1
|
Wan H, Zhang J, Liu Z, Dong B, Tao Z, Wang G, Wang C. RING finger protein 5 protects against acute myocardial infarction by inhibiting ASK1. BMC Cardiovasc Disord 2024; 24:406. [PMID: 39098896 PMCID: PMC11299303 DOI: 10.1186/s12872-024-04070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a major disease with high morbidity and mortality worldwide. However, existing treatments are far from satisfactory, making the exploration of potent molecular targets more imperative. The E3 ubiquitin ligase RING finger protein 5 (RNF5) has been previously reported to be involved in several diseases by regulating ubiquitination-mediated protein degradation. Nevertheless, few reports have focused on its function in cardiovascular diseases, including MI. METHODS In this study, we established RNF5 knockout mice through precise CRISPR-mediated genome editing and utilized left anterior descending coronary artery ligation in 9-11-week-old male C57BL/6 mice. Subsequently, serum biochemical analysis and histopathological examination of heart tissues were performed. Furthermore, we engineered adenoviruses for modulating RNF5 expression and subjected neonatal rat cardiomyocytes to oxygen-glucose deprivation (OGD) to mimic ischemic conditions, demonstrating the impact of RNF5 manipulation on cellular viability. Gene and protein expression analysis provided insights into the molecular mechanisms. Statistical methods were rigorously employed to assess the significance of experimental findings. RESULTS We found RNF5 was downregulated in infarcted heart tissue of mice and NRCMs subjected to OGD treatment. RNF5 knockout in mice resulted in exacerbated heart dysfunction, more severe inflammatory responses, and increased apoptosis after MI surgery. In vitro, RNF5 knockdown exacerbated the OGD-induced decline in cell activity, increased apoptosis, while RNF5 overexpression had the opposite effect. Mechanistically, it was proven that the kinase cascade initiated by apoptosis signal-regulating kinase 1 (ASK1) activation was closely regulated by RNF5 and mediated RNF5's protective function during MI. CONCLUSIONS We demonstrated the protective effect of RNF5 on myocardial infarction and its function was dependent on inhibiting the activation of ASK1, which adds a new regulatory component to the myocardial infarction associated network and promises to enable new therapeutic strategy.
Collapse
Affiliation(s)
- Hong Wan
- General practice medicine, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Jianqing Zhang
- Department of central laboratory, Renmin hospital of Wuhan university, Wuhan, China
| | - Zhen Liu
- Department of Cardiology, Renmin hospital of Wuhan university, Wuhan, China
| | - Bizhen Dong
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Zhangqian Tao
- Department of Cardiology, Renmin hospital of Wuhan university, Wuhan, China
| | - Guanglin Wang
- Department of Cardiology, Huanggang Central Hospital of Yangtze University, Huanggang, China.
| | - Chihua Wang
- Huanggang Disease Control Center, Huanggang, China.
| |
Collapse
|
2
|
Ge J, Zhang L. RNF5: inhibiting antiviral immunity and shaping virus life cycle. Front Immunol 2024; 14:1324516. [PMID: 38250078 PMCID: PMC10796512 DOI: 10.3389/fimmu.2023.1324516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
RNF5 is an E3 ubiquitin ligase involved in various physiological processes such as protein localization and cancer progression. Recent studies have shown that RNF5 significantly inhibits antiviral innate immunity by promoting the ubiquitination and degradation of STING and MAVS, which are essential adaptor proteins, as well as their downstream signal IRF3. The abundance of RNF5 is delicately regulated by both host factors and viruses. Host factors have been found to restrict RNF5-mediated ubiquitination, maintaining the stability of STING or MAVS through distinct mechanisms. Meanwhile, viruses have developed ingenious strategies to hijack RNF5 to ubiquitinate and degrade immune proteins. Moreover, recent studies have revealed the multifaceted roles of RNF5 in the life cycle of various viruses, including SARS-CoV-2 and KSHV. Based on these emerging discoveries, RNF5 represents a novel means of modulating antiviral immunity. In this review, we summarize the latest research on the roles of RNF5 in antiviral immunity and virus life cycle. This comprehensive understanding could offer valuable insights into exploring potential therapeutic applications focused on targeting RNF5 during viral infections.
Collapse
Affiliation(s)
- Junyi Ge
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Yan J, Qiao G, Yin Y, Wang E, Xiao J, Peng Y, Yu J, Du Y, Li Z, Wu H, Liu M, Tu J, Zhang Y, Feng H. Black carp RNF5 inhibits STING/IFN signaling through promoting K48-linked ubiquitination and degradation of STING. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104712. [PMID: 37100266 DOI: 10.1016/j.dci.2023.104712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 05/09/2023]
Abstract
Ubiquitination is one of the important post-translational modifications (PTMs) of proteins that plays a vital role in regulating substrate degradation to ensure cellular homeostasis. Ring finger protein 5 (RNF5) is an essential E3 ubiquitin ligase for inhibiting STING-mediated interferon (IFN) signaling in mammals. Nevertheless, the function of RNF5 in STING/IFN pathway remains obscure in teleost. Here, we reported that over-expression of black carp RNF5 (bcRNF5) inhibited STING-mediated transcription activity of bcIFNa, DrIFNφ1, NF-κB and ISRE promoters and antiviral activity against SVCV. Moreover, knockdown of bcRNF5 increased the expression of host genes, including bcIFNa, bcIFNb, bcILβ, bcMX1 and bcViperin, and also enhanced the antiviral capability of host cells. Immunofluorescence (IF) and Co-immunoprecipitation (Co-IP) assay confirmed that bcRNF5 was mainly localized in the cytoplasm and interacted with bcSTING. The expression level of bcSTING protein was attenuated by co-expressed bcRNF5 and MG132 treatment rescued this attenuating effect, suggesting that bcRNF5-mediated bcSTING degradation was dependent on the proteasome pathway. Subsequent, Co-IP and immunoblot (IB) experiments identified that bcRNF5 triggered the K48-linked but not K63-linked ubiquitination of bcSTING. Altogether, above results conclude that RNF5 suppresses STING/IFN signaling by enhancing K48-linked ubiquitination and protease degradation of STING in black carp.
Collapse
Affiliation(s)
- Jun Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Guoxia Qiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuqi Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Enhui Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Yuqing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jiamin Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuting Du
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhiming Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Meiling Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jiagang Tu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
4
|
Han G, Qiao Z, Li Y, Yang Z, Wang C, Zhang Y, Liu L, Wang B. RING Zinc Finger Proteins in Plant Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:877011. [PMID: 35498666 PMCID: PMC9047180 DOI: 10.3389/fpls.2022.877011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
RING zinc finger proteins have a conserved RING domain, mainly function as E3 ubiquitin ligases, and play important roles in plant growth, development, and the responses to abiotic stresses such as drought, salt, temperature, reactive oxygen species, and harmful metals. RING zinc finger proteins act in abiotic stress responses mainly by modifying and degrading stress-related proteins. Here, we review the latest progress in research on RING zinc finger proteins, including their structural characteristics, classification, subcellular localization, and physiological functions, with an emphasis on abiotic stress tolerance. Under abiotic stress, RING zinc finger proteins on the plasma membrane may function as sensors or abscisic acid (ABA) receptors in abiotic stress signaling. Some RING zinc finger proteins accumulate in the nucleus may act like transcription factors to regulate the expression of downstream abiotic stress marker genes through direct or indirect ways. Most RING zinc finger proteins usually accumulate in the cytoplasm or nucleus and act as E3 ubiquitin ligases in the abiotic stress response through ABA, mitogen-activated protein kinase (MAPK), and ethylene signaling pathways. We also highlight areas where further research on RING zinc finger proteins in plants is needed.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Lili Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Erffelinck ML, Ribeiro B, Gryffroy L, Rai A, Pollier J, Goossens A. The Heat Shock Protein 40-Type Chaperone MASH Supports the Endoplasmic Reticulum-Associated Degradation E3 Ubiquitin Ligase MAKIBISHI1 in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:639625. [PMID: 33708234 PMCID: PMC7940691 DOI: 10.3389/fpls.2021.639625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/19/2021] [Indexed: 06/02/2023]
Abstract
Jasmonates (JA) are oxylipin-derived phytohormones that trigger the production of specialized metabolites that often serve in defense against biotic stresses. In Medicago truncatula, a JA-induced endoplasmic reticulum-associated degradation (ERAD)-type machinery manages the production of bioactive triterpenes and thereby secures correct plant metabolism, growth, and development. This machinery involves the conserved RING membrane-anchor (RMA)-type E3 ubiquitin ligase MAKIBISHI1 (MKB1). Here, we discovered two additional members of this protein control apparatus via a yeast-based protein-protein interaction screen and characterized their function. First, a cognate E2 ubiquitin-conjugating enzyme was identified that interacts with MKB1 to deliver activated ubiquitin and to mediate its ubiquitination activity. Second, we identified a heat shock protein 40 (HSP40) that interacts with MKB1 to support its activity and was therefore designated MKB1-supporting HSP40 (MASH). MASH expression was found to be co-regulated with that of MKB1. The presence of MASH is critical for MKB1 and ERAD functioning because the dramatic morphological, transcriptional, and metabolic phenotype of MKB1 knock-down M. truncatula hairy roots was phenocopied by silencing of MASH. Interaction was also observed between the Arabidopsis thaliana (Arabidopsis) homologs of MASH and MKB1, suggesting that MASH represents an essential and plant-specific component of this vital and conserved eukaryotic protein quality control machinery.
Collapse
Affiliation(s)
- Marie-Laure Erffelinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bianca Ribeiro
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lore Gryffroy
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Avanish Rai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
6
|
Lu X. The Role of Large Neutral Amino Acid Transporter (LAT1) in Cancer. Curr Cancer Drug Targets 2019; 19:863-876. [DOI: 10.2174/1568009619666190802135714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Background:
The solute carrier family 7 (SLC7) can be categorically divided into two
subfamilies, the L-type amino acid transporters (LATs) including SLC7A5-13, and SLC7A15, and
the cationic amino acid transporters (CATs) including SLC7A1-4 and SLC7A14. Members of the
CAT family transport predominantly cationic amino acids by facilitating diffusion with intracellular
substrates. LAT1 (also known as SLC7A5), is defined as a heteromeric amino acid transporter
(HAT) interacting with the glycoprotein CD98 (SLC3A2) through a conserved disulfide to uptake
not only large neutral amino acids, but also several pharmaceutical drugs to cells.
Methods:
In this review, we provide an overview of the interaction of the structure-function of
LAT1 and its essential role in cancer, specifically, its role at the blood-brain barrier (BBB) to facilitate
the transport of thyroid hormones, pharmaceuticals (e.g., I-DOPA, gabapentin), and metabolites
into the brain.
Results:
LAT1 expression increases as cancers progress, leading to higher expression levels in highgrade
tumors and metastases. In addition, LAT1 plays a crucial role in cancer-associated
reprogrammed metabolic networks by supplying tumor cells with essential amino acids.
Conclusion:
The increasing understanding of the role of LAT1 in cancer has led to an increase in
interest surrounding its potential as a drug target for cancer treatment.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR, United Kingdom
| |
Collapse
|
7
|
Gao Y, Xuan C, Jin M, An Q, Zhuo B, Chen X, Wang L, Wang Y, Sun Q, Shi Y. Ubiquitin ligase RNF5 serves an important role in the development of human glioma. Oncol Lett 2019; 18:4659-4666. [PMID: 31611975 PMCID: PMC6781729 DOI: 10.3892/ol.2019.10801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/06/2019] [Indexed: 11/05/2022] Open
Abstract
The ubiquitin ligase ring finger protein 5 (RNF5) has previously been associated with the development of breast cancer. Patients with breast cancer and high RNF5 expression have been demonstrated to have a shorter survival time compared with patients with low RNF5 expression. However, the role of RNF5 in human glioma has not been determined. The present study analyzed the role of RNF5 in gliomas using bioinformatics analysis. The results revealed that RNF5 was differentially expressed in non-cancerous brain tissues and different grades of glioma. Furthermore, a high RNF5 expression in patients with glioma was associated with an improved prognosis compared with patients with low expression. Gene Set Enrichment Analysis revealed that RNF5 was particularly associated with 'Wnt signaling pathway', 'apoptosis', 'focal adhesion' and 'cytokine-cytokine receptor interaction' in patients with glioma. Additionally, 4 potential ubiquitination substrates for RNF5 were predicted, including sorting nexin 10, proprotein convertase subtilisin/kexin type 1, leucine rich glioma inactivated 1 and solute carrier family 39 member 12. These findings provided the basis for further investigation on the role of RNF5 in tumors.
Collapse
Affiliation(s)
- Yong Gao
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Chengmin Xuan
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Mingwei Jin
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Qi An
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Baobiao Zhuo
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Xincheng Chen
- Department of Neurosurgery, Xinyi People's Hospital, Xinyi, Jiangsu 221400, P.R. China
| | - Lei Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yuan Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Qingzeng Sun
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yingchun Shi
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
8
|
Kumar V. A STING to inflammation and autoimmunity. J Leukoc Biol 2019; 106:171-185. [PMID: 30990921 DOI: 10.1002/jlb.4mir1018-397rr] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
Various intracellular pattern recognition receptors (PRRs) recognize cytosolic pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Cyclic GMP-AMP synthase (cGAS), a cytosolic PRR, recognizes cytosolic nucleic acids including dsDNAs. The recognition of dsDNA by cGAS generates cyclic GMP-AMP (GAMP). The cGAMP is then recognized by STING generating type 1 IFNs and NF-κB-mediated generation of pro-inflammatory cytokines and molecules. Thus, cGAS-STING signaling mediated recognition of cytosolic dsDNA causing the induction of type 1 IFNs plays a crucial role in innate immunity against cytosolic pathogens, PAMPs, and DAMPs. The overactivation of this system may lead to the development of autoinflammation and autoimmune diseases. The article opens with the introduction of different PRRs involved in the intracellular recognition of dsDNA and gives a brief introduction of cGAS-STING signaling. The second section briefly describes cGAS as intracellular PRR required to recognize intracellular nucleic acids (dsDNA and CDNs) and the formation of cGAMP. The cGAMP acts as a second messenger to activate STING- and TANK-binding kinase 1-mediated generation of type 1 IFNs and the activation of NF-κB. The third section of the article describes the role of cGAS-STING signaling in the induction of autoinflammation and various autoimmune diseases. The subsequent fourth section describes both chemical compounds developed and the endogenous negative regulators of cGAS-STING signaling required for its regulation. Therapeutic targeting of cGAS-STING signaling could offer new ways to treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Cham KL, Soga T, Parhar IS. Expression of RING Finger Protein 38 in Serotonergic Neurons in the Brain of Nile Tilapia, Oreochromis niloticus. Front Neuroanat 2018; 12:109. [PMID: 30574074 PMCID: PMC6292424 DOI: 10.3389/fnana.2018.00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is one of the major neurotransmitters, modulating diverse behaviours and physiological functions. Really interesting new gene (RING) finger protein 38 (RNF38) is an E3 ubiquitin ligase whose function remains unclear. A recent study has shown a possible regulatory relationship between RNF38 and the 5-HT system. Therefore, to gain insight into the role of RNF38 in the central 5-HT system, we identified the neuroanatomical location of 5-HT positive cells and investigated the relationship between RNF38 and the 5-HT system in the brain of the Nile tilapia, Oreochromis niloticus. Immunocytochemistry revealed three neuronal populations of 5-HT in the brain of tilapia; the paraventricular organ (PVO), the dorsal and ventral periventricular pretectal nuclei (PPd and PPv), and, the superior and inferior raphe (SR and IR). The 5-HT neuronal number was highest in the raphe (90.4 in SR, 284.6 in IR), followed by the pretectal area (22.3 in PPd, 209.8 in PPv). Double-label immunocytochemistry showed that the majority of 5-HT neurons express RNF38 nuclear proteins (66.5% in PPd; 77.9% in PPv; 35.7% in SR; 49.1% in IR). These findings suggest that RNF38 could be involved in E3 ubiquitination in the central 5-HT system.
Collapse
Affiliation(s)
- Kai Lin Cham
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
10
|
Huang EY, To M, Tran E, Dionisio LTA, Cho HJ, Baney KLM, Pataki CI, Olzmann JA. A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates. Mol Biol Cell 2018. [PMID: 29514927 PMCID: PMC5921570 DOI: 10.1091/mbc.e17-08-0514] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new substrate trapping strategy that couples VCP inhibition and quantitative ubiquitin proteomics identifies endogenous ERAD substrates, expanding the available toolbox of strategies for global analysis of the ERAD substrate landscape. Endoplasmic reticulum (ER)–associated degradation (ERAD) mediates the proteasomal clearance of proteins from the early secretory pathway. In this process, ubiquitinated substrates are extracted from membrane-embedded dislocation complexes by the AAA ATPase VCP and targeted to the cytosolic 26S proteasome. In addition to its well-established role in the degradation of misfolded proteins, ERAD also regulates the abundance of key proteins such as enzymes involved in cholesterol synthesis. However, due to the lack of generalizable methods, our understanding of the scope of proteins targeted by ERAD remains limited. To overcome this obstacle, we developed a VCP inhibitor substrate trapping approach (VISTA) to identify endogenous ERAD substrates. VISTA exploits the small-molecule VCP inhibitor CB5083 to trap ERAD substrates in a membrane-associated, ubiquitinated form. This strategy, coupled with quantitative ubiquitin proteomics, identified previously validated (e.g., ApoB100, Insig2, and DHCR7) and novel (e.g., SCD1 and RNF5) ERAD substrates in cultured human hepatocellular carcinoma cells. Moreover, our results indicate that RNF5 autoubiquitination on multiple lysine residues targets it for ubiquitin and VCP-dependent clearance. Thus, VISTA provides a generalizable discovery method that expands the available toolbox of strategies to elucidate the ERAD substrate landscape.
Collapse
Affiliation(s)
- Edmond Y Huang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Milton To
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Erica Tran
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Lorraine T Ador Dionisio
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Hyejin J Cho
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Katherine L M Baney
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Camille I Pataki
- Biomedical Informatics Program, Stanford University, Stanford, CA 94305
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
11
|
Cham KL, Soga T, Parhar IS. RING Finger Protein 38 Is a Neuronal Protein in the Brain of Nile Tilapia, Oreochromis niloticus. Front Neuroanat 2017; 11:72. [PMID: 28912690 PMCID: PMC5583157 DOI: 10.3389/fnana.2017.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/08/2017] [Indexed: 12/02/2022] Open
Abstract
Really interesting new gene (RING) finger protein is a type of zinc-binding motif found in a large family of functionally distinct proteins. RING finger proteins are involved in diverse cellular processes including apoptosis, DNA repair, cell cycle, signal transduction, tumour suppressor, vesicular transport, and peroxisomal biogenesis. RING finger protein 38 (RNF38) is a member of the family whose functions remain unknown. To gain insight into the putative effects of RNF38 in the central nervous system, we localised its expression. The aim of this study was to identify the neuroanatomical location(s) of rnf38 mRNA and its peptide, determine the type of RNF38-expressing cells, and measure rnf38 gene expression in the brain of male tilapia. The distributions of rnf38 mRNA and its peptide were visualised using in situ hybridisation with digoxigenin-labelled RNA antisense and immunocytochemistry, respectively. Both were identically distributed throughout the brain, including the telencephalon, preoptic area, optic tectum, hypothalamus, cerebellum, and the hindbrain. Double-labelling immunocytochemistry for RNF38 and the neuronal marker HuC/D showed that most but not all RNF38 protein was expressed in neuronal nuclei. Quantitative real-time polymerase chain reaction showed the highest level of rnf38 mRNA in the midbrain, followed by the preoptic area, cerebellum, optic tectum, telencephalon, hindbrain and hypothalamus. These findings reveal a differential spatial pattern of RNF38 in the tilapia brain, suggesting that it has potentially diverse functions related to neuronal activity.
Collapse
Affiliation(s)
- Kai Lin Cham
- Brain Research Institute, School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| |
Collapse
|
12
|
Ghannam A, Jacques A, de Ruffray P, Kauffmann S. NtRING1, putative RING-finger E3 ligase protein, is a positive regulator of the early stages of elicitin-induced HR in tobacco. PLANT CELL REPORTS 2016; 35:415-28. [PMID: 26542819 DOI: 10.1007/s00299-015-1893-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE NtRING1 is a RING-finger protein with a putative E3 ligase activity. NtRING1 regulates HR establishment against different pathogens. Loss-/gain-of-function of NtRING1 altered early stages of HR phenotype establishment. Plant defence responses against pathogens often involve the restriction of pathogens by inducing a hypersensitive response (HR). cDNA clones DD11-39, DD38-11 and DD34-26 were previously obtained from a differential screen aimed at characterising tobacco genes with an elicitin-induced HR-specific pattern of expression. Our precedent observations suggested that DD11-39, DD38-11 and DD34-26 might play roles in the HR establishment. Only for DD11-39 a full-length cDNA sequence was obtained and the corresponding protein encoded for a type-HC RING-finger/putative E3 ligase protein which we termed NtRING1. The expression of NtRING1 was upregulated upon HR induction by elicitin, Ralstonia solanacearum, or tobacco mosaic virus (TMV) in tobacco. Silencing of NtRING1 remarkably delayed the establishment of elicitin-induced HR in tobacco as well as the expression of different early induction genes in tissues undergoing HR. Accordingly, transient overexpression of NtRING1 accelerated the HR launching upon elicitin treatment. Taking together, our data suggests that NtRING1 plays a functional role in the early establishment of HR.
Collapse
Affiliation(s)
- Ahmed Ghannam
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France.
- Laboratory Functional Genomics for Plant Immunomodulation, Plant Pathology Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria.
| | - Alban Jacques
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
- Ecole d'ingénieurs de Purpan, Laboratoire d'Agro-Physiologie, 75 voie du TOEC, 31076, Toulouse Cedex 3, France
| | - Patrice de Ruffray
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Serge Kauffmann
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
13
|
Hossain MA, Henríquez-Valencia C, Gómez-Páez M, Medina J, Orellana A, Vicente-Carbajosa J, Zouhar J. Identification of Novel Components of the Unfolded Protein Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:650. [PMID: 27242851 PMCID: PMC4864164 DOI: 10.3389/fpls.2016.00650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/28/2016] [Indexed: 05/22/2023]
Abstract
Unfavorable environmental and developmental conditions may cause disturbances in protein folding in the endoplasmic reticulum (ER) that are recognized and counteracted by components of the Unfolded Protein Response (UPR) signaling pathways. The early cellular responses include transcriptional changes to increase the folding and processing capacity of the ER. In this study, we systematically screened a collection of inducible transgenic Arabidopsis plants expressing a library of transcription factors for resistance toward UPR-inducing chemicals. We identified 23 candidate genes that may function as novel regulators of the UPR and of which only three genes (bZIP10, TBF1, and NF-YB3) were previously associated with the UPR. The putative role of identified candidate genes in the UPR signaling is supported by favorable expression patterns in both developmental and stress transcriptional analyses. We demonstrated that WRKY75 is a genuine regulator of the ER-stress cellular responses as its expression was found to be directly responding to ER stress-inducing chemicals. In addition, transgenic Arabidopsis plants expressing WRKY75 showed resistance toward salt stress, connecting abiotic and ER-stress responses.
Collapse
Affiliation(s)
- Md. Amir Hossain
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Universidad Politécnica de MadridMadrid, Spain
| | - Carlos Henríquez-Valencia
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| | - Marcela Gómez-Páez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Universidad Politécnica de MadridMadrid, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Universidad Politécnica de MadridMadrid, Spain
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Universidad Politécnica de MadridMadrid, Spain
| | - Jan Zouhar
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Universidad Politécnica de MadridMadrid, Spain
- *Correspondence: Jan Zouhar
| |
Collapse
|
14
|
Chapter Five - Ubiquitination of Ion Channels and Transporters. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:161-223. [DOI: 10.1016/bs.pmbts.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Liu C, Zhang D, Shen Y, Tao X, Liu L, Zhong Y, Fang S. DPF2 regulates OCT4 protein level and nuclear distribution. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:3279-3293. [PMID: 26417682 DOI: 10.1016/j.bbamcr.2015.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/28/2015] [Accepted: 09/21/2015] [Indexed: 02/05/2023]
Abstract
The amount of transcription factor OCT4 is strictly regulated. A tight regulation of OCT4 levels is crucial for mammalian embryonic development and oncogenesis. However, the mechanisms underlying regulation of OCT4 protein expression and nuclear distribution are largely unknown. Here, we report that DPF2, a plant homeodomain (PHD) finger protein, is upregulated during H9 cell differentiation induced by retinoic acid. Endogenous interaction between DPF2 and OCT4 in P19 cells was revealed by an immunoprecipitation assay. GST-pull down assay proved that OCT4 protein in H9 cells and recombinant OCT4 can precipitate with DPF2 in vitro. In vitro ubiquitination assay demonstrated DPF2 might serve as an E3 ligase. Knock down of dpf2 using siRNA increased OCT4 protein level and stability in P19 cells. DPF2 siRNAs also up-regulates OCT4 but not NANOG in H9 cells. However, RA fails to downregulates OCT4 protein level in cells infected by lenitviruses containing DPF2 siRNA. Moreover, overexpression of both DPF2 and OCT4 in 293 cells proved the DPF2-OCT4 interaction. DPF2 but not PHD2 mutant DPF2 enhanced ubiquitination and degradation of OCT4 in 293 cells co-expressed DPF2 and OCT4. Both wild type DPF2 and PHD2 mutant DPF2 redistributes nuclear OCT4 without affecting DPF2-OCT4 interaction. Further analysis indicated that DPF2 decreases monomeric and mono-ubiquitinated OCT4, assembles poly-ubiquitin chains on OCT4 mainly through Ub-K48 linkage. These findings contribute to an understanding of how OCT4 protein level and nuclear distribution is regulated by its associated protein.
Collapse
Affiliation(s)
- Chao Liu
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032 China; Center for Biomedical Engineering and Technology (BioMET), University of Maryland, Baltimore, MD 21201 USA.
| | - Dijuan Zhang
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032 China
| | - Yuxian Shen
- School of Basic Medical Sciences, Institute of Biopharmaceuticals, Anhui Medical University, Hefei, Anhui 230032 China
| | - Xiaofang Tao
- School of Basic Medical Sciences, Institute of Biopharmaceuticals, Anhui Medical University, Hefei, Anhui 230032 China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology (BioMET), University of Maryland, Baltimore, MD 21201 USA
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology (BioMET), University of Maryland, Baltimore, MD 21201 USA.
| |
Collapse
|
16
|
Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:E4802-10. [PMID: 26261339 DOI: 10.1073/pnas.1513609112] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The circadian clock in Arabidopsis exerts a critical role in timing multiple biological processes and stress responses through the regulation of up to 80% of the transcriptome. As a key component of the clock, the Myb-like transcription factor CIRCADIAN CLOCK ASSOCIATED1 (CCA1) is able to initiate and set the phase of clock-controlled rhythms and has been shown to regulate gene expression by binding directly to the evening element (EE) motif found in target gene promoters. However, the precise molecular mechanisms underlying clock regulation of the rhythmic transcriptome, specifically how clock components connect to clock output pathways, is poorly understood. In this study, using ChIP followed by deep sequencing of CCA1 in constant light (LL) and diel (LD) conditions, more than 1,000 genomic regions occupied by CCA1 were identified. CCA1 targets are enriched for a myriad of biological processes and stress responses, providing direct links to clock-controlled pathways and suggesting that CCA1 plays an important role in regulating a large subset of the rhythmic transcriptome. Although many of these target genes are evening expressed and contain the EE motif, a significant subset is morning phased and enriched for previously unrecognized motifs associated with CCA1 function. Furthermore, this work revealed several CCA1 targets that do not cycle in either LL or LD conditions. Together, our results emphasize an expanded role for the clock in regulating a diverse category of genes and key pathways in Arabidopsis and provide a comprehensive resource for future functional studies.
Collapse
|
17
|
Koyano F, Matsuda N. Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2791-6. [PMID: 25700839 DOI: 10.1016/j.bbamcr.2015.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 11/27/2022]
Abstract
PINK1 and Parkin are gene products that cause genetic recessive Parkinsonism. PINK1 is a protein kinase and Parkin is a ubiquitin ligase (E3) that links ubiquitin to a substrate. Importantly, under steady state conditions, the enzymatic activity of Parkin is completely suppressed, but is activated when mitochondria become abnormal. In 2013 and 2014, biochemical and structure-function analyses revealed a number of critical mechanistic insights. First, Parkin is a self-inhibitory E3 that suppresses its E3 activity via intramolecular interactions. Second, in response to a decrease in mitochondrial membrane potential, PINK1 phosphorylates Ser65 in both the Parkin ubiquitin-like domain and ubiquitin itself. These phosphorylation events cooperate to relieve the Parkin autoinhibition. Third, activated Parkin forms a ubiquitin-thioester bond at Cys431 to produce a reaction intermediate that catalyzes ubiquitylation of substrates on damaged mitochondria. While the molecular mechanism regulating Parkin enzymatic activity has largely eluded clarification, a complete picture is now emerging.
Collapse
Affiliation(s)
- Fumika Koyano
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Room 202, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Noriyuki Matsuda
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Room 202, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
18
|
Wu W, Cheng Z, Liu M, Yang X, Qiu D. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana. PLoS One 2014; 9:e99352. [PMID: 24901716 PMCID: PMC4047095 DOI: 10.1371/journal.pone.0099352] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/05/2014] [Indexed: 02/02/2023] Open
Abstract
C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS) analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco.
Collapse
Affiliation(s)
- Wenxian Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Zhiwei Cheng
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Mengjie Liu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
19
|
Hanzawa E, Sasaki K, Nagai S, Obara M, Fukuta Y, Uga Y, Miyao A, Hirochika H, Higashitani A, Maekawa M, Sato T. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2013; 6:30. [PMID: 24280269 PMCID: PMC3874653 DOI: 10.1186/1939-8433-6-30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 11/15/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. RESULTS The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. CONCLUSION These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.
Collapse
Affiliation(s)
- Eiko Hanzawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kazuhiro Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Present address: Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Shinsei Nagai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Mitsuhiro Obara
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Yoshimichi Fukuta
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Yusaku Uga
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Akio Miyao
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hirohiko Hirochika
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Tadashi Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- RIKEN Innovation Center, Ion Beam Breeding Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Zhao Q, Tian M, Li Q, Cui F, Liu L, Yin B, Xie Q. A plant-specific in vitro ubiquitination analysis system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:524-33. [PMID: 23350615 DOI: 10.1111/tpj.12127] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/15/2013] [Accepted: 01/23/2013] [Indexed: 05/23/2023]
Abstract
Protein ubiquitination requires the concerted action of three enzymes: ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). These ubiquitination enzymes belong to an abundant protein family that is encoded in all eukaryotic genomes. Describing their biochemical characteristics is an important part of their functional analysis. It has been recognized that various E2/E3 specificities exist, and that detection of E3 ubiquitination activity in vitro may depend on the recruitment of E2s. Here, we describe the development of an in vitro ubiquitination system based on proteins encoded by genes from Arabidopsis. It includes most varieties of Arabidopsis E2 proteins, which are tested with several RING-finger type E3 ligases. This system permits determination of E3 activity in combination with most of the E2 sub-groups that have been identified in the Arabidopsis genome. At the same time, E2/E3 specificities have also been explored. The components used in this system are all from plants, particularly Arabidopsis, making it very suitable for ubiquitination assays of plant proteins. Some E2 proteins that are not easily expressed in Escherichia coli were transiently expressed and purified from plants before use in ubiquitination assays. This system is also adaptable to proteins of species other than plants. In this system, we also analyzed two mutated forms of ubiquitin, K48R and K63R, to detect various types of ubiquitin conjugation.
Collapse
Affiliation(s)
- Qingzhen Zhao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beichen West Road, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Guerriero CJ, Brodsky JL. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev 2012; 92:537-76. [PMID: 22535891 DOI: 10.1152/physrev.00027.2011] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding "problem," as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
22
|
Chhangani D, Joshi AP, Mishra A. E3 ubiquitin ligases in protein quality control mechanism. Mol Neurobiol 2012; 45:571-85. [PMID: 22610945 DOI: 10.1007/s12035-012-8273-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 04/26/2012] [Indexed: 12/11/2022]
Abstract
In living cells, polypeptide chains emerging from ribosomes and preexisting polypeptide chains face constant threat of misfolding and aggregation. To prevent protein aggregation and to fulfill their biological activity, generally, protein must fold into its proper three-dimensional structure throughout their lifetimes. Eukaryotic cell possesses a quality control (QC) system to contend the problem of protein misfolding and aggregation. Cells achieve this functional QC system with the help of molecular chaperones and ubiquitin-proteasome system (UPS). The well-conserved UPS regulates the stability of various proteins and maintains all essential cellular function through intracellular protein degradation. E3 ubiquitin ligase enzyme determines specificity for degradation of certain substrates via UPS. New emerging evidences have provided considerable information that various E3 ubiquitin ligases play a major role in cellular QC mechanism and principally designated as QC E3 ubiquitin ligases. Nevertheless, very little is known about how E3 ubiquitin ligase maintains QC mechanism against abnormal proteins under various stress conditions. Here in this review, we highlight and discuss the functions of various E3 ubiquitin ligases implicated in protein QC mechanism. Improving our knowledge about such processes may provide opportunities to modulate protein QC mechanism in age-of-onset diseases that are caused by protein aggregation.
Collapse
Affiliation(s)
- Deepak Chhangani
- Biology Laboratory, Indian Institute of Technology Rajasthan, Jodhpur, 342011, India
| | | | | |
Collapse
|
23
|
Guerra D, Mastrangelo AM, Lopez-Torrejon G, Marzin S, Schweizer P, Stanca AM, del Pozo JC, Cattivelli L, Mazzucotelli E. Identification of a protein network interacting with TdRF1, a wheat RING ubiquitin ligase with a protective role against cellular dehydration. PLANT PHYSIOLOGY 2012; 158:777-89. [PMID: 22167118 PMCID: PMC3271766 DOI: 10.1104/pp.111.183988] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants exploit ubiquitination to modulate the proteome with the final aim to ensure environmental adaptation and developmental plasticity. Ubiquitination targets are specifically driven to degradation through the action of E3 ubiquitin ligases. Genetic analyses have indicated wide functions of ubiquitination in plant life; nevertheless, despite the large number of predicted E3s, only a few of them have been characterized so far, and only a few ubiquitination targets are known. In this work, we characterized durum wheat (Triticum durum) RING Finger1 (TdRF1) as a durum wheat nuclear ubiquitin ligase. Moreover, its barley (Hordeum vulgare) homolog was shown to protect cells from dehydration stress. A protein network interacting with TdRF1 has been defined. The transcription factor WHEAT BEL1-TYPE HOMEODOMAIN1 (WBLH1) was degraded in a TdRF1-dependent manner through the 26S proteasome in vivo, the mitogen-activated protein kinase TdWNK5 [for Triticum durum WITH NO LYSINE (K)5] was able to phosphorylate TdRF1 in vitro, and the RING-finger protein WHEAT VIVIPAROUS-INTERACTING PROTEIN2 (WVIP2) was shown to have a strong E3 ligase activity. The genes coding for the TdRF1 interactors were all responsive to cold and/or dehydration stress, and a negative regulative function in dehydration tolerance was observed for the barley homolog of WVIP2. A role in the control of plant development was previously known, or predictable based on homology, for wheat BEL1-type homeodomain1(WBLH1). Thus, TdRF1 E3 ligase might act regulating the response to abiotic stress and remodeling plant development in response to environmental constraints.
Collapse
|
24
|
Nakamura N. The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function. MEMBRANES 2011; 1:354-93. [PMID: 24957874 PMCID: PMC4021871 DOI: 10.3390/membranes1040354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/24/2011] [Accepted: 12/05/2011] [Indexed: 01/08/2023]
Abstract
A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
25
|
Lee DH, Choi HW, Hwang BK. The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. PLANT PHYSIOLOGY 2011; 156:2011-25. [PMID: 21628629 PMCID: PMC3149946 DOI: 10.1104/pp.111.177568] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/25/2011] [Indexed: 05/19/2023]
Abstract
Ubiquitination is essential for ubiquitin/proteasome-mediated protein degradation in plant development and defense. Here, we identified a novel E3 ubiquitin ligase RING1 gene, CaRING1, from pepper (Capsicum annuum). In pepper, CaRING1 expression is induced by avirulent Xanthomonas campestris pv vesicatoria infection. CaRING1 contains an amino-terminal transmembrane domain and a carboxyl-terminal RING domain. In addition, it displays in vitro E3 ubiquitin ligase activity, and the RING domain is essential for E3 ubiquitin ligase activity in CaRING1. CaRING1 also localizes to the plasma membrane. In pepper plants, virus-induced gene silencing of CaRING1 confers enhanced susceptibility to avirulent X. campestris pv vesicatoria infection, which is accompanied by compromised hypersensitive cell death, reduced expression of PATHOGENESIS-RELATED1, and lowered salicylic acid levels in leaves. Transient expression of CaRING1 in pepper leaves induces cell death and the defense response that requires the E3 ubiquitin ligase activity of CaRING1. By contrast, overexpression of CaRING1 in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to hemibiotrophic Pseudomonas syringae pv tomato and biotrophic Hyaloperonospora arabidopsidis infections. Taken together, these results suggest that CaRING1 is involved in the induction of cell death and the regulation of ubiquitination during the defense response to microbial pathogens.
Collapse
|
26
|
Bae H, Kim SK, Cho SK, Kang BG, Kim WT. Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:775-82. [PMID: 21497713 DOI: 10.1016/j.plantsci.2011.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 05/20/2023]
Abstract
CaRma1H1 was previously identified as a hot pepper drought-induced RING E3 Ub ligase. We have identified five putative proteins that display a significant sequence identity with CaRma1H1 in the rice genome database (http://signal.salk.edu/cgi-bin/RiceGE). These five rice paralogs possess a single RING motif in their N-terminal regions, consistent with the notion that RING proteins are encoded by a multi-gene family. Therefore, these proteins were named OsRDCPs (Oryza sativa RING domain-containing proteins). Among these paralogs, OsRDCP1 was induced by drought stress, whereas the other OsRDCP members were constitutively expressed, with OsRDCP4 transcripts expressed at the highest level in rice seedlings. osrdcp1 loss-of-function knockout mutant and OsRDCP1-overexpressing transgenic rice plants were developed. Phenotypic analysis showed that wild-type plants and the homozygous osrdcp1 G2 mutant line displayed similar phenotypes under normal growth conditions and in response to drought stress. This may be due to complementation by other OsRDCP paralogs. In contrast, 35S:OsRDCP1 T2 transgenic rice plants exhibited improved tolerance to severe water deficits. Although the physiological function of OsRDCP1 remains unclear, there are several possible mechanisms for its involvement in a subset of physiological responses to counteract dehydration stress in rice plants.
Collapse
Affiliation(s)
- Hansol Bae
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | | | | | |
Collapse
|
27
|
Nakamura M, Toyota M, Tasaka M, Morita MT. An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing. THE PLANT CELL 2011; 23:1830-48. [PMID: 21602290 PMCID: PMC3123953 DOI: 10.1105/tpc.110.079442] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Higher plants use the sedimentation of amyloplasts in statocytes as statolith to sense the direction of gravity during gravitropism. In Arabidopsis thaliana inflorescence stem statocyte, amyloplasts are in complex movement; some show jumping-like saltatory movement and some tend to sediment toward the gravity direction. Here, we report that a RING-type E3 ligase SHOOT GRAVITROPISM9 (SGR9) localized to amyloplasts modulates amyloplast dynamics. In the sgr9 mutant, which exhibits reduced gravitropism, amyloplasts did not sediment but exhibited increased saltatory movement. Amyloplasts sometimes formed a cluster that is abnormally entangled with actin filaments (AFs) in sgr9. By contrast, in the fiz1 mutant, an ACT8 semidominant mutant that induces fragmentation of AFs, amyloplasts, lost saltatory movement and sedimented with nearly statically. Both treatment with Latrunculin B, an inhibitor of AF polymerization, and the fiz1 mutation rescued the gravitropic defect of sgr9. In addition, fiz1 decreased saltatory movement and induced amyloplast sedimentation even in sgr9. Our results suggest that amyloplasts are in equilibrium between sedimentation and saltatory movement in wild-type endodermal cells. Furthermore, this equilibrium is the result of the interaction between amyloplasts and AFs modulated by the SGR9. SGR9 may promote detachment of amyloplasts from AFs, allowing the amyloplasts to sediment in the AFs-dependent equilibrium of amyloplast dynamics.
Collapse
|
28
|
Piscatelli H, Kotkar SA, McBee ME, Muthupalani S, Schauer DB, Mandrell RE, Leong JM, Zhou D. The EHEC type III effector NleL is an E3 ubiquitin ligase that modulates pedestal formation. PLoS One 2011; 6:e19331. [PMID: 21541301 PMCID: PMC3082576 DOI: 10.1371/journal.pone.0019331] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/27/2011] [Indexed: 12/23/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and may result in potentially fatal hemolytic uremia syndrome in humans. EHEC colonize the intestinal mucosa and promote the formation of actin-rich pedestals via translocated type III effectors. Two EHEC type III secreted effectors, Tir and EspFu/TccP, are key players for pedestal formation. We discovered that an EHEC effector protein called Non-LEE-encoded Ligase (NleL) is an E3 ubiquitin ligase. In vitro, we showed that the NleL C753 residue is critical for its E3 ligase activity. Functionally, we demonstrated that NleL E3 ubiquitin ligase activity is involved in modulating Tir-mediated pedestal formation. Surprisingly, EHEC mutant strain deficient in the E3 ligase activity induced more pedestals than the wild-type strain. The canonical EPEC strain E2348/69 normally lacks the nleL gene, and the ectopic expression of the wild-type EHEC nleL, but not the catalytically-deficient nleL(C753A) mutant, in this strain resulted in fewer actin-rich pedestals. Furthermore, we showed that the C. rodentium NleL homolog is a E3 ubiquitin ligase and is required for efficient infection of murine colonic epithelial cells in vivo. In summary, our study demonstrated that EHEC utilizes NleL E3 ubiquitin ligase activity to modulate Tir-mediated pedestal formation.
Collapse
Affiliation(s)
- Heather Piscatelli
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Shalaka A. Kotkar
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Megan E. McBee
- Department of Biological Engineering and Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sureshkumar Muthupalani
- Department of Biological Engineering and Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - David B. Schauer
- Department of Biological Engineering and Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Robert E. Mandrell
- Agricultural Research Service, United States Department of Agriculture, Albany, California, United States of America
| | - John M. Leong
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Daoguo Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
29
|
Shimizu Y, Okuda-Shimizu Y, Hendershot LM. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol Cell 2011; 40:917-26. [PMID: 21172657 DOI: 10.1016/j.molcel.2010.11.033] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 05/24/2010] [Accepted: 10/12/2010] [Indexed: 11/29/2022]
Abstract
Any protein synthesized in the secretory pathway has the potential to misfold and would need to be recognized and ubiquitylated for degradation. This is astounding, since only a few ERAD-specific E3 ligases have been identified. To begin to understand substrate recognition, we wished to map the ubiquitylation sites on the NS-1 nonsecreted immunoglobulin light chain, which is an ERAD substrate. Ubiquitin is usually attached to lysine residues and less frequently to the N terminus of proteins. In addition, several viral E3s have been identified that attach ubiquitin to cysteine or serine/threonine residues. Mutation of lysines, serines, and threonines in the NS-1 variable region was necessary to significantly reduce ubiquitylation and stabilize the protein. The Hrd1 E3 ligase was required to modify all three amino acids. Our studies argue that ubiquitylation of ER proteins relies on very different mechanisms of recognition and modification than those used to regulate biological processes.
Collapse
Affiliation(s)
- Yuichiro Shimizu
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
30
|
Zhong B, Zhang Y, Tan B, Liu TT, Wang YY, Shu HB. The E3 Ubiquitin Ligase RNF5 Targets Virus-Induced Signaling Adaptor for Ubiquitination and Degradation. THE JOURNAL OF IMMUNOLOGY 2010; 184:6249-55. [DOI: 10.4049/jimmunol.0903748] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Sakata E, Satoh T, Yamamoto S, Yamaguchi Y, Yagi-Utsumi M, Kurimoto E, Tanaka K, Wakatsuki S, Kato K. Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates. Structure 2010; 18:138-47. [PMID: 20152160 DOI: 10.1016/j.str.2009.11.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 06/26/2009] [Accepted: 11/09/2009] [Indexed: 12/24/2022]
Abstract
E2 ubiquitin-conjugating enzymes catalyze the attachment of ubiquitin to lysine residues of target proteins. The UbcH5b E2 enzyme has been shown to play a key role in the initiation of the ubiquitination of substrate proteins upon action of several E3 ligases. Here we have determined the 2.2 A crystal structure of an intermediate of UbcH5b~ubiquitin (Ub) conjugate, which is assembled into an infinite spiral through the backside interaction. This active complex may provide multiple E2 active sites, enabling efficient ubiquitination of substrates. Indeed, biochemical assays support a model in which the self-assembled UbcH5b~Ub can serve as a bridge for the gap between the lysine residue of the substrate and the catalytic cysteine of E2.
Collapse
Affiliation(s)
- Eri Sakata
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ho MH, Saha S, Jenkins JN, Ma DP. Characterization and Promoter Analysis of a Cotton RING-Type Ubiquitin Ligase (E3) Gene. Mol Biotechnol 2010; 46:140-8. [DOI: 10.1007/s12033-010-9280-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Darom A, Bening-Abu-Shach U, Broday L. RNF-121 is an endoplasmic reticulum-membrane E3 ubiquitin ligase involved in the regulation of beta-integrin. Mol Biol Cell 2010; 21:1788-98. [PMID: 20357004 PMCID: PMC2877638 DOI: 10.1091/mbc.e09-09-0774] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
RNF-121 is an E3 ligase RING finger protein that is localized to the ER in Caenorhabditis elegans and functions in the UPR and ERAD pathways. The β subunit of the heterodimeric integrin receptor was identified as a substrate for RNF-121, suggesting a link between ERAD and cell adhesion through the regulation of β-integrin. We report on the characterization of RNF-121, an evolutionarily conserved E3 ligase RING finger protein that is expressed in the endoplasmic reticulum (ER) of various cells and tissues in Caenorhabditis elegans. Inactivation of RNF-121 induced an elevation in BiP expression and increased the sensitivity of worms to ER stress. Genetic analysis placed RNF-121 downstream of the unfolded protein response (UPR) regulator protein kinase-like endoplasmic reticulum kinase (PERK). We identify PAT-3::GFP, the β subunit of the heterodimeric integrin receptors, as an RNF-121 substrate; whereas induction of RNF-121 expression reduced the level of PAT-3::GFP in the gonad distal tip cells, inhibition of RNF-121 led to the accumulation of stably bound PAT-3::GFP inclusions. Correspondingly, overexpression of RNF-121 during early stages of gonad development led to aberrations in germline development and gonad migration that overlap with those observed after PAT-3 inactivation. The formation of these gonad abnormalities required functional ER-associated degradation (ERAD) machinery. Our findings identify RNF-121 as an ER-anchored ubiquitin ligase that plays a specific role in the ERAD pathway by linking it to the regulation of the cell adhesion integrin receptors.
Collapse
Affiliation(s)
- Amir Darom
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
34
|
Son O, Cho SK, Kim SJ, Kim WT. In vitro and in vivo interaction of AtRma2 E3 ubiquitin ligase and auxin binding protein 1. Biochem Biophys Res Commun 2010; 393:492-7. [PMID: 20152813 DOI: 10.1016/j.bbrc.2010.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/07/2010] [Indexed: 12/30/2022]
Abstract
E3 ubiquitin (Ub) ligases play diverse roles in cellular regulation in eukaryotes. Three homologous AtRmas (AtRma1, AtRma2, and AtRma3) were recently identified as ER-localized Arabidopsis homologs of human RING membrane-anchor E3 Ub ligase. Here, auxin binding protein 1 (ABP1), one of the auxin receptors in Arabidopsis, was identified as a potential substrate of AtRma2 through a yeast two-hybrid assay. An in vitro pull-down assay confirmed the interaction of full-length AtRma2 with ABP1. AtRma2 was transiently expressed in tobacco (Nicotiana benthamiana) plants through an Agrobacterium-mediated infiltration method and bound ABP1 in vivo. In vitro ubiquitination assays revealed that bacterially-expressed AtRma2 ubiquitinated ABP1. ABP1 was poly-ubiquitinated in tobacco cells and its stability was significantly increased in the presence of MG132, a 26S proteasome inhibitor. This suggests that ABP1 is controlled by the Ub/26S proteasome system. Therefore, AtRma2 is likely involved in the cellular regulation of ABP1 expression levels.
Collapse
Affiliation(s)
- Ora Son
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | | | |
Collapse
|
35
|
Du QL, Cui WZ, Zhang CH, Yu DY. GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean (Glycine max). Mol Biol Rep 2010; 37:685-93. [PMID: 19373563 DOI: 10.1007/s11033-009-9535-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/02/2009] [Indexed: 01/22/2023]
Abstract
RING-finger proteins with E3 ubiquitin ligase activity play important roles in the regulation of plant growth and development. In this study, a cDNA clone encoding a novel RING-finger protein, designated as GmRFP1, was isolated and characterized from soybean. GmRFP1 was an intronless gene encoding a predicted protein product of 392 amino acid residues with a molecular mass of ~43 kDa. The protein contained a RING-H2 motif and an N-terminal transmembrane domain. The transcript was observed in all detected organs and was up-regulated by abscisic acid (ABA) and salt stress, but down-regulated by cold and drought treatments. We further expressed and purified both wild type and mutant version of GmRFP1 in E. coli. In vitro assays showed that the purified GmRFP1 induced the formation of polyubiquitin chains while mutation within the RING-finger region abolished the ubiquitination activity. These findings suggest that GmRFP1 is a previously unknown E3 ubiquitin ligase in soybean and that the RING domain is required for its activity. It may play unappreciated roles in ABA signaling and stress responses via mediating the ubiquitination and degradation of target proteins through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Qiu-Li Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
36
|
Hashimoto M, Murata E, Aoki T. Secretory protein with RING finger domain (SPRING) specific to Trypanosoma cruzi is directed, as a ubiquitin ligase related protein, to the nucleus of host cells. Cell Microbiol 2009; 12:19-30. [PMID: 19702650 DOI: 10.1111/j.1462-5822.2009.01375.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
While some intracellular bacterial and viral proteins secreted into host cell possess ubiquitin ligase (E3) activity for their profit, it has not been reported whether intracellular parasites secrete such molecules. We identified a gene that encodes a protein containing a secretory signal peptide and a RING finger domain in the intracellular protozoan parasite, Trypanosoma cruzi. This gene was specific to T. cruzi and was designated spring (secretory protein with RING finger domain). An in vitro ubiquitination assay showed that SPRING possessed E3 activity in a RING finger domain-dependent manner. SPRING could utilize human ubiquitin-activating enzymes (E2), UbcH5 and UbcH13. Although SPRING was found to be a secretory protein, the signal peptide-cleaved mature form of SPRING was localized in the nucleus of host cells, indicating that SPRING may function in the host cell nuclei. Yeast two-hybrid screening identified 52 putative SPRING interactors in HeLa cells, suggesting that SPRING affects the stability or function of a number of host proteins. Furthermore, a co-immunoprecipitation assay showed that breast cancer-associated protein 3 interacted with SPRING, as well as being ubiquitinated by SPRING in vitro. These findings are the first to show that this protozoan parasite secretes an ubiquitin ligase-related protein into host cells.
Collapse
Affiliation(s)
- Muneaki Hashimoto
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|
37
|
Ma K, Xiao J, Li X, Zhang Q, Lian X. Sequence and expression analysis of the C3HC4-type RING finger gene family in rice. Gene 2009; 444:33-45. [PMID: 19523506 DOI: 10.1016/j.gene.2009.05.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 05/29/2009] [Accepted: 05/30/2009] [Indexed: 01/13/2023]
Abstract
C3HC4-type RING finger genes comprise a large family in the plant kingdom and play important roles in various physiologic processes of plant life. In this study, we identified 29 C3HC4-type RING finger family genes in rice (Oryza sativa) by database search. Motif analysis revealed the presence of three conserved motifs with unknown functions within the predicted proteins. Promoter analysis found 196 cis-elements in the 2-kb upstream regions of these genes, including a stress-responsive element, a hormone-responsive element, and a light-responsive element. In addition, a comprehensive expression analysis of these genes has been performed using microarray data obtained from 27 tissues or organs of three rice genotypes, Minghui 63, Zhenshan 97, and Shanyou 63. Real-time PCR analysis confirmed that five C3HC4-type RING finger genes are preferentially expressed in reproductive tissues or organs such as stamen, panicle, and endosperm. Expression analysis of C3HC4-type RING finger genes under abiotic stresses suggests that twelve genes are differentially regulated by hormones or stress in rice seedlings. These results would be useful for elucidating their roles in the growth, development, and stress response of the rice plant.
Collapse
Affiliation(s)
- Ke Ma
- National Center of Plant Gene Research (Wuhan), National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
38
|
Son O, Cho SK, Kim EY, Kim WT. Characterization of three Arabidopsis homologs of human RING membrane anchor E3 ubiquitin ligase. PLANT CELL REPORTS 2009; 28:561-9. [PMID: 19224217 DOI: 10.1007/s00299-009-0680-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 05/07/2023]
Abstract
Ubiquitination affects diverse physiological processes in eukaryotic cells. AtRMA1 was previously identified as an Arabidopsis homolog of human RING membrane-anchor E3 ubiquitin (Ub) ligase. Here, we identified two additional AtRMA homologs, AtRMA2 and AtRMA3. The predicted AtRMA proteins contain a RING motif and a trans-membrane domain in their N-terminal and extreme C-terminal regions, respectively. Bacterially expressed AtRMAs exhibited E3 ligase activity in vitro, which was abrogated by mutation of the conserved cysteine residue in their RING domains. In vivo targeting experiments using an Arabidopsis protoplast-transfection system showed that all three AtRMAs are localized to the ER. Although RT-PCR analysis indicated that AtRMA mRNAs were expressed constitutively in all tissues examined, their promoter activities were differentially detected in a tissue-specific fashion in AtRMA-promoter::GUS transgenic Arabidopsis plants. The AtRMA1 and AtRMA3 genes are predominantly expressed in major tissues, such as cotyledons, leaves, shoot-root junction, roots, and anthers, while AtRMA2 expression is restricted to the root tips and leaf hydathodes. We suggest that a ubiquitnation pathway involving these AtRMA E3 Ub ligases may play a role in the growth and development of Arabidopsis.
Collapse
Affiliation(s)
- Ora Son
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | |
Collapse
|
39
|
Zhong B, Zhang L, Lei C, Li Y, Mao AP, Yang Y, Wang YY, Zhang XL, Shu HB. The Ubiquitin Ligase RNF5 Regulates Antiviral Responses by Mediating Degradation of the Adaptor Protein MITA. Immunity 2009; 30:397-407. [DOI: 10.1016/j.immuni.2009.01.008] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/28/2008] [Accepted: 01/20/2009] [Indexed: 02/06/2023]
|
40
|
Huang YC, Chang YL, Hsu JJ, Chuang HW. Transcriptome analysis of auxin-regulated genes of Arabidopsis thaliana. Gene 2008; 420:118-24. [DOI: 10.1016/j.gene.2008.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 01/11/2023]
|
41
|
Fukuda T, Kondo Y, Nakagama H. The anti-proliferative effects of the CHFR depend on the forkhead associated domain, but not E3 ligase activity mediated by ring finger domain. PLoS One 2008; 3:e1776. [PMID: 18335050 PMCID: PMC2258000 DOI: 10.1371/journal.pone.0001776] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 02/12/2008] [Indexed: 12/11/2022] Open
Abstract
The CHFR protein comprises fork head associated- (FHA) and RING-finger (RF) domain and is frequently downregulated in human colon and gastric cancers up to 50%. The loss of CHFR mRNA expression is a consequence of promoter methylation, suggesting a tumor suppressor role for this gene in gastrointestinal carcinogenesis. In terms of the biological functions of CHFR, it has been shown to activate cell cycle checkpoint when cells are treated with microtubule depolymerizing agents. Furthermore, CHFR was reported to have E3 ligase activity and promote ubiquitination and degradation of oncogenic proteins such as Aurora A and polo-like kinase 1. However, molecular pathways involved in the tumor suppressive function of CHFR are not yet clear since the two established roles of this protein are likely to inhibit cell growth. In this study, we have identified that the FHA domain of CHFR protein is critical for growth suppressive properties, whereas the RF and cysteine rich domains (Cys) are not required for this function. In contrast, the RF and Cys domains are essential for E3 ligase activity of CHFR. By the use of a cell cycle checkpoint assay, we also confirmed that the FHA domain of CHFR plays an important role in initiating a cell cycle arrest at G2/M, indicating a functional link exists between the anti-proliferative effects and checkpoint function of this tumor suppressor protein via this domain. Collectively, our data show that the checkpoint function of the FHA domain of CHFR is a core component of anti-proliferative properties against the gastrointestinal carcinogenesis.
Collapse
Affiliation(s)
- Tomokazu Fukuda
- Biochemistry Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuyuki Kondo
- Biochemistry Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Nakagama
- Biochemistry Division, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| |
Collapse
|
42
|
Delaunay A, Bromberg KD, Hayashi Y, Mirabella M, Burch D, Kirkwood B, Serra C, Malicdan MC, Mizisin AP, Morosetti R, Broccolini A, Guo LT, Jones SN, Lira SA, Puri PL, Shelton GD, Ronai Z. The ER-bound RING finger protein 5 (RNF5/RMA1) causes degenerative myopathy in transgenic mice and is deregulated in inclusion body myositis. PLoS One 2008; 3:e1609. [PMID: 18270596 PMCID: PMC2229664 DOI: 10.1371/journal.pone.0001609] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 01/03/2008] [Indexed: 01/03/2023] Open
Abstract
Growing evidence supports the importance of ubiquitin ligases in the pathogenesis of muscular disorders, although underlying mechanisms remain largely elusive. Here we show that the expression of RNF5 (aka RMA1), an ER-anchored RING finger E3 ligase implicated in muscle organization and in recognition and processing of malfolded proteins, is elevated and mislocalized to cytoplasmic aggregates in biopsies from patients suffering from sporadic-Inclusion Body Myositis (sIBM). Consistent with these findings, an animal model for hereditary IBM (hIBM), but not their control littermates, revealed deregulated expression of RNF5. Further studies for the role of RNF5 in the pathogenesis of s-IBM and more generally in muscle physiology were performed using RNF5 transgenic and KO animals. Transgenic mice carrying inducible expression of RNF5, under control of beta-actin or muscle specific promoter, exhibit an early onset of muscle wasting, muscle degeneration and extensive fiber regeneration. Prolonged expression of RNF5 in the muscle also results in the formation of fibers containing congophilic material, blue-rimmed vacuoles and inclusion bodies. These phenotypes were associated with altered expression and activity of ER chaperones, characteristic of myodegenerative diseases such as s-IBM. Conversely, muscle regeneration and induction of ER stress markers were delayed in RNF5 KO mice subjected to cardiotoxin treatment. While supporting a role for RNF5 Tg mice as model for s-IBM, our study also establishes the importance of RNF5 in muscle physiology and its deregulation in ER stress associated muscular disorders.
Collapse
Affiliation(s)
- Agnès Delaunay
- Signal Transduction, The Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Kenneth D. Bromberg
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | | | | | - Denise Burch
- Signal Transduction, The Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Brian Kirkwood
- Signal Transduction, The Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Carlo Serra
- Signal Transduction, The Burnham Institute for Medical Research, La Jolla, California, United States of America
| | | | - Andrew P. Mizisin
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | | | | | - Ling T. Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Stephen N. Jones
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sergio A. Lira
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Pier Lorenzo Puri
- Signal Transduction, The Burnham Institute for Medical Research, La Jolla, California, United States of America
- Dulbecco Telethon Institute at Fondazione European Brain Research Institute (EBRI)/S.Lucia 00134, Rome, Italy
| | - G. Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ze'ev Ronai
- Signal Transduction, The Burnham Institute for Medical Research, La Jolla, California, United States of America
- *E-mail:
| |
Collapse
|
43
|
Abstract
CF is an inherited autosomal recessive disease whose lethality arises from malfunction of CFTR, a single chloride (Cl-) ion channel protein. CF patients harbor mutations in the CFTR gene that lead to misfolding of the resulting CFTR protein, rendering it inactive and mislocalized. Hundreds of CF-related mutations have been identified, many of which abrogate CFTR folding in the endoplasmic reticulum (ER). More than 70% of patients harbor the ΔF508 CFTR mutation that causes misfolding of the CFTR proteins. Consequently, mutant CFTR is unable to reach the apical plasma membrane of epithelial cells that line the lungs and gut, and is instead targeted for degradation by the UPS. Proteins located in both the cytoplasm and ER membrane are believed to identify misfolded CFTR for UPS-mediated degradation. The aberrantly folded CFTR protein then undergoes polyubiquitylation, carried out by an E1-E2-E3 ubiquitin ligase system, leading to degradation by the 26S proteasome. This ubiquitin-dependent loss of misfolded CFTR protein can be inhibited by the application of ‘corrector’ drugs that aid CFTR folding, shielding it from the UPS machinery. Corrector molecules elevate cellular CFTR protein levels by protecting the protein from degradation and aiding folding, promoting its maturation and localization to the apical plasma membrane. Combinatory application of corrector drugs with activator molecules that enhance CFTR Cl- ion channel activity offers significant potential for treatment of CF patients. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Emma L Turnbull
- Department of Cell and Developmental Biology, 526 Taylor Hall, Mason Farm Road, UNC-Chapel Hill School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
44
|
Xie J, Zhu J, Yang H, Weng S, Chen C, Chen H, Xie Q, Li M, He J. RING finger proteins of infectious spleen and kidney necrosis virus (ISKNV) function as ubiquitin ligase enzymes. Virus Res 2007; 123:170-7. [PMID: 17049660 DOI: 10.1016/j.virusres.2006.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Revised: 09/06/2006] [Accepted: 09/06/2006] [Indexed: 11/26/2022]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is the etiological agent that causes a pandemic and severe disease in fish characteristic of enlarged and damaged spleen and kidney. To identify viral proteins involved in infection and pathogenesis, we characterized five open reading frames (ORFs) of the ISKNV genome, ORF12, ORF65, ORF66, ORF99 and ORF111, which encode RING finger proteins (RFPs). We assessed the ubiquitin ligase (E3) activity of these recombinant RFPs fused to maltose-binding protein (MBP) using an in vitro ubiquitination assay and demonstrated that ORF12, ORF65, ORF66 and ORF111 possess the E3 activity in the presence of ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2), ubiquitin and zinc ion. E3 activity of ISKNV RFPs strictly depends on the UbcH5 E2 subfamily (ORF12 and ORF65 depend on UbcH5a/c, ORF66 and ORF111 depend on UbcH5a/b/c). Furthermore, point mutation in the RING domain completely abrogated ORF66 E3 activity, indicating the RING motif was essential for RFP of ISKNV. In addition, zinc ion was required as an enhancer for ISKNV RFP to exert its E3 function. Investigation of RFPs of ISKNV helps to understand their functions in the infection process and in the virus-host interaction.
Collapse
Affiliation(s)
- Junfeng Xie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shimomura K, Nomura M, Tajima S, Kouchi H. LjnsRING, a novel RING finger protein, is required for symbiotic interactions between Mesorhizobium loti and Lotus japonicus. PLANT & CELL PHYSIOLOGY 2006; 47:1572-81. [PMID: 17056617 DOI: 10.1093/pcp/pcl022] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nodule-specific (nodulin) genes are thought to play crucial roles during establishment of the nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. On the basis of a gene expression database for early stages of the nodulation process of Lotus japonicus, previously constructed by a cDNA macroarray analysis, we identified a novel nodulin gene, LjnsRING, which encodes a protein with a typical RING-H2 finger domain that is well conserved in a number of plant E3 ubiquitin ligases. LjnsRING transcripts were almost exclusively expressed in nodules, and very low expression was detected in roots and shoots. RNA interference (RNAi) knockdown of LjnsRING by hairy root transformation caused impaired root growth together with abortion of nodule formation. Examination with lacZ-labeled Mesorhizobium loti indicated that infection thread formation in the RNAi transgenic hairy roots was significantly inhibited. Analysis using a chimeric gene of LjnsRING promoter and beta-glucuronidase (GUS) coding region demonstrated that LjnsRING transcription in nodules was restricted to the infected cells. These results suggest the requirement for LjnsRING in rhizobial infection and the subsequent nodule formation process.
Collapse
|
46
|
Zhang Y, Higashide WM, McCormick BA, Chen J, Zhou D. The inflammation‐associatedSalmonellaSopA is a HECT‐like E3 ubiquitin ligase. Mol Microbiol 2006; 62:786-93. [PMID: 17076670 DOI: 10.1111/j.1365-2958.2006.05407.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Salmonella translocate a group of type III effectors into the host cells to induce entry, promote survival and cause intestinal inflammation. Although the biochemical and cellular mechanisms of how bacterial effectors function inside host cells remain largely unknown, studies have indicated that a likely strategy is to exploit host cellular pathways through functional mimicry. We report here that SopA, a Salmonella type III effector, mimics the mammalian HECT E3 ubiquitin ligase. SopA preferentially uses the host UbcH5a, UbcH5c and UbcH7 as E2s, which are involved in inflammation. Both the wild-type SopA and the mutant SopAC753S were expressed and translocated at similar levels during the infection of HeLa cells. A Salmonella strain expressing a catalytically incompetent SopAC753S mutant had reduced Salmonella-induced polymorphonuclear leukocytes transepithelial migration. We speculate that SopA ubiquitinate bacterial/host proteins involved in Salmonella-induced intestinal inflammation.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
47
|
Younger JM, Chen L, Ren HY, Rosser MFN, Turnbull EL, Fan CY, Patterson C, Cyr DM. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 2006; 126:571-82. [PMID: 16901789 DOI: 10.1016/j.cell.2006.06.041] [Citation(s) in RCA: 355] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 04/20/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
Cystic fibrosis arises from the misfolding and premature degradation of CFTR Delta F508, a Cl- ion channel with a single amino acid deletion. Yet, the quality-control machinery that selects CFTR Delta F508 for degradation and the mechanism for its misfolding are not well defined. We identified an ER membrane-associated ubiquitin ligase complex containing the E3 RMA1, the E2 Ubc6e, and Derlin-1 that cooperates with the cytosolic Hsc70/CHIP E3 complex to triage CFTR and CFTR Delta F508. Derlin-1 serves to retain CFTR in the ER membrane and interacts with RMA1 and Ubc6e to promote CFTR's proteasomal degradation. RMA1 is capable of recognizing folding defects in CFTR Delta F508 coincident with translation, whereas the CHIP E3 appears to act posttranslationally. A folding defect in CFTR Delta F508 detected by RMA1 involves the inability of CFTR's second membrane-spanning domain to productively interact with amino-terminal domains. Thus, the RMA1 and CHIP E3 ubiquitin ligases act sequentially in ER membrane and cytosol to monitor the folding status of CFTR and CFTR Delta F508.
Collapse
Affiliation(s)
- J Michael Younger
- Department of Cell and Developmental Biology, UNC-Chapel Hill School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ko JH, Yang SH, Han KH. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:343-55. [PMID: 16792696 DOI: 10.1111/j.1365-313x.2006.02782.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RING (really interesting new gene) zinc-finger proteins have important regulatory roles in the development of a variety of organisms. The XERICO gene encodes a small protein (162 amino acids) with an N-terminal trans-membrane domain and a RING-H2 zinc-finger motif located at the C-terminus. In silico gene-expression analysis indicated that XERICO is induced by salt and osmotic stress. Compared with wild-type (WT) Arabidopsis plants, transgenic plants overexpressing XERICO (35S::XERICO) exhibited hypersensitivity to salt and osmotic stress and exogenous abscisic acid (ABA) during germination and early seedling growth. When subjected to a drought treatment, transcriptional upregulation of a key ABA-biosynthesis gene, AtNCED3, was much faster and stronger in 35S::XERICO plants compared with WT plants. Further, upregulation of XERICO substantially increased cellular ABA levels. The adult 35S::XERICO plants, in contrast to early seedling growth, showed a marked increase in their tolerance to drought stress. Yeast two-hybrid screening indicated that XERICO interacts with an E2 ubiquitin-conjugating enzyme (AtUBC8) and ASK1-interacting F-box protein (AtTLP9), which is involved in the ABA-signaling pathway. Affymetrix GeneChip array analysis showed that the expressions of many of the genes involved in the biosynthesis of plant hormones (e.g. ethylene, brassinosteroid, gibberellic acid) were significantly changed in the 35S::XERICO plants. These results suggest that the homeostasis of various plant hormones might be altered in 35S::XERICO plants, possibly by overaccumulation of ABA.
Collapse
Affiliation(s)
- Jae-Heung Ko
- Department of Forestry, 126 Natural Resources, Michigan State University, East Lansing, MI 48824-1222, USA
| | | | | |
Collapse
|
49
|
Abramovitch RB, Janjusevic R, Stebbins CE, Martin GB. Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proc Natl Acad Sci U S A 2006; 103:2851-6. [PMID: 16477026 PMCID: PMC1413779 DOI: 10.1073/pnas.0507892103] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Indexed: 01/28/2023] Open
Abstract
Microbial pathogens of both plants and animals employ virulence factors that suppress the host immune response. The tomato pathogen Pseudomonas syringae injects the AvrPtoB type III effector protein into the plant cell to suppress programmed cell death (PCD) associated with plant immunity. AvrPtoB also inhibits PCD in yeast, indicating that AvrPtoB manipulates a conserved component of eukaryotic PCD. To identify host targets of AvrPtoB, we performed a yeast two-hybrid screen and identified tomato ubiquitin (Ub) as a strong AvrPtoB interactor. AvrPtoB is ubiquitinated in vitro and exhibits E3 Ub ligase activity in the presence of recombinant E1 activating enzyme and specific E2 Ub-conjugating enzymes. The C terminus of AvrPtoB is sufficient for both anti-PCD and E3 Ub ligase activities, suggesting the two functions are associated. Indeed, mutation of AvrPtoB lysine residues in the C terminus, between K512 and K529, disrupts AvrPtoB-Ub interactions, decreases AvrPtoB-mediated anti-PCD activity, and abrogates P. syringae pathogenesis of susceptible tomato plants. Remarkably, quantitative decreases in AvrPtoB anti-PCD activity are correlated with decreases in AvrPtoB ubiquitination and E3 Ub ligase activity. Overall, these data reveal a unique bacterial pathogenesis strategy, where AvrPtoB manipulates the host Ub system and requires intrinsic E3 Ub ligase activity to suppress plant immunity.
Collapse
Affiliation(s)
- Robert B. Abramovitch
- *Boyce Thompson Institute for Plant Research
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853; and
| | - Radmila Janjusevic
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY 10021
| | - C. Erec Stebbins
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY 10021
| | - Gregory B. Martin
- *Boyce Thompson Institute for Plant Research
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853; and
| |
Collapse
|
50
|
Matsuda N, Kitami T, Suzuki T, Mizuno Y, Hattori N, Tanaka K. Diverse Effects of Pathogenic Mutations of Parkin That Catalyze Multiple Monoubiquitylation in Vitro. J Biol Chem 2006; 281:3204-9. [PMID: 16339143 DOI: 10.1074/jbc.m510393200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutational dysfunction of PARKIN gene, which encodes a double RING finger protein and has ubiquitin ligase E3 activity, is the major cause of autosomal recessive juvenile Parkinsonism. Although many studies explored the functions of Parkin, its biochemical character is poorly understood. To address this issue, we established an E3 assay system using maltose-binding protein-fused Parkin purified from Escherichia coli. Using this recombinant Parkin, we found that not the front but the rear RING finger motif is responsible for the E3 activity of Parkin, and it catalyzes multiple monoubiquitylation. Intriguingly, for autosomal recessive juvenile Parkinsonism-causing mutations of Parkin, whereas there was loss of E3 activity in the rear RING domain, other pathogenic mutants still exhibited E3 activity equivalent to that of the wild-type Parkin. The evidence presented allows us to reconsider the function of Parkin-catalyzed ubiquitylation and to conclude that autosomal recessive juvenile Parkinsonism is not solely attributable to catalytic impairment of the E3 activity of Parkin.
Collapse
Affiliation(s)
- Noriyuki Matsuda
- Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613
| | | | | | | | | | | |
Collapse
|