1
|
Córdoba LE, Pérez de Rosas AR, García BA, Serradell MDC, Remón C, Mougabure-Cueto GA, Stroppa MM. RNA interference of the clock gene period disrupts circadian rhythms in the expression of genes related to insecticide resistance in the chagas disease vector Triatoma infestans (Hemiptera: Reduviidae). Acta Trop 2024; 257:107329. [PMID: 39033969 DOI: 10.1016/j.actatropica.2024.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
In Triatoma infestans it was observed pyrethroid resistance attributed in part to an elevated oxidative metabolism mediated by cytochromes P450. The nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome P450 reductase (CPR) plays a crucial role in catalysing the electron transfer from NADPH to all cytochrome P450s. The daily variations in the expression of CPR gene and a P450 gene (CYP4EM7), both associated with insecticide resistance, suggested that their expressions would be under the endogenous clock control. To clarify the involvement of the clock in orchestration of the daily fluctuations in CPR and CYP4M7 genes expression, it was proposed to investigate the effect of silencing the clock gene period (per) by RNA interference (RNAi). The results obtained allowed to establish that the silencing of per gene was influenced by intake schemes used in the interference protocols. The silencing of per gene in T. infestans reduced its expression at all the time points analysed and abolished the characteristic rhythm in the transcriptional expression of per mRNA. The effect of the per gene silencing in the expression profiles at the transcriptional level of CPR and CYP4EM7 genes showed the loss of rhythmicity and demonstrated the biological clock involvement in the regulation of t heir expression.
Collapse
Affiliation(s)
- L E Córdoba
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - A R Pérez de Rosas
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - B A García
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Del C Serradell
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - C Remón
- Unidad Operativa de Vectores y Ambiente (UnOVE) Centro Nacional de Diagnóstico e Investigación en Endemo - Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Dr. C. MALBRAN, Santa María de Punilla, Córdoba, Argentina
| | - G A Mougabure-Cueto
- Laboratorio de Fisiología de Insectos, Departamento Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, UBA-CONICET). Buenos Aires, Argentina
| | - M M Stroppa
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Engin A. Misalignment of Circadian Rhythms in Diet-Induced Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:27-71. [PMID: 39287848 DOI: 10.1007/978-3-031-63657-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Merlin C. Insect magnetoreception: a Cry for mechanistic insights. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:785-792. [PMID: 37184693 DOI: 10.1007/s00359-023-01636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
Migratory animals can detect and use the Earth's magnetic field for orientation and navigation, sometimes over distances spanning thousands of kilometers. How they do so remains, however, one of the greatest mysteries in all sensory biology. Here, the author reviews the progress made to understand the molecular bases of the animal magnetic sense focusing on insect species, the only species in which genetic studies have so far been possible. The central hypothesis in the field posits that magnetically sensitive radical pairs formed by photoexcitation of cryptochrome proteins are key to animal magnetoreception. The author provides an overview of our current state of knowledge for the involvement of insect light-sensitive type I and light-insensitive type II cryptochromes in this enigmatic sense, and highlights some of the unanswered questions to gain a comprehensive understanding of magnetoreception at the organismal level.
Collapse
Affiliation(s)
- Christine Merlin
- Center for Biological Clock Research and Department of Biology, Texas A&M University, College Station, TX, 77845, USA.
| |
Collapse
|
4
|
Ćorić A, Stockinger AW, Schaffer P, Rokvić D, Tessmar-Raible K, Raible F. A Fast And Versatile Method for Simultaneous HCR, Immunohistochemistry And Edu Labeling (SHInE). Integr Comp Biol 2023; 63:372-381. [PMID: 36866518 PMCID: PMC10445416 DOI: 10.1093/icb/icad007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Access to newer, fast, and cheap sequencing techniques, particularly on the single-cell level, have made transcriptomic data of tissues or single cells accessible to many researchers. As a consequence, there is an increased need for in situ visualization of gene expression or encoded proteins to validate, localize, or help interpret such sequencing data, as well as put them in context with cellular proliferation. A particular challenge for labeling and imaging transcripts are complex tissues that are often opaque and/or pigmented, preventing easy visual inspection. Here, we introduce a versatile protocol that combines in situ hybridization chain reaction, immunohistochemistry, and proliferative cell labeling using 5-ethynyl-2'-deoxyuridine, and demonstrate its compatibility with tissue clearing. As a proof-of-concept, we show that our protocol allows for the parallel analysis of cell proliferation, gene expression, and protein localization in bristleworm heads and trunks.
Collapse
Affiliation(s)
- Aida Ćorić
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Alexander W Stockinger
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
- Research Platform “Single-Cell Regulation of Stem Cells,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Petra Schaffer
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Dunja Rokvić
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Carl-von-Ossietzky University, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
- Research Platform “Single-Cell Regulation of Stem Cells,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| |
Collapse
|
5
|
Males of Aedes aegypti show different clock gene expression profiles in the presence of conspecific females. Parasit Vectors 2022; 15:374. [PMID: 36258200 PMCID: PMC9578191 DOI: 10.1186/s13071-022-05529-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022] Open
Abstract
Background The study of behavioral and physiological traits in mosquitoes has been mainly focused on females since males are not hematophagous and thus do not transfer the parasites that cause diseases in human populations. However, the performance of male mosquitoes is key for the expansion of populations and the perpetuation of mosquito species. Pre-copulatory communication between males and females is the initial and essential step for the success of copulation and studying the male facet of this interaction provides fertile ground for the improvement of vector control strategies. Like in most animals, reproduction, feeding, and oviposition are closely associated with locomotor activity in mosquitoes. Rhythmic cycles of locomotor activity have been previously described in Aedes aegypti, and in females, they are known to be altered by blood-feeding and arbovirus infection. In previous work, we found that males in the presence of females significantly change their locomotor activity profiles, with a shift in the phase of the activity peak. Here, we investigated whether this shift is associated with changes in the expression level of three central circadian clock genes. Methods Real-time PCR reactions were performed for the gene period, cycle, and cryptochrome 2 in samples of heads, antennae, and abdominal tips of solitary males and males in the presence of females. Assays with antennae-ablated males were also performed, asking whether this is an essential organ mediating the communication and the variation in activity profiles. Results The gene period showed a conserved expression pattern in all tissues and conditions, while the other two genes varied according to the male condition. A remarking pattern was observed in cry2, where the difference between the amplitude of expression at the beginning of photophase and the expression peak in the scotophase was greater when males were in the presence of females. Antennae ablation in males did not have a significant effect on the expression profiles, suggesting that female recognition may involve other senses besides hearing and olfaction. Conclusion Our results suggest that the expression of gene cryptochrome 2 varies in association with the interaction between males and females. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05529-8.
Collapse
|
6
|
Tang LS, Fan ZX, Tian XF, He SM, Ji C, Chen AQ, Ren DL. The influences and regulatory mechanisms of magnetic fields on circadian rhythms. Chronobiol Int 2022; 39:1307-1319. [PMID: 35880245 DOI: 10.1080/07420528.2022.2105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A variety of devices used in daily life and biomedical field will generate magnetic fields with different parameters, raising concern about their influences on people's physiological functions. Multiple experimental works have been devoted to the influences of magnetic fields on circadian rhythms, yet the findings were not always consistent due to the differences in magnetic field parameters and experimental organisms. Also, clear regulatory mechanisms have not been found. By systematizing the major achievements in research on magnetic and circadian rhythms based on magnetic flux density and analyzing the potential mechanisms of the magnetic fields affecting circadian rhythms, this review sheds light on the effects of magnetic fields on circadian rhythms and the potential applications in biomedicine.
Collapse
Affiliation(s)
- Long-Sheng Tang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,School of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu, China
| | - Zi-Xuan Fan
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiao-Fei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shi-Min He
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Cheng Ji
- School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - An-Qi Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Da-Long Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Peffers C, Meuti ME. Characterizing the relative abundance of circadian transcription factors in diapausing and nondiapausing Northern house mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2022; 140:104404. [PMID: 35691331 DOI: 10.1016/j.jinsphys.2022.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The Northern house mosquito (Culex pipiens) is a major vector of West Nile virus. To survive harsh conditions in winter adult females of Cx. pipiens enter a state of arrested reproductive development called diapause. Diapause is triggered by the short daylengths of late summer and early fall. The methods by which Cx. pipiens measures daylength are still unknown. However, it is suspected that clock genes, which provide information on daylength, may also regulate diapause. The proteins produced by these genes often cycle in abundance throughout the day in diapausing and nondiapausing insects. Two clock genes suspected to control diapause are cycle (cyc) and Par domain protein1 (Pdp1) as they encode circadian transcription factors that may regulate genes that are involved in diapause. Using Western blotting we measured the relative protein abundance of CYC and PDP1 throughout the day in the whole bodies and the heads of Cx. pipiens reared under either long-day, diapause-averting conditions or short-day, diapause-inducing conditions. We found that in whole bodies there was no significant oscillation of CYC or PDP1 abundance in both long day and short day-reared mosquitoes. In the heads of long day-reared mosquitoes both CYC and PDP1 cycled. In contrast, only PDP1 abundance showed diel differences in abundance in the heads of short day-reared mosquitoes. These data bring us one step closer to understanding the role that CYC and PDP1 may play in regulating diapause and other biological processes.
Collapse
Affiliation(s)
- Caitlin Peffers
- The Ohio State University, Department of Entomology, 216 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Megan E Meuti
- The Ohio State University, Department of Entomology, 216 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
9
|
Dapergola E, Menegazzi P, Raabe T, Hovhanyan A. Light Stimuli and Circadian Clock Affect Neural Development in Drosophila melanogaster. Front Cell Dev Biol 2021; 9:595754. [PMID: 33763414 PMCID: PMC7982892 DOI: 10.3389/fcell.2021.595754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Endogenous clocks enable organisms to adapt cellular processes, physiology, and behavior to daily variation in environmental conditions. Metabolic processes in cyanobacteria to humans are under the influence of the circadian clock, and dysregulation of the circadian clock causes metabolic disorders. In mouse and Drosophila, the circadian clock influences translation of factors involved in ribosome biogenesis and synchronizes protein synthesis. Notably, nutrition signals are mediated by the insulin receptor/target of rapamycin (InR/TOR) pathways to regulate cellular metabolism and growth. However, the role of the circadian clock in Drosophila brain development and the potential impact of clock impairment on neural circuit formation and function is less understood. Here we demonstrate that changes in light stimuli or disruption of the molecular circadian clock cause a defect in neural stem cell growth and proliferation. Moreover, we show that disturbed cell growth and proliferation are accompanied by reduced nucleolar size indicative of impaired ribosomal biogenesis. Further, we define that light and clock independently affect the InR/TOR growth regulatory pathway due to the effect on regulators of protein biosynthesis. Altogether, these data suggest that alterations in InR/TOR signaling induced by changes in light conditions or disruption of the molecular clock have an impact on growth and proliferation properties of neural stem cells in the developing Drosophila brain.
Collapse
Affiliation(s)
- Eleni Dapergola
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Thomas Raabe
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Anna Hovhanyan
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Gopalakrishnan S, Kannan NN. Only time will tell: the interplay between circadian clock and metabolism. Chronobiol Int 2020; 38:149-167. [PMID: 33345624 DOI: 10.1080/07420528.2020.1842436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most organisms ranging from cyanobacteria to humans, the endogenous timekeeping system temporally coordinates the behavioral, physiological, and metabolic processes with a periodicity close to 24 h. The timing of these daily rhythms is orchestrated by the synchronized oscillations of both the central pacemaker in the brain and the peripheral clocks located across multiple organs and tissues. A growing body of evidence suggests that the central circadian clock and peripheral clocks residing in the metabolically active tissues are incredibly well coordinated to confer coherent metabolic homeostasis. The interplay between nutrient metabolism and circadian rhythms can occur at various levels supported by the molecular clock network, multiple systemic mechanisms, and the neuroendocrine signaling pathways. While studies suggest the reciprocal regulation between circadian clock and metabolism, it is important to understand the precise mechanisms and the underlying pathways involved in the cross-talk among circadian oscillators and diverse metabolic networks. In addition to the internal synchronization of the metabolic rhythms, feeding time is considered as a potential external synchronization cue that fine tunes the timing of the circadian rhythms in metabolic peripheral clocks. A deeper understanding of how the timing of food intake and the diet composition drive the tissue-specific metabolic rhythms across the body is concomitantly important to develop novel therapeutic strategies for the metabolic disorders arising from circadian misalignment. This review summarizes the recent advancements in the circadian clock regulation of nutrient metabolism and discusses the current understanding of the metabolic feedback signals that link energy metabolism with the circadian clock.
Collapse
Affiliation(s)
- Swetha Gopalakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| |
Collapse
|
11
|
Mahesh G, Rivas GBS, Caster C, Ost EB, Amunugama R, Jones R, Allen DL, Hardin PE. Proteomic analysis of Drosophila CLOCK complexes identifies rhythmic interactions with SAGA and Tip60 complex component NIPPED-A. Sci Rep 2020; 10:17951. [PMID: 33087840 PMCID: PMC7578830 DOI: 10.1038/s41598-020-75009-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks keep time via ~ 24 h transcriptional feedback loops. In Drosophila, CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors are feedback loop components whose transcriptional status varies over a circadian cycle. Although changes in the state of activators and repressors has been characterized, how their status is translated to transcriptional activity is not understood. We used mass spectrometry to identify proteins that interact with GFP-tagged CLK (GFP-CLK) in fly heads at different times of day. Many expected and novel interacting proteins were detected, of which several interacted rhythmically and were potential regulators of protein levels, activity or transcriptional output. Genes encoding these proteins were tested to determine if they altered circadian behavior via RNAi knockdown in clock cells. The NIPPED-A protein, a scaffold for the SAGA and Tip60 histone modifying complexes, interacts with GFP-CLK as transcription is activated, and reducing Nipped-A expression lengthens circadian period. RNAi analysis of other SAGA complex components shows that the SAGA histone deubiquitination (DUB) module lengthened period similarly to Nipped-A RNAi knockdown and weakened rhythmicity, whereas reducing Tip60 HAT expression drastically weakened rhythmicity. These results suggest that CLK-CYC binds NIPPED-A early in the day to promote transcription through SAGA DUB and Tip60 HAT activity.
Collapse
Affiliation(s)
- Guruswamy Mahesh
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Gustavo B S Rivas
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Courtney Caster
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Evan B Ost
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | | | | | | | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
12
|
Lee D, Zheng X, Shigemori K, Krasniak C, Bin Liu J, Tang C, Kavaler J, Ahmad ST. Expression of mutant CHMP2B linked to neurodegeneration in humans disrupts circadian rhythms in Drosophila. FASEB Bioadv 2019; 1:511-520. [PMID: 32123847 PMCID: PMC6996329 DOI: 10.1096/fba.2019-00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/21/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023] Open
Abstract
Mutations in CHMP2B, an ESCRT-III (endosomal sorting complexes required for transport) component, are associated with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Neurodegenerative disorders including FTD are also associated with a disruption in circadian rhythms, but the mechanism underlying this defect is not well understood. Here, we ectopically expressed the human CHMP2B variant associated with FTD (CHMP2BIntron5) in flies using the GMR-GAL4 driver (GMR>CHMP2BIntron5) and analyzed their circadian rhythms at behavioral, cellular, and biochemical level. In GMR>CHMP2BIntron5 flies, we observed disrupted eclosion rhythms, shortened free-running circadian locomotor period, and reduced levels of timeless (tim) mRNA-a circadian pacemaker gene. We also observed that the GMR-GAL4 driver, primarily known for its expression in the retina, drives expression in a subset of tim expressing neurons in the optic lobe of the brain. The patterning of these GMR- and tim-positive neurons in the optic lobe, which appears distinct from the putative clusters of circadian pacemaker neurons in the fly brain, was disrupted in GMR>CHMP2BIntron5 flies. These results demonstrate that CHMP2BIntron5 can disrupt the normal function of the circadian clock in Drosophila.
Collapse
Affiliation(s)
- DaWon Lee
- Department of BiologyColby CollegeWatervilleMaine
- Present address:
Industrial Economics, Inc.2067 Massachusetts Ave.CambridgeMA02140
| | | | | | - Christopher Krasniak
- Department of BiologyColby CollegeWatervilleMaine
- Present address:
Cold Spring Harbor Laboratory1 Bungtown RoadCold Spring HarborNY11724
| | - Jie Bin Liu
- Department of BiologyColby CollegeWatervilleMaine
- Present address:
Dana‐Farber Cancer Institute450 Brookline Ave.BostonMA02215
| | - Chao Tang
- Department of BiologyColby CollegeWatervilleMaine
- Present address:
McIntyre School of Commerce, University of VirginiaCharlottesvilleVA22904
| | | | | |
Collapse
|
13
|
Wang Y, Yang H, Zi C, Wang Z. Transcriptomic analysis of the red and green light responses in Columba livia domestica. 3 Biotech 2019; 9:20. [PMID: 30622858 PMCID: PMC6314938 DOI: 10.1007/s13205-018-1551-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 11/29/2022] Open
Abstract
In this study, 108 paired White King pigeons, randomly divided into three compartments were exposed to green light, red light, and white light followed by 15 h of light exposure, for a 6-month period. Three female birds from each group were selected and ovarian stromal tissue was collected. Pigeon reproductive data were also recorded every day. We performed transcriptome assembly on several tissue samples using Illumina Hiseq 2000 and analyzed differentially expressed genes involving follicle development mechanisms. Reproductive data confirmed that exposure to red and green lights improved pigeon reproduction. In total, approximately 158,080 unigenes with an average length of 753 bp were obtained using the Trinity program. Gene ontology, clusters of orthologous groups, and the Kyoto encyclopedia of genes were used to annotate and classify these unigenes. Large numbers of differentially expressed genes were discovered through pairwise comparisons between groups treated with monochromatic light versus white light. Some of these genes are associated with steroid hormone biosynthesis, cell cycle and circadian rhythm. Furthermore, qRT-PCR was used to detect the relative expression levels of randomly selected genes. A total of 17,419 potential simple sequence repeats were also identified. Our study provides insights into potential molecular mechanisms and genes that regulate pigeon reproduction in response to monochromatic light exposure. Our results and data will facilitate a further investigation into the molecular mechanisms behind the effects of red and green lights on follicle development and reproduction in the pigeon.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu Province China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu Province China
| | - Chen Zi
- Department of Pathology, Linyi People’s Hospital, Linyi, 276000 Shandong Province China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu Province China
| |
Collapse
|
14
|
Stroppa MM, Gimenez I, García BA. Clock Gene Period in the Chagas Disease Vector Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 2018; 98:468-474. [PMID: 29260645 PMCID: PMC5929179 DOI: 10.4269/ajtmh.17-0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/31/2017] [Indexed: 11/07/2022] Open
Abstract
To contribute to a better understanding of the molecular bases of the circadian biological rhythms in Chagas disease vectors, in this work we identified functional domains in the sequences of the clock protein PERIOD (PER) in Rhodnius prolixus and Triatoma infestans and analyzed the expression of the PER gene at mRNA level in T. infestans. The PER protein sequences comparison among these species and those from other insects revealed that the most similar regions are the PAS domains and the most variable is the COOH-terminal. On the other hand, the per gene expression in nervous tissue of adult T. infestans varies with a daily canonical rhythm in groups of individuals maintained under photoperiod (light/dark, LD) and constant dark (DD), showing a significant peak of expression at sunset. The pattern of expression detected in LD persists under the DD condition. As expected, in the group maintained in constant light (LL), no daily increase was detected in per transcript level. Besides, the presence of per transcript in different tissues of adult individuals and in nervous tissue of nymphs evidenced activity of peripheral clocks in adults and activity of the central clock in nymphs of T. infestans.
Collapse
Affiliation(s)
- María M. Stroppa
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ignacio Gimenez
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz A. García
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
15
|
Rhoades SD, Nayak K, Zhang SL, Sehgal A, Weljie AM. Circadian- and Light-driven Metabolic Rhythms in Drosophila melanogaster. J Biol Rhythms 2018; 33:126-136. [PMID: 29355066 DOI: 10.1177/0748730417753003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complex interactions of environmental cues and transcriptional clocks drive rhythmicity in organismal physiology. Light directly affects the circadian clock; however, little is known about its relative role in controlling metabolic variations in vivo. Here we used high time-resolution sampling in Drosophila at every 2 h to measure metabolite outputs using a liquid-chromatography tandem mass spectrometry (LC-MS/MS) approach. Over 14% of detected metabolites oscillated with circadian periodicity under light-dark (LD) cycles. Many metabolites peaked shortly after lights-on, suggesting responsiveness to feeding and/or activity rather than the preactivity anticipation, as observed in previous transcriptomics analyses. Roughly 9% of measured metabolites uniquely oscillated under constant darkness (DD), suggesting that metabolite rhythms are associated with the transcriptional clock machinery. Strikingly, metabolome differences between LD and constant darkness were observed only during the light phase, highlighting the importance of photic input. Clock mutant flies exhibited strong 12-h ultradian rhythms, including 4 carbohydrate species with circadian periods in wild-type flies, but lacked 24-h circadian metabolic oscillations. A meta-analysis of these results with previous circadian metabolomics experiments uncovered the possibility of conserved rhythms in amino acids, keto-acids, and sugars across flies, mice, and humans and provides a basis for exploring the chrono-metabolic connection with powerful genetic tools in Drosophila.
Collapse
Affiliation(s)
- Seth D Rhoades
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katrina Nayak
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania.,Georgetown University School of Medicine, Georgetown University, Washington, DC
| | - Shirley L Zhang
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Chronobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Chronobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aalim M Weljie
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Sharp B, Paquet E, Naef F, Bafna A, Wijnen H. A new promoter element associated with daily time keeping in Drosophila. Nucleic Acids Res 2017; 45:6459-6470. [PMID: 28407113 PMCID: PMC5499816 DOI: 10.1093/nar/gkx268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/11/2017] [Indexed: 11/13/2022] Open
Abstract
Circadian clocks are autonomous daily timekeeping mechanisms that allow organisms to adapt to environmental rhythms as well as temporally organize biological functions. Clock-controlled timekeeping involves extensive regulation of rhythmic gene expression. To date, relatively few clock-associated promoter elements have been identified and characterized. In an unbiased search of core clock gene promoters from 12 species of Drosophila, we discovered a 29-bp consensus sequence that we designated as the Clock-Associated Transcriptional Activation Cassette or 'CATAC'. To experimentally address the spatiotemporal expression information associated with this element, we generated constructs with four separate native CATAC elements upstream of a basal promoter driving expression of either the yeast Gal4 or firefly luciferase reporter genes. Reporter assays showed that presence of wild-type, but not mutated CATAC elements, imparted increased expression levels as well as rhythmic regulation. Part of the CATAC consensus sequence resembles the E-box binding site for the core circadian transcription factor CLOCK/CYCLE (CLK/CYC), and CATAC-mediated expression rhythms are lost in the presence of null mutations in either cyc or the gene encoding the CLK/CYC inhibitor, period (per). Nevertheless, our results indicate that CATAC's enhancer function persists in the absence of CLK/CYC. Thus, CATAC represents a novel cis-regulatory element encoding clock-controlled regulation.
Collapse
Affiliation(s)
- Brandi Sharp
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Eric Paquet
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akanksha Bafna
- Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Herman Wijnen
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.,Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
17
|
Abstract
The Drosophila circadian clock keeps time via transcriptional feedback loops. These feedback loops are initiated by CLOCK-CYCLE (CLK-CYC) heterodimers, which activate transcription of genes encoding the feedback repressors PERIOD and TIMELESS. Circadian clocks normally operate in ∼150 brain pacemaker neurons and in many peripheral tissues in the head and body, but can also be induced by expressing CLK in nonclock cells. These ectopic clocks also require cyc, yet CYC expression is restricted to canonical clock cells despite evidence that cyc mRNA is widely expressed. Here we show that CLK binds to and stabilizes CYC in cell culture and in nonclock cells in vivo. Ectopic clocks also require the blue light photoreceptor CRYPTOCHROME (CRY), which is required for both light entrainment and clock function in peripheral tissues. These experiments define the genetic architecture required to initiate circadian clock function in Drosophila, reveal mechanisms governing circadian activator stability that are conserved in perhaps all eukaryotes, and suggest that Clk, cyc, and cry expression is sufficient to drive clock expression in naive cells.
Collapse
|
18
|
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
19
|
Chow ES, Long DM, Giebultowicz JM. Circadian rhythm in mRNA expression of the glutathione synthesis gene Gclc is controlled by peripheral glial clocks in Drosophila melanogaster. PHYSIOLOGICAL ENTOMOLOGY 2016; 41:369-377. [PMID: 28503020 PMCID: PMC5423673 DOI: 10.1111/phen.12164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Circadian coordination of metabolism, physiology, and behaviour is found in all living kingdoms. Clock genes are transcriptional regulators, and their rhythmic activities generate daily rhythms in clock-controlled genes which result in cellular and organismal rhythms. Insects provide numerous examples of rhythms in behaviour and reproduction, but less is known about control of metabolic processes by circadian clocks in insects. Recent data suggest that several pathways involved in protecting cells from oxidative stress may be modulated by the circadian system, including genes involved in glutathione (GSH) biosynthesis. Specifically, rhythmic expression of the gene encoding the catalytic subunit (Gclc) of the rate-limiting GSH biosynthetic enzyme was detected in Drosophila melanogaster heads. The aim of this study was to determine which clocks in the fly multi-oscillatory circadian system are responsible for Gclc rhythms. Genetic disruption of tissue-specific clocks in D. melanogaster revealed that transcriptional rhythms in Gclc mRNA levels occur independently of the central pacemaker neurons, because these rhythms persisted in heads of behaviourally arrhythmic flies with a disabled central clock but intact peripheral clocks. Disrupting the clock specifically in glial cells abolished rhythmic expression of Gclc, suggesting that glia play an important role in Gclc transcriptional regulation, which may contribute to maintaining homeostasis in the fly nervous system.
Collapse
Affiliation(s)
- Eileen S Chow
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, U.S.A
| | - Dani M Long
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, U.S.A
- IGERT in Aging Sciences, Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, U.S.A
| | | |
Collapse
|
20
|
Day-night cycles and the sleep-promoting factor, Sleepless, affect stem cell activity in the Drosophila testis. Proc Natl Acad Sci U S A 2014; 111:3026-31. [PMID: 24516136 DOI: 10.1073/pnas.1316552111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult stem cells maintain tissue integrity and function by renewing cellular content of the organism through regulated mitotic divisions. Previous studies showed that stem cell activity is affected by local, systemic, and environmental cues. Here, we explore a role of environmental day-night cycles in modulating cell cycle progression in populations of adult stem cells. Using a classic stem cell system, the Drosophila spermatogonial stem cell niche, we reveal daily rhythms in division frequencies of germ-line and somatic stem cells that act cooperatively to produce male gametes. We also examine whether behavioral sleep-wake cycles, which are driven by the environmental day-night cycles, regulate stem cell function. We find that flies lacking the sleep-promoting factor Sleepless, which maintains normal sleep in Drosophila, have increased germ-line stem cell (GSC) division rates, and this effect is mediated, in part, through a GABAergic signaling pathway. We suggest that alterations in sleep can influence the daily dynamics of GSC divisions.
Collapse
|
21
|
Liu H, Li Y, Wei Q, Liu C, Bolund L, Vajta G, Dou H, Yang W, Xu Y, Luan J, Wang J, Yang H, Staunstrup NH, Du Y. Development of transgenic minipigs with expression of antimorphic human cryptochrome 1. PLoS One 2013; 8:e76098. [PMID: 24146819 PMCID: PMC3797822 DOI: 10.1371/journal.pone.0076098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022] Open
Abstract
Minipigs have become important biomedical models for human ailments due to similarities in organ anatomy, physiology, and circadian rhythms relative to humans. The homeostasis of circadian rhythms in both central and peripheral tissues is pivotal for numerous biological processes. Hence, biological rhythm disorders may contribute to the onset of cancers and metabolic disorders including obesity and type II diabetes, amongst others. A tight regulation of circadian clock effectors ensures a rhythmic expression profile of output genes which, depending on cell type, constitute about 3-20% of the transcribed mammalian genome. Central to this system is the negative regulator protein Cryptochrome 1 (CRY1) of which the dysfunction or absence has been linked to the pathogenesis of rhythm disorders. In this study, we generated transgenic Bama-minipigs featuring expression of the Cys414-Ala antimorphic human Cryptochrome 1 mutant (hCRY1(AP)). Using transgenic donor fibroblasts as nuclear donors, the method of handmade cloning (HMC) was used to produce reconstructed embryos, subsequently transferred to surrogate sows. A total of 23 viable piglets were delivered. All were transgenic and seemingly healthy. However, two pigs with high transgene expression succumbed during the first two months. Molecular analyzes in epidermal fibroblasts demonstrated disturbances to the expression profile of core circadian clock genes and elevated expression of the proinflammatory cytokines IL-6 and TNF-α, known to be risk factors in cancer and metabolic disorders.
Collapse
Affiliation(s)
- Huan Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yong Li
- BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Qiang Wei
- BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Chunxin Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Lars Bolund
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
| | - Gábor Vajta
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Central Queensland University, Rockhampton, Queensland, Australia
| | - Hongwei Dou
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Wenxian Yang
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Ying Xu
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Jing Luan
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Nicklas Heine Staunstrup
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
- * E-mail: (YD); (NHS)
| | - Yutao Du
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
- * E-mail: (YD); (NHS)
| |
Collapse
|
22
|
Damulewicz M, Rosato E, Pyza E. Circadian regulation of the Na+/K+-ATPase alpha subunit in the visual system is mediated by the pacemaker and by retina photoreceptors in Drosophila melanogaster. PLoS One 2013; 8:e73690. [PMID: 24040028 PMCID: PMC3769360 DOI: 10.1371/journal.pone.0073690] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
We investigated the diurnal oscillation in abundance of the catalytic α subunit of the sodium/potassium pump (ATPα) in the brain of Drosophila melanogaster. This rhythm is bimodal and is particularly robust in the glia cells of the lamina, the first optic neuropil. We observed loss of ATPα cycling in lamina glia in behaviourally arrhythmic per01 and tim01 mutants and in flies overexpressing the pro-apoptotic gene hid in the PDF-positive clock neurons. Moreover, the rhythm of ATPα abundance was altered in cry01 and Pdf0 mutants, in flies with a weakened clock mechanism in retina photoreceptor cells and in those subject to downregulation of the neuropeptide ITP by RNAi. This complex, rhythmic regulation of the α subunit suggests that the sodium/potassium pump may be a key target of the circadian pacemaker to impose daily control on brain activities, such as rhythmic changes in neuronal plasticity, which are best observed in the visual system.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Ezio Rosato
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Kraków, Poland
- * E-mail:
| |
Collapse
|
23
|
Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-Vibrio symbiosis. mBio 2013; 4:mBio.00167-13. [PMID: 23549919 PMCID: PMC3622930 DOI: 10.1128/mbio.00167-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut. In mammals, biological rhythms of the intestinal epithelium and the associated mucosal immune system regulate such diverse processes as lipid trafficking and the immune response to pathogens. While these same processes are affected by the diverse resident microbiota, the extent to which these microbial communities control or are controlled by these rhythms has not been addressed. This study provides evidence that the presentation of three bacterial products (lipid A, peptidoglycan monomer, and blue light) is required for cyclic expression of a cryptochrome gene in the symbiotic organ. The finding that bacteria can directly influence the transcription of a gene encoding a protein implicated in the entrainment of circadian rhythms provides the first evidence for the role of bacterial symbionts in influencing, and perhaps driving, peripheral circadian oscillators in the host.
Collapse
|
24
|
Bednářová A, Kodrík D, Krishnan N. Nature's Timepiece-Molecular Coordination of Metabolism and Its Impact on Aging. Int J Mol Sci 2013; 14:3026-49. [PMID: 23434656 PMCID: PMC3588029 DOI: 10.3390/ijms14023026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/05/2013] [Accepted: 01/16/2013] [Indexed: 11/16/2022] Open
Abstract
Circadian rhythms are found in almost all organisms from cyanobacteria to humans, where most behavioral and physiological processes occur over a period of approximately 24 h in tandem with the day/night cycles. In general, these rhythmic processes are under regulation of circadian clocks. The role of circadian clocks in regulating metabolism and consequently cellular and metabolic homeostasis is an intensively investigated area of research. However, the links between circadian clocks and aging are correlative and only recently being investigated. A physiological decline in most processes is associated with advancing age, and occurs at the onset of maturity and in some instances is the result of accumulation of cellular damage beyond a critical level. A fully functional circadian clock would be vital to timing events in general metabolism, thus contributing to metabolic health and to ensure an increased “health-span” during the process of aging. Here, we present recent evidence of links between clocks, cellular metabolism, aging and oxidative stress (one of the causative factors of aging). In the light of these data, we arrive at conceptual generalizations of this relationship across the spectrum of model organisms from fruit flies to mammals.
Collapse
Affiliation(s)
- Andrea Bednářová
- Institute of Entomology, Biology Centre, Academy of Science, Branišovská 31, České Budějovice 370 05-CZ, Czech Republic; E-Mails: (A.B.); (D.K.)
- Faculty of Science, South Bohemian University, Branišovská 31, České Budějovice 370 05-CZ, Czech Republic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, Academy of Science, Branišovská 31, České Budějovice 370 05-CZ, Czech Republic; E-Mails: (A.B.); (D.K.)
- Faculty of Science, South Bohemian University, Branišovská 31, České Budějovice 370 05-CZ, Czech Republic
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-662-325-2978; Fax: +1-662-325-8837
| |
Collapse
|
25
|
Sivaperumal R, Subramanian P, Yadav P, Sharma VK. Analysis of circadian locomotor rhythms in vg andcrybmutants ofDrosophila melanogasterunder different light:dark regimens. BIOL RHYTHM RES 2011. [DOI: 10.1080/09291016.2010.513519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Xu K, DiAngelo JR, Hughes ME, Hogenesch JB, Sehgal A. The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metab 2011; 13:639-54. [PMID: 21641546 PMCID: PMC3152999 DOI: 10.1016/j.cmet.2011.05.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/21/2010] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
Circadian rhythms are regulated by a synchronized system of central and peripheral clocks. Here, we show that a clock in the Drosophila fat body drives rhythmic expression of genes involved in metabolism, detoxification, the immune response, and steroid hormone regulation. Some of these genes cycle even when the fat body clock is disrupted, indicating that they are regulated by exogenous factors. Food is an important stimulus, as limiting food availability to a 6 hr interval each day drives rhythmic expression of genes in the fat body. Restricting food to a time of day when consumption is typically low desynchronizes internal rhythms because it alters the phase of rhythmic gene expression in the fat body without affecting the brain clock. Flies maintained on this paradigm produce fewer eggs than those restricted to food at the normal time. These data suggest that desynchrony of endogenous rhythms, caused by aberrant feeding patterns, affects reproductive fitness.
Collapse
Affiliation(s)
- Kanyan Xu
- Department of Neuroscience, Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
27
|
Bellet MM, Sassone-Corsi P. Mammalian circadian clock and metabolism - the epigenetic link. J Cell Sci 2011; 123:3837-48. [PMID: 21048160 DOI: 10.1242/jcs.051649] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythms regulate a wide variety of physiological and metabolic processes. The clock machinery comprises complex transcriptional-translational feedback loops that, through the action of specific transcription factors, modulate the expression of as many as 10% of cellular transcripts. This marked change in gene expression necessarily implicates a global regulation of chromatin remodeling. Indeed, various descriptive studies have indicated that histone modifications occur at promoters of clock-controlled genes (CCGs) in a circadian manner. The finding that CLOCK, a transcription factor crucial for circadian function, has intrinsic histone acetyl transferase (HAT) activity has paved the way to unraveling the molecular mechanisms that govern circadian chromatin remodeling. A search for the histone deacetylase (HDAC) that counterbalances CLOCK activity revealed that SIRT1, a nicotinamide adenin dinucleotide (NAD(+))-dependent HDAC, functions in a circadian manner. Importantly, SIRT1 is a regulator of aging, inflammation and metabolism. As many transcripts that oscillate in mammalian peripheral tissues encode proteins that have central roles in metabolic processes, these findings establish a functional and molecular link between energy balance, chromatin remodeling and circadian physiology. Here we review recent studies that support the existence of this link and discuss their implications for understanding mammalian physiology and pathology.
Collapse
Affiliation(s)
- Marina Maria Bellet
- Department of Pharmacology, Unite 904 Inserm Epigenetics and Neuronal Plasticity, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
28
|
Frenkel L, Fernanda Ceriani M. Circadian Plasticity: From Structure to Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:107-38. [DOI: 10.1016/b978-0-12-387003-2.00005-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Hardin PE. Molecular genetic analysis of circadian timekeeping in Drosophila. ADVANCES IN GENETICS 2011; 74:141-73. [PMID: 21924977 DOI: 10.1016/b978-0-12-387690-4.00005-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A genetic screen for mutants that alter circadian rhythms in Drosophila identified the first clock gene-the period (per) gene. The per gene is a central player within a transcriptional feedback loop that represents the core mechanism for keeping circadian time in Drosophila and other animals. The per feedback loop, or core loop, is interlocked with the Clock (Clk) feedback loop, but whether the Clk feedback loop contributes to circadian timekeeping is not known. A series of distinct molecular events are thought to control transcriptional feedback in the core loop. The time it takes to complete these events should take much less than 24h, thus delays must be imposed at different steps within the core loop. As new clock genes are identified, the molecular mechanisms responsible for these delays have been revealed in ever-increasing detail and provide an in-depth accounting of how transcriptional feedback loops keep circadian time. The phase of these feedback loops shifts to maintain synchrony with environmental cycles, the most reliable of which is light. Although a great deal is known about cell-autonomous mechanisms of light-induced phase shifting by CRYPTOCHROME (CRY), much less is known about non-cell autonomous mechanisms. CRY mediates phase shifts through an uncharacterized mechanism in certain brain oscillator neurons and carries out a dual role as a photoreceptor and transcription factor in other tissues. Here, I review how transcriptional feedback loops function to keep time in Drosophila, how they impose delays to maintain a 24-h cycle, and how they maintain synchrony with environmental light:dark cycles. The transcriptional feedback loops that keep time in Drosophila are well conserved in other animals, thus what we learn about these loops in Drosophila should continue to provide insight into the operation of analogous transcriptional feedback loops in other animals.
Collapse
Affiliation(s)
- Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&MUniversity, College Station, USA
| |
Collapse
|
30
|
Naidu KS, Morgan LW, Bailey MJ. Inflammation in the avian spleen: timing is everything. BMC Mol Biol 2010; 11:104. [PMID: 21194436 PMCID: PMC3027090 DOI: 10.1186/1471-2199-11-104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 12/31/2010] [Indexed: 12/03/2022] Open
Abstract
Background The synchrony of an organism with both its external and internal environment is critical to well-being and survival. As a result, organisms display daily cycles of physiology and behavior termed circadian rhythms. At the cellular level, circadian rhythms originate via interlocked autoregulatory feedback loops consisting of circadian clock genes and their proteins. These regulatory loops provide the molecular framework that enables the intracellular circadian timing system necessary to generate and maintain subsequent 24 hr rhythms. In the present study we examine the daily control of circadian clock genes and regulation of the inflammatory response by the circadian clock in the spleen. Results Our results reveal that circadian clock genes as well as proinflammatory cytokines, including Tnfά and IL-1β, display rhythmic oscillations of mRNA abundance over a 24 hr cycle. LPS-induced systemic inflammation applied at midday vs. midnight reveals a differential response of proinflammatory cytokine induction in the spleen, suggesting a daily rhythm of inflammation. Exogenous melatonin administration at midday prior to LPS stimulation conveys pleiotropic effects, enhancing and repressing inflammatory cytokines, indicating melatonin functions as both a pro- and anti-inflammatory molecule in the spleen. Conclusion In summary, a daily oscillation of circadian clock genes and inflammatory cytokines as well as the ability of melatonin to function as a daily mediator of inflammation provides valuable information to aid in deciphering how the circadian timing system regulates immune function at the molecular level. However, further research is needed to clarify the precise mechanisms by which the circadian clock and melatonin have an impact upon daily immune functions in the periphery.
Collapse
Affiliation(s)
- Kallur S Naidu
- The Center for Biological Clocks Research, Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| | | | | |
Collapse
|
31
|
Hamasaka Y, Suzuki T, Hanai S, Ishida N. Evening circadian oscillator as the primary determinant of rhythmic motivation for Drosophila courtship behavior. Genes Cells 2010; 15:1240-8. [DOI: 10.1111/j.1365-2443.2010.01456.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Sitzmann BD, Lemos DR, Ottinger MA, Urbanski HF. Effects of age on clock gene expression in the rhesus macaque pituitary gland. Neurobiol Aging 2010; 31:696-705. [PMID: 18614257 PMCID: PMC2823945 DOI: 10.1016/j.neurobiolaging.2008.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 05/01/2008] [Accepted: 05/28/2008] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that circadian clock genes are expressed in various peripheral tissues, raising the possibility that multiple clocks regulate circadian physiology. To study clock gene expression in the rhesus macaque pituitary gland we used gene microarray data and found that the pituitary glands of young and old adult males express several components of the circadian clock (Per1, Per2, Cry1, Bmal1, Clock, Rev-erbalpha and Csnk1varepsilon). Semi-quantitative reverse-transcription polymerase chain reaction (sqRT-PCR) confirmed the presence of these core-clock genes and detected significant age-related differences in the expression of Per2. sqRT-PCR also showed differential expression of core-clock genes at two opposing time-points over the 24-h day, with greater expression of Per2 and Bmal1 (P<0.05) at 1300h as compared to 0100h. Immunohistochemistry revealed rhythmic expression of REV-ERBalpha in the pituitary glands of female macaques. These data provide evidence that the rhesus macaque pituitary gland expresses core-clock genes and their associated protein products in a 24-h rhythmic pattern, and that their expression is moderately impacted by aging processes.
Collapse
Affiliation(s)
- Brandon D. Sitzmann
- Department of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Dario R. Lemos
- Department of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Mary Ann Ottinger
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Henryk F. Urbanski
- Department of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
- Departments of Behavioral Neuroscience, and Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
33
|
Garm A, Ekström P. Evidence for multiple photosystems in jellyfish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:41-78. [PMID: 20797681 DOI: 10.1016/s1937-6448(10)80002-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cnidarians are often used as model animals in studies of eye and photopigment evolution. Most cnidarians display photosensitivity at some point in their lifecycle ranging from extraocular photoreception to image formation in camera-type eyes. The available information strongly suggests that some cnidarians even possess multiple photosystems. The evidence is strongest within Cubomedusae where all known species posses 24 eyes of four morphological types. Physiological experiments show that each cubomedusan eye type likely constitutes a separate photosystem controlling separate visually guided behaviors. Further, the visual system of cubomedusae also includes extraocular photoreception. The evidence is supported by immunocytochemical and molecular data indicating multiple photopigments in cubomedusae as well as in other cnidarians. Taken together, available data suggest that multiple photosystems had evolved already in early eumetazoans and that their original level of organization was discrete sets of special-purpose eyes and/or photosensory cells.
Collapse
Affiliation(s)
- Anders Garm
- Department of Comparative Zoology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
34
|
Kilman VL, Allada R. Genetic analysis of ectopic circadian clock induction in Drosophila. J Biol Rhythms 2009; 24:368-78. [PMID: 19755582 DOI: 10.1177/0748730409343761] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell-autonomous feedback loops underlie the molecular oscillations that define circadian clocks. In Drosophila the transcription factor Clk activates multiple clock components of feedback loops many of which feed back and regulate Clk expression or activity. Previously the authors evoked similar molecular oscillations in putatively naïve neurons in Drosophila by ectopic expression of a single gene, Clk, suggesting a master regulator function. Using molecular oscillations of the core clock component PERIOD (PER), the authors observed dramatic and widespread molecular oscillations throughout the brain in flies expressing ectopic Clk. Consistent with the master regulator hypothesis, they found that Clk is uniquely capable of inducing ectopic clocks as ectopic induction of other clock components fails to induce circadian rhythms. Clk also induces oscillations even when expression is adult restricted, suggesting that ectopic clocks can even be induced in differentiated cells. However, if transgene expression is discontinued, PER expression disappears, indicating that Clk must be continually active to sustain ectopic clock function. In some cases Clk-mediated PER induction was observed without apparent synchronous cycling, perhaps due to desynchronization of rhythms between clocks or truly cell autonomous arrhythmic PER expression, indicating that additional factors may be necessary for coherent rhythms in cells ectopically expressing Clk. To determine minimal requirements for circadian clock induction by Clk, the authors determined the genetic requirements of ectopic clocks. No ectopic clocks are induced in mutants of Clk's heterodimeric partner cyc. In addition, noncycling PER is observed when ectopic Clk is induced in a cryb mutant background. While other factors may contribute, these results indicate that persistent Clock induction is uniquely capable of broadly inducing ectopic rhythms even in adults, consistent with a special role at the top of a clock gene hierarchy.
Collapse
Affiliation(s)
- Valerie L Kilman
- Department of Neurobiology and Physiology, Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
35
|
Abstract
Circadian rhythms govern a remarkable variety of metabolic and physiological functions. Accumulating epidemiological and genetic evidence indicates that the disruption of circadian rhythms might be directly linked to cancer. Intriguingly, several molecular gears constituting the clock machinery have been found to establish functional interplays with regulators of the cell cycle, and alterations in clock function could lead to aberrant cellular proliferation. In addition, connections between the circadian clock and cellular metabolism have been identified that are regulated by chromatin remodelling. This suggests that abnormal metabolism in cancer could also be a consequence of a disrupted circadian clock. Therefore, a comprehensive understanding of the molecular links that connect the circadian clock to the cell cycle and metabolism could provide therapeutic benefit against certain human neoplasias.
Collapse
Affiliation(s)
- Saurabh Sahar
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
36
|
Sivaperumal R, Subramanian P, Pugalendi KV. Circadian expression patterns ofvrillein peripheral tissues of mutants inDrosophila melanogaster. BIOL RHYTHM RES 2009. [DOI: 10.1080/09291010802402477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Abstract
Eclosion is the stage in development when the adult insect emerges from the shell of its old cuticle. The sequence of behaviors necessary for eclosion is coordinated by an integrated system of hormones and is activated by hormones that relay developmental readiness. The circadian clock, which controls the timing of behaviors such as the rest: activity rhythm of adult insects, also controls eclosion timing. A number of groups are actively investigating the mechanisms by which the circadian clock restricts or gates eclosion to a particular time of day. Data from these studies are beginning to reveal details of the molecular and physiological basis of the eclosion rhythm.
Collapse
Affiliation(s)
- Edith M Myers
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
38
|
Abstract
Ion channels are the gatekeepers to neuronal excitability. Retinal neurons of vertebrates and invertebrates, neurons of the suprachiasmatic nucleus (SCN) of vertebrates, and pinealocytes of non-mammalian vertebrates display daily rhythms in their activities. The interlocking transcription-translation feedback loops with specific post-translational modulations within individual cells form the molecular clock, the basic mechanism that maintains the autonomic approximately 24-h rhythm. The molecular clock regulates downstream output signaling pathways that further modulate activities of various ion channels. Ultimately, it is the circadian regulation of ion channel properties that govern excitability and behavior output of these neurons. In this review, we focus on the recent development of research in circadian neurobiology mainly from 1980 forward. We will emphasize the circadian regulation of various ion channels, including cGMP-gated cation channels, various voltage-gated calcium and potassium channels, Na(+)/K(+)-ATPase, and a long-opening cation channel. The cellular mechanisms underlying the circadian regulation of these ion channels and their functions in various tissues and organisms will also be discussed. Despite the magnitude of chronobiological studies in recent years, the circadian regulation of ion channels still remains largely unexplored. Through more investigation and understanding of the circadian regulation of ion channels, the future development of therapeutic strategies for the treatment of sleep disorders, cardiovascular diseases, and other illnesses linked to circadian misalignment will benefit.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | |
Collapse
|
39
|
Kotwica J, Larson MK, Bebas P, Giebultowicz JM. Developmental profiles of PERIOD and DOUBLETIME in Drosophila melanogaster ovary. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:419-425. [PMID: 19223210 DOI: 10.1016/j.jinsphys.2009.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/20/2009] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
The clock protein PERIOD (PER) displays circadian cycles of accumulation, phosphorylation, nuclear translocation and degradation in Drosophila melanogaster clock cells. One exception to this pattern is in follicular cells enclosing previtellogenic ovarian egg chambers. In these cells, PER remains high and cytoplasmic at all times of day. Genetic evidence suggest that PER and its clock partner TIMELESS (TIM) interact in these cells, yet, they do not translocate to the nucleus. Here, we investigated the levels and subcellular localization of PER in older vitellogenic follicles. Cytoplasmic PER levels decreased in the follicular cells at the onset of vitellogenesis (stage 9). Interestingly, PER was observed in the nuclei of some follicular cells at this stage. PER signal disappeared in more advanced (stage 10) vitellogenic follicles. Since the phosphorylation state of PER is critical for the progression of circadian cycle, we investigated the status of PER phosphorylation in the ovary and the expression patterns of DOUBLETIME (DBT), a kinase known to affect PER in the clock cells. DBT was absent in previtellogenic follicular cells, but present in the cytoplasm of some stage 9 follicular cells. DBT was not distributed uniformly but was present in patches of adjacent cells, in a pattern resembling PER distribution at the same stage. Our data suggest that the absence of dbt expression in the follicular cells of previtellogenic egg chambers may be related to stable and cytoplasmic expression of PER in these cells. Onset of dbt expression in vitellogenic follicles coincides with nuclear localization of PER protein.
Collapse
Affiliation(s)
- Joanna Kotwica
- Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
40
|
Hao Zheng, Ng F, Yixiao Liu, Hardin PE. Spatial and circadian regulation of cry in Drosophila. J Biol Rhythms 2008; 23:283-95. [PMID: 18663236 DOI: 10.1177/0748730408318566] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Drosophila, cryptochrome (cry) encodes a blue-light photoreceptor that mediates light input to circadian oscillators and sustains oscillator function in peripheral tissues. The levels of cry mRNA cycle with a peak at approximately ZT5, which is similar to the phase of Clock (Clk) mRNA cycling in Drosophila. To understand how cry spatial and circadian expression is regulated, a series of cry-Gal4 trans-genes containing different portions of cry upstream and intron 1 sequences were tested for spatial and circadian expression. In fly heads, cry upstream sequences drive constitutive expression in brain oscillator neurons, a novel group of nonoscillator cells in the optic lobe, and peripheral oscillator cells in eyes and antennae. In contrast, cry intron 1 drives rhythmic expression in eyes and antennae, but not brain oscillator neurons. These results demonstrate that intron 1 is sufficient for high-amplitude cry mRNA cycling, show that cry upstream sequences are sufficient for expression in brain oscillator neurons, and suggest that cry spatial and circadian expression are regulated by different elements.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | |
Collapse
|
41
|
Lu B, Liu W, Guo F, Guo A. Circadian modulation of light-induced locomotion responses in Drosophila melanogaster. GENES BRAIN AND BEHAVIOR 2008; 7:730-9. [PMID: 18518924 DOI: 10.1111/j.1601-183x.2008.00411.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between light and the circadian system has long been a matter of discussion. Many studies have focused on entrainment of light with the internal biological clock. Light also functions as an environmental stimulus that affects the physiology and behaviour of animals directly. In this study, we used light as an unexpected stimulus for flies at different circadian times. We found that wildtype flies showed circadian changes in light-induced locomotion responses. Elevation of locomotor activity by light occurred during the subjective night, and performance in response to light pulses declined to trough during the subjective day. Moreover, arrhythmic mutants lost the rhythm of locomotion responses to light, with promotion of activity by light in timeless(01)mutants and inhibition of activity by light in Clock(ar)mutants. However, neither ablation of central oscillators nor disturbance of the functional clock inside compound eyes was sufficient to disrupt the rhythm of light responses. We show that, compound eyes, which have been identified as the control point for normal masking (promotion of activity by light), are sufficient but not necessary for paradoxical masking (suppression of activity by light) under high light intensity. This, taken together with the clear difference of light responses in wildtype flies, suggests that two different masking mechanisms may underlie the circadian modulation of light-induced locomotion responses.
Collapse
Affiliation(s)
- B Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
42
|
Ikeno T, Numata H, Goto SG. Molecular characterization of the circadian clock genes in the bean bug, Riptortus pedestris, and their expression patterns under long- and short-day conditions. Gene 2008; 419:56-61. [PMID: 18547745 DOI: 10.1016/j.gene.2008.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 11/28/2022]
Abstract
Although the molecular mechanisms and the diversity of insect circadian clocks have been well investigated in holometabolous insects, hemimetabolous insects have received little attention. In the present study, we isolated the circadian clock genes, period (per), cycle (cyc), vrille (vri), and mammalian-type cryptochrome (cry-m) from the bean bug Riptortus pedestris. This is the first report of vri and cry-m in hemimetabolous insects. All of the genes showed high similarities to respective homologous genes in other insects. The discovery of cry-m in R. pedestris indicates that the clockwork of hemimetabolous insects is similar to that in insects having CRY-m, including the monarch butterfly Danaus plexippus and the honey bee Apis mellifera, and not to insects lacking it, such as Drosophila melanogaster. Real-time PCR showed that mRNAs of these circadian clock genes exhibited extremely weak diel oscillations at day 9 in the head of R. pedestris, and their expression levels under long- and short-day conditions were nearly identical. In addition, expression levels of per mRNA were almost stable from days 0 to 15 under both photoperiodic conditions. The difference between long-day and short-day conditions in the mRNA level seems too small to distinguish photoperiodic conditions clearly. These results suggest that transcriptional regulations of circadian clock genes would not play an important role in the diapause programming in R. pedestris.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | |
Collapse
|
43
|
Schomerus C, Korf HW, Laedtke E, Moret F, Zhang Q, Wicht H. Nocturnal Behavior and RhythmicPeriodGene Expression in a Lancelet,Branchiostoma lanceolatum. J Biol Rhythms 2008; 23:170-81. [DOI: 10.1177/0748730407313363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors here present the first anatomical, molecular biological, and ethological data on the organization of the circadian system of a lancelet, Branchiostoma lanceolatum, a close invertebrate relative of vertebrates. B. lanceolatum was found to be a nocturnal animal and, since its rhythmic activity persisted under constant darkness, it also appears to possess an endogenous, circadian oscillator. The authors cloned a homolog of the clock gene Period ( Per), which plays a central (inhibitory) role in the biochemical machinery of the circadian oscillators of both vertebrates and protostomians. This gene from B. lanceolatum was designated as amphiPer. Both the sequence of its cDNA and that of the predicted protein are more similar to those of the Per paralogs of vertebrates than to those of the single protostomian Per gene. A strong expression of amphiPer was found in a small cell group in the anterior neural tube. The amphiPer mRNA levels fluctuated in a rhythmic manner, being high early in the day and low late at night. The authors' data suggest a homology of the amphiPer expessing cells to the suprachiasmatic nucleus of vertebrates.
Collapse
Affiliation(s)
- Christof Schomerus
- Fachbereich Medizin der Johann Wolfgang Goethe-Universität, Dr. Senckenbergische Anatomie, Institut für Anatomie II, Frankfurt, Germany,
| | - Horst-Werner Korf
- Fachbereich Medizin der Johann Wolfgang Goethe-Universität, Dr. Senckenbergische Anatomie, Institut für Anatomie II, Frankfurt, Germany
| | - Elke Laedtke
- Fachbereich Medizin der Johann Wolfgang Goethe-Universität, Dr. Senckenbergische Anatomie, Institut für Anatomie II, Frankfurt, Germany
| | | | - Qian Zhang
- Fachbereich Medizin der Johann Wolfgang Goethe-Universität, Dr. Senckenbergische Anatomie, Institut für Anatomie II, Frankfurt, Germany
| | - Helmut Wicht
- Fachbereich Medizin der Johann Wolfgang Goethe-Universität, Dr. Senckenbergische Anatomie, Institut für Anatomie II, Frankfurt, Germany
| |
Collapse
|
44
|
Shao QM, Bembenek J, Trang LTD, Hiragaki S, Takeda M. Molecular structure, expression patterns, and localization of the circadian transcription modulator CYCLE in the cricket, Dianemobius nigrofasciatus. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:403-413. [PMID: 18082762 DOI: 10.1016/j.jinsphys.2007.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 10/23/2007] [Accepted: 10/24/2007] [Indexed: 05/25/2023]
Abstract
CYCLE (CYC), also known as BMAL1 in vertebrate nomenclature, is a transcription modulator of the circadian genes period and timeless of Drosophila melanogaster. We cloned a cDNA encoding a CYC homologue from the head of the ground cricket, Dianemobius nigrofasciatus (Dncyc), the first CYC from Hemimetabola. The deduced sequence corresponded to a 601 amino-acid polypeptide, with well-defined bHLH, PAS-A, PAS-B, PAC, and BTCR domains. The amino-acid sequence showed 70.7% identity with the CYC protein of Athalia rosae, 63.8% with D. melanogaster, and 52% identity with the human homologue. A cyc transcript of around 3.6kb occurs in the brain, midgut, testis, fatbody, and muscle. An additional band of around 1.1kb gave a hybridization signal in the head. No temporal oscillation in cyc mRNA abundance was observed in the head of the adult cricket when investigated by Northern blot analysis. CYC-like immunohistochemical reactivity (ir) and its dimerization partner CLOCK (CLK)-ir appeared in the pars intercerebralis (PI), tritocerebrum, dorsolateral protocerebrum, and subesophageal ganglion (SOG), but no CYC-ir was observed in the optic lobe (OL) that showed CLK-ir. The deutocerebrum showed a unique CLK-ir but no CYC-ir pattern. Double-labelling experiments showed that both antigens were co-localized in the mandibular and maxillary neuromeres of the SOG. CYC-ir showed no daily oscillation in intensity and the staining pattern was always cytoplasmic. CLK-ir occurred in the nucleus at ZT 16, but was cytoplasmic at other ZT times. A neuronal network equivalent to adult system occurred in the second nymphal stadium.
Collapse
Affiliation(s)
- Qi-Miao Shao
- Division of Molecular Science, Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | | | | | | | |
Collapse
|
45
|
Fuchikawa T, Shimizu I. Effects of temperature on circadian rhythm in the Japanese honeybee, Apis cerana japonica. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:1179-87. [PMID: 17655856 DOI: 10.1016/j.jinsphys.2007.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 05/16/2023]
Abstract
Temperature influences key aspects of insect circadian rhythms. The locomotor rhythm in foragers of the Japanese honeybee, Apis cerana japonica, was entrained to a skeleton temperature cycle. An initial warm temperature pulse was imposed at the beginning of subjective day and a second was applied at the end of the subjective day. A single warm pulse given every early subjective day in constant darkness (DD) entrained the locomotor rhythm without a second temperature pulse, but a single pulse given in late subjective day allowed a free-running rhythm. When honeybees were kept under a light-dark cycle, their body temperatures increased by 7-8 degrees C with locomotor activity. This temperature elevation remained during the photophase but followed the ambient environmental temperature at night. Body temperature oscillations continued to be circadian in DD, and temperature elevation occurred during the subjective day. In DD, the free-running period tau of locomotor activity increased when the ambient temperature increased from 27 to 37 degrees C, although these changes were within the range of temperature compensation for many organisms. Under continuous light conditions (LL), tau remained constant with more strict temperature compensation. Patterns of brain period mRNA levels of forager bees maintained at different temperatures in LL revealed that the free-running period of per mRNA rhythm was temperature compensated. In addition, temperature strongly influenced the amplitude of the circadian transcriptional rhythms during the free-run period in LL, which may confer temperature compensation. We also discuss the possibility that daily changes in forager body temperatures may act as an internal Zeitgeber by fluctuating hive temperature.
Collapse
Affiliation(s)
- Taro Fuchikawa
- Centre for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | | |
Collapse
|
46
|
Schuckel J, Siwicki KK, Stengl M. Putative circadian pacemaker cells in the antenna of the hawkmoth Manduca sexta. Cell Tissue Res 2007; 330:271-8. [PMID: 17786482 DOI: 10.1007/s00441-007-0471-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 07/08/2007] [Indexed: 11/25/2022]
Abstract
Antennal sensory neurons in the fruit fly Drosophila melanogaster express circadian rhythms in the clock gene PERIOD (PER) and appear to be sufficient and necessary for circadian rhythms in olfactory responses. Given recent evidence for daily rhythms of pheromone responses in the antenna of the hawkmoth Manduca sexta, we examined whether a peripheral PER-based circadian clock might be present in this species. Several different cell types in the moth antenna were recognized by monoclonal antibodies against Manduca sexta PER. In addition to PER-like staining of pheromone-sensitive olfactory receptor neurons and supporting cells, immunoreactivity was detected in beaded branches contacting the pheromone-sensitive sensilla. The nuclei of apparently all sensory receptor neurons, of sensilla supporting cells, of epithelial cells, and of antennal nerve glial cells were PER-immunoreactive. Expression of per mRNA in antennae was confirmed by the polymerase chain reaction, which showed stronger expression at Zeitgeber-time 15 compared with Zeitgeber-time 3. This evidence for the expression of per gene products suggests that the antenna of the hawkmoth contains endogenous circadian clocks.
Collapse
Affiliation(s)
- Julia Schuckel
- Biology, Animal Physiology, Philipps University of Marburg, Karl von Frisch Strasse, 35043, Marburg, Germany
| | | | | |
Collapse
|
47
|
Brown TM, Piggins HD. Electrophysiology of the suprachiasmatic circadian clock. Prog Neurobiol 2007; 82:229-55. [PMID: 17646042 DOI: 10.1016/j.pneurobio.2007.05.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/29/2007] [Accepted: 05/30/2007] [Indexed: 01/28/2023]
Abstract
In mammals, an internal timekeeping mechanism located in the suprachiasmatic nuclei (SCN) orchestrates a diverse array of neuroendocrine and physiological parameters to anticipate the cyclical environmental fluctuations that occur every solar day. Electrophysiological recording techniques have proved invaluable in shaping our understanding of how this endogenous clock becomes synchronized to salient environmental cues and appropriately coordinates the timing of a multitude of physiological rhythms in other areas of the brain and body. In this review we discuss the pioneering studies that have shaped our understanding of how this biological pacemaker functions, from input to output. Further, we highlight insights from new studies indicating that, more than just reflecting its oscillatory output, electrical activity within individual clock cells is a vital part of SCN clockwork itself.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
48
|
Guilding C, Piggins HD. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 2007; 25:3195-216. [PMID: 17552989 DOI: 10.1111/j.1460-9568.2007.05581.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The suprachiasmatic nucleus of the hypothalamus (SCN) is the master circadian pacemaker or clock in the mammalian brain. Canonical theory holds that the output from this single, dominant clock is responsible for driving most daily rhythms in physiology and behaviour. However, important recent findings challenge this uniclock model and reveal clock-like activities in many neural and non-neural tissues. Thus, in addition to the SCN, a number of areas of the mammalian brain including the olfactory bulb, amygdala, lateral habenula and a variety of nuclei in the hypothalamus, express circadian rhythms in core clock gene expression, hormone output and electrical activity. This review examines the evidence for extra-SCN circadian oscillators in the mammalian brain and highlights some of the essential properties and key differences between brain oscillators. The demonstration of neural pacemakers outside the SCN has wide-ranging implications for models of the circadian system at a whole-organism level.
Collapse
Affiliation(s)
- Clare Guilding
- 3.614 Stopford Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
49
|
Affiliation(s)
- Wangjie Yu
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843-3258, USA
| | | |
Collapse
|
50
|
Rush BL, Murad A, Emery P, Giebultowicz JM. Ectopic CRYPTOCHROME renders TIM light sensitive in the Drosophila ovary. J Biol Rhythms 2007; 21:272-8. [PMID: 16864647 DOI: 10.1177/0748730406290416] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The period (per) and timeless (tim) genes play a central role in the Drosophila circadian clock mechanism. PERIOD (PER) and TIMELESS (TIM) proteins periodically accumulate in the nuclei of pace-making cells in the fly brain and many cells in peripheral organs. In contrast, TIM and PER in the ovarian follicle cells remain cytoplasmic and do not show daily oscillations in their levels. Moreover, TIM is not light sensitive in the ovary, while it is highly sensitive to this input in circadian tissues. The mechanism underlying this intriguing difference is addressed here. It is demonstrated that the circadian photoreceptor CRYPTOCHROME (CRY) is not expressed in ovarian tissues. Remarkably, ectopic cry expression in the ovary is sufficient to cause degradation of TIM after exposure to light. In addition, PER levels are reduced in response to light when CRY is present, as observed in circadian cells. Hence, CRY is the key component of the light input pathway missing in the ovary. However, the factors regulating PER and TIM levels downstream of light/cry action appear to be present in this non-circadian organ.
Collapse
Affiliation(s)
- Brandy L Rush
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|