1
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
2
|
Schikora-Tamarit MÀ, Marcet-Houben M, Nosek J, Gabaldón T. Shared evolutionary footprints suggest mitochondrial oxidative damage underlies multiple complex I losses in fungi. Open Biol 2021; 11:200362. [PMID: 33906412 PMCID: PMC8080010 DOI: 10.1098/rsob.200362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidative phosphorylation is among the most conserved mitochondrial pathways. However, one of the cornerstones of this pathway, the multi-protein complex NADH : ubiquinone oxidoreductase (complex I) has been lost multiple independent times in diverse eukaryotic lineages. The causes and consequences of these convergent losses remain poorly understood. Here, we used a comparative genomics approach to reconstruct evolutionary paths leading to complex I loss and infer possible evolutionary scenarios. By mining available mitochondrial and nuclear genomes, we identified eight independent events of mitochondrial complex I loss across eukaryotes, of which six occurred in fungal lineages. We focused on three recent loss events that affect closely related fungal species, and inferred genomic changes convergently associated with complex I loss. Based on these results, we predict novel complex I functional partners and relate the loss of complex I with the presence of increased mitochondrial antioxidants, higher fermentative capabilities, duplications of alternative dehydrogenases, loss of alternative oxidases and adaptation to antifungal compounds. To explain these findings, we hypothesize that a combination of previously acquired compensatory mechanisms and exposure to environmental triggers of oxidative stress (such as hypoxia and/or toxic chemicals) induced complex I loss in fungi.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marina Marcet-Houben
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Chang J, Rachubinski RA. Pex20p functions as the receptor for non‐PTS1/non‐PTS2 acyl‐CoA oxidase import into peroxisomes of the yeast
Yarrowia lipolytica. Traffic 2019; 20:504-515. [DOI: 10.1111/tra.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jinlan Chang
- Department of Cell BiologyUniversity of Alberta Edmonton Alberta Canada
| | | |
Collapse
|
4
|
Maclean AE, Kimonis VE, Balk J. Pathogenic mutations in NUBPL affect complex I activity and cold tolerance in the yeast model Yarrowia lipolytica. Hum Mol Genet 2019; 27:3697-3709. [PMID: 29982452 PMCID: PMC6196649 DOI: 10.1093/hmg/ddy247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/22/2018] [Indexed: 11/26/2022] Open
Abstract
Complex I deficiency is a common cause of mitochondrial disease, resulting from mutations in genes encoding structural subunits, assembly factors or defects in mitochondrial gene expression. Advances in genetic diagnostics and sequencing have led to identification of several variants in NUBPL (nucleotide binding protein-like), encoding an assembly factor of complex I, which are potentially pathogenic. To help assign pathogenicity and learn more about the function of NUBPL, amino acid substitutions were recreated in the homologous Ind1 protein of the yeast model Yarrowia lipolytica. Leu102Pro destabilized the Ind1 protein, leading to a null-mutant phenotype. Asp103Tyr, Leu191Phe and Gly285Cys affected complex I assembly to varying degrees, whereas Gly136Asp substitution in Ind1 did not impact on complex I levels nor dNADH:ubiquinone activity. Blue-native polyacrylamide gel electrophoresis and immunolabelling of the structural subunits NUBM and NUCM revealed that all Ind1 variants accumulated a Q module intermediate of complex I. In the Ind1 Asp103Tyr variant, the matrix arm intermediate was virtually absent, indicating a dominant effect. Dysfunction of Ind1, but not absence of complex I, rendered Y. lipolytica sensitive to cold. The Ind1 Gly285Cys variant was able to support complex I assembly at 28°C, but not at 10°C. Our results indicate that Ind1 is required for progression of assembly from the Q module to the full matrix arm. Cold sensitivity could be developed as a phenotype assay to demonstrate pathogenicity of NUBPL mutations and other complex I defects.
Collapse
Affiliation(s)
- Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK.,School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Virginia E Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, USA.,Children's Hospital of Orange County, Orange, CA, USA
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK.,School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
5
|
Salewski J, Batista AP, Sena FV, Millo D, Zebger I, Pereira MM, Hildebrandt P. Substrate-Protein Interactions of Type II NADH:Quinone Oxidoreductase from Escherichia coli. Biochemistry 2016; 55:2722-34. [PMID: 27109164 DOI: 10.1021/acs.biochem.6b00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains and responsible for the maintenance of NADH/NAD(+) balance in cells. NDH-2s are the only enzymes with NADH dehydrogenase activity present in the respiratory chain of many pathogens, and thus, they were proposed as suitable targets for antimicrobial therapies. In addition, NDH-2s were also considered key players for the treatment of complex I-related neurodegenerative disorders. In this work, we explored substrate-protein interaction in NDH-2 from Escherichia coli (EcNDH-2) combining surface-enhanced infrared absorption spectroscopic studies with electrochemical experiments, fluorescence spectroscopy assays, and quantum chemical calculations. Because of the specific stabilization of substrate complexes of EcNDH-2 immobilized on electrodes, it was possible to demonstrate the presence of two distinct substrate binding sites for NADH and the quinone and to identify a bound semiprotonated quinol as a catalytic intermediate.
Collapse
Affiliation(s)
- Johannes Salewski
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa , Av. da República EAN, P-2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa , Av. da República EAN, P-2780-157 Oeiras, Portugal
| | - Diego Millo
- Biomolecular Spectroscopy/LaserLaB Amsterdam, Vrije Universiteit Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Ingo Zebger
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa , Av. da República EAN, P-2780-157 Oeiras, Portugal
| | - Peter Hildebrandt
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
6
|
Chang J, Klute MJ, Tower RJ, Mast FD, Dacks JB, Rachubinski RA. An ancestral role in peroxisome assembly is retained by the divisional peroxin Pex11 in the yeast Yarrowia lipolytica. J Cell Sci 2015; 128:1327-40. [PMID: 25663700 DOI: 10.1242/jcs.157743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The peroxin Pex11 has a recognized role in peroxisome division. Pex11p remodels and elongates peroxisomal membranes prior to the recruitment of dynamin-related GTPases that act in membrane scission to divide peroxisomes. We performed a comprehensive comparative genomics survey to understand the significance of the evolution of the Pex11 protein family in yeast and other eukaryotes. Pex11p is highly conserved and ancestral, and has undergone numerous lineage-specific duplications, whereas other Pex11 protein family members are fungal-specific innovations. Functional characterization of the in-silico-predicted Pex11 protein family members of the yeast Yarrowia lipolytica, i.e. Pex11p, Pex11Cp and Pex11/25p, demonstrated that Pex11Cp and Pex11/25p have a role in the regulation of peroxisome size and number characteristic of Pex11 protein family members. Unexpectedly, deletion of PEX11 in Y. lipolytica produces cells that lack morphologically identifiable peroxisomes, mislocalize peroxisomal matrix proteins and preferentially degrade peroxisomal membrane proteins, i.e. they exhibit the classical pex mutant phenotype, which has not been observed previously in cells deleted for the PEX11 gene. Our results are consistent with an unprecedented role for Pex11p in de novo peroxisome assembly.
Collapse
Affiliation(s)
- Jinlan Chang
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Mary J Klute
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Robert J Tower
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Fred D Mast
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
7
|
The strictly aerobic yeast Yarrowia lipolytica tolerates loss of a mitochondrial DNA-packaging protein. EUKARYOTIC CELL 2014; 13:1143-57. [PMID: 24972935 DOI: 10.1128/ec.00092-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA (mtDNA) is highly compacted into DNA-protein structures termed mitochondrial nucleoids (mt-nucleoids). The key mt-nucleoid components responsible for mtDNA condensation are HMG box-containing proteins such as mammalian mitochondrial transcription factor A (TFAM) and Abf2p of the yeast Saccharomyces cerevisiae. To gain insight into the function and organization of mt-nucleoids in strictly aerobic organisms, we initiated studies of these DNA-protein structures in Yarrowia lipolytica. We identified a principal component of mt-nucleoids in this yeast and termed it YlMhb1p (Y. lipolytica mitochondrial HMG box-containing protein 1). YlMhb1p contains two putative HMG boxes contributing both to DNA binding and to its ability to compact mtDNA in vitro. Phenotypic analysis of a Δmhb1 strain lacking YlMhb1p resulted in three interesting findings. First, although the mutant exhibits clear differences in mt-nucleoids accompanied by a large decrease in the mtDNA copy number and the number of mtDNA-derived transcripts, its respiratory characteristics and growth under most of the conditions tested are indistinguishable from those of the wild-type strain. Second, our results indicate that a potential imbalance between subunits of the respiratory chain encoded separately by nuclear DNA and mtDNA is prevented at a (post)translational level. Third, we found that mtDNA in the Δmhb1 strain is more prone to mutations, indicating that mtHMG box-containing proteins protect the mitochondrial genome against mutagenic events.
Collapse
|
8
|
Investigating the function of [2Fe-2S] cluster N1a, the off-pathway cluster in complex I, by manipulating its reduction potential. Biochem J 2013; 456:139-46. [PMID: 23980528 PMCID: PMC3898324 DOI: 10.1042/bj20130606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
NADH:quinone oxidoreductase (complex I) couples NADH oxidation and quinone reduction to proton translocation across an energy-transducing membrane. All complexes I contain a flavin to oxidize NADH, seven iron–sulfur clusters to transfer electrons from the flavin to quinone and an eighth cluster (N1a) on the opposite side of the flavin. The role of cluster N1a is unknown, but Escherichia coli complex I has an unusually high-potential cluster N1a and its reduced flavin produces H2O2, not superoxide, suggesting that cluster N1a may affect reactive oxygen species production. In the present study, we combine protein film voltammetry with mutagenesis in overproduced N1a-binding subunits to identify two residues that switch N1a between its high- (E. coli, valine and asparagine) and low- (Bos taurus and Yarrowia lipolytica, proline and methionine) potential forms. The mutations were incorporated into E. coli complex I: cluster N1a could no longer be reduced by NADH, but H2O2 and superoxide production were unaffected. The reverse mutations (that increase the potential by ~0.16 V) were incorporated into Y. lipolytica complex I, but N1a was still not reduced by NADH. We conclude that cluster N1a does not affect reactive oxygen species production by the complex I flavin; it is probably required for enzyme assembly or stability. Two residues that determine the potential of cluster N1a in respiratory complex I were identified, and their effects on its flavin-site reactions were determined. Reduction of cluster N1a by NADH does not affect reactive oxygen species production by the flavin.
Collapse
|
9
|
Chang J, Tower RJ, Lancaster DL, Rachubinski RA. Dynein light chain interaction with the peroxisomal import docking complex modulates peroxisome biogenesis in yeast. J Cell Sci 2013; 126:4698-706. [PMID: 23943868 DOI: 10.1242/jcs.129056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynein is a large macromolecular motor complex that moves cargo along microtubules. A motor-independent role for the light chain of dynein, Dyn2p, in peroxisome biology in Saccharomyces cerevisiae was suggested from its interaction with Pex14p, a component of the peroxisomal matrix protein import docking complex. Here we show that cells of the yeast Yarrowia lipolytica deleted for the gene encoding the homologue of Dyn2p are impaired in peroxisome function and biogenesis. These cells exhibit compromised growth on medium containing oleic acid as the carbon source, the metabolism of which requires functional peroxisomes. Their peroxisomes have abnormal morphology, atypical matrix protein localization, and an absence of proteolytic processing of the matrix enzyme thiolase, which normally occurs upon its import into the peroxisome. We also show physical and genetic interactions between Dyn2p and members of the docking complex, particularly Pex17p. Together, our results demonstrate a role for Dyn2p in the assembly of functional peroxisomes and provide evidence that Dyn2p acts in cooperation with the peroxisomal matrix protein import docking complex to effect optimal matrix protein import.
Collapse
Affiliation(s)
- Jinlan Chang
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
10
|
Wydro MM, Balk J. Insights into the pathogenic character of a common NUBPL branch-site mutation associated with mitochondrial disease and complex I deficiency using a yeast model. Dis Model Mech 2013; 6:1279-84. [PMID: 23828044 PMCID: PMC3759347 DOI: 10.1242/dmm.012682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Complex I deficiencies are the most common causes of mitochondrial disorders. They can result from mutations not only in the structural subunits but also in a growing number of known assembly factors. A branch-site mutation in the human gene encoding assembly factor NUBPL has recently been associated with mitochondrial encephalopathy and complex I deficiency in seven independent cases. Moreover, the mutation is present in 1.2% of European haplotypes. To investigate its pathogenicity, we have reconstructed the altered C-terminus that results from the branch-site mutation and frameshift in the homologous Ind1 protein in the respiratory yeast Yarrowia lipolytica. We demonstrate that the altered sequence did not affect IND1 mRNA stability, yet it led to a decrease in Ind1 protein level. The instability of mutant Ind1 resulted in a strong decrease in complex I activity and caused slow growth, resembling the phenotype of the deletion strain of IND1. The presented data confirms the deleterious impact of the altered C-terminus resulting from the branch-site mutation. Furthermore, our approach demonstrates the great potential of Y. lipolytica as a model to investigate complex I deficiencies, especially in cases with genetic complexity.
Collapse
Affiliation(s)
- Mateusz M Wydro
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | |
Collapse
|
11
|
Characterization of an internal type-II NADH dehydrogenase from Chlamydomonas reinhardtii mitochondria. Curr Genet 2012; 58:205-16. [PMID: 22814755 DOI: 10.1007/s00294-012-0378-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 05/22/2012] [Accepted: 07/04/2012] [Indexed: 12/28/2022]
Abstract
Type-II NAD(P)H dehydrogenases form a multigene family that comprise six members in the green microalga Chlamydomonas. To date, only one enzyme (Nda2) located in the chloroplast has been characterized in this alga and demonstrated to participate in the reduction of the plastoquinone pool. We present here the functional characterization of Nda1. The enzyme is located on the inner face of the inner mitochondrial membrane. Its downregulation leads to a slight decrease of NADH:ferricyanide activity and of dark whole cell respiration. To determine whether the reduction of Nda1 combined with the lack of complex I would affect mitochondrial processes, double mutants affected in both Nda1 and complex I were isolated. Respiration and growth rates in heterotrophic conditions were significantly altered in the double mutants investigated, suggesting that Nda1 plays a role in the oxidation of matrix NADH in the absence of complex I.
Collapse
|
12
|
Guerrero-Castillo S, Cabrera-Orefice A, Vázquez-Acevedo M, González-Halphen D, Uribe-Carvajal S. During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:353-62. [PMID: 22138628 DOI: 10.1016/j.bbabio.2011.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/01/2022]
Abstract
In the branched mitochondrial respiratory chain from Yarrowia lipolytica there are two alternative oxido-reductases that do not pump protons, namely an external type II NADH dehydrogenase (NDH2e) and the alternative oxidase (AOX). Direct electron transfer between these proteins is not coupled to ATP synthesis and should be avoided in most physiological conditions. However, under low energy-requiring conditions an uncoupled high rate of oxygen consumption would be beneficial, as it would prevent overproduction of reactive oxygen species (ROS). In mitochondria from high energy-requiring, logarithmic-growth phase cells, most NDH2e was associated to cytochrome c oxidase and electrons from NADH were channeled to the cytochromic pathway. In contrast, in the low energy requiring, late stationary-growth phase, complex IV concentration decreased, the cells overexpressed NDH2e and thus a large fraction of this enzyme was found in a non-associated form. Also, the NDH2e-AOX uncoupled pathway was activated and the state IV external NADH-dependent production of ROS decreased. Association/dissociation of NDH2e to/from complex IV is proposed to be the switch that channels electrons from external NADH to the coupled cytochrome pathway or allows them to reach an uncoupled, alternative, ΔΨ-independent pathway.
Collapse
|
13
|
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 2010; 140:631-42. [PMID: 20211133 DOI: 10.1016/j.cell.2010.01.032] [Citation(s) in RCA: 353] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/17/2009] [Accepted: 01/15/2010] [Indexed: 12/18/2022]
Abstract
Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.
Collapse
Affiliation(s)
- Lillian K Fritz-Laylin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dobrynin K, Abdrakhmanova A, Richers S, Hunte C, Kerscher S, Brandt U. Characterization of two different acyl carrier proteins in complex I from Yarrowia lipolytica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:152-9. [DOI: 10.1016/j.bbabio.2009.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/04/2009] [Accepted: 09/10/2009] [Indexed: 11/30/2022]
|
15
|
Chang J, Mast FD, Fagarasanu A, Rachubinski DA, Eitzen GA, Dacks JB, Rachubinski RA. Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors. ACTA ACUST UNITED AC 2009; 187:233-46. [PMID: 19822674 PMCID: PMC2768826 DOI: 10.1083/jcb.200902117] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pex3 links peroxisome formation and inheritance. By binding to class V myosin, biogenesis protein Pex3 also directs the organelles into daughter cells. In Saccharomyces cerevisiae, peroxisomal inheritance from mother cell to bud is conducted by the class V myosin motor, Myo2p. However, homologues of S. cerevisiae Myo2p peroxisomal receptor, Inp2p, are not readily identifiable outside the Saccharomycetaceae family. Here, we demonstrate an unexpected role for Pex3 proteins in peroxisome inheritance. Both Pex3p and Pex3Bp are peroxisomal integral membrane proteins that function as peroxisomal receptors for class V myosin through direct interaction with the myosin globular tail. In cells lacking Pex3Bp, peroxisomes are preferentially retained by the mother cell, whereas most peroxisomes gather and are transferred en masse to the bud in cells overexpressing Pex3Bp or Pex3p. Our results reveal an unprecedented role for members of the Pex3 protein family in peroxisome motility and inheritance in addition to their well-established role in peroxisome biogenesis at the endoplasmic reticulum. Our results point to a temporal link between peroxisome formation and inheritance and delineate a general mechanism of peroxisome inheritance in eukaryotic cells.
Collapse
Affiliation(s)
- Jinlan Chang
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:75-85. [PMID: 19038229 DOI: 10.1016/j.bbabio.2008.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 11/21/2022]
Abstract
In Yarrowia lipolytica, mitochondria contain a branched respiratory chain constituted by the classic complexes I, II, III and IV, plus an alternative external NADH dehydrogenase (NDH2e) and an alternative oxidase (AOX). The alternative enzymes are peripheral, single-subunit oxido-reductases that do not pump protons. Thus, the oxidation of NADH via NDH2e-ubiquinone-AOX would not contribute to the proton-motive force. The futile oxidation of NADH may be prevented if either NDH2e or AOX bind to the classic complexes, channelling electrons. By oxymetry, it was observed that the electrons from complex I reached both cytochrome oxidase and AOX. In contrast, NDH2e-derived electrons were specifically channelled/directed to the cytochrome complexes. In addition, the presence of respiratory supercomplexes plus the interaction of NDH2e with these complexes was evaluated using blue native PAGE, clear native PAGE, in-gel activities, immunoblotting, mass spectrometry, and N-terminal sequencing. NDH2e (but not the redirected matrix NDH2i from a mutant strain, Deltanubm) was detected in association with the cytochromic pathway; this interaction seems to be strong, as it was not disrupted by laurylmaltoside. The association of NDH2e to complex IV was also suggested when both enzymes coeluted from an ion exchange chromatography column. In Y. lipolytica mitochondria the cytochrome complexes probably associate into supercomplexes; those were assigned as follows: I-III(2), I-IV, I-III(2)-IV(4), III(2)-IV, III(2)-IV(2), IV(2) and V(2). The molecular masses of all the complexes and putative supercomplexes detected in Y. lipolytica were estimated by comparison with the bovine mitochondrial complexes. To our knowledge, this is the first evidence of supercomplex formation in Y. lipolytica mitochondria and also, the first description of a specific association between an alternative NADH dehydrogenase and the classic cytochrome pathway.
Collapse
|
17
|
The Toxoplasma gondii type-II NADH dehydrogenase TgNDH2-I is inhibited by 1-hydroxy-2-alkyl-4(1H)quinolones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1455-62. [DOI: 10.1016/j.bbabio.2008.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 11/22/2022]
|
18
|
Martins VP, Soriani FM, Magnani T, Tudella VG, Goldman GH, Curti C, Uyemura SA. Mitochondrial function in the yeast form of the pathogenic fungus Paracoccidioides brasiliensis. J Bioenerg Biomembr 2008; 40:297-305. [PMID: 18797987 DOI: 10.1007/s10863-008-9163-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/29/2008] [Indexed: 11/26/2022]
Abstract
Differences between the respiratory chain of the fungus Paracoccidioides brasiliensis and its mammalian host are reported. Respiration, membrane potential, and oxidative phosphorylation in mitochondria from P. brasiliensis spheroplasts were evaluated in situ, and the presence of a complete (Complex I-V) functional respiratory chain was demonstrated. In succinate-energized mitochondria, ADP induced a transition from resting to phosphorylating respiration. The presence of an alternative NADH-ubiquinone oxidoreductase was indicated by: (i) the ability to oxidize exogenous NADH and (ii) the lack of sensitivity to rotenone and presence of sensitivity to flavone. Malate/NAD(+)-supported respiration suggested the presence of either a mitochondrial pyridine transporter or a glyoxylate pathway contributing to NADH and/or succinate production. Partial sensitivity of NADH/succinate-supported respiration to antimycin A and cyanide, as well as sensitivity to benzohydroxamic acids, suggested the presence of an alternative oxidase in the yeast form of the fungus. An increase in activity and gene expression of the alternative NADH dehydrogenase throughout the yeast's exponential growth phase was observed. This increase was coupled with a decrease in Complex I activity and gene expression of its subunit 6. These results support the existence of alternative respiratory chain pathways in addition to Complex I, as well as the utilization of NADH-linked substrates by P. brasiliensis. These specific components of the respiratory chain could be useful for further research and development of pharmacological agents against the fungus.
Collapse
Affiliation(s)
- Vicente P Martins
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process. Mol Genet Genomics 2008; 280:93-110. [DOI: 10.1007/s00438-008-0350-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 05/01/2008] [Indexed: 10/21/2022]
|
20
|
Lin PC, Puhar A, Steuber J. NADH oxidation drives respiratory Na+ transport in mitochondria from Yarrowia lipolytica. Arch Microbiol 2008; 190:471-80. [PMID: 18551278 DOI: 10.1007/s00203-008-0395-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 04/29/2008] [Accepted: 05/26/2008] [Indexed: 10/22/2022]
Abstract
It is generally assumed that respiratory complexes exclusively use protons to energize the inner mitochondrial membrane. Here we show that oxidation of NADH by submitochondrial particles (SMPs) from the yeast Yarrowia lipolytica is coupled to protonophore-resistant Na+ uptake, indicating that a redox-driven, primary Na+ pump is operative in the inner mitochondrial membrane. By purification and reconstitution into proteoliposomes, a respiratory NADH dehydrogenase was identified which coupled NADH-dependent reduction of ubiquinone (1.4 micromol min(-1) mg(-1)) to Na+ translocation (2.0 micromol min(-1) mg(-1)). NADH-driven Na+ transport was sensitive towards rotenone, a specific inhibitor of complex I. We conclude that mitochondria from Y. lipolytica contain a NADH-driven Na+ pump and propose that it represents the complex I of the respiratory chain. Our study indicates that energy conversion by mitochondria does not exclusively rely on the proton motive force but may benefit from the electrochemical Na+ gradient established by complex I.
Collapse
Affiliation(s)
- Po-Chi Lin
- Biochemisches Institut, Universität Zürich, 8057, Zurich, Switzerland
| | | | | |
Collapse
|
21
|
The iron-sulphur protein Ind1 is required for effective complex I assembly. EMBO J 2008; 27:1736-46. [PMID: 18497740 DOI: 10.1038/emboj.2008.98] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/28/2008] [Indexed: 01/06/2023] Open
Abstract
NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial inner membrane is a multi-subunit protein complex containing eight iron-sulphur (Fe-S) clusters. Little is known about the assembly of complex I and its Fe-S clusters. Here, we report the identification of a mitochondrial protein with a nucleotide-binding domain, named Ind1, that is required specifically for the effective assembly of complex I. Deletion of the IND1 open reading frame in the yeast Yarrowia lipolytica carrying an internal alternative NADH dehydrogenase resulted in slower growth and strongly decreased complex I activity, whereas the activities of other mitochondrial Fe-S enzymes, including aconitase and succinate dehydrogenase, were not affected. Two-dimensional gel electrophoresis, in vitro activity tests and electron paramagnetic resonance signals of Fe-S clusters showed that only a minor fraction (approximately 20%) of complex I was assembled in the ind1 deletion mutant. Using in vivo and in vitro approaches, we found that Ind1 can bind a [4Fe-4S] cluster that was readily transferred to an acceptor Fe-S protein. Our data suggest that Ind1 facilitates the assembly of Fe-S cofactors and subunits of complex I.
Collapse
|
22
|
Protein Structure. Biophys J 2008. [DOI: 10.1016/s0006-3495(08)79169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Lenaz G, Fato R, Formiggini G, Genova ML. The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion 2007; 7 Suppl:S8-33. [PMID: 17485246 DOI: 10.1016/j.mito.2007.03.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 03/20/2007] [Accepted: 03/22/2007] [Indexed: 12/21/2022]
Abstract
In mitochondria, most Coenzyme Q is free in the lipid bilayer; the question as to whether tightly bound, non-exchangeable Coenzyme Q molecules exist in mitochondrial complexes is still an open question. We review the mechanism of inter-complex electron transfer mediated by ubiquinone and discuss the kinetic consequences of the supramolecular organization of the respiratory complexes (randomly dispersed vs. super-complexes) in terms of Coenzyme Q pool behavior vs. metabolic channeling, respectively, both in physiological and in some pathological conditions. As an example of intra-complex electron transfer, we discuss in particular Complex I, a topic that is still under active investigation.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica, Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|
24
|
Kerscher S, Dröse S, Zickermann V, Brandt U. The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ 2007; 45:185-222. [PMID: 17514372 DOI: 10.1007/400_2007_028] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Most reducing equivalents extracted from foodstuffs during oxidative metabolism are fed into the respiratory chains of aerobic bacteria and mitochondria by NADH:quinone oxidoreductases. Three families of enzymes can perform this task and differ remarkably in their complexity and role in energy conversion. Alternative or NDH-2-type NADH dehydrogenases are simple one subunit flavoenzymes that completely dissipate the redox energy of the NADH/quinone couple. Sodium-pumping NADH dehydrogenases (Nqr) that are only found in procaryotes contain several flavins and are integral membrane protein complexes composed of six different subunits. Proton-pumping NADH dehydrogenases (NDH-1 or complex I) are highly complicated membrane protein complexes, composed of up to 45 different subunits, that are found in bacteria and mitochondria. This review gives an overview of the origin, structural and functional properties and physiological significance of these three types of NADH dehydrogenase.
Collapse
Affiliation(s)
- Stefan Kerscher
- Molecular Bioenergetics Group, Centre of Excellence Macromolecular Complexes, Johann Wolfgang Goethe-Universität, 60590, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
25
|
Garofano A, Eschemann A, Brandt U, Kerscher S. Substrate-inducible versions of internal alternative NADH: ubiquinone oxidoreductase from Yarrowia lipolytica. Yeast 2007; 23:1129-36. [PMID: 17133620 DOI: 10.1002/yea.1426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In standard laboratory strains of the obligate aerobic yeast Yarrowia lipolytica, respiratory chain complex I (proton-translocating NADH : ubiquinone oxidoreductase) is an essential enzyme, since alternative NADH dehydrogenase activity is located exclusively at the external face of the mitochondrial inner membrane. Deletions and other loss-of-function mutations in genes for nuclear coded subunits of complex I can be obtained only when an internal version of the latter enzyme, termed NDH2i, is introduced. In contrast to recent findings with Neurospora crassa, external alternative NADH dehydrogenase activity is dispensable in complex I deletion strains of Y. lipolytica. We used regulable promoters to create strains which express internal alternative NADH dehydrogenase in a substrate-dependent manner. The ability to switch between complex I-dependent and -independent mode of growth simply by changing the carbon source is an important prerequisite for screens for both loss-of-function and inhibitor resistance mutation. The isocitrate lyase promoter (pICL1), in combination with a NDH2i allele that results in reduced expression and activity, was most promising. In the presence of complex I inhibitors, this construct allowed growth on acetate, but not on glucose minimal media. A somewhat higher background was observed with the acyl-CoA oxidase 2 (pPOX2) promoter on glucose minimal media.
Collapse
Affiliation(s)
- Aurelio Garofano
- Universität Frankfurt, Fachbereich Medizin, Zentrum der Biologischen Chemie, Theodor-Stern-Kai 7, Haus 26, 60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
26
|
Schwimmer C, Rak M, Lefebvre-Legendre L, Duvezin-Caubet S, Plane G, di Rago JP. Yeast models of human mitochondrial diseases: from molecular mechanisms to drug screening. Biotechnol J 2006; 1:270-81. [PMID: 16897707 DOI: 10.1002/biot.200500053] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mitochondrial diseases are rare diseases most often linked to energy in the form of ATP-depletion. The high number of nuclear- and mitochondrial-DNA-encoded proteins (>500), required for ATP production and other crucial mitochondrial functions such as NADH re-oxidation, explains the increasing number of reported disorders. In recent years, yeast has revealed to be a powerful model to identify responsible genes, to study primary effects of pathogenic mutations and to determine the molecular mechanisms leading to mitochondrial disorders. However, the clinical management of patients with mitochondrial disorders is still essentially supportive. Here we review some of the most fruitful yeast mitochondrial disorder models and propose to subject these models to highthroughput chemical library screening to prospect new therapeutic drugs against mitochondrial diseases.
Collapse
|
27
|
Abdrakhmanova A, Zwicker K, Kerscher S, Zickermann V, Brandt U. Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1676-82. [PMID: 17046710 DOI: 10.1016/j.bbabio.2006.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 11/18/2022]
Abstract
In addition to the 14 central subunits, respiratory chain complex I from the aerobic yeast Yarrowia lipolytica contains at least 24 accessory subunits, most of which are poorly characterized. Here we investigated the role of the accessory 39-kDa subunit which belongs to the heterogeneous short-chain dehydrogenase/reductase (SDR) enzyme family and contains non-covalently bound NADPH. Deleting the chromosomal copy of the gene that codes for the 39-kDa subunit drastically impaired complex I assembly in Y. lipolytica. We introduced several site-directed mutations into the nucleotide binding motif that severely reduced NADPH binding. This effect was most pronounced when the arginine at the end of the second beta-strand of the NADPH binding Rossman fold was replaced by leucine or aspartate. Mutations affecting nucleotide binding had only minor or moderate effects on specific catalytic activity in mitochondrial membranes but clearly destabilized complex I. One mutant exhibited a temperature sensitive phenotype and significant amounts of three different subcomplexes were observed even at more permissive temperature. We concluded that the 39-kDa subunit of Y. lipolytica plays a critical role in complex I assembly and stability and that the bound NADPH serves to stabilize the subunit and complex I as a whole rather than serving a catalytic function.
Collapse
Affiliation(s)
- Albina Abdrakhmanova
- Universität Frankfurt, Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
28
|
Radermacher M, Ruiz T, Clason T, Benjamin S, Brandt U, Zickermann V. The three-dimensional structure of complex I from Yarrowia lipolytica: a highly dynamic enzyme. J Struct Biol 2006; 154:269-79. [PMID: 16621601 PMCID: PMC1764498 DOI: 10.1016/j.jsb.2006.02.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 10/24/2022]
Abstract
The structure of complex I from Yarrowia lipolytica was determined by three-dimensional electron microscopy. A random conical data set was collected from deep stain embedded particles. More than 14000 image pairs were analyzed. Through extensive classification combined with three-dimensional reconstruction, it was possible for the first time to show a much more detailed substructure of the complex. The peripheral arm is subdivided in at least six domains. The membrane arm shows two major protrusions on its matrix facing side and exhibits a channel like feature on the side facing the cytoplasm. Structures resembling a tether connecting the subunits near the catalytic center with the protrusions of the membrane arm provide a second connection between matrix and membrane domain.
Collapse
Affiliation(s)
- M Radermacher
- University of Vermont, College of Medicine, Department of Molecular Physiology and Biophysics, Burlington, VT, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Brandt U, Abdrakhmanova A, Zickermann V, Galkin A, Dröse S, Zwicker K, Kerscher S. Structure-function relationships in mitochondrial complex I of the strictly aerobic yeast Yarrowia lipolytica. Biochem Soc Trans 2005; 33:840-4. [PMID: 16042611 DOI: 10.1042/bst0330840] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The obligate aerobic yeast Yarrowia lipolytica has been established as a powerful model system for the analysis of mitochondrial complex I. Using a combination of genomic and proteomic approaches, a total of 37 subunits was identified. Several of the accessory subunits are predicted to be STMD (single transmembrane domain) proteins. Site-directed mutagenesis of Y. lipolytica complex I has provided strong evidence that a significant part of the ubiquinone reducing catalytic core resides in the 49 kDa and PSST subunits and can be modelled using X-ray structures of distantly related enzymes, i.e. water-soluble [NiFe] hydrogenases from Desulfovibrio spp. Iron-sulphur cluster N2, which is related to the hydrogenase proximal cluster, is directly involved in quinone reduction. Mutagenesis of His226 and Arg141 of the 49 kDa subunit provided detailed insight into the structure-function relationships around cluster N2. Overall, our findings suggest that proton pumping by complex I employs long-range conformational interactions and ubiquinone intermediates play a critical role in this mechanism.
Collapse
Affiliation(s)
- U Brandt
- Universität Frankfurt, Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Melo AMP, Bandeiras TM, Teixeira M. New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol Mol Biol Rev 2005; 68:603-16. [PMID: 15590775 PMCID: PMC539002 DOI: 10.1128/mmbr.68.4.603-616.2004] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type II NAD(P)H:quinone oxidoreductases (NDH-2) catalyze the two-electron transfer from NAD(P)H to quinones, without any energy-transducing site. NDH-2 accomplish the turnover of NAD(P)H, regenerating the NAD(P)(+) pool, and may contribute to the generation of a membrane potential through complexes III and IV. These enzymes are usually constituted by a nontransmembrane polypeptide chain of approximately 50 kDa, containing a flavin moiety. There are a few compounds that can prevent their activity, but so far no general specific inhibitor has been assigned to these enzymes. However, they have the common feature of being resistant to the complex I classical inhibitors rotenone, capsaicin, and piericidin A. NDH-2 have particular relevance in yeasts like Saccharomyces cerevisiae and in several prokaryotes, whose respiratory chains are devoid of complex I, in which NDH-2 keep the balance and are the main entry point of electrons into the respiratory chains. Our knowledge of these proteins has expanded in the past decade, as a result of contributions at the biochemical level and the sequencing of the genomes from several organisms. The latter showed that most organisms contain genes that potentially encode NDH-2. An overview of this development is presented, with special emphasis on microbial enzymes and on the identification of three subfamilies of NDH-2.
Collapse
Affiliation(s)
- Ana M P Melo
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | |
Collapse
|
31
|
Kerscher S, Grgic L, Garofano A, Brandt U. Application of the yeast Yarrowia lipolytica as a model to analyse human pathogenic mutations in mitochondrial complex I (NADH:ubiquinone oxidoreductase). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1659:197-205. [PMID: 15576052 DOI: 10.1016/j.bbabio.2004.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 07/08/2004] [Accepted: 07/26/2004] [Indexed: 12/21/2022]
Abstract
While diagnosis and genetic analysis of mitochondrial disorders has made remarkable progress, we still do not understand how given molecular defects are correlated to specific patterns of symptoms and their severity. Towards resolving this dilemma for the largest and therefore most affected respiratory chain enzyme, we have established the yeast Yarrowia lipolytica as a eucaryotic model system to analyse respiratory chain complex I. For in vivo analysis, eYFP protein was attached to the 30-kDa subunit to visualize complex I and mitochondria. Deletions strains for nuclear coded subunits allow the reconstruction of patient alleles by site-directed mutagenesis and plasmid complementation. In most of the pathogenic mutations analysed so far, decreased catalytic activities, elevated K(M) values, and/or elevated I(50) values for quinone-analogous inhibitors were observed, providing plausible clues on the pathogenic process at the molecular level. Leigh mutations in the 49-kDa and PSST homologous subunits are found in regions that are at the boundaries of the ubiquinone-reducing catalytic core. This supports the proposed structural model and at the same time identifies novel domains critical for catalysis. Thus, Y. lipolytica is a useful lower eucaryotic model that will help to understand how pathogenic mutations in complex I interfere with enzyme function.
Collapse
Affiliation(s)
- Stefan Kerscher
- Johann Wolfgang Goethe, Universität Frankfurt, Fachbereich Medizin, Institut für Biochemie I, ZBC, Molekulaire Bioenergetik, Theodor-Stern-Kai 7, Haus 25B, Frankfurt am Main, D-60590, Germany
| | | | | | | |
Collapse
|
32
|
Waletko A, Zwicker K, Abdrakhmanova A, Zickermann V, Brandt U, Kerscher S. Histidine 129 in the 75-kDa subunit of mitochondrial complex I from Yarrowia lipolytica is not a ligand for [Fe4S4] cluster N5 but is required for catalytic activity. J Biol Chem 2004; 280:5622-5. [PMID: 15572358 DOI: 10.1074/jbc.m411488200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Respiratory chain complex I contains 8-9 iron-sulfur clusters. In several cases, the assignment of these clusters to subunits and binding motifs is still ambiguous. To test the proposed ligation of the tetranuclear iron-sulfur cluster N5 of respiratory chain complex I, we replaced the conserved histidine 129 in the 75-kDa subunit from Yarrowia lipolytica with alanine. In the mutant strain, reduced amounts of fully assembled but destabilized complex I could be detected. Deamino-NADH: ubiquinone oxidoreductase activity was abolished completely by the mutation. However, EPR spectroscopic analysis of mutant complex I exhibited an unchanged cluster N5 signal, excluding histidine 129 as a cluster N5 ligand.
Collapse
Affiliation(s)
- Antje Waletko
- Universität Frankfurt, Fachbereich Medizin, Institut für Biochemie I, F-60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Eschemann A, Galkin A, Oettmeier W, Brandt U, Kerscher S. HDQ (1-hydroxy-2-dodecyl-4(1H)quinolone), a high affinity inhibitor for mitochondrial alternative NADH dehydrogenase: evidence for a ping-pong mechanism. J Biol Chem 2004; 280:3138-42. [PMID: 15533932 DOI: 10.1074/jbc.m411217200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative NADH dehydrogenases (NADH:ubiquinone oxidoreductases) are single subunit respiratory chain enzymes found in plant and fungal mitochondria and in many bacteria. It is unclear how these peripheral membrane proteins interact with their hydrophobic substrate ubiquinone. Known inhibitors of alternative NADH dehydrogenases bind with rather low affinities. We have identified 1-hydroxy-2-dodecyl-4(1H)quinolone as a high affinity inhibitor of alternative NADH dehydrogenase from Yarrowia lipolytica. Using this compound, we have analyzed the bisubstrate and inhibition kinetics for NADH and decylubiquinone. We found that the kinetics of alternative NADH dehydrogenase follow a ping-pong mechanism. This suggests that NADH and the ubiquinone headgroup interact with the same binding pocket in an alternating fashion.
Collapse
Affiliation(s)
- Andrea Eschemann
- Universität Frankfurt, Fachbereich Medizin, Institut für Biochemie I, Frankfurt am Main D-60490, Germany
| | | | | | | | | |
Collapse
|
34
|
Kerscher S, Bénit P, Abdrakhmanova A, Zwicker K, Rais I, Karas M, Rustin P, Brandt U. Processing of the 24 kDa subunit mitochondrial import signal is not required for assembly of functional complex I in Yarrowia lipolytica. ACTA ACUST UNITED AC 2004; 271:3588-95. [PMID: 15317595 DOI: 10.1111/j.0014-2956.2004.04296.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A small deletion in the second intron of human NDUFV2 (IVS2+5_+8delGTAA) has been shown to cause hypertrophic cardiomyopathy and encephalomyopathy [Bénit, P., Beugnot, R., Chretien, D., Giurgea, I., de Lonlay-Debeney, P., Issartel, J.P., Kerscher, S., Rustin, P., Rötig, A. & Munnich, A. (2003) Human Mutat.21, 582-586]. Skipping of exon 2 results in a partial deletion of the mitochondrial targeting sequence of the precursor for the 24 kDa subunit of respiratory chain complex I. Immunoreactivity of the 24 kDa subunit and complex I activity, both present at 30-50% of normal levels in patient mitochondria, raised the question of how the mutant 24 kDa subunit precursor can be imported and assembled into functional complex I. In the present study, we have remodelled the human NDUFV2 mutation by deleting codons 17-32 from the orthologous NUHM gene of the obligate aerobic yeast Yarrowia lipolytica. The resulting mutant enzyme was indistinguishable from parental complex I with regard to activity, inhibitor sensitivity and EPR signature. Size, isoelectric point and presumably also N-terminal acetylation were altered, indicating that the residual targeting sequence was retained on the mature 24 kDa protein. Complete removal of the NUHM presequence resulted in the absence of complex I activity, strongly arguing against the presence of an internal mitochondrial targeting sequence within the 24 kDa protein.
Collapse
Affiliation(s)
- Stefan Kerscher
- Universität Frankfurt, Fachbereich Medizin, Institut für Biochemie I, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM. New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 2004; 55:727-37. [PMID: 14607415 DOI: 10.1016/j.mimet.2003.07.003] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Yarrowia lipolytica is one of the most extensively studied nonconventional yeasts. Unfortunately, few methods for gene disruption have been reported for this yeast, and all of them are time-consuming and laborious. The functional analysis of unknown genes requires powerful disruption methods. Here, we describe such a new method for rapid gene disruption in Y. lipolytica. This knockout system combines SEP method and the Cre-lox recombination system, facilitating efficient marker rescue. Versatility was increased by using both auxotrophic markers like ylURA3 and ylLEU2, as well as the antibiotic resistance marker hph. The hph marker, which confers resistance to hygromycin-B, allows gene disruption in a strain lacking any conventional auxothrophic marker. The disruption cassette was shown to integrate at the correct locus at an average frequency of 45%. Upon expression of Cre recombinase, the marker was excised at a frequency of 98%, by recombination between the two lox sites. This new method for gene disruption is an ideal tool for the functional analysis of gene families, or for creating large-scale mutant collections in general.
Collapse
Affiliation(s)
- P Fickers
- Laboratoire Microbiologie et Génétique Moleculaire, CNRS INRA INAP-G UMR2585, Institut National Agronomique Paris-Grignon, F-78850 Thiverval-Grignon, France
| | | | | | | | | |
Collapse
|
36
|
Rasmusson AG, Soole KL, Elthon TE. Alternative NAD(P)H dehydrogenases of plant mitochondria. ANNUAL REVIEW OF PLANT BIOLOGY 2004; 55:23-39. [PMID: 15725055 DOI: 10.1146/annurev.arplant.55.031903.141720] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant mitochondria have a highly branched electron transport chain that provides great flexibility for oxidation of cytosolic and matrix NAD(P)H. In addition to the universal electron transport chain found in many organisms, plants have alternative NAD(P)H dehydrogenases in the first part of the chain and a second oxidase, the alternative oxidase, in the latter part. The alternative activities are nonproton pumping and allow for NAD(P)H oxidation with varying levels of energy conservation. This provides a mechanism for plants to, for example, remove excess reducing power and balance the redox poise of the cell. This review presents our current understanding of the alternative NAD(P)H dehydrogenases present in plant mitochondria.
Collapse
Affiliation(s)
- Allan G Rasmusson
- Department of Cell and Organism Biology, Lund University, SE-223 62 Lund, Sweden.
| | | | | |
Collapse
|
37
|
Moore CS, Cook-Johnson RJ, Rudhe C, Whelan J, Day DA, Wiskich JT, Soole KL. Identification of AtNDI1, an internal non-phosphorylating NAD(P)H dehydrogenase in Arabidopsis mitochondria. PLANT PHYSIOLOGY 2003; 133:1968-78. [PMID: 14630960 PMCID: PMC300748 DOI: 10.1104/pp.103.029363] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 07/18/2003] [Accepted: 08/17/2003] [Indexed: 05/20/2023]
Abstract
Plant mitochondria contain non-phosphorylating NAD(P)H dehydrogenases (DHs) that are not found in animal mitochondria. The physiological function, substrate specificity, and location of enzymes within this family have yet to be conclusively determined. We have linked genome sequence information to protein and biochemical data to identify that At1g07180 (SwissProt Q8GWA1) from the Arabidopsis Genome Initiative database encodes AtNDI1, an internal NAD(P)H DH in Arabidopsis mitochondria. Three lines of evidence are presented: (a). The predicted protein sequence of AtNDI1 has high homology with other designated NAD(P)H DHs from microorganisms, (b). the capacity for matrix NAD(P)H oxidation via the rotenone-insensitive pathway is significantly reduced in the Atndi1 mutant plant line, and (c). the in vitro translation product of AtNDI1 is imported into isolated mitochondria and located on the inside of the inner membrane.
Collapse
Affiliation(s)
- Catherine S Moore
- School of Biological Sciences, Flinders University of South Australia, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Maklashina E, Kotlyar AB, Cecchini G. Active/de-active transition of respiratory complex I in bacteria, fungi, and animals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:95-103. [PMID: 14507430 DOI: 10.1016/s0005-2728(03)00087-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian complex I (NADH:ubiquinone oxidoreductase) exists as a mixture of interconvertible active (A) and de-activated (D) forms. The A-form is capable of NADH:quinone-reductase catalysis, but not the D-form. Complex I from the bacterium Paracoccus denitrificans, by contrast, exists only in the A-form. This bacterial complex contains 32 fewer subunits than the mammalian complex. The question arises therefore if the structural complexity of complex I from higher organisms correlates with its ability to undergo the A/D transition. In the present study, it was found that complex I from the bacterium Escherichia coli and from non-vertebrate organisms (earthworm, lobster, and cricket) did not show the A/D transitions. Vertebrate organisms (carp, frog, chicken), however, underwent similar A/D transitions to those of the well-characterized bovine complex I. Further studies showed that complex I from the lower eukaryotes, Neurospora crassa and Yarrowia lipolytica, exhibited very distinct A/D transitions with much lower activation barriers compared to the bovine enzyme. The A/D transitions of complex I as they relate to structure and regulation of enzymatic activity are discussed.
Collapse
Affiliation(s)
- Elena Maklashina
- Molecular Biology Division (151-S), VA Medical Center, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|
39
|
Garofano A, Zwicker K, Kerscher S, Okun P, Brandt U. Two aspartic acid residues in the PSST-homologous NUKM subunit of complex I from Yarrowia lipolytica are essential for catalytic activity. J Biol Chem 2003; 278:42435-40. [PMID: 12930834 DOI: 10.1074/jbc.m305819200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial proton-translocating NADH:ubiquinone oxidoreductase (complex I) couples the transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the mitochondrial inner membrane. Subunit PSST is the most likely carrier of iron-sulfur cluster N2, which has been proposed to play a crucial role in ubiquinone reduction and proton pumping. To explore the function of this subunit we have generated site-directed mutants of all eight highly conserved acidic residues in the Yarrowia lipolytica homologue, the NUKM protein. Mutants D99N and D115N had only 5 and 8% of the wild type catalytic activity, respectively. In both cases complex I was stably assembled but electron paramagnetic resonance spectra of the purified enzyme showed a reduced N2 signal (about 50%). In terms of complex I catalytic activity, almost identical results were obtained when the aspartates were individually changed to glutamates or to glycines. Mutations of other conserved acidic residues had less dramatic effects on catalytic activity and did not prevent assembly of iron-sulfur cluster N2. This excludes all conserved acidic residues in the PSST subunit as fourth ligands of this redox center. The results are discussed in the light of the structural similarities to the homologous small subunit of water-soluble [NiFe] hydrogenases.
Collapse
Affiliation(s)
- Aurelio Garofano
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Fachbereich Medizin, Gustav Embden Zentrum der Biologischen Chemie, Institut für Biochemie I, Theodor-Stern-Kai 7, Haus 25B, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
40
|
Functional genetics of Yarrowia lipolytica. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/3-540-37003-x_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
41
|
Bascom RA, Chan H, Rachubinski RA. Peroxisome biogenesis occurs in an unsynchronized manner in close association with the endoplasmic reticulum in temperature-sensitive Yarrowia lipolytica Pex3p mutants. Mol Biol Cell 2003; 14:939-57. [PMID: 12631715 PMCID: PMC151571 DOI: 10.1091/mbc.e02-10-0633] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 10/31/2002] [Accepted: 11/06/2002] [Indexed: 11/11/2022] Open
Abstract
Pex3p is a peroxisomal integral membrane protein required early in peroxisome biogenesis, and Pex3p-deficient cells lack identifiable peroxisomes. Two temperature-sensitive pex3 mutant strains of the yeast Yarrowia lipolytica were made to investigate the role of Pex3p in the early stages of peroxisome biogenesis. In glucose medium at 16 degrees C, these mutants underwent de novo peroxisome biogenesis and exhibited early matrix protein sequestration into peroxisome-like structures found at the endoplasmic reticulum-rich periphery of cells or sometimes associated with nuclei. The de novo peroxisome biogenesis seemed unsynchronized, with peroxisomes occurring at different stages of development both within cells and between cells. Cells with peripheral nascent peroxisomes and cells with structures morphologically distinct from peroxisomes, such as semi/circular tubular structures that immunostained with antibodies to peroxisomal matrix proteins and to the endoplasmic reticulum-resident protein Kar2p, and that surrounded lipid droplets, were observed during up-regulation of peroxisome biogenesis in cells incubated in oleic acid medium at 16 degrees C. These structures were not detected in wild-type or Pex3p-deficient cells. Their role in peroxisome biogenesis remains unclear. Targeting of peroxisomal matrix proteins to these structures suggests that Pex3p directly or indirectly sequesters components of the peroxisome biogenesis machinery. Such a role is consistent with Pex3p overexpression producing cells with fewer, larger, and clustered peroxisomes.
Collapse
Affiliation(s)
- Roger A Bascom
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
42
|
Videira A, Duarte M. From NADH to ubiquinone in Neurospora mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:187-91. [PMID: 12206913 DOI: 10.1016/s0005-2728(02)00276-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The respiratory chain of the mitochondrial inner membrane includes a proton-pumping enzyme, complex I, which catalyses electron transfer from NADH to ubiquinone. This electron pathway occurs through a series of protein-bound prosthetic groups, FMN and around eight iron-sulfur clusters. The high number of polypeptide subunits of mitochondrial complex I, around 40, have a dual genetic origin. Neurospora crassa has been a useful genetic model to characterise complex I. The characterisation of mutants in specific proteins helped to understand the elaborate processes of the biogenesis, structure and function of the oligomeric enzyme. In the fungus, complex I seems to be dispensable for vegetative growth but required for sexual development. N. crassa mitochondria also contain three to four nonproton-pumping alternative NAD(P)H dehydrogenases. One of them is located in the outer face of the inner mitochondrial membrane, working as a calcium-dependent oxidase of cytosolic NADPH.
Collapse
Affiliation(s)
- Arnaldo Videira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | |
Collapse
|
43
|
Kerscher S, Dröse S, Zwicker K, Zickermann V, Brandt U. Yarrowia lipolytica, a yeast genetic system to study mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:83-91. [PMID: 12206896 DOI: 10.1016/s0005-2728(02)00259-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The obligate aerobic yeast Yarrowia lipolytica is introduced as a powerful new model for the structural and functional analysis of mitochondrial complex I. A brief introduction into the biology and the genetics of this nonconventional yeast is given and the relevant genetic tools that have been developed in recent years are summarized. The respiratory chain of Y. lipolytica contains complexes I-IV, one "alternative" NADH-dehydrogenase (NDH2) and a non-heme alternative oxidase (AOX). Because the NADH binding site of NDH2 faces the mitochondrial intermembrane space rather than the matrix, complex I is an essential enzyme in Y. lipolytica. Nevertheless, complex I deletion strains could be generated by attaching the targeting sequence of a matrix protein, thereby redirecting NDH2 to the matrix side. Deletion strains for several complex I subunits have been constructed that can be complemented by shuttle plasmids carrying the deleted gene. Attachment of a hexa-histidine tag to the NUGM (30 kDa) subunit allows fast and efficient purification of complex I from Y. lipolytica by affinity-chromatography. The purified complex has lost most of its NADH:ubiquinone oxidoreductase activity, but is almost fully reactivated by adding 400-500 molecules of phosphatidylcholine per complex I. The established set of genetic tools has proven useful for the site-directed mutagenesis of individual subunits of Y. lipolytica complex I. Characterization of a number of mutations already allowed for the identification of several functionally important amino acids, demonstrating the usefulness of this approach.
Collapse
Affiliation(s)
- Stefan Kerscher
- Universitätsklinikum Frankfurt, Institut für Biochemie I, Zentrum der Biologischen Chemie, Theodor-Stern-Kai 7, Haus 25 B, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
44
|
Tam YYC, Rachubinski RA. Yarrowia lipolytica cells mutant for the PEX24 gene encoding a peroxisomal membrane peroxin mislocalize peroxisomal proteins and accumulate membrane structures containing both peroxisomal matrix and membrane proteins. Mol Biol Cell 2002; 13:2681-91. [PMID: 12181338 PMCID: PMC117934 DOI: 10.1091/mbc.e02-02-0117] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Peroxins are proteins required for peroxisome assembly and are encoded by the PEX genes. Functional complementation of the oleic acid-nonutilizing strain mut1-1 of the yeast Yarrowia lipolytica has identified the novel gene, PEX24. PEX24 encodes Pex24p, a protein of 550 amino acids (61,100 Da). Pex24p is an integral membrane protein of peroxisomes that exhibits high sequence homology to two hypothetical proteins encoded by the open reading frames YHR150W and YDR479C of the Saccharomyces cerevisiae genome. Pex24p is detectable in wild-type cells grown in glucose-containing medium, and its levels are significantly increased by incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. pex24 mutants are compromised in the targeting of both matrix and membrane proteins to peroxisomes. Although pex24 mutants fail to assemble functional peroxisomes, they do harbor membrane structures that contain subsets of peroxisomal proteins.
Collapse
Affiliation(s)
- Yuen Yi C Tam
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|