1
|
Biondini M, Kiepas A, El-Houjeiri L, Annis MG, Hsu BE, Fortier AM, Morin G, Martina JA, Sirois I, Aguilar-Mahecha A, Gruosso T, McGuirk S, Rose AAN, Tokat UM, Johnson RM, Sahin O, Bareke E, St-Pierre J, Park M, Basik M, Majewski J, Puertollano R, Pause A, Huang S, Keler T, Siegel PM. HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene 2022; 41:1701-1717. [PMID: 35110681 DOI: 10.1038/s41388-022-02206-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022]
Abstract
Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.
Collapse
Affiliation(s)
- Marco Biondini
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alex Kiepas
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Leeanna El-Houjeiri
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Matthew G Annis
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Brian E Hsu
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anne-Marie Fortier
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Geneviève Morin
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Isabelle Sirois
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Adriana Aguilar-Mahecha
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Tina Gruosso
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Shawn McGuirk
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - April A N Rose
- Department of Oncology and Surgery, McGill University, Montreal, QC, Canada
| | - Unal M Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Eric Bareke
- Genome Québec Innovation Center, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Morag Park
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Mark Basik
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada.,Department of Oncology and Surgery, McGill University, Montreal, QC, Canada
| | - Jacek Majewski
- Genome Québec Innovation Center, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Arnim Pause
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Sidong Huang
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada. .,Department of Medicine, McGill University, Montreal, QC, Canada. .,Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Brendza R, Lin H, Stark K, Foreman O, Tao J, Pierce A, Ngu H, Shen K, Easton AE, Bhangale T, Chang D, Bingol B, Friedman BA. Genetic ablation of Gpnmb does not alter synuclein-related pathology. Neurobiol Dis 2021; 159:105494. [PMID: 34464706 DOI: 10.1016/j.nbd.2021.105494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
The gene GPNMB is known to play roles in phagocytosis and tissue repair, and is upregulated in microglia in many mouse models of neurodegenerative disease as well as in human patients. Nearby genomic variants are associated with both elevated Parkinson's disease (PD) risk and higher expression of this gene, suggesting that inhibiting GPNMB activity might be protective in Parkinson's disease. We tested this hypothesis in three different mouse models of neurological diseases: a remyelination model and two models of alpha-synuclein pathology. We found that Gpnmb deletion had no effect on histological, cellular, behavioral, neurochemical or gene expression phenotypes in any of these models. These data suggest that Gpnmb does not play a major role in the development of pathology or functional defects in these models and that further work is necessary to study its role in the development or progression of Parkinson's disease.
Collapse
Affiliation(s)
- Robert Brendza
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Han Lin
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Kimberly Stark
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Janet Tao
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Andrew Pierce
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Kimberle Shen
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Amy E Easton
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Tushar Bhangale
- Department of Human Genetics, Genentech, Inc., South San Francisco, CA, USA
| | - Diana Chang
- Department of Human Genetics, Genentech, Inc., South San Francisco, CA, USA
| | - Baris Bingol
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA.
| | - Brad A Friedman
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
3
|
Functional Domains and Evolutionary History of the PMEL and GPNMB Family Proteins. Molecules 2021; 26:molecules26123529. [PMID: 34207849 PMCID: PMC8273697 DOI: 10.3390/molecules26123529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
The ancient paralogs premelanosome protein (PMEL) and glycoprotein nonmetastatic melanoma protein B (GPNMB) have independently emerged as intriguing disease loci in recent years. Both proteins possess common functional domains and variants that cause a shared spectrum of overlapping phenotypes and disease associations: melanin-based pigmentation, cancer, neurodegenerative disease and glaucoma. Surprisingly, these proteins have yet to be shown to physically or genetically interact within the same cellular pathway. This juxtaposition inspired us to compare and contrast this family across a breadth of species to better understand the divergent evolutionary trajectories of two related, but distinct, genes. In this study, we investigated the evolutionary history of PMEL and GPNMB in clade-representative species and identified TMEM130 as the most ancient paralog of the family. By curating the functional domains in each paralog, we identified many commonalities dating back to the emergence of the gene family in basal metazoans. PMEL and GPNMB have gained functional domains since their divergence from TMEM130, including the core amyloid fragment (CAF) that is critical for the amyloid potential of PMEL. Additionally, the PMEL gene has acquired the enigmatic repeat domain (RPT), composed of a variable number of imperfect tandem repeats; this domain acts in an accessory role to control amyloid formation. Our analyses revealed the vast variability in sequence, length and repeat number in homologous RPT domains between craniates, even within the same taxonomic class. We hope that these analyses inspire further investigation into a gene family that is remarkable from the evolutionary, pathological and cell biology perspectives.
Collapse
|
4
|
van der Lienden MJC, Gaspar P, Boot R, Aerts JMFG, van Eijk M. Glycoprotein Non-Metastatic Protein B: An Emerging Biomarker for Lysosomal Dysfunction in Macrophages. Int J Mol Sci 2018; 20:E66. [PMID: 30586924 PMCID: PMC6337583 DOI: 10.3390/ijms20010066] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Several diseases are caused by inherited defects in lysosomes, the so-called lysosomal storage disorders (LSDs). In some of these LSDs, tissue macrophages transform into prominent storage cells, as is the case in Gaucher disease. Here, macrophages become the characteristic Gaucher cells filled with lysosomes laden with glucosylceramide, because of their impaired enzymatic degradation. Biomarkers of Gaucher cells were actively searched, particularly after the development of costly therapies based on enzyme supplementation and substrate reduction. Proteins selectively expressed by storage macrophages and secreted into the circulation were identified, among which glycoprotein non-metastatic protein B (GPNMB). This review focusses on the emerging potential of GPNMB as a biomarker of stressed macrophages in LSDs as well as in acquired pathologies accompanied by an excessive lysosomal substrate load in macrophages.
Collapse
Affiliation(s)
| | - Paulo Gaspar
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Rolf Boot
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Marco van Eijk
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
5
|
Ashktorab H, Rahi H, Nouraie M, Shokrani B, Lee E, Haydari T, Laiyemo AO, Siegel P, Brim H. GPNMB methylation: a new marker of potentially carcinogenic colon lesions. BMC Cancer 2018; 18:1068. [PMID: 30400781 PMCID: PMC6219212 DOI: 10.1186/s12885-018-4903-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
Background Epigenetic plays an important role in colorectal neoplasia process. There is a need to determine sound biomarkers of colorectal cancer (CRC) progression with clinical and therapeutic implications. Therefore, we aimed to examine the role and methylation status of Glyco Protein Non-Metastatic GPNM B (GPNMB) gene in normal, adenoma and CRC in African American (AA) patients. Methods The methylation status of 13 CpG sites (chr7: 23287345–23,287,426) in GPNMB gene’s promoter, was analyzed by pyrosequencing in human CRC cell lines (HCT116, SW480, and HT29) and microdissected African American paraffin embedded samples (20 normal, 21 non-advanced adenoma (NA), 48 advanced adenoma (AD), and 20 cancer tissues. GPNMB expression was analyzed by immunohistochemistry (IHC) on tissue microarrays (TMA). Correlations between GPNMB methylation and expression with clinicopathological features were analyzed. GPNMB functional analysis was performed in triplicates using cell proliferation, migration and invasion assays in HCT116 colon cell line after stable transfection with a GPNMB-cDNA expression vector. Results GPNMB methylation was lower in normal mucosa compared to CRC samples (1/20 [5%] vs. 18/20 [90%]; P < 0.001). AD also had a significantly higher GPNMB methylation frequency than normal colon samples (42/48 [88%] vs 1/20 [5%]; P < 0.001). GPNMB was more frequently methylated in AD than in matched normal mucosa from three patients (3/3 [100%] vs 1/3 [33.3%]; P < 0.001). The frequency of GPNMB methylation in NA differed significantly from that in the normal mucosa (16/21 [76%] vs 1/20 [5%]; P = 0.008). There was statistically significant correlation of higher methylation at advanced stages and lower methylation at stage 1 CRCs (P < 0.05). In agreement with these findings, GPNMB protein expression decreased in CRC tissues compared with AD and NA colon mucosa (p < 0.05). GPNMB overexpression in HCT116 colon cancer cell line decreased cell proliferation [(24 h, P = 0.02), (48 h, P < 0.001, 72 h, P = 0.007)], invasion (p < 0.05) and migration (p > 0.05) compared to the mock-transfected cells. Conclusion Our data indicate a high methylation profile leading to a lower GPNMB expression in adenoma and CRC samples. The functional analysis established GPNMB as a potential tumor suppressor gene. As such, GPNMB might be useful as a biomarker of adenomas with high carcinogenic potential.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA.
| | - Hamed Rahi
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Babak Shokrani
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Edward Lee
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Tahmineh Haydari
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Adeyinka O Laiyemo
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Peter Siegel
- Goodman Cancer Research Centre, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Hassan Brim
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| |
Collapse
|
6
|
Yu B, Sondag GR, Malcuit C, Kim MH, Safadi FF. Macrophage-Associated Osteoactivin/GPNMB Mediates Mesenchymal Stem Cell Survival, Proliferation, and Migration Via a CD44-Dependent Mechanism. J Cell Biochem 2017; 117:1511-21. [PMID: 26442636 DOI: 10.1002/jcb.25394] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
Abstract
Although MSCs have been widely recognized to have therapeutic potential in the repair of injured or diseased tissues, it remains unclear how functional activities of mesenchymal stem cells (MSCs) are influenced by the surrounding inflammatory milieu at the site of tissue injury. Macrophages constitute an essential component of innate immunity and have been shown to exhibit a phenotypic plasticity in response to various stimuli, which play a central role in both acute inflammation and wound repair. Osteoactivin (OA)/Glycoprotein non-metastatic melanoma protein B (GPNMB), a transmembrane glycoprotein that plays a role in cell differentiation, survival, and angiogenesis. The objective of this study was to investigate the potential role of OA/GPNMB in macrophage-induced MSC function. We found that reparative M2 macrophages express significantly greater levels of OA/GPNMB than pro-inflammatory M1 macrophages. Furthermore, using loss of function and rescue studies, we demonstrated that M2 macrophages-secreted OA/GPNMB positively regulates the viability, proliferation, and migration of MSCs. More importantly, we demonstrated that OA/GPNMB acts through ERK and AKT signaling pathways in MSCs via CD44, to induce these effects. Taken together, our results provide pivotal insight into the mechanism by which OA/GPNMB contributes to the tissue reparative phenotype of M2 macrophages and positively regulates functional activities of MSCs. J. Cell. Biochem. 117: 1511-1521, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bing Yu
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio.,School of Biomedical of Sciences, Kent State University, Kent, OH
| | | | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio.,School of Biomedical of Sciences, Kent State University, Kent, OH
| |
Collapse
|
7
|
Rose AAN, Biondini M, Curiel R, Siegel PM. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol Ther 2017; 179:127-141. [PMID: 28546082 DOI: 10.1016/j.pharmthera.2017.05.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GPNMB has emerged as an immunomodulator and an important positive mediator of tumor progression and metastasis in numerous solid cancers. Tumor intrinsic GPNMB-mediated effects on cellular signaling, coupled with the ability of GPNMB to influence the primary tumor and metastatic microenvironments in a non-cell autonomous fashion, combine to augment malignant cancer phenotypes. In addition, GPNMB is often overexpressed in a variety of cancers, making it an attractive therapeutic target. In this regard, glembatumumab vedotin, an antibody-drug conjugate (ADC) that targets GPNMB, is currently in clinical trials as a single agent in multiple cancers. In this review, we will describe the physiological functions of GPNMB in normal tissues and summarize the processes through which GPNMB augments tumor growth and metastasis. We will review the pre-clinical and clinical development of glembatumumab vedotin, evaluate on-going clinical trials, explore emerging opportunities for this agent in new disease indications and discuss exciting possibilities for this ADC in the context of combination therapies.
Collapse
Affiliation(s)
- April A N Rose
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Marco Biondini
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Abstract
INTRODUCTION Osteoactivin (OA) was first discovered in an osteopetrotic rat model using mRNA differential display a decade ago and has been studied recently. OA in bone tissue can directly or indirectly regulate the differentiation of osteoblasts by influencing cell behaviours, such as proliferation and adhesion, as well as inducing serial signal cascades, which would be of great importance in the field of tissue engineering. The results of recent studies have further demonstrated that OA plays a critical role in the differentiation and function of cells, especially in bone formation and fracture healing. Areas covered: The discovery, structure, and function of OA as well as its therapeutic potential in tissue regeneration of bone defects, kidney injury, liver damage, and muscle atrophy. Expert opinion: OA has great potential in promoting the regeneration of damaged tissues, particularly bone tissue, which is supported by a large body of data. Future studies should focus on exploring the underlying mechanism of OA as well as pursuing the ideal form of OA-related regenerative medicine.
Collapse
Affiliation(s)
- Yuyang Huang
- a Department of Orthopaedic Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Bo Bai
- a Department of Orthopaedic Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Yongchang Yao
- a Department of Orthopaedic Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| |
Collapse
|
9
|
GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin α5β1 for efficient breast cancer metastasis. Oncogene 2015; 34:5494-504. [PMID: 25772243 DOI: 10.1038/onc.2015.8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 12/23/2014] [Accepted: 01/14/2015] [Indexed: 12/17/2022]
Abstract
Glycoprotein nmb (GPNMB) promotes breast tumor growth and metastasis and its expression in tumor epithelium correlates with poor prognosis in breast cancer patients. Despite its biological and clinical significance, little is known regarding the molecular mechanisms engaged by GPNMB. Herein, we show that GPNMB engages distinct functional domains and mechanisms to promote primary tumor growth and metastasis. We demonstrate that neuropilin-1 (NRP-1) expression is increased in breast cancer cells that overexpress GPNMB. Interestingly, the GPNMB-driven increase in NRP-1 expression potentiated vascular endothelial growth factor signaling in breast cancer cells and was required for the growth, but not metastasis, of these cells in vivo. Interrogation of RNAseq data sets revealed a positive correlation between GPNMB and NRP-1 levels in human breast tumors. Furthermore, we ascribe pro-growth and pro-metastatic functions of GPNMB to its ability to bind α5β1 integrin and increase downstream signaling in breast cancer cells. We show that GPNMB enhances breast cancer cell adhesion to fibronectin, increases α5β1 expression and associates with this receptor through its RGD motif. GPNMB recruitment into integrin complexes activates Src and Fak signaling pathways in an RGD-dependent manner. Importantly, both the RGD motif and cytoplasmic tail of GPNMB are required to promote primary mammary tumor growth; however, only mutation of the RGD motif impaired the formation of lung metastases. Together, these findings identify novel and distinct molecular mediators of GPNMB-induced breast cancer growth and metastasis.
Collapse
|
10
|
Nair KS, Barbay J, Smith RS, Masli S, John SWM. Determining immune components necessary for progression of pigment dispersing disease to glaucoma in DBA/2J mice. BMC Genet 2014; 15:42. [PMID: 24678736 PMCID: PMC3974199 DOI: 10.1186/1471-2156-15-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/06/2014] [Indexed: 12/02/2022] Open
Abstract
Background The molecular mechanisms causing pigment dispersion syndrome (PDS) and the pathway(s) by which it progresses to pigmentary glaucoma are not known. Mutations in two melanosomal protein genes (Tyrp1b and GpnmbR150X) are responsible for pigment dispersing iris disease, which progresses to intraocular pressure (IOP) elevation and subsequent glaucoma in DBA/2J mice. Melanosomal defects along with ocular immune abnormalities play a role in the propagation of pigment dispersion and progression to IOP elevation. Here, we tested the role of specific immune components in the progression of the iris disease and high IOP. Results We tested the role of NK cells in disease etiology by genetically modifying the B6.D2-GpnmbR150XTyrp1b strain, which develops the same iris disease as DBA/2J mice. Our findings demonstrate that neither diminishing NK mediated cytotoxic activity (Prf1 mutation) nor NK cell depletion (Il2rg mutation) has any influence on the severity or timing of GpnmbR150XTyrp1b mediated iris disease. Since DBA/2J mice are deficient in CD94, an important immune modulator that often acts as an immune suppressor, we generated DBA/2J mice sufficient in CD94. Sufficiency of CD94 failed to alter either the iris disease or the subsequent IOP elevation. Additionally CD94 status had no detected effect on glaucomatous optic nerve damage. Conclusion Our previous data implicate immune components in the manifestation of pigment dispersion and/or IOP elevation in DBA/2J mice. The current study eliminates important immune components, specifically NK cells and CD94 deficiency, as critical in the progression of iris disease and glaucoma. This narrows the field of possible immune components responsible for disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Simon W M John
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
11
|
Haraszti T, Trantow CM, Hedberg-Buenz A, Grunze M, Anderson MG. Spectral analysis by XANES reveals that GPNMB influences the chemical composition of intact melanosomes. Pigment Cell Melanoma Res 2011; 24:187-96. [PMID: 21029394 PMCID: PMC3021633 DOI: 10.1111/j.1755-148x.2010.00788.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
GPNMB is a unique melanosomal protein. Unlike many melanosomal proteins, GPNMB has not been associated with any forms of albinism, and it is unclear whether GPNMB has any direct influence on melanosomes. Here, melanosomes from congenic strains of C57BL/6J mice mutant for Gpnmb are compared to strain-matched controls using standard transmission electron microscopy and synchrotron-based X-ray absorption near-edge structure analysis (XANES). Whereas electron microscopy did not detect any ultrastructural changes in melanosomes lacking functional GPNMB, XANES uncovered multiple spectral phenotypes. These results directly demonstrate that GPNMB influences the chemical composition of melanosomes and more broadly illustrate the potential for using genetic approaches in combination with nano-imaging technologies to study organelle biology.
Collapse
Affiliation(s)
- Tamas Haraszti
- Institute of Physical Chemistry, University of Heidelberg, Heidelberg, Germany
- Max-Planck Institute for Metals Research, Stuttgart, Germany
| | - Colleen M. Trantow
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242
| | - Michael Grunze
- Institute of Physical Chemistry, University of Heidelberg, Heidelberg, Germany
- Institute for Molecular Biophysics, University of Maine, Orono, Maine 04469
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Michael G. Anderson
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
12
|
Hoashi T, Sato S, Yamaguchi Y, Passeron T, Tamaki K, Hearing VJ. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. FASEB J 2010; 24:1616-29. [PMID: 20056711 DOI: 10.1096/fj.09-151019] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Melanosomes are organelles specialized for the production of melanin pigment and are specifically produced by melanocytic cells. More than 150 pigmentation-related genes have been identified, including glycoprotein nonmetastatic melanoma protein b (GPNMB). A recent proteomics analysis revealed that GPNMB is localized in melanosomes, and GPNMB is a membrane-bound glycoprotein that shows high homology with a well-known melanosomal structural protein, Pmel17/gp100. In this study, we show that GPNMB is expressed in melanocytes of normal human skin, as well as in human melanoma cells. GPNMB is heavily glycosylated and is enriched in mature (stage III and IV) melanosomes in contrast to MART-1 and Pmel17, which are abundant in early (stage I and II) melanosomes. MART-1 and Pmel17 play critical roles in the maturation of early melanosomes; thus, we speculate that GPNMB might be important in the functions of late melanosomes, possibly their transport and/or transfer to keratinocytes. We also demonstrate that a secreted form of GPNMB is released by ectodomain shedding from the largely Golgi-modified form of GPNMB and that the PKC and Ca(2+) intracellular signaling pathways regulate that shedding. We conclude that GPNMB is a melanosomal protein that is released by proteolytic ectodomain shedding and might be a useful and specific histological marker of melanocytic cells.
Collapse
Affiliation(s)
- Toshihiko Hoashi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256, USA
| | | | | | | | | | | |
Collapse
|
13
|
Hoashi T, Tamaki K, Hearing VJ. The secreted form of a melanocyte membrane-bound glycoprotein (Pmel17/gp100) is released by ectodomain shedding. FASEB J 2009; 24:916-30. [PMID: 19884326 DOI: 10.1096/fj.09-140921] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ectodomain shedding is a proteolytic mechanism by which a transmembrane protein is converted into a secreted form. Pmel17/gp100 is a melanocyte-specific membrane-bound glycoprotein that has amyloid characteristics and forms fibrillar structures in melanosomes after a complex sequence of post-translational processing and trafficking events, including cleavage by a furin-like proprotein convertase (PC). A secreted form of Pmel17 (termed sPmel17) was also thought to be released due to cleavage by a PC. We used multidisciplinary approaches to demonstrate that sPmel17 is released by ectodomain shedding at the juxtamembrane and/or intramembrane motif and to show that this is independent of cleavage by a PC. We further show that sPmel17 consists of 2 fragments linked by disulfide bonds and that the shedding is inhibited at low temperature but not by metalloproteinase inhibitors. Moreover, treatment with a phorbol ester or a calmodulin inhibitor induces Pmel17 shedding. We also refine the reactivity of HMB50 and NKI/beteb, 2 monoclonal antibodies commonly used as melanoma-specific markers. The fact that those antibodies require physically separated domains of Pmel17 sheds interesting light on its 3-dimensional conformation. We conclude that sPmel17 is released by regulated proteolytic ectodomain shedding.-Hoashi, T., Tamaki, K., Hearing, V. J. The secreted form of a melanocyte membrane-bound glycoprotein (Pmel17/gp100) is released by ectodomain shedding.
Collapse
Affiliation(s)
- Toshihiko Hoashi
- V.J.H., National Institutes of Health, Laboratory of Cell Biology, Bldg. 37, Rm. 2132, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
14
|
Tomihari M, Hwang SH, Chung JS, Cruz PD, Ariizumi K. Gpnmb is a melanosome-associated glycoprotein that contributes to melanocyte/keratinocyte adhesion in a RGD-dependent fashion. Exp Dermatol 2009; 18:586-95. [PMID: 19320736 PMCID: PMC2774115 DOI: 10.1111/j.1600-0625.2008.00830.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gpnmb is a glycosylated transmembrane protein implicated in the development of glaucoma in mice and melanoma in humans. It shares significant amino acid sequence homology with the melanosome protein Pmel-17. Its extracellular domain contains a RGD motif for binding to integrin and its intracellular domain has a putative endosomal and/or melanosomal-sorting motif. These features led us to posit that Gpnmb is associated with melanosomes and involved in cell adhesion. We showed that human Gpnmb is expressed constitutively by melanoma cell lines, primary-cultured melanocytes and epidermal melanocytes in situ, with most of it found intracellularly within melanosomes and to a lesser degree in lysosomes. Our newly developed monoclonal antibody revealed surface expression of Gpnmb on these pigment cells, albeit to a lesser degree than the intracellular fraction. Gpnmb expression was upregulated by UVA (but not UVB) irradiation and by alpha-melanocyte-stimulating hormone (MSH) (but not beta-MSH); its cell surface expression on melanocytes (but not on melanoma cells) was increased markedly by IFN-gamma and TNF-alpha. PAM212 keratinocytes adhered to immobilized Gpnmb in a RGD-dependent manner. These results indicate that Gpnmb is a melanosome-associated glycoprotein that contributes to the adhesion of melanocytes with keratinocytes.
Collapse
Affiliation(s)
- Mizuki Tomihari
- Department of Dermatology, The University of Texas Southwestern Medical Center and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, TX 75390-9069, USA
| | | | | | | | | |
Collapse
|
15
|
Anderson MG, Nair KS, Amonoo LA, Mehalow A, Trantow CM, Masli S, John SWM. GpnmbR150X allele must be present in bone marrow derived cells to mediate DBA/2J glaucoma. BMC Genet 2008; 9:30. [PMID: 18402690 PMCID: PMC2373794 DOI: 10.1186/1471-2156-9-30] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 04/10/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Gpnmb gene encodes a transmembrane protein whose function(s) remain largely unknown. Here, we assess if a mutant allele of Gpnmb confers susceptibility to glaucoma by altering immune functions. DBA/2J mice have a mutant Gpnmb gene and they develop a form of glaucoma preceded by a pigment dispersing iris disease and abnormalities of the immunosuppressive ocular microenvironment. RESULTS We find that the Gpnmb genotype of bone-marrow derived cell lineages significantly influences the iris disease and the elevation of intraocular pressure. GPNMB localizes to multiple cell types, including pigment producing cells, bone marrow derived F4/80 positive antigen-presenting cells (APCs) of the iris and dendritic cells. We show that APCs of DBA/2J mice fail to induce antigen induced immune deviation (a form of tolerance) when treated with TGFbeta2. This demonstrates that some of the immune abnormalities previously identified in DBA/2J mice result from intrinsic defects in APCs. However, the tested APC defects are not dependent on a mutant Gpnmb gene. Finally, we show that the Gpnmb mediated iris disease does not require elevated IL18 or mature B or T lymphocytes. CONCLUSION These results establish a role for Gpnmb in bone marrow derived lineages. They suggest that affects of Gpnmb on innate immunity influence susceptibility to glaucoma in DBA/2J mice.
Collapse
Affiliation(s)
- Michael G Anderson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pollack VA, Alvarez E, Tse KF, Torgov MY, Xie S, Shenoy SG, MacDougall JR, Arrol S, Zhong H, Gerwien RW, Hahne WF, Senter PD, Jeffers ME, Lichenstein HS, LaRochelle WJ. Treatment parameters modulating regression of human melanoma xenografts by an antibody–drug conjugate (CR011-vcMMAE) targeting GPNMB. Cancer Chemother Pharmacol 2007; 60:423-35. [PMID: 17541593 DOI: 10.1007/s00280-007-0490-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate the pharmacological properties of the CR011-vcMMAE fully human antibody-drug conjugate (ADC), such as dose titrations, quantitation of the time (days) to complete regression, pharmacokinetics, and schedule dependency. Our prior study characterized a fully human antibody to GPNMB covalently linked to monomethylauristatin E, CR011-vcMMAE, and further demonstrated cell surface staining of melanoma lines susceptible to the immunoconjugate's cytotoxicity (Clin Cancer Res 2005; 12(4): 1373-1382). METHODS The human SK-MEL-2 and SK-MEL-5 melanoma xenografts were used in athymic mice to assess anti-tumor efficacy. After s.c. implantation, tumors became established (60-100 mg), and treatment commenced by i.v. injection of the immunoconjugate or vinblastine or paclitaxel. Short-term anti-tumor effects (inhibition of tumor growth) and long-term effects (complete regression) were observed. RESULTS CR011-vcMMAE induced regression of established human SK-MEL-2 and SK-MEL-5 xenografts at doses from 1.25 to 80 mg/kg treatment when administered intravenously every 4 days (4 treatments); strikingly, regressions were not associated with re-growth during the observation period (200 days). The disappearance rate of implants was dose dependent (minimum time, 18.5 days). Detectable serum CR011-vcMMAE >or=1 microg/mL (approximately 0.01 microM) was observed for >30 days post-dose; CR011-vcMMAE showed an elimination half-life of 10.3 days. A low volume of distribution suggested that CR011-vcMMAE was confined to blood and interstitial fluid. CR011-vcMMAE could be delivered by either a single bolus dose or by intermittent dosing (i.e., every 1, 2, 4, 8, or 16 days) with no discernible differences in the proportion of tumor-free survivors, indicating a lack of schedule dependency. The antibody-drug conjugate produced complete regressions, but the equivalent doses of free monomethylauristatin E or unconjugated antibody did not show anti-tumor effects. In addition, decreases in plasma tumor-derived human interleukin-8 coincided with tumor nodule disappearance. CONCLUSIONS Short-term anti-tumor effects and long-term effects (complete regression) were observed with CR011-vcMMAE, but not with the reference agents. These results suggest that CR011-vcMMAE may provide therapeutic benefit in malignant melanoma.
Collapse
Affiliation(s)
- Vincent A Pollack
- Department of Preclinical Development, CuraGen Corporation, 322 E. Main St, Branford, CT 06405, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Petrenko AA, Pavlova LS, Karseladze AI, Kisseljov FL, Kisseljova NP. Downregulation of genes encoding for subunits of adaptor complex-3 in cervical carcinomas. BIOCHEMISTRY (MOSCOW) 2007; 71:1153-60. [PMID: 17125464 DOI: 10.1134/s0006297906100130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We explored the expression of four genes encoding for subunits of AP-3 in cervical tumors and cancer cell lines. Using RT-PCR we demonstrated more than twofold decrease in the levels of mRNA of AP3D1, AP3B1, AP3M1, and AP3S1 in 32, 28, 23, and 26% tumors in comparison with normal tissues of uterine cervix, respectively. The level of mRNA of at least one subunit was decreased in 28 out of 47 (60%) of tumors and in four out of five cancer cell lines in comparison to tissues adjacent to tumors. The suppression of expression of any of the subunits was revealed in 15 out of 28 cases (54%). The expression of two and more subunits was decreased simultaneously in different combinations in 13 cases (46%). This fact testifies to the lack of a common mechanism of downregulation of four subunits in tumors. There is a tendency to more frequent suppression of AP-3A expression in tumors associated with lymphatic node metastases as compared with tumors without metastases (P = 0.034). Thus, here we demonstrate for the first time the decrease in expression of genes encoding for AP-3A subunits in tumors.
Collapse
Affiliation(s)
- A A Petrenko
- Institute of Carcinogenesis, N. N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia
| | | | | | | | | |
Collapse
|
19
|
Setty SRG, Tenza D, Truschel ST, Chou E, Sviderskaya EV, Theos AC, Lamoreux ML, Di Pietro SM, Starcevic M, Bennett DC, Dell'Angelica EC, Raposo G, Marks MS. BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles. Mol Biol Cell 2007; 18:768-80. [PMID: 17182842 PMCID: PMC1805088 DOI: 10.1091/mbc.e06-12-1066] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 12/07/2006] [Indexed: 11/11/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defects in the formation and function of lysosome-related organelles such as melanosomes. HPS in humans or mice is caused by mutations in any of 15 genes, five of which encode subunits of biogenesis of lysosome-related organelles complex (BLOC)-1, a protein complex with no known function. Here, we show that BLOC-1 functions in selective cargo exit from early endosomes toward melanosomes. BLOC-1-deficient melanocytes accumulate the melanosomal protein tyrosinase-related protein-1 (Tyrp1), but not other melanosomal proteins, in endosomal vacuoles and the cell surface due to failed biosynthetic transit from early endosomes to melanosomes and consequent increased endocytic flux. The defects are corrected by restoration of the missing BLOC-1 subunit. Melanocytes from HPS model mice lacking a different protein complex, BLOC-2, accumulate Tyrp1 in distinct downstream endosomal intermediates, suggesting that BLOC-1 and BLOC-2 act sequentially in the same pathway. By contrast, intracellular Tyrp1 is correctly targeted to melanosomes in melanocytes lacking another HPS-associated protein complex, adaptor protein (AP)-3. The results indicate that melanosome maturation requires at least two cargo transport pathways directly from early endosomes to melanosomes, one pathway mediated by AP-3 and one pathway mediated by BLOC-1 and BLOC-2, that are deficient in several forms of HPS.
Collapse
Affiliation(s)
- Subba Rao Gangi Setty
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Danièle Tenza
- Institut Curie, Centre National de la Recherche Scientifique-Unité Mixte de Recherche 144, Paris 75248, France
| | - Steven T. Truschel
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Evelyn Chou
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Elena V. Sviderskaya
- Department of Basic Medical Sciences, St. George's Hospital Medical School, London, SW17 ORE, United Kingdom
| | - Alexander C. Theos
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - M. Lynn Lamoreux
- Comparative Genetics Program, Texas A&M University, College Station, TX 77843; and
| | - Santiago M. Di Pietro
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Marta Starcevic
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Dorothy C. Bennett
- Department of Basic Medical Sciences, St. George's Hospital Medical School, London, SW17 ORE, United Kingdom
| | | | - Graça Raposo
- Institut Curie, Centre National de la Recherche Scientifique-Unité Mixte de Recherche 144, Paris 75248, France
| | - Michael S. Marks
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
20
|
Anderson MG, Libby RT, Mao M, Cosma IM, Wilson LA, Smith RS, John SWM. Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma. BMC Biol 2006; 4:20. [PMID: 16827931 PMCID: PMC1543659 DOI: 10.1186/1741-7007-4-20] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 07/07/2006] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND DBA/2J (D2) mice develop an age-related form of glaucoma. Their eyes progressively develop iris pigment dispersion and iris atrophy followed by increased intraocular pressure (IOP) and glaucomatous optic nerve damage. Mutant alleles of the Gpnmb and Tyrp1 genes are necessary for the iris disease, but it is unknown whether alleles of other D2 gene(s) are necessary for the distinct later stages of disease. We initiated a study of congenic strains to further define the genetic requirements and disease mechanisms of the D2 glaucoma. RESULTS To further understand D2 glaucoma, we created congenic strains of mice on the C57BL/6J (B6) genetic background. B6 double-congenic mice carrying D2-derived Gpnmb and Tyrp1 mutations develop a D2-like iris disease. B6 single-congenics with only the Gpnmb and Tyrp1 mutations develop milder forms of iris disease. Genetic epistasis experiments introducing a B6 tyrosinase mutation into the congenic strains demonstrated that both the single and double-congenic iris diseases are rescued by interruption of melanin synthesis. Importantly, our experiments analyzing mice at ages up to 27 months indicate that the B6 double-congenic mice are much less prone to IOP elevation and glaucoma than are D2 mice. CONCLUSION As demonstrated here, the Gpnmb and Tyrp1 iris phenotypes are both individually dependent on tyrosinase function. These results support involvement of abnormal melanosomal events in the diseases caused by each gene. In the context of the inbred D2 mouse strain, the glaucoma phenotype is clearly influenced by more genes than just Gpnmb and Tyrp1. Despite the outward similarity of pigment-dispersing iris disease between D2 and the B6 double-congenic mice, the congenic mice are much less susceptible to developing high IOP and glaucoma. These new congenic strains provide a valuable new resource for further studying the genetic and mechanistic complexity of this form of glaucoma.
Collapse
Affiliation(s)
- Michael G Anderson
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | | | - Mao Mao
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | | | | | | | - Simon WM John
- The Jackson Laboratory, Bar Harbor, ME, USA
- Howard Hughes Medical Institute, Bar Harbor, ME, USA
- Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
21
|
Hoashi T, Muller J, Vieira WD, Rouzaud F, Kikuchi K, Tamaki K, Hearing VJ. The Repeat Domain of the Melanosomal Matrix Protein PMEL17/GP100 Is Required for the Formation of Organellar Fibers. J Biol Chem 2006; 281:21198-21208. [PMID: 16682408 DOI: 10.1074/jbc.m601643200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over 125 pigmentation-related genes have been identified to date. Of those, PMEL17/GP100 has been widely studied as a melanoma-specific antigen as well as a protein required for the formation of fibrils in melanosomes. PMEL17 is synthesized, glycosylated, processed, and delivered to melanosomes, allowing them to mature from amorphous round vesicles to elongated fibrillar structures. In contrast to other melanosomal proteins such as TYR and TYRP1, the processing and sorting of PMEL17 is highly complex. Monoclonal antibody HMB45 is commonly used for melanoma detection, but has the added advantage that it specifically reacts with sialylated PMEL17 in the fibrillar matrix in melanosomes. In this study, we generated mutant forms of PMEL17 to clarify the subdomain of PMEL17 required for formation of the fibrillar matrix, a process critical to pigmentation. The internal proline/serine/threonine-rich repeat domain (called the RPT domain) of PMEL17 undergoes variable proteolytic cleavage. Deletion of the RPT domain abolished its recognition by HMB45 and its capacity to form fibrils. Truncation of the C-terminal domain did not significantly affect the processing or trafficking of PMEL17, but, in contrast, deletion of the N-terminal domain abrogated both. We conclude that the RPT domain is essential for its function in generating the fibrillar matrix of melanosomes and that the luminal domain is necessary for its correct processing and trafficking to those organelles.
Collapse
Affiliation(s)
- Toshihiko Hoashi
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256; Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan.
| | - Jacqueline Muller
- Division of Viral Products, Food and Drug Administration, Rockville, Maryland 20852
| | - Wilfred D Vieira
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Francois Rouzaud
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Kanako Kikuchi
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Kunihiko Tamaki
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Vincent J Hearing
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256.
| |
Collapse
|
22
|
Lepage S, Lapointe R. Melanosomal targeting sequences from gp100 are essential for MHC class II-restricted endogenous epitope presentation and mobilization to endosomal compartments. Cancer Res 2006; 66:2423-32. [PMID: 16489049 DOI: 10.1158/0008-5472.can-05-2516] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD4+ T lymphocytes play an important role in CD8+ T cell-mediated responses against tumors. Considering that approximately 20% of melanomas express MHC class II, it is plausible that concomitant presentation by MHC class I and class II shapes positive (helper T cells) or negative (regulatory T cells) antitumor responses. Interestingly, gp100, a melanoma antigen, can be presented by both MHC class I and class II when expressed endogenously, suggesting that it can reach endosomal/MHC class II compartments (MIIC). Here, we showed that gp100 putative NH2-terminal signal sequence and the last 70 residues in COOH terminus are essential for MIIC localization and MHC class II presentation. Confocal microscopy analyses confirmed that gp100 was localized in LAMP-1+/HLA-DR+ endosomal/MIIC. Gp100 targeting sequences were characterized by deleting different sections in the COOH terminus (last 70 residues). Transfection in 293T cells, expressing MHC class I and class II molecules, revealed that specific deletions in COOH terminus resulted in decreased MHC class II presentation, without effects on class I presentation, suggesting a role in MIIC trafficking for these deleted sections. Then, we used these gp100 targeting sequences to mobilize green fluorescent protein to endosomal compartments and to allow MHC class II and class I presentation of minimal endogenous epitopes. We conclude that these specific sequences are MIIC-targeting motifs, which could be included in expression cassettes for endogenously expressed tumor or viral antigens for MHC class II and class I presentation and optimize in vivo T-cell responses or as an in vitro tool for characterization of new MHC class II epitopes.
Collapse
Affiliation(s)
- Stéphanie Lepage
- Research Centre, Centre Hospitalier de l'Université de Montréal, Hôpital Notre Dame, Université de Montréal and Institut du Cancer de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
23
|
Schonthaler HB, Lampert JM, von Lintig J, Schwarz H, Geisler R, Neuhauss SCF. A mutation in the silver gene leads to defects in melanosome biogenesis and alterations in the visual system in the zebrafish mutant fading vision. Dev Biol 2005; 284:421-36. [PMID: 16024012 DOI: 10.1016/j.ydbio.2005.06.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 06/01/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
Forward genetic screens have been instrumental in defining molecular components of visual function. The zebrafish mutant fading vision (fdv) has been identified in such a screen due to defects in vision accompanied by hypopigmentation in the retinal pigment epithelium (RPE) and body melanocytes. The RPE forms the outer most layer of the retina, and its function is essential for vision. In fdv mutant larvae, the outer segments of photoreceptors are strongly reduced in length or absent due to defects in RPE cells. Ultrastructural analysis of RPE cells reveals dramatic cellular changes such as an absence of microvilli and vesicular inclusions. The retinoid profile is altered as judged by biochemical analysis, arguing for a partial block in visual pigment regeneration. Surprisingly, homozygous fdv vision mutants survive to adulthood and show, despite a persistence of the hypopigmentation, a partial recovery of retinal morphology. By positional cloning and subsequent morpholino knock-down, we identified a mutation in the silver gene as the molecular defect underlying the fdv phenotype. The Silver protein is required for intralumenal fibril formation in melanosomes by amylogenic cleavage. Our data reveal an unexpected link between melanosome biogenesis and the visual system, undetectable in cell culture.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosomes
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental
- Genetic Linkage
- Genetic Markers
- Genome
- Homozygote
- Melanocytes/ultrastructure
- Melanosomes/physiology
- Melanosomes/ultrastructure
- Molecular Sequence Data
- Photoreceptor Cells, Vertebrate/ultrastructure
- Pigment Epithelium of Eye/ultrastructure
- Point Mutation
- Polymorphism, Genetic
- Protein Sorting Signals
- Protein Structure, Tertiary
- Radiation Hybrid Mapping
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Vision, Ocular/genetics
- Vision, Ocular/physiology
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/physiology
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Helia B Schonthaler
- Swiss Federal Institute of Technology, Department of Biology, and Brain Research Institute of the University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Glaucoma describes a group of diseases that kill retinal ganglion cells. There are different types of glaucoma, and each appears to be genetically heterogeneous. Different glaucoma genes have been identified, but these genes account for only a small proportion of glaucoma. Most glaucoma cases appear to be multifactorial, and are likely affected by multiple interacting loci. A number of genetic susceptibility factors have been suggested to contribute to glaucoma. These factors fit into two broad groups, those affecting intraocular pressure and those important in modulating retinal ganglion cell viability. Defining the complex genetics of glaucoma will require significant further study of the human disease and animal models. Genetic approaches are essential and will be enhanced by recently developed genomic and proteomic technologies. These technologies will provide valuable clues about pathogenesis for subsequent testing. In this review, we focus on endogenous genetic susceptibility factors and on how experimental studies will be valuable for dissecting the multifactorial complexity of their interactions.
Collapse
|
25
|
Plouhinec JL, Leconte L, Sauka-Spengler T, Bovolenta P, Mazan S, Saule S. Comparative analysis of gnathostome Otx gene expression patterns in the developing eye: implications for the functional evolution of the multigene family. Dev Biol 2005; 278:560-75. [PMID: 15680370 DOI: 10.1016/j.ydbio.2004.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 11/12/2004] [Accepted: 11/12/2004] [Indexed: 10/26/2022]
Abstract
We have performed a detailed analysis of the expression pattern of the three gnathostome Otx classes in order to gain new insights into their functional evolution. Expression patterns were examined in the developing eye of a chondrichthyan, the dogfish, and an amniote, the chick, and compared with the capacity of paralogous proteins to induce a pigmented phenotype in cultured retina cells in cooperation with the bHLH-leucine zipper protein Mitf. This analysis indicates that each Otx class is characterized by highly specific and conserved expression features in the presumptive RPE, where Otx1 and Otx2, but not Otx5, are transcribed at optic vesicle stages, in the differentiating neural retina, where Otx2 and Otx5 show a conserved dynamic expression pattern, and in the forming ciliary process, a major site of Otx1 expression. Furthermore, the paralogous proteins of the dogfish and the mouse do not display any significant difference in their capacity to induce a pigmented phenotype, suggesting a functional equivalency in the specification and differentiation of the RPE. These data indicate that specific functions selectively involving each Otx orthology class were fixed prior to the gnathostome radiation and highlight the prominent role of regulatory changes in the functional diversification of the multigene family.
Collapse
Affiliation(s)
- J L Plouhinec
- Equipe Développement et Evolution des Vertébrés, UPRES-A 8080, Université Paris-Sud, Bat. 441 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
Storch S, Pohl S, Braulke T. A dileucine motif and a cluster of acidic amino acids in the second cytoplasmic domain of the batten disease-related CLN3 protein are required for efficient lysosomal targeting. J Biol Chem 2004; 279:53625-34. [PMID: 15469932 DOI: 10.1074/jbc.m410930200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The juvenile form of ceroid lipofuscinosis (Batten disease) is a neurodegenerative lysosomal storage disorder caused by mutations in the CLN3 gene. CLN3 encodes a multimembrane-spanning protein of unknown function, which is mainly localized in lysosomes in non-neuronal cells and in endosomes in neuronal cells. For this study we constructed chimeric proteins of three CLN3 cytoplasmic domains fused to the lumenal and transmembrane domains of the reporter proteins LAMP-1 and lysosomal acid phosphatase to identify lysosomal targeting motifs and to determine the intracellular transport and subcellular localization of the chimera in transfected cell lines. We report that a novel type of dileucine-based sorting motif, EEEX(8)LI, present in the second cytoplasmic domain of CLN3, is sufficient for proper targeting to lysosomes. The first cytoplasmic domain of CLN3 and the mutation of the dileucine motif resulted in a partial missorting of chimeric proteins to the plasma membrane. At equilibrium, 4-13% of the different chimera are present at the cell surface. Analysis of lysosome-specific proteolytic processing revealed that lysosomal acid phosphatase chimera containing the second cytoplasmic domain of CLN3 showed the highest rate of lysosomal delivery, whereas the C terminus of CLN3 was found to be less efficient in lysosomal targeting. However, none of these cytosolic CLN3 domains was able to interact with AP-1, AP-3, or GGA3 adaptor complexes. These data revealed that lysosomal sorting motifs located in an intramolecular cytoplasmic domain of a multimembrane-spanning protein have different structural requirements for adaptor binding than sorting signals found in the C-terminal cytoplasmic domains of single- or dual-spanning lysosomal membrane proteins.
Collapse
Affiliation(s)
- Stephan Storch
- Department of Biochemistry, Children's Hospital, University of Hamburg, D-20246 Hamburg, Germany
| | | | | |
Collapse
|
27
|
Nakatsu F, Ohno H. Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Struct Funct 2004; 28:419-29. [PMID: 14745134 DOI: 10.1247/csf.28.419] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Adaptor protein (AP) complexes are cytosolic heterotetramers that mediate the sorting of membrane proteins in the secretory and endocytic pathways. AP complexes are involved in the formation of clathrin-coated vesicles (CCVs) by recruiting the scaffold protein, clathrin. AP complexes also play a pivotal role in the cargo selection by recognizing the sorting signals within the cytoplasmic tail of integral membrane proteins. Six distinct AP complexes have been identified. AP-2 mediates endocytosis from the plasma membrane, while AP-1, AP-3 and AP-4 play a role in the endosomal/lysosomal sorting pathways. Moreover, tissue-specific sorting events such as the basolateral sorting in polarized epithelial cells and the biogenesis of specialized organelles including melanosomes and synaptic vesicles are also regulated by members of AP complexes. The application of a variety of methodologies have gradually revealed the physiological role of AP complexes.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Division of Molecular Membrane Biology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan.
| | | |
Collapse
|
28
|
Vaingankar SM, Fitzpatrick TA, Johnson K, Goding JW, Maurice M, Terkeltaub R. Subcellular targeting and function of osteoblast nucleotide pyrophosphatase phosphodiesterase 1. Am J Physiol Cell Physiol 2004; 286:C1177-87. [PMID: 15075217 DOI: 10.1152/ajpcell.00320.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ectonucleoside pyrophosphatase phosphodiesterase 1 (NPP1/PC-1) is a member of the NPP enzyme family that is critical in regulating mineralization. In certain mineralizing sites of bone and cartilage, membrane-limited vesicles [matrix vesicles (MVs)] provide a sheltered internal environment for nucleation of calcium-containing crystals, including hydroxyapatite. MV formation occurs by budding of vesicles from the plasma membrane of mineralizing cells. The MVs are enriched in proteins that promote mineralization. Paradoxically, NPP1, the type II transmembrane protein that generates the potent hydroxyapatite crystal growth inhibitor inorganic pyrophosphate (PPi), is also enriched in MVs. Although osteoblasts express NPP1, NPP2, and NPP3, only NPP1 is enriched in MVs. Therefore, this study uses mineralizing human osteoblastic SaOS-2 cells, a panel of NPP1 mutants, and NPP1 chimeras with NPP3, which does not concentrate in MVs, to investigate how NPP1 preferentially targets to MVs. We demonstrated that a cytosolic dileucine motif (amino acids 49–50) was critical in localizing NPP1 to regions of the plasma membrane that budded off into MVs. Moreover, transposition of the NPP1 cytoplasmic dileucine motif and flanking region (AAASLLAP) to NPP3 conferred to NPP3 the ability to target to the plasma membrane and, subsequently, concentrate in MVs. Functionally, the cytosolic tail dileucine motif NPP1 mutants lost the ability to support MV PPiconcentrations and to suppress calcification. The results identify a specific targeting motif in the NPP1 cytosolic tail that delivers PPi-generating NPP activity to osteoblast MVs for control of calcification.
Collapse
|
29
|
Martina JA, Moriyama K, Bonifacino JS. BLOC-3, a protein complex containing the Hermansky-Pudlak syndrome gene products HPS1 and HPS4. J Biol Chem 2003; 278:29376-29384. [PMID: 12756248 DOI: 10.1074/jbc.m301294200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defective lysosome-related organelles. HPS results from mutations in either one of six human genes named HPS1 to HPS6, most of which encode proteins of unknown function. Here we report that the human HPS1 and HPS4 proteins are part of a complex named BLOC-3 (for biogenesis of lysosome-related organelles complex 3). Co-immunoprecipitation experiments demonstrated that epitope-tagged and endogenous HPS1 and HPS4 proteins assemble with each other in vivo. The HPS1.HPS4 complex is predominantly cytosolic, with a small amount being peripherally associated with membranes. Size exclusion chromatography and sedimentation velocity analyses of the cytosolic fraction indicate that HPS1 and HPS4 form a moderately asymmetric protein complex with a molecular mass of approximately 175 kDa. HPS4-deficient fibroblasts from light ear mice display normal distribution and trafficking of the lysosomal membrane protein, Lamp-2, in contrast to fibroblasts from AP-3-deficient pearl mice (HPS2), which exhibit increased trafficking of this lysosomal protein via the plasma membrane. Similarly, light ear fibroblasts display an apparently normal accumulation of Zn2+ in intracellular vesicles, unlike pearl fibroblasts, which exhibit a decreased intracellular Zn2+ storage. Taken together, these observations demonstrate that the HPS1 and HPS4 proteins are components of a cytosolic complex that is involved in the biogenesis of lysosomal-related organelles by a mechanism distinct from that operated by AP-3 complex.
Collapse
Affiliation(s)
- José A Martina
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
30
|
Mo JS, Anderson MG, Gregory M, Smith RS, Savinova OV, Serreze DV, Ksander BR, Streilein JW, John SWM. By altering ocular immune privilege, bone marrow-derived cells pathogenically contribute to DBA/2J pigmentary glaucoma. J Exp Med 2003; 197:1335-44. [PMID: 12756269 PMCID: PMC2193785 DOI: 10.1084/jem.20022041] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pigment dispersion syndrome causes iris pigment release and often progresses to elevated intraocular pressure and pigmentary glaucoma (PG). Because melanin pigment can have adjuvant like properties and because the Gpnmb gene, which contributes to pigment dispersion in DBA/2J (D2) mice, is expressed in dendritic cells, we tested the hypothesis that ocular immune abnormalities participate in PG phenotypes. Strikingly, we show that D2 eyes exhibit defects of the normally immunosuppressive ocular microenvironment including inability of aqueous humor to inhibit T cell activation, failure to support anterior chamber (AC)-associated immune deviation, and loss of ocular immune privilege. Histologic analysis demonstrates infiltration of inflammatory leukocytes into the AC and their accumulation within the iris, whereas clinical indications of inflammation are typically very mild to undetectable. Importantly, some of these abnormalities precede clinical indications of pigment dispersal, suggesting an early role in disease etiology. Using bone marrow chimeras, we show that lymphohematopoietic cell lineages largely dictate the progression of pigment dispersion, the ability of the eye to support induction of AC-associated immune deviation, and the integrity of the blood/ocular barrier. These results suggest previously unsuspected roles for bone marrow-derived cells and ocular immune privilege in the pathogenesis of PG.
Collapse
Affiliation(s)
- Jun-Song Mo
- The Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rodionov DG, Höning S, Silye A, Kongsvik TL, von Figura K, Bakke O. Structural requirements for interactions between leucine-sorting signals and clathrin-associated adaptor protein complex AP3. J Biol Chem 2002; 277:47436-43. [PMID: 12370188 DOI: 10.1074/jbc.m207149200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cytoplasmic tails of LIMPII and the invariant chain contain similar leucine-based sorting signals, but the invariant chain interacts only with AP1 and AP2, whereas LIMPII interacts strongly with AP3. In a series of in vitro experiments, we investigated the effect of residues upstream of the leucine pairs and demonstrated that these residues determine adapter binding, and certain residues favor interactions with AP3. Furthermore, constructs that interacted stronger with AP3 interacted weakly with AP1 and vice versa. Exchanging residues upstream of the leucine-based signal in LIMPII with those of the invariant chain reduced LIMPII binding to AP3 in vitro, and in vivo the corresponding LIMPII mutant was rerouted via the plasma membrane like the invariant chain. These preferential interactions of different leucine signals with different AP complexes may thus be the determining step sorting proteins from the trans-Golgi network to their final destinations. Proteins that interact with AP3 are sorted directly to endosomes/lysosomes, whereas proteins that interact with AP1 are sorted via a different route. At the same time, constructs that exhibited specificity for either AP1 or AP3 might still interact with AP2, suggesting that AP2 may recognize a wider variety of leucine signals. This is consistent with the suggested role of AP2 in internalization of proteins containing general leucine-based signals, including proteins that have been missorted to the plasma membrane.
Collapse
Affiliation(s)
- Dmitrii G Rodionov
- Division of Molecular Cell Biology, Department of Biology, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|
32
|
Raposo G, Fevrier B, Stoorvogel W, Marks MS. Lysosome-related organelles: a view from immunity and pigmentation. Cell Struct Funct 2002; 27:443-56. [PMID: 12576637 DOI: 10.1247/csf.27.443] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lysosomes are ubiquitous organelles that carry out essential household functions. Certain cell types, however, contain lysosome-related organelles with specialized functions. Their specialized functions are usually reflected by specific morphological and compositional features. A number of diseases that develop due to genetic mutations, pathogen exposure or cell transformation are characterized by dysfunctional lysosomes and/or lysosome-related organelles. In this review we highlight adaptations and malfunction of the endosomal/lysosomal system in normal and pathological situations with special focus on MHC class II compartments in antigen presenting cells and melanosomes in pigment cells.
Collapse
Affiliation(s)
- Graça Raposo
- Centre National de la Recherche Scientifique, UMR 144, Institut Curie, 75005 Paris, France.
| | | | | | | |
Collapse
|
33
|
Bächner D, Schröder D, Gross G. mRNA expression of the murine glycoprotein (transmembrane) nmb (Gpnmb) gene is linked to the developing retinal pigment epithelium and iris. Gene Expr Patterns 2002; 1:159-65. [PMID: 12638126 DOI: 10.1016/s1567-133x(02)00012-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The murine homologue of the human glycoprotein (transmembrane) NMB (GPNMB) gene was identified by subtractive cloning from in vitro cultured murine primary osteoblast cells and subsequent RACE-PCR. GPNMB is a highly glycosylated type I transmembrane protein that shares significant sequence homology to several melanosomal proteins. Increasing expression of Gpnmb mRNA was observed during differentiation of murine primary osteoblast cell cultures. To address the potential functions of GPNMB we analysed its mRNA-expression during murine embryonic development. In early development Gpnmb mRNA is detected at high levels in the outer layer of the retina. Later in development expression gets restricted to the retinal pigment epithelium and iris. At the cytoplasmic domain of GPNMB, a conserved di-leucin-based endosomal/melanosomal-sorting signal (ExxPLL) was located, present as well in several known melanosomal proteins. To analyse the subcellular localization we used EGFP-tagged GPNMB transfected in COS7 and HEK293 cells. In both non-pigmented cell lines, the EGFP-GPNMB fusion protein was localized to vesicular, endosomal like structures. Sequence homology to known melanosomal proteins, mRNA expression and subcellular localization are suggestive for GPNMB as an intracellular, endosomal/melanosomal compartment specific protein important for melanin biosynthesis and the development of the retinal pigment epithelium and iris. As the gene coding for human GPNMB was localized to chromosome 7p15, a locus involved in the human inherited disease cystoid macular edema, also known as dominant cystoid macular dystrophy (OMIM 153880) we highly suggest that GPNMB is a candidate gene for this human inherited disease.
Collapse
Affiliation(s)
- Dietmar Bächner
- Institut für Zellbiochemie und Klinische Neurobiologie, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | |
Collapse
|
34
|
Raposo G, Marks MS. The dark side of lysosome-related organelles: specialization of the endocytic pathway for melanosome biogenesis. Traffic 2002; 3:237-48. [PMID: 11929605 DOI: 10.1034/j.1600-0854.2002.030401.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanosomes are lysosome-related organelles within which melanin pigments are synthesized and stored in melanocytes and retinal pigment epithelial cells. Early ultrastructural studies of pigment cells revealed that melanosomes consist of a complex series of organelles; more recently, these structures have been correlated with cargo constituents. By studying the fate of melanosomal and endosomal cargo in melanocytic cells, the effects of disease-related mutations on melanosomal morphology, and the genes affected by these mutations, we are beginning to gain novel insights into the biogenesis of these complex organelles and their relationship to the endocytic pathway. These insights demonstrate how specialized cells integrate unique and ubiquitous molecular mechanisms in subverting the endosomal system to generate cell-type specific structures and their associated functions. Further dissection of the melanosomal system will likely shed light not only on the biogenesis of lysosome-related organelles but also on general aspects of vesicular transport in the endosomal system.
Collapse
Affiliation(s)
- Graça Raposo
- UMR-144, Institut Curie, CNRS, Paris, Cedex 75005, France.
| | | |
Collapse
|
35
|
Abstract
Adaptor protein (AP) complexes are heterotetrameric assemblies of subunits named adaptins. Four AP complexes, termed AP-1, AP-2, AP-3, and AP-4, have been described in various eukaryotic organisms. Biochemical and morphological evidence indicates that AP complexes play roles in the formation of vesicular transport intermediates and the selection of cargo molecules for inclusion into these intermediates. This understanding is being expanded by the application of genetic interference procedures. Here, we review recent progress in the genetic analysis of the function of AP complexes, focusing on studies that make use of targeted interference or naturally-occurring mutations in various model organisms.
Collapse
Affiliation(s)
- Markus Boehm
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Building 18T/Room 101, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|