1
|
Herbertz M, Lohr J, Lohr C, Dobler S. Knockdown of Na,K-ATPase β-subunits in Oncopeltus fasciatus induces molting problems and alterations in tracheal morphology. INSECT SCIENCE 2023; 30:375-397. [PMID: 36102008 DOI: 10.1111/1744-7917.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitously expressed transmembrane enzyme Na,K-ATPase (NKA) is vital in maintaining functionality of cells. The association of α- and β-subunits is believed to be essential for forming a functional enzyme. In the large milkweed bug Oncopeltus fasciatus four α1-paralogs and four β-subunits exist that can associate into NKA complexes. This diversity raises the question of possible tissue-specific distribution and function. While the α1-subunits are known to modulate cardenolide-resistance and ion-transport efficiency, the functional importance of the β-subunits needed further investigation. We here characterize all four different β-subunits at the cellular, tissue, and whole organismal scales. A knockdown of different β-subunits heavily interferes with molting success resulting in strongly hampered phenotypes. The failure of ecdysis might be related to disrupted septate junction (SJ) formation, also reflected in β2-suppression-induced alteration in tracheal morphology. Our data further suggest the existence of isolated β-subunits forming homomeric or β-heteromeric complexes. This possible standalone and structure-specific distribution of the β-subunits predicts further, yet unknown pump-independent functions. The different effects caused by β knockdowns highlight the importance of the various β-subunits to fulfill tissue-specific requirements.
Collapse
Affiliation(s)
- Marlena Herbertz
- Division of Molecular Evolutionary Biology, Department of Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, 20146, Germany
| | - Jennifer Lohr
- Division of Molecular Evolutionary Biology, Department of Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, 20146, Germany
| | - Christian Lohr
- Division of Neurophysiology, Department of Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, 20146, Germany
| | - Susanne Dobler
- Division of Molecular Evolutionary Biology, Department of Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, 20146, Germany
| |
Collapse
|
2
|
Liu CC, Kim YJ, Teh R, Garcia A, Hamilton EJ, Cornelius F, Baxter RC, Rasmussen HH. Displacement of Native FXYD Protein From Na+/K+-ATPase With Novel FXYD Peptide Derivatives: Effects on Doxorubicin Cytotoxicity. Front Oncol 2022; 12:859216. [PMID: 35371992 PMCID: PMC8968713 DOI: 10.3389/fonc.2022.859216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The seven mammalian FXYD proteins associate closely with α/β heterodimers of Na+/K+-ATPase. Most of them protect the β1 subunit against glutathionylation, an oxidative modification that destabilizes the heterodimer and inhibits Na+/K+-ATPase activity. A specific cysteine (Cys) residue of FXYD proteins is critical for such protection. One of the FXYD proteins, FXYD3, confers treatment resistance when overexpressed in cancer cells. We developed two FXYD3 peptide derivatives. FXYD3-pep CKCK retained the Cys residue that can undergo glutathionylation and that is critical for protecting the β1 subunit against glutathionylation. FXYD3-pep SKSK had all Cys residues mutated to Serine (Ser). The chemotherapeutic doxorubicin induces oxidative stress, and suppression of FXYD3 with siRNA in pancreatic- and breast cancer cells that strongly express FXYD3 increased doxorubicin-induced cytotoxicity. Exposing cells to FXYD3-pep SKSK decreased co-immunoprecipitation of FXYD3 with the α1 Na+/K+-ATPase subunit. FXYD3-pep SKSK reproduced the increase in doxorubicin-induced cytotoxicity seen after FXYD3 siRNA transfection in pancreatic- and breast cancer cells that overexpressed FXYD3, while FXYD3-pep CKCK boosted the native protein’s protection against doxorubicin. Neither peptide affected doxorubicin’s cytotoxicity on cells with no or low FXYD3 expression. Fluorescently labeled FXYD3-pep SKSK was detected in a perinuclear distribution in the cells overexpressing FXYD3, and plasmalemmal Na+/K+-ATPase turnover could not be implicated in the increased sensitivity to doxorubicin that FXYD3-pep SKSK caused. FXYD peptide derivatives allow rapid elimination or amplification of native FXYD protein function. Here, their effects implicate the Cys residue that is critical for countering β1 subunit glutathionylation in the augmentation of cytotoxicity with siRNA-induced downregulation of FXYD3.
Collapse
Affiliation(s)
- Chia-Chi Liu
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
- *Correspondence: Chia-Chi Liu, ; Helge H. Rasmussen,
| | - Yeon Jae Kim
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
| | - Rachel Teh
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
| | - Alvaro Garcia
- School of Chemistry, University of Sydney, Camperdown, NSW, Australia
| | - Elisha J. Hamilton
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
| | | | - Robert C. Baxter
- Hormones and Cancer Laboratories, Kolling Institute, University of Sydney, St Leonards, NSW, Australia
| | - Helge H. Rasmussen
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, St Leonards, NSW, Australia
- *Correspondence: Chia-Chi Liu, ; Helge H. Rasmussen,
| |
Collapse
|
3
|
Raj K, Gupta GD, Singh S. Spermine protects aluminium chloride and iron-induced neurotoxicity in rat model of Alzheimer's disease via attenuation of tau phosphorylation, Amyloid-β (1-42) and NF-κB pathway. Inflammopharmacology 2021; 29:1777-1793. [PMID: 34727278 DOI: 10.1007/s10787-021-00883-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia, characterized by a gradual decline in cognitive and memory functions of the aged peoples. Long-term exposure to heavy metals (aluminium and iron) cause neurotoxicity by amyloid plaques accumulation, tau phosphorylation, increased oxidative stress, neuroinflammation, and cholinergic neurons degeneration, contributes to the development of AD-like symptoms. The present research work is designed to investigate the neuroprotective effect of spermine in aluminium chloride (AlCl3), and iron (Fe) induced AD-like symptoms in rats. Rats were administered of AlCl3 (100 mg/kg p.o.) alone and in combination with iron (120 μg/g, p.o.) for 28 days. Spermine (5 and 10 mg/kg) through intraperitoneal (i.p.) route was given for 14 days. The recognition and spatial memory impairment were tasted using Morris water maze (MWM), actophotometer, and Novel Object Recognition test (NORT). All the rats were sacrificed on day 29, brains were isolated, and tissue homogenate was used for neuroinflammatory, biochemical, neurotransmitters, metals concentration, and nuclear factor-kappa B (NF-κB) analysis. In the present study, AlCl3 and iron administration elevated oxidative stress, cytokines release, dysbalanced neurotransmitters concentration, and biochemical changes. Rats treated with spermine dose-dependently improved the recognition and spatial memory, attenuated proinflammatory cytokine release, and restored neurotransmitters concentration and antioxidant enzymes. Spermine also mitigated the increased beta-amyloid (Aβ42), with downregulation of tau phosphorylation. Furthermore, spermine augmented the hippocampal levels of B cell leukaemia/lymphoma-2 (Bcl-2), diminished nuclear factor-kappa B (NF-κB) and caspase-3 (casp-3) expression. Moreover, spermine exhibited the neuroprotective effect through anti-inflammatory, antioxidant, neurotransmitters restoration, anti-apoptotic Aβ42 concentration.
Collapse
Affiliation(s)
- Khadga Raj
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
4
|
Kaur S, Raj K, Gupta YK, Singh S. Allicin ameliorates aluminium- and copper-induced cognitive dysfunction in Wistar rats: relevance to neuro-inflammation, neurotransmitters and Aβ (1-42) analysis. J Biol Inorg Chem 2021; 26:495-510. [PMID: 34023945 DOI: 10.1007/s00775-021-01866-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurological disorder associated with neuropathological and neurobehavioral changes, like cognition and memory loss. Pathological hallmarks of AD comprise oxidative stress, formation of insoluble β-amyloid (Aβ) plaques, intracellular neurofibrillary tangles constituted by hyperphosphorylated tau protein (P-tau), neurotransmitters dysbalanced (DA, NE, 5-HT, GABA and Glutamate) and metal deposition. Chronic exposure to metals like aluminium and copper causes accumulation of Aβ plaques, promotes oxidative stress, neuro-inflammation, and degeneration of cholinergic neurons results in AD-like symptoms. In the present study, rats were administered with aluminium chloride (200 mg/kg p.o) and copper sulfate (0.5 mg/kg p.o) alone and in combination for 28 days. Allicin (10 and 20 mg/kg i.p) was administered from day 7 to day 28. Spatial and recognition memory impairment analysis was performed using Morris water maze, Probe trial, and Novel Object Recognition test. Animals were sacrificed on day 29, brain tissue was isolated, and its homogenate was used for biochemical (lipid peroxidation, nitrite, and glutathione), neuro-inflammatory (IL-1β, IL-6 and TNF- α), neurotransmitters (DA, NE, 5-HT, GABA and Glutamate), Aβ(1-42) level, Al concentration estimation, and Na+/K+-ATPase activity. In the present study, aluminium chloride and copper sulfate administration increased oxidative stress, inflammatory cytokines release, imbalanced neurotransmitters' concentration, and promoted β-amyloid accumulation and Na+/K+-ATPase activity. Treatment with allicin dose-dependently attenuated these pathological events via restoration of antioxidants, neurotransmitters concentration, and inhibiting cytokine release and β-amyloid accumulation. Moreover, allicin exhibited the neuroprotective effect through antioxidant, anti-inflammatory, neurotransmitters restoration, attenuation of neuro-inflammation and β-amyloid-induced neurotoxicity.
Collapse
Affiliation(s)
- Sunpreet Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Y K Gupta
- President AIIMs Bhopal, Chairman RAC , ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
5
|
Studying Proton Gradients Across the Nuclear Envelope. Methods Mol Biol 2021; 2175:47-63. [PMID: 32681483 DOI: 10.1007/978-1-0716-0763-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The existence of nuclear pore complexes in the nuclear envelope has led to the assumption that ions move freely from the cytosol into the nucleus, and that the molecular mechanisms at the plasma membrane that regulate cytosolic pH also regulate nuclear pH. Furthermore, studies to measure pH in the nucleus have produced contradictory results, since it has been found that the nuclear pH is either similar to the cytosol or more alkaline than the cytosol. However, most studies of nuclear pH have lacked the rigor needed to understand pH regulation in the nucleus. A major problem has been the lack of in situ titrations in the nucleus and cytosol, since the intracellular environment is different in the cytosol and nucleus and the behavior of fluorescent pH probes is different in these environments. Here we present a method that uses the fluorescence of SNARF-1 that labels both cytosol and nucleus. Using ratio imaging microscopy, regions of interest corresponding to the nucleus and cytosol to perform steady-state pH measurements followed by in situ titrations, to correctly assign pH in those cellular domains.
Collapse
|
6
|
Ren W, Zhao W, Cao L, Huang J. Involvement of the Actin Machinery in Programmed Cell Death. Front Cell Dev Biol 2021; 8:634849. [PMID: 33634110 PMCID: PMC7900405 DOI: 10.3389/fcell.2020.634849] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) depicts a genetically encoded and an orderly mode of cellular mortality. When triggered by internal or external stimuli, cells initiate PCDs through evolutionary conserved regulatory mechanisms. Actin, as a multifunctional cytoskeleton protein that forms microfilament, its integrity and dynamics are essential for a variety of cellular processes (e.g., morphogenesis, membrane blebbing and intracellular transport). Decades of work have broadened our knowledge about different types of PCDs and their distinguished signaling pathways. However, an ever-increasing pool of evidences indicate that the delicate relationship between PCDs and the actin cytoskeleton is beginning to be elucidated. The purpose of this article is to review the current understanding of the relationships between different PCDs and the actin machinery (actin, actin-binding proteins and proteins involved in different actin signaling pathways), in the hope that this attempt can shed light on ensuing studies and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Weida Ren
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wanyu Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lingbo Cao
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junqi Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Díaz-García CM, Meyer DJ, Nathwani N, Rahman M, Martínez-François JR, Yellen G. The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle. eLife 2021; 10:e64821. [PMID: 33555254 PMCID: PMC7870136 DOI: 10.7554/elife.64821] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
When neurons engage in intense periods of activity, the consequent increase in energy demand can be met by the coordinated activation of glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. However, the trigger for glycolytic activation is unknown and the role for Ca2+ in the mitochondrial responses has been debated. Using genetically encoded fluorescent biosensors and NAD(P)H autofluorescence imaging in acute hippocampal slices, here we find that Ca2+ uptake into the mitochondria is responsible for the buildup of mitochondrial NADH, probably through Ca2+ activation of dehydrogenases in the TCA cycle. In the cytosol, we do not observe a role for the Ca2+/calmodulin signaling pathway, or AMPK, in mediating the rise in glycolytic NADH in response to acute stimulation. Aerobic glycolysis in neurons is triggered mainly by the energy demand resulting from either Na+ or Ca2+ extrusion, and in mouse dentate granule cells, Ca2+ creates the majority of this demand.
Collapse
Affiliation(s)
| | - Dylan J Meyer
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Nidhi Nathwani
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mahia Rahman
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | | | - Gary Yellen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
8
|
Abstract
Autosis is an autophagy-dependent, nonapoptotic, and non-necrotic form of cell death that is characterized by unique morphological and biochemical features, including the presence of ballooning of perinuclear space (PNS) and sensitivity to cardiac glycosides, respectively. Autotic cell death may be initiated by excessive accumulation of autophagosomes rather than lysosomal degradation. Autosis is stimulated during the late phase of reperfusion after a period of ischemia in the heart when up-regulation of rubicon in the presence of continuous autophagosome production induces massive accumulation of autophagosomes. Suppression of autosis, which may reduce death of cardiomyocytes during the late phase of reperfusion, in combination with inhibition of apoptosis and necrosis targeting the early phase of injury, may enhance the effectiveness of treatment for I/R injury in the heart.
Excessive autophagy induces a defined form of cell death called autosis, which is characterized by unique morphological features, including ballooning of perinuclear space and biochemical features, including sensitivity to cardiac glycosides. Autosis is observed during the late phase of reperfusion after a period of ischemia and contributes to myocardial injury. This review discusses unique features of autosis, the involvement of autosis in myocardial injury, and the molecular mechanism of autosis. Because autosis promotes myocardial injury under some conditions, a better understanding of autosis may lead to development of novel interventions to protect the heart against myocardial stress.
Collapse
Key Words
- ATG, autophagy-related
- ATPase, adenosine triphosphatase
- ER, endoplasmic reticulum
- HIV, human immunodeficiency virus
- I/R, ischemia-reperfusion
- LBR, lamin B receptor
- Na+,K+–adenosine triphosphatase
- PI3K, phosphatidylinositol 3 kinase
- PNS, perinuclear space
- Tat, transactivation of transcription
- autophagic cell death
- autophagic flux
- autosis
- beclin 1
- rubicon
Collapse
|
9
|
Wang F, Yu G, Liu P. Transporter-Mediated Subcellular Distribution in the Metabolism and Signaling of Jasmonates. FRONTIERS IN PLANT SCIENCE 2019; 10:390. [PMID: 31001304 PMCID: PMC6454866 DOI: 10.3389/fpls.2019.00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
Jasmonates (jasmonic acid and its relatives) are a group of oxylipin phytohormones that are implicated in the regulation of a range of developmental processes and responses to environmental stimuli in plants. The biosynthesis of JAs occur sequentially in various subcellular compartments including the chloroplasts, peroxisomes and the cytoplasm. The biologically active jasmonoyl-isoleucine (JA-Ile) activates the core JA signaling in the nucleus by binding with its coreceptor, SCFCOI1-JAZ. Five members of a clade of ATP-binding cassette G (ABCG) transporters of Arabidopsis thaliana were identified as the candidates of jasmonate transporters (JATs) in yeast cells. Among these JATs, AtJAT1/AtABCG16, has a dual localization in the plasma membrane and nuclear envelop and mediates the efflux of jasmonic acid (JA) across the plasma membrane and influx of JA-Ile into the nucleus. Genetic, cellular and biochemical analyses have demonstrated that AtJAT1/AtABCG16 is crucial for modulating JA-Ile concentration in the nucleus to orchestrate JA signaling. AtJAT1 could also be involved in modulating the biosynthesis of JA-Ile by regulating the distribution of JA and JA-Ile in the cytoplasm and nucleus, which would contribute to the highly dynamic JA signaling. Furthermore, other JAT members are localized in the plasma membrane and possibly in peroxisomes. Characterization of these JATs will provide further insights into a crucial role of transporter-mediated subcellular distribution in the metabolism and signaling of plant hormones, an emerging theme supported by the identification of increasing number of endomembrane-localized transporters.
Collapse
|
10
|
Sediqi H, Wray A, Jones C, Jones M. Application of Spectral Phasor analysis to sodium microenvironments in myoblast progenitor cells. PLoS One 2018; 13:e0204611. [PMID: 30379959 PMCID: PMC6209149 DOI: 10.1371/journal.pone.0204611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
Sodium ions (Na+) are key regulators of molecular events in many cellular processes, yet the dynamics of this ion remain poorly defined. Developing approaches to identify and characterise Na+ microenvironments will enable more detailed elucidation of the mechanisms of signal transduction. Here we report the application of Spectral Phasor analysis to the Na+ fluorophore, CoroNa Green, to identify and spatially map spectral emissions that report Na+ microenvironments. We use differentiating stem cells where Na+ fluxes were reported as an antecedent. Myoblast stem cells were induced to differentiate by serum starvation and then fixed at intervals between 0 and 40-minutes of differentiation prior to addition of CoroNa Green. The fluorescent intensity was insufficient to identify discrete Na+ microenvironments. However, using Spectral Phasor analysis we identified spectral shifts in CoroNa Green fluorescence which is related to the Na+ microenvironment. Further, spectral-heterogeneity appears to be contingent on the distance of Na+ from the nucleus in the early stages of differentiation. Spectral Phasor analysis of CoroNa Green in fixed stem cells demonstrates for the first time that CoroNa Green has unique spectral emissions depending on the nature of the Na+ environment in differentiating stem cells. Applying Spectral Phasor analysis to CoroNa Green in live stem cells is likely to further elucidate the role of Na+ microenvironments in the differentiation process.
Collapse
Affiliation(s)
- Hamid Sediqi
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Alex Wray
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Christopher Jones
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Mark Jones
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
11
|
Wu H, Shabala L, Azzarello E, Huang Y, Pandolfi C, Su N, Wu Q, Cai S, Bazihizina N, Wang L, Zhou M, Mancuso S, Chen Z, Shabala S. Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3987-4001. [PMID: 29897491 PMCID: PMC6054258 DOI: 10.1093/jxb/ery194] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/21/2018] [Indexed: 05/25/2023]
Abstract
The progress in plant breeding for salinity stress tolerance is handicapped by the lack of understanding of the specificity of salt stress signalling and adaptation at the cellular and tissue levels. In this study, we used electrophysiological, fluorescence imaging, and real-time quantitative PCR tools to elucidate the essentiality of the cytosolic Na+ extrusion in functionally different root zones (elongation, meristem, and mature) in a large number of bread and durum wheat accessions. We show that the difference in the root's ability for vacuolar Na+ sequestration in the mature zone may explain differential salinity stress tolerance between salt-sensitive durum and salt-tolerant bread wheat species. Bread wheat genotypes also had on average 30% higher capacity for net Na+ efflux from the root elongation zone, providing the first direct evidence for the essentiality of the root salt exclusion trait at the cellular level. At the same time, cytosolic Na+ accumulation in the root meristem was significantly higher in bread wheat, leading to the suggestion that this tissue may harbour a putative salt sensor. This hypothesis was then tested by investigating patterns of Na+ distribution and the relative expression level of several key genes related to Na+ transport in leaves in plants with intact roots and in those in which the root meristems were removed. We show that tampering with this sensing mechanism has resulted in a salt-sensitive phenotype, largely due to compromising the plant's ability to sequester Na+ in mesophyll cell vacuoles. The implications of these findings for plant breeding for salinity stress tolerance are discussed.
Collapse
Affiliation(s)
- Honghong Wu
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| | - Elisa Azzarello
- Department of Horticulture, University of Florence, Sesto Fiorentino, Italy
| | - Yuqing Huang
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Camilla Pandolfi
- Department of Horticulture, University of Florence, Sesto Fiorentino, Italy
| | - Nana Su
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| | - Qi Wu
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| | - Shengguan Cai
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Nadia Bazihizina
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
- Department of Horticulture, University of Florence, Sesto Fiorentino, Italy
| | - Lu Wang
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| | - Stefano Mancuso
- Department of Horticulture, University of Florence, Sesto Fiorentino, Italy
| | - Zhonghua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| |
Collapse
|
12
|
Veklich TO, Palladin Institute of Biochemistry, National Academy Sciences of Ukraine, Kyiv, Nikonishyna YV, Kosterin SO, Palladin Institute of Biochemistry, National Academy Sciences of Ukraine, Kyiv, Palladin Institute of Biochemistry, National Academy Sciences of Ukraine, Kyiv. Pathways and mechanisms of transmembrane calcium ions exchange in the cell nucleus. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
13
|
Vegliante R, Ciriolo MR. Autophagy and Autophagic Cell Death: Uncovering New Mechanisms Whereby Dehydroepiandrosterone Promotes Beneficial Effects on Human Health. VITAMINS AND HORMONES 2018; 108:273-307. [PMID: 30029730 DOI: 10.1016/bs.vh.2018.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dehydroepiandrosterone (DHEA) is the most abundant steroid hormone in human serum and a precursor of sexual hormones. Its levels, which are maximum between the age of 20 and 30, dramatically decline with aging thus raising the question that many pathological conditions typical of the elderly might be associated with the decrement of circulating DHEA. Moreover, since its very early discovery, DHEA and its metabolites have been shown to be active in many pathophysiological contexts, including cardiovascular disease, brain disorders, and cancer. Indeed, treatment with DHEA has beneficial effects for the cure of these and many other pathologies in vitro, in vivo, and in patient studies. However, the molecular mechanisms underlying DHEA effects have been only partially elucidated. Autophagy is a self-digestive process, by which cell homeostasis is maintained, damaged organelles removed, and cell survival assured upon stress stimuli. However, high rate of autophagy is detrimental and leads to a form of programmed cell death known as autophagic cell death (ACD). In this chapter, we describe the process of autophagy and the morphological and biochemical features of ACD. Moreover, we analyze the beneficial effects of DHEA in several pathologies and the molecular mechanisms with particular emphasis on its regulation of cell death processes. Finally, we review data indicating DHEA and structurally related steroid hormones as modulators of both autophagy and ACD, a research field that opens new avenues in the therapeutic use of these compounds.
Collapse
Affiliation(s)
- Rolando Vegliante
- MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hopital Civil-Institut d'Hématologie et Immunologie, Strasbourg, France
| | - Maria R Ciriolo
- University of Rome 'Tor Vergata', Rome, Italy; IRCCS San Raffaele 'La Pisana', Rome, Italy.
| |
Collapse
|
14
|
Na +/Ca 2+ exchanger 1 on nuclear envelope controls PTEN/Akt pathway via nucleoplasmic Ca 2+ regulation during neuronal differentiation. Cell Death Discov 2018. [PMID: 29531809 PMCID: PMC5841316 DOI: 10.1038/s41420-017-0018-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nuclear envelope (NE) is a Ca2+-storing organelle controlling neuronal differentiation through nuclear Ca2+ concentrations ([Ca2+]n). However, how [Ca2+]n regulates this important function remains unknown. Here, we investigated the role of the nuclear form of the Na+/Ca2+ exchanger 1(nuNCX1) during the different stages of neuronal differentiation and the involvement of PTEN/PI3'K/Akt pathway. In neuronal cells, nuNCX1 was detected on the inner membrane of the NE where protein expression and activity of the exchanger increased during NGF-induced differentiation. nuNCX1 activation by Na+-free perfusion induced a time-dependent activation of nuclear-resident PI3K/Akt pathway in isolated nuclei. To discriminate the contribution of nuNCX1 from those of plasma membrane NCX, we generated a chimeric protein composed of the fluorophore EYFP, the exchanger inhibitory peptide, and the nuclear localization signal, named XIP-NLS. Fura-2 measurements on single nuclei and patch-clamp experiments in whole-cell configuration showed that XIP-NLS selectively inhibited nuNCX1. Once it reached the nuclear compartment, XIP-NLS increased the nucleoplasmic Ca2+ peak elicited by ATP and reduced Akt phosphorylation, GAP-43 and MAP-2 expression through nuclear-resident PTEN induction. Furthermore, in accordance with the prevention of the neuronal phenotype, XIP-NLS significantly reduced TTX-sensitive Na+ currents and membrane potential during neuronal differentiation. The selective inhibition of nuNCX1 by XIP-NLS increased the percentage of β III tubulin-positive immature neurons in mature cultures of MAP-2-positive cortical neurons, thus unraveling a new function for nuNCX1 in regulating neuronal differentiation through [Ca2+]n-dependent PTEN/PI3K/Akt pathway.
Collapse
|
15
|
Liu TCY, Tang XM, Duan R, Ma L, Zhu L, Zhang QG. The Mitochondrial Na +/Ca 2+ Exchanger is Necessary but Not Sufficient for Ca 2+ Homeostasis and Viability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1072:281-285. [PMID: 30178359 DOI: 10.1007/978-3-319-91287-5_45] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED Luongo et al. found that the mitochondrial Na+/Ca2+ exchanger (NCLX) was essential for Ca2+ homeostasis and viability. Here, we re-analyze their data in terms of fractal self-similarity and quantitative difference (QD). We calculated the 7-dimension data from NCLX conditional loss-of-function mouse models, and the 9-dimension data from NCLX overexpression (NCLX-Tg) models. RESULTS The 9-dimension data of the NCLX-Tg and its tTA control were partially self-similar to each other, while the 7-dimension data in NCLX knockout models were not. CONCLUSION The NCLX may be necessary but is not sufficient for Ca2+ homeostasis and viability.
Collapse
Affiliation(s)
- Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China.
| | - Xiao-Ming Tang
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| | - Rui Duan
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| | - Lei Ma
- School of Electronic Information, Nantong University, Nantong, China
| | - Ling Zhu
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| | - Quan-Guang Zhang
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Abstract
This review begins by attempting to recount some of the pioneering discoveries that first identified the presence of gangliosides in the nervous system, their structures and topography. This is presented as prelude to the current emphasis on physiological function, about which much has been learned but still remains to be elucidated. These areas include ganglioside roles in nervous system development including stem cell biology, membranes and organelles within neurons and glia, ion transport mechanisms, receptor modulation including neurotrophic factor receptors, and importantly the pathophysiological role of ganglioside aberrations in neurodegenerative disorders. This relates to their potential as therapeutic agents, especially in those conditions characterized by deficiency of one or more specific gangliosides. Finally we attempt to speculate on future directions ganglioside research is likely to take so as to capitalize on the impressive progress to date.
Collapse
Affiliation(s)
- Robert Ledeen
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Gusheng Wu
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
17
|
Li Q, Zheng J, Li S, Huang G, Skilling SJ, Wang L, Li L, Li M, Yuan L, Liu P. Transporter-Mediated Nuclear Entry of Jasmonoyl-Isoleucine Is Essential for Jasmonate Signaling. MOLECULAR PLANT 2017; 10:695-708. [PMID: 28179150 DOI: 10.1016/j.molp.2017.01.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 05/22/2023]
Abstract
To control gene expression by directly responding to hormone concentrations, both animal and plant cells have exploited comparable mechanisms to sense small-molecule hormones in nucleus. Whether nuclear entry of these hormones is actively transported or passively diffused, as conventionally postulated, through the nuclear pore complex, remains enigmatic. Here, we identified and characterized a jasmonate transporter in Arabidopsis thaliana, AtJAT1/AtABCG16, which exhibits an unexpected dual localization at the nuclear envelope and plasma membrane. We show that AtJAT1/AtABCG16 controls the cytoplasmic and nuclear partition of jasmonate phytohormones by mediating both cellular efflux of jasmonic acid (JA) and nuclear influx of jasmonoyl-isoleucine (JA-Ile), and is essential for maintaining a critical nuclear JA-Ile concentration to activate JA signaling. These results illustrate that transporter-mediated nuclear entry of small hormone molecules is a new mechanism to regulate nuclear hormone signaling. Our findings provide an avenue to develop pharmaceutical agents targeting the nuclear entry of small molecules.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jian Zheng
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Shuaizhang Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanrong Huang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Stephen J Skilling
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Lijian Wang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Ling Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Lixing Yuan
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
18
|
Yang T, Xu Z, Liu W, Feng S, Li H, Guo M, Deng Y, Xu B. Alpha-lipoic acid reduces methylmercury-induced neuronal injury in rat cerebral cortex via antioxidation pathways. ENVIRONMENTAL TOXICOLOGY 2017; 32:931-943. [PMID: 27298056 DOI: 10.1002/tox.22294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 06/06/2023]
Abstract
Methylmercury (MeHg), an extremely dangerous environmental pollutant, accumulating preferentially in central nervous system, causes a series of cytotoxic effects. The present study explored the mechanisms which contribute to MeHg-induced neurotoxicity focusing on the oxidative stress in rat cerebral cortex. In addition, the protective effects of alpha-lipoic acid (LA), a potent antioxidant on MeHg-mediated neuronal injury, was also investigated in current study. A MeHg poisoning model was established as 64 rats randomly divided into 4 groups of which saline control group, MeHg-treated groups (4 and 12 μmol kg-1 ), and LA pretreatment (35 μmol kg-1 ) group, respectively. After administration of 12 μmol kg-1 MeHg for 4 weeks, it was found that obvious pathological changes and apoptosis in neuronal cells. Meanwhile, total Hg levels elevated significantly, superoxide dismutase (SOD) and gluthathione peroxidase (GSH-Px) activities were inhibited, and ROS formation elevated, which might be critical to aggravate oxidative stress in cerebral cortex. In addition, NF-E2-related factor 2 (Nrf2) pathways were activated, as heme oxygenase-1 (HO-1) and γ-glutamylcysteine synthetase heavy subunit (γ-GCSh) expressions were up-regulated obviously by MeHg exposure. Moreover, activities of Na+ -K+ -ATPase and Ca2+ -ATPase were inhibited, leading to intracellular calcium (Ca2+ ) overload. LA pre-treatment partially reduced MeHg neurotoxic effects via anti-oxidation pathways. In conclusion, these findings clearly indicated that MeHg aggravated oxidative stress and Ca2+ overload in cerebral cortex. LA possesses the ability to prevent MeHg neurotoxicity through its anti-oxidative properties. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 931-943, 2017.
Collapse
Affiliation(s)
- Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Shu Feng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Hongpeng Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Meixin Guo
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| |
Collapse
|
19
|
Santos JM, Martínez-Zaguilán R, Facanha AR, Hussain F, Sennoune SR. Vacuolar H+-ATPase in the nuclear membranes regulates nucleo-cytosolic proton gradients. Am J Physiol Cell Physiol 2016; 311:C547-C558. [PMID: 27510904 DOI: 10.1152/ajpcell.00019.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/26/2016] [Indexed: 01/01/2023]
Abstract
The regulation of the luminal pH of each organelle is crucial for its function and must be controlled tightly. Nevertheless, it has been assumed that the nuclear pH is regulated by the cytoplasmic proton transporters via the diffusion of H+ across the nuclear pores because of their large diameter. However, it has been demonstrated that ion gradients exist between cytosol and nucleus, suggesting that the permeability of ions across the nuclear pores is restricted. Vacuolar H+-ATPase (V-H+-ATPase) is responsible for the creation and maintenance of trans-membrane electrochemical gradient. We hypothesize that V-H+-ATPase located in the nuclear membranes functions as the primary mechanism to regulate nuclear pH and generate H+ gradients across the nuclear envelope. We studied the subcellular heterogeneity of H+ concentration in the nucleus and cytosol using ratio imaging microscopy and SNARF-1, a pH indicator, in prostate cells. Our results indicate that there are proton gradients across the nuclear membranes that are generated by V-H+-ATPase located in the outer and inner nuclear membranes. We demonstrated that these gradients are mostly dissipated by inhibiting V-H+-ATPase. Immunoblots and V-H+-ATPase activity corroborated the existence of V-H+-ATPase in the nuclear membranes. This study demonstrates that V-H+-ATPase is functionally expressed in nuclear membranes and is responsible for nuclear H+ gradients that may promote not only the coupled transport of substrates, but also most electrochemically driven events across the nuclear membranes. This study represents a paradigm shift that the nucleus can regulate its own pH microenvironment, providing new insights into nuclear ion homeostasis and signaling.
Collapse
Affiliation(s)
- Julianna Maria Santos
- Cell Physiology and Molecular Biophysics Department, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Raul Martínez-Zaguilán
- Cell Physiology and Molecular Biophysics Department, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Arnoldo Rocha Facanha
- Biosciences and Biotechnology Center, Cell Biology and Tissue Laboratory, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil; and
| | - Fazle Hussain
- Mechanical Engineering Department, Texas Tech University, Lubbock, Texas
| | - Souad R Sennoune
- Cell Physiology and Molecular Biophysics Department, Texas Tech University Health Sciences Center, Lubbock, Texas;
| |
Collapse
|
20
|
Kornyeyev D, El-Bizri N, Hirakawa R, Nguyen S, Viatchenko-Karpinski S, Yao L, Rajamani S, Belardinelli L. Contribution of the late sodium current to intracellular sodium and calcium overload in rabbit ventricular myocytes treated by anemone toxin. Am J Physiol Heart Circ Physiol 2016; 310:H426-35. [DOI: 10.1152/ajpheart.00520.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022]
Abstract
Pathological enhancement of late Na+ current ( INa) can potentially modify intracellular ion homeostasis and contribute to cardiac dysfunction. We tested the hypothesis that modulation of late INa can be a source of intracellular Na+ ([Na+]i) overload. Late INa was enhanced by exposing rabbit ventricular myocytes to Anemonia sulcata toxin II (ATX-II) and measured using whole cell patch-clamp technique. [Na+]i was determined with fluorescent dye Asante NaTRIUM Green-2 AM. Pacing-induced changes in the dye fluorescence measured at 37°C were more pronounced in ATX-II-treated cells than in control (dye washout prevented calibration). At 22–24°C, resting [Na+]i was 6.6 ± 0.8 mM. Treatment with 5 nM ATX-II increased late INa 8.7-fold. [Na+]i measured after 2 min of electrical stimulation (1 Hz) was 10.8 ± 1.5 mM and 22.1 ± 1.6 mM ( P < 0.001) in the absence and presence of 5 nM ATX-II, respectively. Inhibition of late INa with GS-967 (1 μM) prevented Na+i accumulation. A strong positive correlation was observed between the late INa and the pacing-induced increase of [Na+]i ( R2 = 0.88) and between the rise in [Na+]i and the increases in cytosolic Ca2+ ( R2 = 0.96). ATX-II, tetrodotoxin, or GS-967 did not affect [Na+]i in quiescent myocytes suggesting that late INa was solely responsible for triggering the ATX-II effect on [Na+]i. Experiments with pinacidil and E4031 indicate that prolongation of the action potential contributes to as much as 50% of the [Na+]i overload associated with the increase in late INa caused by ATX-II. Enhancement of late INa can cause intracellular Na+ overload in ventricular myocytes.
Collapse
Affiliation(s)
- Dmytro Kornyeyev
- Department of Biology, Gilead Sciences Inc., Foster City, California
| | - Nesrine El-Bizri
- Department of Biology, Gilead Sciences Inc., Foster City, California
| | - Ryoko Hirakawa
- Department of Biology, Gilead Sciences Inc., Foster City, California
| | - Steven Nguyen
- Department of Biology, Gilead Sciences Inc., Foster City, California
| | | | - Lina Yao
- Department of Biology, Gilead Sciences Inc., Foster City, California
| | | | - Luiz Belardinelli
- Department of Biology, Gilead Sciences Inc., Foster City, California
| |
Collapse
|
21
|
Ledeen RW, Wu G. The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 2015; 40:407-18. [PMID: 26024958 DOI: 10.1016/j.tibs.2015.04.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022]
Abstract
GM1 ganglioside occurs widely in vertebrate tissues, where it exhibits many essential functions, both in the plasma membrane and intracellular loci. Its essentiality is revealed in the dire consequences resulting from genetic deletion. This derives from its key roles in several signalosome systems, characteristically located in membrane rafts, where it associates with specific proteins that have glycolipid-binding domains. Thus, GM1 interacts with proteins that modulate mechanisms such as ion transport, neuronal differentiation, G protein-coupled receptors (GPCRs), immune system reactivities, and neuroprotective signaling. The latter occurs through intimate association with neurotrophin receptors, which has relevance to the etiopathogenesis of neurodegenerative diseases and potential therapies. Here, we review the current state of knowledge of these GM1-associated mechanisms.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | - Gusheng Wu
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
22
|
Barghouth PG, Thiruvalluvan M, Oviedo NJ. Bioelectrical regulation of cell cycle and the planarian model system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2629-37. [PMID: 25749155 DOI: 10.1016/j.bbamem.2015.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 12/27/2022]
Abstract
Cell cycle regulation through the manipulation of endogenous membrane potentials offers tremendous opportunities to control cellular processes during tissue repair and cancer formation. However, the molecular mechanisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood. Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane known as the transmembrane potential. This potential, generated through the combined efforts of various ion transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular proliferation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regulatory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity. We aim to present a brief discussion on the biophysical machinery involving membrane potential and the mechanisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian Schmidtea mediterranea as a tractable model system for understanding principles behind molecular bioelectricity at both the cellular and organismal level. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Paul G Barghouth
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Manish Thiruvalluvan
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Health Sciences Research Institute, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
23
|
Wan XJ, Zhao HC, Zhang P, Huo B, Shen BR, Yan ZQ, Qi YX, Jiang ZL. Involvement of BK channel in differentiation of vascular smooth muscle cells induced by mechanical stretch. Int J Biochem Cell Biol 2015; 59:21-9. [DOI: 10.1016/j.biocel.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/13/2014] [Accepted: 11/25/2014] [Indexed: 12/26/2022]
|
24
|
Hooper SL, Burstein HJ. Minimization of extracellular space as a driving force in prokaryote association and the origin of eukaryotes. Biol Direct 2014; 9:24. [PMID: 25406691 PMCID: PMC4289276 DOI: 10.1186/1745-6150-9-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/03/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Internalization-based hypotheses of eukaryotic origin require close physical association of host and symbiont. Prior hypotheses of how these associations arose include chance, specific metabolic couplings between partners, and prey-predator/parasite interactions. Since these hypotheses were proposed, it has become apparent that mixed-species, close-association assemblages (biofilms) are widespread and predominant components of prokaryotic ecology. Which forces drove prokaryotes to evolve the ability to form these assemblages are uncertain. Bacteria and archaea have also been found to form membrane-lined interconnections (nanotubes) through which proteins and RNA pass. These observations, combined with the structure of the nuclear envelope and an energetic benefit of close association (see below), lead us to propose a novel hypothesis of the driving force underlying prokaryotic close association and the origin of eukaryotes. RESULTS Respiratory proton transport does not alter external pH when external volume is effectively infinite. Close physical association decreases external volume. For small external volumes, proton transport decreases external pH, resulting in each transported proton increasing proton motor force to a greater extent. We calculate here that in biofilms this effect could substantially decrease how many protons need to be transported to achieve a given proton motor force. Based as it is solely on geometry, this energetic benefit would occur for all prokaryotes using proton-based respiration. CONCLUSIONS This benefit may be a driving force in biofilm formation. Under this hypothesis a very wide range of prokaryotic species combinations could serve as eukaryotic progenitors. We use this observation and the discovery of prokaryotic nanotubes to propose that eukaryotes arose from physically distinct, functionally specialized (energy factory, protein factory, DNA repository/RNA factory), obligatorily symbiotic prokaryotes in which the protein factory and DNA repository/RNA factory cells were coupled by nanotubes and the protein factory ultimately internalized the other two. This hypothesis naturally explains many aspects of eukaryotic physiology, including the nuclear envelope being a folded single membrane repeatedly pierced by membrane-bound tubules (the nuclear pores), suggests that species analogous or homologous to eukaryotic progenitors are likely unculturable as monocultures, and makes a large number of testable predictions. REVIEWERS This article was reviewed by Purificación López-García and Toni Gabaldón.
Collapse
Affiliation(s)
- Scott L Hooper
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| | - Helaine J Burstein
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
25
|
Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 2014; 22:367-76. [PMID: 25257169 PMCID: PMC4326571 DOI: 10.1038/cdd.2014.143] [Citation(s) in RCA: 566] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/03/2014] [Accepted: 08/04/2014] [Indexed: 12/31/2022] Open
Abstract
It is controversial whether cells truly die via autophagy or whether — in dying cells — autophagy is merely an innocent bystander or a well-intentioned ‘Good Samaritan' trying to prevent inevitable cellular demise. However, there is increasing evidence that the genetic machinery of autophagy may be essential for cell death in certain settings. We recently identified a novel form of autophagy gene-dependent cell death, termed autosis, which is mediated by the Na+,K+-ATPase pump and has unique morphological features. High levels of cellular autophagy, as occurs with treatment with autophagy-inducing peptides, starvation, or in vivo during certain types of ischemia, can trigger autosis. These findings provide insights into the mechanisms and strategies for prevention of cell death during extreme stress conditions.
Collapse
|
26
|
Taha MS, Nouri K, Milroy LG, Moll JM, Herrmann C, Brunsveld L, Piekorz RP, Ahmadian MR. Subcellular fractionation and localization studies reveal a direct interaction of the fragile X mental retardation protein (FMRP) with nucleolin. PLoS One 2014; 9:e91465. [PMID: 24658146 PMCID: PMC3962360 DOI: 10.1371/journal.pone.0091465] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/11/2014] [Indexed: 12/31/2022] Open
Abstract
Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine-glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Kazem Nouri
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Lech G. Milroy
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
| | - Jens M. Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Herrmann
- Department of Physical Chemistry I, Ruhr University Bochum, Bochum, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
| | - Roland P. Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
27
|
Nowycky MC, Wu G, Ledeen RW. Glycobiology of ion transport in the nervous system. ADVANCES IN NEUROBIOLOGY 2014; 9:321-42. [PMID: 25151386 DOI: 10.1007/978-1-4939-1154-7_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nervous system is richly endowed with large transmembrane proteins that mediate ion transport, including gated ion channels as well as energy-consuming pumps and transporters. Transport proteins undergo N-linked glycosylation which can affect expression, location, stability, and function. The N-linked glycans of ion channels are large, contributing between 5 and 50 % of their molecular weight. Many contain a high density of negatively charged sialic acid residues which modulate voltage-dependent gating of ion channels. Changes in the size and chemical composition of glycans are responsible for developmental and cell-specific variability in the biophysical and functional properties of many ion channels. Glycolipids, principally gangliosides, exert considerable influence on some forms of ion transport, either through direct association with ion transport proteins or indirectly through association with proteins that activate transport through appropriate signaling. Examples of both pumps and ion channels have been revealed which depend on ganglioside regulation. While some of these processes are localized in the plasma membrane, ganglioside-regulated ion transport can also occur at various loci within the cell including the nucleus. This chapter will describe ion channel and ion pump structures with a focus on the functional effects of glycosylation on ion channel availability and function, and effects of alterations in glycosylation on nervous system function. It will also summarize highlights of the research on glycolipid/ganglioside-mediated regulation of ion transport.
Collapse
Affiliation(s)
- Martha C Nowycky
- Department of Pharmacology and Physiology, RBHS, New Jersey Medical School, The State University of New Jersey, 185 South Orange Ave., Newark, NJ, 07103, USA,
| | | | | |
Collapse
|
28
|
Wen X, Lacruz RS, Smith CE, Paine ML. Gene-expression profile and localization of Na+/K(+)-ATPase in rat enamel organ cells. Eur J Oral Sci 2013; 122:21-6. [PMID: 24313748 DOI: 10.1111/eos.12106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 11/30/2022]
Abstract
The sodium pump Na(+)/K(+)-ATPase, expressed in virtually all cells of higher organisms, is involved in establishing a resting membrane potential and in creating a sodium gradient to facilitate a number of membrane-associated transport activities. Na(+)/K(+)-ATPase is an oligomer of α, β, and γ subunits. Four unique genes encode each of the α and β subunits. In dental enamel cells, the spatiotemporal expression of Na(+)/K(+)-ATPase is poorly characterized. Using the rat incisor as a model, this study provides a comprehensive expression profile of all four α and all four β Na(+)/K(+)-ATPase subunits throughout all stages of amelogenesis. Real-time PCR, western blot analysis, and immunolocalization revealed that α1, β1, and β3 are expressed in the enamel organ and that all three are most highly expressed during late-maturation-stage amelogenesis. Expression of β3 was significantly higher than expression of β1, suggesting that the dominant Na(+)/K(+)-ATPase consists of an α1β3 dimer. Localization of α1, β1, and β3 subunits in ameloblasts was primarily to the cytoplasm and occasionally along the basolateral membranes. Weaker expression was also noted in papillary layer cells during early maturation. Our data support that Na(+)/K(+)-ATPase is functional in maturation-stage ameloblasts.
Collapse
Affiliation(s)
- Xin Wen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
29
|
Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A 2013; 110:20364-71. [PMID: 24277826 DOI: 10.1073/pnas.1319661110] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed "autosis," has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia-ischemia in vivo. A chemical screen of ~5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na(+),K(+)-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na(+),K(+)-ATPase α1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na(+),K(+)-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented.
Collapse
|