant role in building-up of all biological structures mentioned.
Collapse
Affiliation(s)
- Yu F Bogdanov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | |
Collapse
|
22
|
González-García M, González-Sánchez M, Puertas MJ. The high variability of subtelomeric heterochromatin and connections between nonhomologous chromosomes, suggest frequent ectopic recombination in rye meiocytes. Cytogenet Genome Res 2006; 115:179-85. [PMID: 17065801 DOI: 10.1159/000095240] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 05/19/2006] [Indexed: 11/19/2022] Open
Abstract
The position of telomeres, centromeres and subtelomeric heterochromatin (SH) has been studied by FISH in rye meiocytes. We compare the morphology of the signals from zygotene to telophase II mainly to determine differences in SH and telomere positions between plants with and without neocentromeres. Plants from two varieties were used: Paldang showing neocentromeres, and Puyo without neocentromeres but with two B chromosomes. In both varieties, at zygotene and pachytene the SH is observed forming clumps often including two or more bivalent ends. At diplotene the SH is stretched suggesting that it is close to the nuclear envelope. In these cases, the telomere signals are not stretched and lay behind the SH. Frequently, two or more bivalents are joined by conspicuous SH connections at diplotene strongly suggesting ectopic recombination. Probably as a result, differential distribution of the SH between recombinant homologues or the whole meiotic products is observed. From diplotene onwards, the large heterochromatic blocks cover the telomeres, the SH being the morphological end of the bivalents, both in plants with or without neocentromeres. The Bs are tightly associated only at the telomeric end of the long arm from diplotene to metaphase I. The high variability between homologous chromosomes and the frequent nonhomologous bindings of SH, strongly suggest that rye SH is in dynamic state and frequently changes in chromosome position during meiosis.
Collapse
Affiliation(s)
- M González-García
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
23
|
Mikhailova EI, Phillips D, Sosnikhina SP, Lovtsyus AV, Jones RN, Jenkins G. Molecular assembly of meiotic proteins Asy1 and Zyp1 and pairing promiscuity in rye (Secale cereale L.) and its synaptic mutant sy10. Genetics 2006; 174:1247-58. [PMID: 16980383 PMCID: PMC1667052 DOI: 10.1534/genetics.106.064105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Assembly of two orthologous proteins associated with meiotic chromosome axes in Arabidopsis thaliana (Asy1 and Zyp1) was studied immunologically at meiotic prophase of meiosis of wild-type rye (Secale cereale) and its synaptic mutant sy10, using antibodies derived from A. thaliana. The temporal and spatial expression of the two proteins were similar in wild-type rye, but with one notable difference. Unlike A. thaliana, in which foci of the transverse filament protein Zyp1 appear to linearize commensurately with synapsis, linear tracts of Asy1 and Zyp1 protein form independently at leptotene and early zygotene of rye and coalign into triple structures resembling synaptonemal complexes (SCs) only at later stages of synapsis. The sy10 mutant used in this study also forms spatially separate linear tracts of Asy1 and Zyp1 proteins at leptotene and early zygotene, and these coalign but do not form regular triple structures at midprophase. Electron microscopy of spread axial elements reveals extensive asynapsis with some exchanges of pairing partners. Indiscriminate SCs support nonhomologous chiasma formation at metaphase I, as revealed by multi-color fluorescence in situ hybridization enabling reliable identification of all the chromosomes of the complement. Scrutiny of chiasmate associations of chromosomes at this stage revealed some specificity in the associations of homologous and nonhomologous chromosomes. Inferences about the nature of synapsis in this mutant were drawn from such observations.
Collapse
Affiliation(s)
- E I Mikhailova
- Department of Genetics, Saint Petersburg State University, Russian Academy of Sciences, Russia
| | | | | | | | | | | |
Collapse
|
24
|
Zickler D. From early homologue recognition to synaptonemal complex formation. Chromosoma 2006; 115:158-74. [PMID: 16570189 DOI: 10.1007/s00412-006-0048-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 10/24/2022]
Abstract
This review focuses on various aspects of chromosome homology searching and their relationship to meiotic and vegetative pairing and to the silencing of unpaired copies of genes. Chromosome recognition and pairing is a prominent characteristic of meiosis; however, for some organisms, this association (complete or partial) is also a normal part of nuclear organization. The multiple mechanisms suggested to contribute to homologous pairing are analyzed. Recognition of DNA/DNA homology also plays an important role in detecting DNA segments that are present in inappropriate number of copies before and during meiosis. In this context, the mechanisms of methylation induced premeiotically, repeat-induced point mutation, meiotic silencing by unpaired DNA, and meiotic sex chromosome inactivation will be discussed. Homologue juxtaposition during meiotic prophase can be divided into three mechanistically distinct steps, namely, recognition, presynaptic alignment, and synapsis by the synaptonemal complex (SC). In most organisms, these three steps are distinguished by their dependence on DNA double-strand breaks (DSBs). The coupling of SC initiation to (and downstream effects of) DSB formation and the exceptions to this dependency are discussed. Finally, this review addresses the specific factors that appear to promote chromosome movement at various stages of meiotic prophase, most particularly at the bouquet stage, and on their significance for homologue pairing and/or achieving a final pachytene configuration.
Collapse
Affiliation(s)
- Denise Zickler
- Université Paris-Sud, Institut de Génétique et Microbiologie, 91405, Orsay, France.
| |
Collapse
|
25
|
Sosnikhina SP, Mikhailova EI, Tikholiz OA, Priyatkina SN, Smirnov VG, Dadashev SY, Kolomiets OL, Bogdanov YF. Meiotic mutations in rye Secale cereale L. Cytogenet Genome Res 2005; 109:215-20. [PMID: 15753580 DOI: 10.1159/000082403] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2003] [Accepted: 02/27/2004] [Indexed: 10/25/2022] Open
Abstract
Spontaneous meiotic mutations of winter rye Secale cereale L. (2n = 14) were revealed in inbred F2 progenies, which were obtained by self-pollination of F1 hybrids resulting from crosses of individual plants of cultivar Vyatka or weedy rye with plants of self-fertile inbred lines. The mutations cause partial or complete sterility, and are maintained in heterozygote condition. Six types of mutations were distinguished as the result of cytological analysis of meiosis and genetic analysis. (1) Plants with nonallelic asynaptic mutations sy1 and sy9 lacked bivalents in 96.8 and 67.0% metaphase I cells, respectively, formed only axial elements but not the mature synaptonemal complex (SC), and had defects in telomere clustering in early prophase I. (2) Weak asynaptic mutant sy3 showed incomplete synapsis at the start of SC degradation at diplotene and lower chiasma number; yet only 2% meiocytes lacked bivalents in MI. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19 caused nonhomologous synapsis; i.e., a varying number of univalents and occasional multivalents were observed in MI, which was preceded by switches of pairing partners and fold-back synapsis at mid-prophase I. (4) Mutation mei6 led to the formation of protrusions and minor branched structures of the SC lateral elements. (5) Allelic mutations mei8 and mei8-10 caused irregular chromatin condensation along the chromosome length in prophase I, which was accompanied by chromosome sticking and fragmentation in MI. (6) Allelic mutations mei5 and mei10 determined chromosome supercondensation, caused the disturbance of meiotic spindle assembly, arrested meiosis at various stages but did not affect formation of the pollen wall, thus arrested meiocytes got covered with the pollen wall. Analysis of double mutants revealed recessive epistatic interactions for some mutations; the epistatic group was sy9 > sy1 > sy3 > sy19. This reflects the sequence of meiotic events controlled by the corresponding genes. The expression of sy2 and sy19 proved to be modified by additional genes. Most meiotic mutations found in rye have analogs in other plants.
Collapse
Affiliation(s)
- S P Sosnikhina
- Department of Genetics and Breeding, St. Petersburg State University, St.Petersburg, Russia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Jenkins G, Mikhailova EI, Langdon T, Tikholiz OA, Sosnikhina SP, Jones RN. Strategies for the study of meiosis in rye. Cytogenet Genome Res 2005; 109:221-7. [PMID: 15753581 DOI: 10.1159/000082404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 01/29/2004] [Indexed: 11/19/2022] Open
Abstract
We describe how we are furthering our understanding of meiosis in rye (Secale cereale L.) using a combination of cytogenetic and molecular biological approaches. Fluorescent in situ hybridisation, electron microscopy of synaptonemal complexes, sequencing of meiosis-specific genes, and the immunolocalisation of recombinogenic proteins are being combined to build up phenotypic "identikits" of wild type, asynaptic mutants sy1 and sy9, and desynaptic mutant sy10. From this information, we review the status of our current understanding of the genetic control of meiosis in rye, and consider strategies for determining more precisely the interrelationships between meiosis-specific genes and their products.
Collapse
Affiliation(s)
- G Jenkins
- Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Liebe B, Alsheimer M, Höög C, Benavente R, Scherthan H. Telomere attachment, meiotic chromosome condensation, pairing, and bouquet stage duration are modified in spermatocytes lacking axial elements. Mol Biol Cell 2003; 15:827-37. [PMID: 14657244 PMCID: PMC329396 DOI: 10.1091/mbc.e03-07-0524] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During the extended prophase to the meiosis I division, chromosomes assemble axial elements (AE) along replicated sister chromatids whose ends attach to the inner nuclear membrane (NM) via a specialized conical thickening. Here, we show at the EM level that in Sycp3(-/-) spermatocyte chromosomes lack the AE and the conical end thickening, but still they attach their telomeres to the inner NM with an electron-dense plate that contains T(2)AG(3) repeats. Immunofluorescence detected telomere proteins, SCP2, and the meiosis-specific cohesin STAG3 at the Sycp3(-/-) telomere. Bouquet stage spermatocytes were approximately threefold enriched, and the number of telomere but not centromere signals was reduced to the haploid in advanced Sycp3(-/-) spermatocytes, which indicates a special mode of homolog pairing at the mammalian telomere. Fluorescence in situ hybridization with mouse chromosome 8- and 12-specific subsatellite probes uncovered reduced levels of regional homolog pairing, whereas painting of chromosomes 13 revealed partial or complete juxtapositioning of homologs; however, condensation of Sycp3(-/-) bivalents was defective. Electron microscopic analysis of AE-deficient spermatocytes revealed that transverse filaments formed short structures reminiscent of the synaptonemal complex central region, which likely mediate stable homolog pairing. It appears that the AE is required for chromosome condensation, rapid exit from the bouquet stage, and fine-tuning of homolog pairing.
Collapse
Affiliation(s)
- Bodo Liebe
- Max-Planck-Institut für Molekulare Genetik, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
29
|
Martinez-Perez E, Shaw P, Aragon-Alcaide L, Moore G. Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:21-9. [PMID: 12974808 DOI: 10.1046/j.1365-313x.2003.01853.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hexaploid wheat possesses 42 chromosomes derived from its three ancestral genomes. The 21 pairs of chromosomes can be further divided into seven groups of six chromosomes (one chromosome pair being derived from each of the three ancestral genomes), based on the similarity of their gene order. Previous studies have revealed that, during anther development, the chromosomes associate in 21 pairs via their centromeres. The present study reveals that, as a prelude to meiosis, these 21 chromosome pairs in hexaploid (and tetraploid) wheat associate via the centromeres into seven groups as the telomeres begin to cluster. This results in the association of multiple chromosomes, which then need to be resolved as meiosis progresses. The formation of the seven chromosome clusters now explains the occasional occurrence of remnants of multiple associations, which have been reported at later stages of meiosis in hexaploid (and tetraploid) wheat. Importantly, the chromosomes have the opportunity to be resorted via these multiple interactions. As meiosis progresses, such interactions are resolved through the action of loci such as Ph1, leaving chromosomes as homologous pairs.
Collapse
|
30
|
Golubovskaya IN, Harper LC, Pawlowski WP, Schichnes D, Cande WZ. The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). Genetics 2002; 162:1979-93. [PMID: 12524364 PMCID: PMC1462385 DOI: 10.1093/genetics/162.4.1979] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The clustering of telomeres on the nuclear envelope (NE) during meiotic prophase to form the bouquet arrangement of chromosomes may facilitate homologous chromosome synapsis. The pam1 (plural abnormalities of meiosis 1) gene is the first maize gene that appears to be required for telomere clustering, and homologous synapsis is impaired in pam1. Telomere clustering on the NE is arrested or delayed at an intermediate stage in pam1. Telomeres associate with the NE during the leptotene-zygotene transition but cluster slowly if at all as meiosis proceeds. Intermediate stages in telomere clustering including miniclusters are observed in pam1 but not in wild-type meiocytes. The tight bouquet normally seen at zygotene is a rare event. In contrast, the polarization of centromeres vs. telomeres in the nucleus at the leptotene-zygotene transition is the same in mutant and wild-type cells. Defects in homologous chromosome synapsis include incomplete synapsis, nonhomologous synapsis, and unresolved interlocks. However, the number of RAD51 foci on chromosomes in pam1 is similar to that of wild type. We suggest that the defects in homologous synapsis and the retardation of prophase I arise from the irregularity of telomere clustering and propose that pam1 is involved in the control of bouquet formation and downstream meiotic prophase I events.
Collapse
Affiliation(s)
- Inna N Golubovskaya
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | | | | | |
Collapse
|
31
|
Cowan CR, Cande WZ. Meiotic telomere clustering is inhibited by colchicine but does not require cytoplasmic microtubules. J Cell Sci 2002; 115:3747-56. [PMID: 12235285 DOI: 10.1242/jcs.00055] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomere clustering, the defining feature of the bouquet, is an almost universal feature of meiotic prophase, yet its mechanism remains unknown. The microtubule-depolymerizing agent colchicine was found to inhibit bouquet formation. Telomeres in colchicine-treated cells remained scattered in the nuclear periphery, whereas untreated cells exhibited a prominent telomere cluster. Colchicine administered after the bouquet had formed did not affect telomere dispersal. The effect of colchicine on bouquet formation appeared to be separable from its effect on cytoplasmic microtubules; amiprophos methyl, a highly effective plant microtubule-depolymerizing drug, did not affect telomere clustering. Inhibition of bouquet formation was limited to colchicine and the related drug podophyllotoxin out of the variety of microtubule-depolymerizing drugs tested, suggesting that the target involved in bouquet formation has a structural specificity.
Collapse
Affiliation(s)
- Carrie R Cowan
- Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
32
|
Cowan CR, Carlton PM, Cande WZ. Reorganization and polarization of the meiotic bouquet-stage cell can be uncoupled from telomere clustering. J Cell Sci 2002; 115:3757-66. [PMID: 12235286 DOI: 10.1242/jcs.00054] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Striking cellular reorganizations mark homologous pairing during meiotic prophase. We address the interdependence of chromosomal and cellular polarization during meiotic telomere clustering, the defining feature of the bouquet stage, by examining nuclear positioning and microtubule and nuclear pore reorganization. Polarization of meiotic cellular architecture was coincident with telomere clustering: microtubules were focused on the nuclear surface opposite the telomere cluster, the nucleus was positioned eccentrically in the cell such that the telomeres faced the direction of nuclear displacement and nuclear pores were clustered in a single region of the nuclear surface opposite the telomeres. Treatment of pre-bouquet stage cells with colchicine inhibited telomere clustering. Asymmetric nuclear positioning and nuclear pore clustering were normal in the presence of unclustered telomeres resulting from colchicine treatment. Nuclear pores were positioned normally with respect to the cell cortex in the absence of telomere clustering, indicating that telomere positioning is not required for polarization. This work provides evidence of meiotic cell polarization and suggests that telomeres may be positioned relative to an asymmetry present in the cell at the time of bouquet formation.
Collapse
Affiliation(s)
- Carrie R Cowan
- Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720-3200, USA
| | | | | |
Collapse
|
33
|
Abstract
Polyploids possess two or more sets of related chromosomes as a result of either the doubling of chromosomes following sexual hybridization within the same species (autopolyploidy), or between closely related species containing related but not completely homologous (homoeologous) genomes (allopolyploidy). For allopolyploids to produce viable gametes and be fertile, they must behave as diploids during meiosis, so that only identical chromosomes (homologues) pair. A solution to this problem is an enhanced ability to resolve incorrect pairing, which in turn promotes correct pairing. This gives nonhomologous chromosomes an almost 'Teflon'-like status, so that only the correct pairs 'stick'.
Collapse
Affiliation(s)
- Graham Moore
- John Innes Centre, Norwich Research Park, Colney, Norwich, UK NR4 7UH.
| |
Collapse
|
34
|
Carlton PM, Cande WZ. Telomeres act autonomously in maize to organize the meiotic bouquet from a semipolarized chromosome orientation. J Cell Biol 2002; 157:231-42. [PMID: 11956226 PMCID: PMC2199251 DOI: 10.1083/jcb.200110126] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
During meiosis, chromosomes undergo large-scale reorganization to allow pairing between homologues, which is necessary for recombination and segregation. In many organisms, pairing of homologous chromosomes is accompanied, and possibly facilitated, by the bouquet, the clustering of telomeres in a small region of the nuclear periphery. Taking advantage of the cytological accessibility of meiosis in maize, we have characterized the organization of centromeres and telomeres throughout meiotic prophase. Our results demonstrate that meiotic centromeres are polarized prior to the bouquet stage, but that this polarization does not contribute to bouquet formation. By examining telocentric and ring chromosomes, we have tested the cis-acting requirements for participation in the bouquet. We find that: (a) the healed ends of broken chromosomes, which contain telomere repeats, can enter the bouquet; (b) ring chromosomes enter the bouquet, indicating that terminal position on a chromosome is not necessary for telomere sequences to localize to the bouquet; and (c) beginning at zygotene, the behavior of telomeres is dominant over any centromere-mediated chromosome behavior. The results of this study indicate that specific chromosome regions are acted upon to determine the organization of meiotic chromosomes, enabling the bouquet to form despite large-scale changes in chromosome architecture.
Collapse
Affiliation(s)
- Peter M Carlton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
35
|
Noguchi J. Homolog pairing and two kinds of bouquets in the meiotic prophase of rye, Secale cereale. Genes Genet Syst 2002; 77:39-50. [PMID: 12036103 DOI: 10.1266/ggs.77.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chromosome configurations and structures during meiotic prophase were investigated by staining large repeated DNA sequences localized in the subtelomeric regions of all the chromosomes in rye, Secale cereale, in order to clarify when and how homolog pairing and bouquet formation occur. The changes of the spatial locations of chromosomes in the nucleus were investigated by the use of laser confocal microscopy, together with the surface-spreading method of silver nitrate staining to detect the formation of the synaptonemal complex. Homolog pairing in which homologs of four chromatids of a pair of homologs were coaligned in parallel but remained distinctly separate was microscopically detected for the first time in the present study. Homolog pairing showed the following characteristics: (1) it occurred at the leptotene-zygotene transition stage, prior to the formation of nodules and the synaptonemal complex; (2) the chromatin structure of chromosomes was in a state of decondensation; (3) it required no telomere clustering. These data suggest that homolog pairing represents a structure that indicates incipient recombination. After the homolog pairing stage, two kinds of bouquet configuration were found in zygotene. The commonly observed type was a loose bouquet, in which the subtelomeric regions were loosely aggregated. The other type was a definite bouquet, in which almost all the subtelomeric regions were conjugated, but this type was observed only in a limited number of the meiotic prophase cells of some individuals. It was concluded that the former represents the configuration of homologous recombination and the latter that of ectopic recombination.
Collapse
Affiliation(s)
- Junko Noguchi
- Department of Botany, Graduate School of Science, Kyoto University, Japan.
| |
Collapse
|