1
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the neural regulation and brain pathology. Neurosci Biobehav Rev 2025; 169:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, 201306 Uttar Pradesh, India.
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Bandaru M, Sultana OF, Islam MA, Rainier A, Reddy PH. Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms. Ageing Res Rev 2025; 103:102600. [PMID: 39617058 DOI: 10.1016/j.arr.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RLIP76 (Rlip), a stress-responsive protein, plays a multifaceted role in cellular function. This protein acts primarily as a glutathione-electrophile conjugate (GS-E) transporter, crucial for detoxifying hazardous compounds and converting them into mercapturic acids. RLIP76 also modulates cytoskeletal motility and membrane plasticity through its role in the Ral-signaling pathway, interacting with RalA and RalB, key small GTPases involved in growth and metastasis. Beyond its ATP-dependent transport functions in various tissues, RLIP76 also demonstrates GTPase Activating Protein (GAP) activity towards Rac1 and Cdc42, with a preference for Ral-GTP over Ral-GDP. Its functions span critical physiological processes including membrane dynamics, oxidative stress response, and mitochondrial dynamics. The protein's widespread expression and evolutionary conservation underscore its significance. Our lab discovered that Rlip interacts with Alzheimer's disease (AD) proteins, amyloid beta and phosphorylated and induce oxidative stress, mitochondrial dysfnction and synaptic damage in AD. Our in vitro studies revealed that overexpression of Rlip reduces mitochondrial abnormalities. Further, our in vivo studies (Rlip+/- mice) revealed that a partial reduction of Rlip in mice (Rlip+/-), leads to mitochondrial abnormalities, elevated oxidative stress, and cognitive deficits resembling late-onset AD, emphasizing the protein's crucial role in neuronal health and disease. Finally, we discuss the experimental cross-breedings of overexpression of mice Rlip TG/TG or Rlip + /- mice with Alzheimer's disease models - earlyonset 5XFAD, late-onset APPKI and Tau transgenic mice, providing new insights into RLIP76's role in AD progression and development. This review summarizes RLIP76's structure, function, and cellular pathways, highlighting its implications in AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alvir Rainier
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Frey Y, Lungu C, Olayioye MA. Regulation and functions of the DLC family of RhoGAP proteins: Implications for development and cancer. Cell Signal 2025; 125:111505. [PMID: 39549821 DOI: 10.1016/j.cellsig.2024.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
The DLC (Deleted in Liver Cancer) family of RhoGAP (Rho GTPase-activating) proteins has been extensively studied since the identification of the first family member nearly 30 years ago. Rho GTPase signaling is essential for various cellular processes, including cytoskeletal dynamics, cell migration, and proliferation. Members of the DLC family are key regulators of this signaling pathway, with well-established roles in development and carcinogenesis. Here, we provide a comprehensive review of research into DLC regulation and cellular functions over the last three decades. In particular, we summarize control mechanisms of DLC gene expression at both the transcriptional and post-transcriptional level. Additionally, recent advances in understanding the post-translational regulation of DLC proteins that allow for tuning of protein activity and localization are highlighted. This detailed overview will serve as resource for future studies aimed at further elucidating the complex regulatory mechanisms of DLC family proteins and exploring their potential as targets for therapeutic applications.
Collapse
Affiliation(s)
- Yannick Frey
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; Medical University of Innsbruck, Institute of Pathophysiology, Innsbruck, Austria
| | - Cristiana Lungu
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany.
| |
Collapse
|
4
|
Cao Y, Ni Q, Bao C, Cai C, Wang T, Ruan X, Li Y, Wang H, Wang R, Sun W. The Role of Pericyte Migration and Osteogenesis in Periodontitis. J Dent Res 2024; 103:723-733. [PMID: 38822570 DOI: 10.1177/00220345241244687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024] Open
Abstract
A ligature-induced periodontitis model was established in wild-type and CD146CreERT2; RosatdTomato mice to explore the function of pericytes in alveolar bone formation. We found that during periodontitis progression and periodontal wound healing, CD146+/NG2+ pericytes were enriched in the periodontal tissue areas, which could migrate to the alveolar bone surface and colocalize with ALP+/OCN+ osteoblasts. Chemokine C-X-C motif receptor 4 (CXCR4) inhibition using AMD3100 blocked CD146-Cre+ pericyte migration and osteogenesis, as well as further exacerbated periodontitis-associated bone loss. Next, primary pericytes were sorted out by magnetic-activated cell sorting and demonstrated that C-X-C motif chemokine ligand 12 (CXCL12) promotes pericyte migration and osteogenesis via CXCL12-CXCR4-Rac1 signaling. Finally, the local administration of an adeno-associated virus for Rac1 overexpression in NG2+ pericytes promotes osteoblast differentiation of pericytes and increases alveolar bone volume in periodontitis. Thus, our results provided the evidence that pericytes may migrate and osteogenesis via the CXCL12-CXCR4-Rac1 axis during the pathological process of periodontitis.
Collapse
Affiliation(s)
- Y Cao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Q Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - C Bao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - C Cai
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - T Wang
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - X Ruan
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Y Li
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - H Wang
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - R Wang
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - W Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
5
|
Tian X, Nanding K, Dai X, Wang Q, Wang J, Morigen, Fan L. Pattern recognition receptor mediated innate immune response requires a Rif-dependent pathway. J Autoimmun 2023; 134:102975. [PMID: 36527784 DOI: 10.1016/j.jaut.2022.102975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Small GTPases play critical roles in cell morphology, movement, and adhesion by dynamic regulation of actin cytoskeleton. The small Rho GTPase Rif/RhoF (Rho in filopodia) regulates the formation of filopodia and stress fibers in cells. Rif is highly expressed in a number of cell types in the immune system; however, it's role in immune system function is unclear. In this research, we found that Rif expression is necessary for NF-κB activation in primary immune cells, and mature dendritic cell (mature DCs) induced from Bone Marrow-Derived Dendritic Cells (BMDCs) isolated from Rif knock out (Rif KO) mice displayed impaired degradation of I-κBα, as well as reduced TNF-α secretion and p38 MAPK phosphorylation under LPS stimulation. Interestingly, we revealed that TLR agonists, such as LPS and poly (I:C), as well as bacterial virulence factor SopE could induce a transient increase in Rif activation in monocytes THP-1 cells. Furthermore, Rif was found to be an integral part of the TLR4, TLR3 and nodosome signaling complex. We further identified Src tyrosine kinases as upstream activator of Rif in both bacterial and viral induced immune responses. Moreover, activated Rif induces activation of transcription factors, such as NF-κB, AP-1 and IRF-3, and mediates inflammation through secretion of IL-6, IL-8 or TNFα. Rif activation by PRRs contributes in a variety of ways to protective host responses against invading microbes. Taken together, this study reveals that Rif is indispensable for both extracellular and intracellular pattern-recognition receptor-mediated innate immune responses. Rif possess broad anti-pathogenic effect and understanding of the molecular mechanisms by which this small Rho GTPase interferes with innate immune system will be beneficial to develop therapies against infectious agents.
Collapse
Affiliation(s)
- Xiaoxia Tian
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China; The Laboratory for Tumor Molecular Diagnosis, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Kathleen Nanding
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Xueyao Dai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Qian Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Junyu Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| |
Collapse
|
6
|
Consalvo KM, Kirolos SA, Sestak CE, Gomer RH. Sex-Based Differences in Human Neutrophil Chemorepulsion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:354-367. [PMID: 35793910 PMCID: PMC9283293 DOI: 10.4049/jimmunol.2101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/02/2022] [Indexed: 05/25/2023]
Abstract
A considerable amount is known about how eukaryotic cells move toward an attractant, and the mechanisms are conserved from Dictyostelium discoideum to human neutrophils. Relatively little is known about chemorepulsion, where cells move away from a repellent signal. We previously identified pathways mediating chemorepulsion in Dictyostelium, and here we show that these pathways, including Ras, Rac, protein kinase C, PTEN, and ERK1 and 2, are required for human neutrophil chemorepulsion, and, as with Dictyostelium chemorepulsion, PI3K and phospholipase C are not necessary, suggesting that eukaryotic chemorepulsion mechanisms are conserved. Surprisingly, there were differences between male and female neutrophils. Inhibition of Rho-associated kinases or Cdc42 caused male neutrophils to be more repelled by a chemorepellent and female neutrophils to be attracted to the chemorepellent. In the presence of a chemorepellent, compared with male neutrophils, female neutrophils showed a reduced percentage of repelled neutrophils, greater persistence of movement, more adhesion, less accumulation of PI(3,4,5)P3, and less polymerization of actin. Five proteins associated with chemorepulsion pathways are differentially abundant, with three of the five showing sex dimorphism in protein localization in unstimulated male and female neutrophils. Together, this indicates a fundamental difference in a motility mechanism in the innate immune system in men and women.
Collapse
Affiliation(s)
| | - Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, TX
| | - Chelsea E Sestak
- Department of Biology, Texas A&M University, College Station, TX
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX
| |
Collapse
|
7
|
Thangavelu L, Che Mat Nor SM, Abd Aziz D, Sulong S, Tin A, Ahmad Tajudin LS. Genetic Markers PLEKHA7, ABCC5, and KALRN Are Not Associated With the Progression of Primary Angle Closure Glaucoma (PACG) in Malays. Cureus 2021; 13:e18823. [PMID: 34804680 PMCID: PMC8592120 DOI: 10.7759/cureus.18823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction PLEKHA7, ABCC5, and KALRN have been identified as susceptible genetic markers related to glaucoma. We aimed to investigate the association between the identified susceptible genetic markers PLEKHA7 rs11024102, ABCC5 rs17217796, and KALRN rs1392912 in the progression of primary angle-closure glaucoma (PACG) in Malay patients. Methods For this study, 163 Malay patients with PACG were recruited from April 2015 to April 2017 at Hospital Universiti Sains Malaysia and Hospital Raja Perempuan Zainab II, Kota Bharu. Venesection was performed. DNA was extracted using a commercial DNA extraction kit. The primer was optimized for rs11024102, rs17217796, and rs1392912 of the PLEKHA7, ABCC5, and KALRN genes, respectively. Polymerase chain reaction (PCR) was performed, and PCR products were purified. A DNA sequencer was used to identify polymorphisms. Progression was based on the agreement between the Advanced Glaucoma Intervention Study scoring system and the Hodapp-Parrish and Anderson staging system. The scoring was conducted on two reliable consecutive Humphrey visual fields (HVFs) during the recruitment period and two baseline HVFs obtained when the diagnosis was made. Based on the scoring, patients were grouped into progressed and non-progressed. A chi-square test was used to analyze the association between the genetic markers and the progression of PACG. Results One hundred and sixty-three Malay patients with PACG (58 men and 105 women) were recruited. Twenty-nine patients (18%) had visual field progression of PACG after a mean (SD) follow-up of 6.0 (1.0) years. The minor allele frequencies for PLEKHA7 rs11024102 (G/A), ABCC5 rs17217796 (C/G), and KALRN rs1392912 (A/G) were 0.44, 0.08, and 0.48, respectively. We found that rs11024102 (p=0.828), rs17217796 (p=0.865), and rs1392912 (p=0.684) were not associated with PACG progression in the Malay patients. Conclusion Although PLEKHA7 and ABCC5 were found to be genetic markers associated with the risk of PACG, they played no roles in PACG progression in the Malay population. Moreover, KALRN was not significantly associated with PACG progression. Other susceptible genetic markers may be responsible for PACG progression.
Collapse
Affiliation(s)
- Lathalakshmi Thangavelu
- Department of Ophthalmology & Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, MYS
| | - Sarah Murniati Che Mat Nor
- Department of Ophthalmology & Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, MYS
| | - Darwish Abd Aziz
- Department of Ophthalmology & Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, MYS
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, MYS
| | - Aung Tin
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, SGP
| | - Liza Sharmini Ahmad Tajudin
- Department of Ophthalmology & Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, MYS
| |
Collapse
|
8
|
Ménesi D, Klement É, Ferenc G, Fehér A. The Arabidopsis Rho of Plants GTPase ROP1 Is a Potential Calcium-Dependent Protein Kinase (CDPK) Substrate. PLANTS (BASEL, SWITZERLAND) 2021; 10:2053. [PMID: 34685862 PMCID: PMC8539224 DOI: 10.3390/plants10102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022]
Abstract
Plant Rho-type GTPases (ROPs) are versatile molecular switches involved in a number of signal transduction pathways. Although it is well known that they are indirectly linked to protein kinases, our knowledge about their direct functional interaction with upstream or downstream protein kinases is scarce. It is reasonable to suppose that similarly to their animal counterparts, ROPs might also be regulated by phosphorylation. There is only, however, very limited experimental evidence to support this view. Here, we present the analysis of two potential phosphorylation sites of AtROP1 and two types of potential ROP-kinases. The S74 site of AtROP1 has been previously shown to potentially regulate AtROP1 activation dependent on its phosphorylation state. However, the kinase phosphorylating this evolutionarily conserved site could not be identified: we show here that despite of the appropriate phosphorylation site consensus sequences around S74 neither the selected AGC nor CPK kinases phosphorylate S74 of AtROP1 in vitro. However, we identified several phosphorylation sites other than S74 for the CPK17 and 34 kinases in AtROP1. One of these sites, S97, was tested for biological relevance. Although the mutation of S97 to alanine (which cannot be phosphorylated) or glutamic acid (which mimics phosphorylation) somewhat altered the protein interaction strength of AtROP1 in yeast cells, the mutant proteins did not modify pollen tube growth in an in vivo test.
Collapse
Affiliation(s)
- Dalma Ménesi
- Institute of Plant Biology, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; (D.M.); (G.F.)
| | - Éva Klement
- Laboratory of Proteomics Research, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; or
- Single Cell Omics ACF, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Györgyi Ferenc
- Institute of Plant Biology, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; (D.M.); (G.F.)
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; (D.M.); (G.F.)
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
9
|
Bianchi L, Sframeli M, Vantaggiato L, Vita GL, Ciranni A, Polito F, Oteri R, Gitto E, Di Giuseppe F, Angelucci S, Versaci A, Messina S, Vita G, Bini L, Aguennouz M. Nusinersen Modulates Proteomics Profiles of Cerebrospinal Fluid in Spinal Muscular Atrophy Type 1 Patients. Int J Mol Sci 2021; 22:ijms22094329. [PMID: 33919289 PMCID: PMC8122268 DOI: 10.3390/ijms22094329] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) type 1 is a severe infantile autosomal-recessive neuromuscular disorder caused by a survival motor neuron 1 gene (SMN1) mutation and characterized by progressive muscle weakness. Without supportive care, SMA type 1 is rapidly fatal. The antisense oligonucleotide nusinersen has recently improved the natural course of this disease. Here, we investigated, with a functional proteomic approach, cerebrospinal fluid (CSF) protein profiles from SMA type 1 patients who underwent nusinersen administration to clarify the biochemical response to the treatment and to monitor disease progression based on therapy. Six months after starting treatment (12 mg/5 mL × four doses of loading regimen administered at days 0, 14, 28, and 63), we observed a generalized reversion trend of the CSF protein pattern from our patient cohort to that of control donors. Notably, a marked up-regulation of apolipoprotein A1 and apolipoprotein E and a consistent variation in transthyretin proteoform occurrence were detected. Since these multifunctional proteins are critically active in biomolecular processes aberrant in SMA, i.e., synaptogenesis and neurite growth, neuronal survival and plasticity, inflammation, and oxidative stress control, their nusinersen induced modulation may support SMN improved-expression effects. Hence, these lipoproteins and transthyretin could represent valuable biomarkers to assess patient responsiveness and disease progression.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - Maria Sframeli
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
| | - Lorenza Vantaggiato
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - Gian Luca Vita
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
| | - Annamaria Ciranni
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Francesca Polito
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Rosaria Oteri
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Eloisa Gitto
- Neonatal and Paediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age, University of Messina, 98125 Messina, Italy;
| | - Fabrizio Di Giuseppe
- Dentistry and Biotechnology, and Proteomics Unit, Centre of Advanced Studies and Technoloy, Department Medical, Oral & Biotechnological Sciences, “G. d’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Stefania Angelucci
- Dentistry and Biotechnology, and Proteomics Unit, Centre of Advanced Studies and Technoloy, Department Medical, Oral & Biotechnological Sciences, “G. d’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Antonio Versaci
- Intensive Care Unit, AOU Policlinico “G. Martino”, 98125 Messina, Italy;
| | - Sonia Messina
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Giuseppe Vita
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
- Correspondence:
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - M’hammed Aguennouz
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| |
Collapse
|
10
|
Xiong X, Lai X, Li A, Liu Z, Ma N. Diversity roles of CHD1L in normal cell function and tumorigenesis. Biomark Res 2021; 9:16. [PMID: 33663617 PMCID: PMC7934534 DOI: 10.1186/s40364-021-00269-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) is a multifunctional protein participated in diverse cellular processes, including chromosome remodeling, cell differentiation and development. CHD1L is a regulator of chromosomal integrity maintenance, DNA repair and transcriptional regulation through its bindings to DNA. By regulating kinds of complex networks, CHD1L has been identified as a potent anti-apoptotic and pro-proliferative factor. CHD1L is also an oncoprotein since its overexpression leads to dysregulation of related downstream targets in various cancers. The latest advances in the functional molecular basis of CHD1L in normal cells will be described in this review. As the same time, we will describe the current understanding of CHD1L in terms of structure, characteristics, function and the molecular mechanisms underlying CHD1L in tumorigenesis. We inference that the role of CHD1L which involve in multiple cellular processes and oncogenesis is well worth further studying in basic biology and clinical relevance.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Xudong Lai
- Departement of infectious disease, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China.
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China.
| | - Ningfang Ma
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Department of Histology and Embryology, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
11
|
Sundararaman A, Mellor H. A functional antagonism between RhoJ and Cdc42 regulates fibronectin remodelling during angiogenesis. Small GTPases 2020; 12:241-245. [PMID: 32857689 PMCID: PMC8205010 DOI: 10.1080/21541248.2020.1809927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing ones. Angiogenesis requires endothelial cells to change shape and polarity, as well as acquire the ability to directionally migrate ‒ processes that are classically regulated by the Rho family of GTPases. RhoJ (previously TCL) is an endothelium enriched Rho GTPase with a 78% amino acid similarity to the ubiquitously expressed Cdc42. In our recent publication, we demonstrate that α5β1 integrin co-traffics with RhoJ. RhoJ specifically represses the internalization of the active α5β1 conformer, leading to a reduced ability of endothelial cells to form fibronectin fibrils. Surprisingly, this function of RhoJ is in opposition to the role of Cdc42, a known driver of fibrillogenesis. Intriguingly, we discovered that the competition for limiting amounts of the shared effector, PAK3, could explain the ability of these two Rho GTPases to regulate fibrillogenesis in opposing directions. Consequently, RhoJ null mice show excessive fibronectin deposition around retinal vessels, possibly due to the unopposed action of Cdc42. Our work suggests that the functional antagonism between RhoJ and Cdc42 could restrict fibronectin remodelling to sites of active angiogenesis to form a provisional matrix for vessel growth. One correlate of our findings is that RhoJ dependent repression of fibronectin remodelling could be atheroprotective in quiescent vessels.
Collapse
Affiliation(s)
- Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Harry Mellor
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Düzen IV, Yavuz F, Vuruskan E, Saracoglu E, Poyraz F, Cekici Y, Alıcı H, Göksülük H, Candemir B, Sucu M, Demiryürek AT. Investigation of leukocyte RHO/ROCK gene expressions in patients with non-valvular atrial fibrillation. Exp Ther Med 2019; 18:2777-2782. [PMID: 31572525 PMCID: PMC6755446 DOI: 10.3892/etm.2019.7929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia caused by disorganized electrical activity in the atria, and it is an important cause of mortality and morbidity. There is a limited data about Rho/Rho-kinase (ROCK) pathway contribute to AF development. The aim of the present study was to elucidate leukocyte RHO/ROCK gene expressions in patients with non-valvular AF (NVAF). A total of 37 NVAF patients and 47 age and sex-matched controls were included in this study. mRNA was extracted from leukocytes, and real-time polymerase chain reaction was used for gene expression analysis. A marked increase in ROCK1 and ROCK2 gene expressions in patients with NVAF was observed (P<0.0001). The present study detected significant elevations in RHOBTB2, RND3 (RHOE), RHOC, RHOG, RHOH, RAC3, RHOB, RHOD, RHOV, RHOBTB1, RND2, RND1 and RHOJ gene expressions (P<0.01). However, there were marked decreases in CDC42, RAC2, and RHOQ gene expressions in patients with NVAF. No significant modifications were seen in the other Rho GTPase proteins RHOA, RAC1, RHOF, RHOU and RHOBTB3. To the best of our knowledge, the present study is the first to provide data that gene expression of leukocyte RHO/ROCK may contribute to the NVAF pathogenesis through activated leukocytes, which promotes the immune or inflammatory cascade.
Collapse
Affiliation(s)
- Irfan V Düzen
- Department of Cardiology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | - Fethi Yavuz
- Department of Cardiology, Adana City Hospital, Adana 01060, Turkey
| | - Ertan Vuruskan
- Department of Cardiology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | - Erhan Saracoglu
- Department of Cardiology, Dr Ersin Arslan Education and Research Hospital, Gaziantep 27310, Turkey
| | - Fatih Poyraz
- Department of Cardiology, Defa Life Hospital, Gaziantep 27310, Turkey
| | - Yusuf Cekici
- Department of Cardiology, Dr Ersin Arslan Education and Research Hospital, Gaziantep 27310, Turkey
| | - Hayri Alıcı
- Department of Cardiology, Hatem Hospital, Gaziantep 27310, Turkey
| | - Hüseyin Göksülük
- Department of Cardiology, Faculty of Medicine, Ankara University, Ankara 06340, Turkey
| | - Basar Candemir
- Department of Cardiology, Faculty of Medicine, Ankara University, Ankara 06340, Turkey
| | - Murat Sucu
- Department of Cardiology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | - Abdullah T Demiryürek
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| |
Collapse
|
13
|
Sun B, Qian X, Zhu F. Molecular characterization of shrimp harbinger transposase derived 1 (HARBI1)-like and its role in white spot syndrome virus and Vibrio alginolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2018; 78:222-232. [PMID: 29680489 DOI: 10.1016/j.fsi.2018.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
The role of the nuclease, HARBI1-like protein (mjHARBI1-like) in the innate immunity of Marsupenaeus japonicus was explored in this study. The 1361 bp cDNA sequence of mjHARBI1-like was cloned from M. japonicus using RACE. RT-qPCR analysis results showed that the gills and hepatopancreas of M. japonicus were the main tissues where mjHARBI1-like is expressed. In addition, it was also found that white spot syndrome virus (WSSV) or Vibrio alginolyticus challenge could stimulate mjHARBI1-like expression. After mjHARBI1-likewas inhibited, expression of immune genes such as toll, p53, myosin, and proPO were significantly downregulated (P < 0.01). However, in shrimp hemocytes, hemocyanin and tumor necrosis factor-α (TNF-α) were up-regulated significantly (P < 0.01). This study demonstrated that mjHARBI1-like plays a key role in the progression of WSSV and V. alginolyticus infection. Specifically, the cumulative mortality of WSSV-infected and V. alginolyticus-infected shrimp was significantly advanced by double-strand RNA interference (dsRNAi) of mjHARBI1-like. Apoptosis studies indicated that mjHARBI1-dsRNA treatment caused a reduction in hemocyte apoptosis in bacterial and viral groups. In addition, phagocytosis experiments illustrated that mjHARBI1-dsRNA treatment led to a lower phagocytosis rate in hemocytes of V. alginolyticus-challenged shrimp. It was also found that knockdown of mjHARBI1-like inhibited shrimp phenoloxidase (PO) activity, superoxide dismutase (SOD) activity, and total hemocyte count (THC) after WSSV or V. alginolyticus infection. These data indicate a regulative role of mjHARBI1-likein the immunity of shrimp in response to pathogen infection. Resultantly, it was concluded that mjHARBI1-like might have a positive effect on the anti-WSSV immune response of shrimp by regulating apoptosis, THC, PO activity, and SOD activity. Additionally, mjHARBI1-like might promote anti-V. alginolyticus infection by participating in regulating phagocytosis, apoptosis, SOD activity, PO activity, and THC.
Collapse
Affiliation(s)
- Baozhen Sun
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiyi Qian
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fei Zhu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
14
|
Wang Z, Sun B, Zhu F. Epigallocatechin-3-gallate protects Kuruma shrimp Marsupeneaus japonicus from white spot syndrome virus and Vibrio alginolyticus. FISH & SHELLFISH IMMUNOLOGY 2018; 78:1-9. [PMID: 29656126 DOI: 10.1016/j.fsi.2018.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and exhibits potential antibacterial and anticancer activities. In this study, EGCG was used in pathogen-challenge experiments in shrimp to discover its effect on the innate immune system of an invertebrate. Kuruma shrimp Marsupeneaus japonicus was used as an experimental model and challenged with white spot syndrome virus (WSSV) and the Gram-negative bacterium Vibrio alginolyticus. Pathogen-challenge experiments showed that EGCG pretreatment significantly delayed and reduced mortality upon WSSV and V. alginolyticus infection, with VP-28 copies of WSSV also reduced. Quantitative reverse transcription polymerase chain reaction revealed the positive influence of EGCG on several innate immune-related genes, including IMD, proPO, QM, myosin, Rho, Rab7, p53, TNF-alpha, MAPK, and NOS, and we observed positive influences on three immune parameters, including total hemocyte count and phenoloxidase and superoxide dismutase activities, by EGCG treatment. Additionally, results showed that EGCG treatment significantly reduced apoptosis upon V. alginolyticus challenge. These results indicated the positive role of EGCG in the shrimp innate immune system as an enhancer of immune parameters and an inhibitor of apoptosis, thereby delaying and reducing mortality upon pathogen challenge. Our findings provide insight into potential therapeutic or preventive functions associated with EGCG to enhance shrimp immunity and protect shrimp from pathogen infection.
Collapse
Affiliation(s)
- Zhi Wang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Baozhen Sun
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fei Zhu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
15
|
Mevalonate Cascade Inhibition by Simvastatin Induces the Intrinsic Apoptosis Pathway via Depletion of Isoprenoids in Tumor Cells. Sci Rep 2017; 7:44841. [PMID: 28344327 PMCID: PMC5366866 DOI: 10.1038/srep44841] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
The mevalonate (MEV) cascade is responsible for cholesterol biosynthesis and the formation of the intermediate metabolites geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) used in the prenylation of proteins. Here we show that the MEV cascade inhibitor simvastatin induced significant cell death in a wide range of human tumor cell lines, including glioblastoma, astrocytoma, neuroblastoma, lung adenocarcinoma, and breast cancer. Simvastatin induced apoptotic cell death via the intrinsic apoptotic pathway. In all cancer cell types tested, simvastatin-induced cell death was not rescued by cholesterol, but was dependent on GGPP- and FPP-depletion. We confirmed that simvastatin caused the translocation of the small Rho GTPases RhoA, Cdc42, and Rac1/2/3 from cell membranes to the cytosol in U251 (glioblastoma), A549 (lung adenocarcinoma) and MDA-MB-231(breast cancer). Simvastatin-induced Rho-GTP loading significantly increased in U251 cells which were reversed with MEV, FPP, GGPP. In contrast, simvastatin did not change Rho-GTP loading in A549 and MDA-MB-231. Inhibition of geranylgeranyltransferase I by GGTi-298, but not farnesyltransferase by FTi-277, induced significant cell death in U251, A549, and MDA-MB-231. These results indicate that MEV cascade inhibition by simvastatin induced the intrinsic apoptosis pathway via inhibition of Rho family prenylation and depletion of GGPP, in a variety of different human cancer cell lines.
Collapse
|
16
|
McKinnon CM, Mellor H. The tumor suppressor RhoBTB1 controls Golgi integrity and breast cancer cell invasion through METTL7B. BMC Cancer 2017; 17:145. [PMID: 28219369 PMCID: PMC5319017 DOI: 10.1186/s12885-017-3138-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND RhoBTB1 and 2 are atypical members of the Rho GTPase family of signaling proteins. Unlike other Rho GTPases, RhoBTB1 and 2 undergo silencing or mutation in a wide range of epithelial cancers; however, little is known about the consequences of this loss of function. METHODS We analyzed transcriptome data to identify transcriptional targets of RhoBTB2. We verified these using Q-PCR and then used gene silencing and cell imaging to determine the cellular function of these targets downstream of RhoBTB signaling. RESULTS RhoBTB1 and 2 regulate the expression of the methyltransferases METTL7B and METTL7A, respectively. RhoBTB1 regulates the integrity of the Golgi complex through METTL7B. RhoBTB1 is required for expression of METTL7B and silencing of either protein leads to fragmentation of the Golgi. Loss of RhoBTB1 expression is linked to Golgi fragmentation in breast cancer cells. Restoration of normal RhoBTB1 expression rescues Golgi morphology and dramatically inhibits breast cancer cell invasion. CONCLUSION Loss of RhoBTB1 expression in breast cancer cells leads to Golgi fragmentation and hence loss of normal polarity.
Collapse
Affiliation(s)
- Caroline M McKinnon
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Harry Mellor
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK.
| |
Collapse
|
17
|
Jiménez-Sánchez A. Coevolution of RAC Small GTPases and their Regulators GEF Proteins. Evol Bioinform Online 2016; 12:121-31. [PMID: 27226705 PMCID: PMC4872645 DOI: 10.4137/ebo.s38031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 01/16/2023] Open
Abstract
RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC–DOCK and RAC–DBL interactions.
Collapse
Affiliation(s)
- Alejandro Jiménez-Sánchez
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.; Previously at Department of Biology, University of York, York, UK
| |
Collapse
|
18
|
Ponce-Cusi R, Calaf GM. Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation. Int J Oncol 2015; 48:774-82. [PMID: 26691280 DOI: 10.3892/ijo.2015.3298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/06/2015] [Indexed: 11/05/2022] Open
Abstract
Globally, breast cancer in women is the leading cause of cancer death. This fact has generated an interest to obtain insight into breast tumorigenesis and also to develop drugs to control the disease. Ras is a proto-oncogene that is activated as a response to extracellular signals. As a member of the Ras GTPase superfamily, Rho-A is an oncogenic and a critical component of signaling pathways leading to downstream gene regulation. In chemotherapy, apoptosis is the predominant mechanism by which cancer cells die. However, even when the apoptotic machinery remains intact, survival signaling may antagonize the cell death by signals. The aim of this study was to evaluate 5-fluorouracil (5-FU) in cells transformed by low doses of ionizing α-particle radiation, in breast cancer cell lines on these genes, as well as apoptotic activity. We used two cell lines from an in vitro experimental breast cancer model. The MCF-10F and Tumor2 cell lines. MCF-10F was exposed to low doses of high linear energy transfer (LET) α-particles radiation (150 keV/µm). Tumor2, is a malignant and tumorigenic cell line obtained from Alpha5 (60cGy+E/60cGy+E) injected into the nude mice. Results indicated that 5-FU decreased H-ras, Rho-A, p53, Stat1 and increased Bax gene expression in Tumor2 and decreased Rac1, Rho-A, NF-κB and increased Bax and caspase-3 protein expression in Tumor2. 5-FU decreased H-ras, Bcl-xL and NF-κB and increased Bax gene expression. 5-FU decreased Rac1, Rho-A protein expression and increased Bax and caspase-3 protein expression in MDA-MB-231. Flow cytometry indicated 21.5% of cell death in the control MCF-10F and 80% in Tumor2 cell lines. It can be concluded that 5-FU may exert apoptotic activity in breast cancer cells transformed by low doses of ionizing α-particles in vitro regulating genes of Ras family and related to apoptosis such as Bax, Bcl-xL and NF-κB expression.
Collapse
Affiliation(s)
- Richard Ponce-Cusi
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 8097877, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 8097877, Chile
| |
Collapse
|
19
|
The Rho GTPase Family Genes in Bivalvia Genomes: Sequence, Evolution and Expression Analysis. PLoS One 2015; 10:e0143932. [PMID: 26633655 PMCID: PMC4669188 DOI: 10.1371/journal.pone.0143932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/11/2015] [Indexed: 01/27/2023] Open
Abstract
Background Rho GTPases are important members of the Ras superfamily, which represents the largest signaling protein family in eukaryotes, and function as key molecular switches in converting and amplifying external signals into cellular responses. Although numerous analyses of Rho family genes have been reported, including their functions and evolution, a systematic analysis of this family has not been performed in Mollusca or in Bivalvia, one of the most important classes of Mollusca. Results In this study, we systematically identified and characterized a total set (Rho, Rac, Mig, Cdc42, Tc10, Rnd, RhoU, RhoBTB and Miro) of thirty Rho GTPase genes in three bivalve species, including nine in the Yesso scallop Patinopecten yessoensis, nine in the Zhikong scallop Chlamys farreri, and twelve in the Pacific oyster Crassostrea gigas. Phylogenetic analysis and interspecies comparison indicated that bivalves might possess the most complete types of Rho genes in invertebrates. A multiple RNA-seq dataset was used to investigate the expression profiles of bivalve Rho genes, revealing that the examined scallops share more similar Rho expression patterns than the oyster, whereas more Rho mRNAs are expressed in C. farreri and C. gigas than in P. yessoensis. Additionally, Rho, Rac and Cdc42 were found to be duplicated in the oyster but not in the scallops. Among the expanded Rho genes of C. gigas, duplication pairs with high synonymous substitution rates (Ks) displayed greater differences in expression. Conclusion A comprehensive analysis of bivalve Rho GTPase family genes was performed in scallop and oyster species, and Rho genes in bivalves exhibit greater conservation than those in any other invertebrate. This is the first study focusing on a genome-wide characterization of Rho GTPase genes in bivalves, and the findings will provide a valuable resource for a better understanding of Rho evolution and Rho GTPase function in Bivalvia.
Collapse
|
20
|
Zhao Z, Manser E. Myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK), the ROCK-like effectors of Cdc42 and Rac1. Small GTPases 2015; 6:81-8. [PMID: 26090570 DOI: 10.1080/21541248.2014.1000699] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cdc42 is a member of the Rho GTPase protein family that plays key roles in local F-actin organization through a number of kinase and non-kinase effector proteins. The myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs), and the RhoA binding coiled-coil containing kinases (ROCKs) are widely expressed members of the Dystrophia myotonica protein kinase (DMPK) family. The MRCK proteins are ∼190 kDa multi-domain proteins expressed in all cells and coordinate certain acto-myosin networks. Notably MRCK is a key regulator of myosin18A and myosin IIA/B, and through phosphorylation of their common regulatory light chains (MYL9 or MLC2) to promote actin stress fiber contractility. The MRCK kinases are regulated by Cdc42, which is required for cell polarity and directional migration; MRCK links to the acto-myosin complex through interaction with a coiled-coil containing adaptor proteins LRAP35a/b. The biological activities of MRCK in model organisms such as worms and flies confirm it as a myosin II activator. In mammalian cell culture MRCK can be critical for cancer cell migration and neurite outgrowth. We review the current literatures regarding MRCK and highlight the similarities and differences between MRCK and ROCK kinases.
Collapse
Affiliation(s)
- Zhuoshen Zhao
- a sGSK Group; Institute of Molecular and Cell Biology (IMCB) ; Singapore
| | | |
Collapse
|
21
|
Fan L, Yan H, Pellegrin S, Mellor H. The Rif GTPase regulates cytoskeletal signaling from plexinA4 to promote neurite retraction. Neurosci Lett 2015; 590:178-83. [PMID: 25668492 DOI: 10.1016/j.neulet.2015.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 11/18/2022]
Abstract
The small GTPase Rif is required for the early stages of dendritic spine formation in neurons, acting through the formin mDia2 to control actin polymerization. Rif is expressed at high levels in the brain, suggesting broader roles in neuronal function. We screened a yeast two-hybrid cDNA library to identify additional binding partners for Rif of potential relevance to neuronal function. We found that Rif interacts with FARP1, a neuronal activator of the RhoA GTPase. We show that Rif has two separate roles in FARP1 regulation-in controlling its association with plexinA4, and in releasing active RhoA from a plexinA4/FARP1 complex. The regulation of FARP1 by Rif promotes neurite retraction in cells stimulated with the semaphorin Sema6A.
Collapse
Affiliation(s)
- Lifei Fan
- College of Life Sciences, Inner Mongolia University, University Road, Hohhot, China
| | - Huijuan Yan
- College of Life Sciences, Inner Mongolia University, University Road, Hohhot, China
| | - Stephanie Pellegrin
- School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Harry Mellor
- School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK.
| |
Collapse
|
22
|
Liu X, Chen D, Liu G. Overexpression of RhoA promotes the proliferation and migration of cervical cancer cells. Biosci Biotechnol Biochem 2014; 78:1895-901. [PMID: 25104222 DOI: 10.1080/09168451.2014.943650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The pro-oncogenic role of RhoA has been well identified in other cancers, but rarely in cervical cancer (CC), one of the main causes of cancer-related death in women. In the present study, we identified the overexpression of RhoA and its downstream effectors, ROCK-1 and ROCK-II, in CC specimens using western blotting. Then, we determined the effect of RhoA on the proliferation and migration of Hela cells, one of CC cell lines, by upregulating or downregulating the RhoA expression in Hela cells. We found that there was an overexpression of RhoA, ROCK-I/II in CC, which was associated with the progression of CC. And we confirmed that RhoA promoted the proliferation and migration of CC cells. In conclusion, we found a positive correlation among RhoA with the progression of CC by in vivo and in vitro evidences. A high RhoA expression in CC may predict a high metastatic potential of CC.
Collapse
Affiliation(s)
- Xiaojun Liu
- a Department of Human Anatomy and Embryology , Basic Medical College, Jilin University , Changchun , China
| | | | | |
Collapse
|
23
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
24
|
Murali A, Rajalingam K. Small Rho GTPases in the control of cell shape and mobility. Cell Mol Life Sci 2014; 71:1703-21. [PMID: 24276852 PMCID: PMC11113993 DOI: 10.1007/s00018-013-1519-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/28/2022]
Abstract
Rho GTPases are a class of evolutionarily conserved proteins comprising 20 members, which are predominantly known for their role in regulating the actin cytoskeleton. They are primarily regulated by binding of GTP/GDP, which is again controlled by regulators like GEFs, GAPs, and RhoGDIs. Rho GTPases are thus far well known for their role in the regulation of actin cytoskeleton and migration. Here we present an overview on the role of Rho GTPases in regulating cell shape and plasticity of cell migration. Finally, we discuss the emerging roles of ubiquitination and sumoylation in regulating Rho GTPases and cell migration.
Collapse
Affiliation(s)
- Arun Murali
- Cell Death Signaling Group, Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| | - Krishnaraj Rajalingam
- Cell Death Signaling Group, Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| |
Collapse
|
25
|
Dickover M, Hegarty JM, Ly K, Lopez D, Yang H, Zhang R, Tedeschi N, Hsiai TK, Chi NC. The atypical Rho GTPase, RhoU, regulates cell-adhesion molecules during cardiac morphogenesis. Dev Biol 2014; 389:182-91. [PMID: 24607366 DOI: 10.1016/j.ydbio.2014.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/28/2014] [Accepted: 02/18/2014] [Indexed: 11/29/2022]
Abstract
The vertebrate heart undergoes early complex morphologic events in order to develop key cardiac structures that regulate its overall function (Fahed et al., 2013). Although many genetic factors that participate in patterning the heart have been elucidated (Tu and Chi, 2012), the cellular events that drive cardiac morphogenesis have been less clear. From a chemical genetic screen to identify cellular pathways that control cardiac morphogenesis in zebrafish, we observed that inhibition of the Rho signaling pathways resulted in failure to form the atrioventricular canal and loop the linear heart tube. To identify specific Rho proteins that may regulate this process, we analyzed cardiac expression profiling data and discovered that RhoU was expressed at the atrioventricular canal during the time when it forms. Loss of RhoU function recapitulated the atrioventricular canal and cardiac looping defects observed in the ROCK inhibitor treated zebrafish. Similar to its family member RhoV/Chp (Tay et al., 2010), we discovered that RhoU regulates the cell junctions between cardiomyocytes through the Arhgef7b/Pak kinase pathway in order to guide atrioventricular canal development and cardiac looping. Inhibition of this pathway resulted in similar underlying cardiac defects and conversely, overexpression of a PAK kinase was able to rescue the loss of RhoU cardiac defect. Finally, we found that Wnt signaling, which has been implicated in atrioventricular canal development (Verhoeven et al., 2011), may regulate the expression of RhoU at the atrioventricular canal. Overall, these findings reveal a cardiac developmental pathway involving RhoU/Arhgef7b/Pak signaling, which helps coordinate cell junction formation between atrioventricular cardiomyocytes to promote cell adhesiveness and cell shapes during cardiac morphogenesis. Failure to properly form these cell adhesions during cardiac development may lead to structural heart defects and mechanistically account for the cellular events that occur in certain human congenital heart diseases.
Collapse
Affiliation(s)
- Michael Dickover
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Jeffrey M Hegarty
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Kim Ly
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Diana Lopez
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Hongbo Yang
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Ruilin Zhang
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Neil Tedeschi
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Tzung K Hsiai
- Department of Medicine, Division of Cardiology, University of Southern California, Los Angeles, CA, USA
| | - Neil C Chi
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
André S, Singh T, Lacal JC, Smetana K, Gabius HJ. Rho GTPase Rac1: molecular switch within the galectin network and for N-glycan α2,6-sialylation/O-glycan core 1 sialylation in colon cancer in vitro. Folia Biol (Praha) 2014; 60:95-107. [PMID: 25056432 DOI: 10.14712/fb2014060030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The Rho GTPase Rac1 is a multifunctional protein working through different effector pathways. The emerging physiological significance of glycanlectin recognition gives reason to testing the possibility for an influence of modulation of Rac1 expression on these molecular aspects. Using human colon adenocarcinoma (SW620) cells genetically engineered for its up- and down-regulation (Rac1+ and Rac1- cells) along with wild-type and mock-transfected control cells, the questions are addressed whether the presence of adhesion/growth-regulatory galectins and distinct aspects of cell surface glycosylation are affected. Proceeding from RT-PCR data to Western blotting after two-dimensional gel electrophoresis and flow cytofluorimetry with non-crossreactive antibodies against six members of this lectin family (i.e. galectins-1, -3, -4, -7, -8 and -9), a reduced extent of the presence of galectins-1, -7 and -9 was revealed in the case of Rac1 cells. Application of these six galectins as probes to determination of cell reactivity for human lectins yielded relative increases in surface labelling of Rac1- cells with galectins-1, -3 and -7. Examining distinct aspects of cell surface glycosylation with a panel of 14 plant/fungal lectins disclosed a decrease in α2,6-sialylation of N-glycans and an increase in PNA-reactive sites (i.e. non-sialylated core 1 O-glycans), two alterations known to favour reactivity for galectins-1 and -3. Thus, manipulation of Rac1 expression selectively affects the expression pattern within the galectin network at the level of proteins and distinct aspects of cell surface glycosylation.
Collapse
Affiliation(s)
- S André
- Ludwig-Maximilians-University Munich, Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Munich, Germany
| | - T Singh
- Ludwig-Maximilians-University Munich, Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Munich, Germany
| | - J C Lacal
- Instituto de Investigaciones Biomédicas, CSIC, Madrid, Spain
| | - K Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - H-J Gabius
- Ludwig-Maximilians-University Munich, Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Munich, Germany
| |
Collapse
|
27
|
Hou A, Toh LX, Gan KH, Lee KJR, Manser E, Tong L. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells. PLoS One 2013; 8:e77107. [PMID: 24130842 PMCID: PMC3795020 DOI: 10.1371/journal.pone.0077107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/06/2013] [Indexed: 01/11/2023] Open
Abstract
Purpose Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. Methods Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. Results Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. Conclusion Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.
Collapse
Affiliation(s)
- Aihua Hou
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
| | - Li Xian Toh
- RGS Group, Institute of Medical Biology, A, Star, Singapore, Singapore
| | - Kah Hui Gan
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
| | - Khee Jin Ryan Lee
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
| | - Edward Manser
- RGS Group, Institute of Medical Biology, A, Star, Singapore, Singapore
| | - Louis Tong
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
- Singapore National Eye Center, Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
28
|
Abstract
The Rho family of GTPases (members of the Ras superfamily) are best known for their roles in regulating cytoskeletal dynamics. It is also well established that misregulation of Rho proteins contributes to tumorigenesis and metastasis. Unlike Ras proteins, which are frequently mutated in cancer (around 30%), Rho proteins themselves are generally not found to be mutated in cancer. Rather, misregulation of Rho activity in cancer was thought to occur by overexpression of these proteins or by misregulation of molecules that control Rho activity, such as activation or overexpression of GEFs and inactivation or loss of GAPs or GDIs. Recent studies, enabled by next-generation tumor exome sequencing, report activating point mutations in Rho GTPases as driver mutations in melanoma, as well as breast, and head and neck cancers. The Rac1(P29L) mutation identified in these tumor studies was previously identified by our lab as an activating Rac mutation in C. elegans neuronal development, highlighting the conserved nature of this mutation. Furthermore, this finding supports the relevance of studying Rho GTPases in model organisms such as C. elegans to study the mechanisms that underlie carcinogenesis. This review will describe the recent findings that report activating Rho mutations in various cancer types, moving Rho GTPases from molecules misregulated in cancer to mutagenic targets that drive tumorigenesis.
Collapse
Affiliation(s)
- Jamie K Alan
- Central Michigan University College of Medicine; Mt. Pleasant, MI USA
| | - Erik A Lundquist
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| |
Collapse
|
29
|
Ghigna C, Riva S, Biamonti G. Alternative splicing of tumor suppressors and oncogenes. Cancer Treat Res 2013; 158:95-117. [PMID: 24222355 DOI: 10.1007/978-3-642-31659-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alternative splicing is a fundamental mechanism to modulate gene expression programs in response to different growth and environmental stimuli. There is now ample evidence that alternative splicing errors, caused by mutations in cis-acting elements and defects and/or imbalances in trans-acting factors, may be causatively associated to cancer progression. Recent work indicates the existence of an intricate network of interactions between alternative splicing events and signal transduction pathways. In this network, splicing factors occupy a central position and appear to function both as targets and effectors of regulatory circuits. Thus, a change in their activity deeply affects alternative splicing profiles and hence the cell behavior. Here, we discuss a number of cases that exemplify the involvement of deregulated alternative splicing in tumor progression.
Collapse
Affiliation(s)
- Claudia Ghigna
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, 27100, Italy
| | | | | |
Collapse
|
30
|
Affiliation(s)
- Laura M Machesky
- Beatson Institute for Cancer Research, Glasgow University College of Medical, Veterinary and Life Sciences, Garscube Campus, Switchback Rd., Glasgow G61 1BD, UK.
| | | |
Collapse
|
31
|
Abstract
The Rif GTPase is a recent addition to small Rho GTPase family; it shares low homology with other members in the family and evolutionarily parallels with the development of vertebrates. Rif has the conserved Rho GTPase domain structures and cycles between a GDP-bound inactive form and a GTP-bound active form. In its active form, Rif signals through multiple downstream effectors. In the present review, our aim is to summarize the current information about the Rif effectors and how Rif remodels actin cytoskeleton in many aspects.
Collapse
|
32
|
Abstract
Members of the Rab or ARF/Sar branches of the Ras GTPase superfamily regulate almost every step of intracellular membrane traffic. A rapidly growing body of evidence indicates that these GTPases do not act as lone agents but are networked to one another through a variety of mechanisms to coordinate the individual events of one stage of transport and to link together the different stages of an entire transport pathway. These mechanisms include guanine nucleotide exchange factor (GEF) cascades, GTPase-activating protein (GAP) cascades, effectors that bind to multiple GTPases, and positive-feedback loops generated by exchange factor-effector interactions. Together these mechanisms can lead to an ordered series of transitions from one GTPase to the next. As each GTPase recruits a unique set of effectors, these transitions help to define changes in the functionality of the membrane compartments with which they are associated.
Collapse
Affiliation(s)
- Emi Mizuno-Yamasaki
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan.
| | | | | |
Collapse
|
33
|
Abstract
In 1985, the first members of the Rho GTPase family were identified. Over the next 10 years, rapid progress was made in understanding Rho GTPase signalling. Multiple Rho GTPases were discovered in a wide range of eukaryotes, and shown to regulate a diverse range of cellular processes, including cytoskeletal dynamics, NADPH oxidase activation, cell migration, cell polarity, membrane trafficking, and transcription. The Rho regulators, guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs), were found through a combination of biochemistry, genetics, and detective work. Downstream targets for Rho GTPases were also rapidly identified, and linked to Rho-regulated cellular responses. In parallel, a wide range of bacterial proteins were found to modify Rho proteins or alter their activity in cells, many of which turned out to be useful tools to study Rho functions. More recent work has delineated where Rho GTPases act in cells, the molecular pathways linking some of them to specific cellular responses, and their functions in the development of multicellular organisms.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
34
|
Patrizi A, Viltono L, Frola E, Harvey K, Harvey RJ, Sassoè-Pognetto M. Selective localization of collybistin at a subset of inhibitory synapses in brain circuits. J Comp Neurol 2012; 520:130-41. [PMID: 21681748 DOI: 10.1002/cne.22702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Collybistin is a brain-specific guanine nucleotide exchange factor (GEF) that is crucial for the postsynaptic accumulation of gephyrin and γ-aminobutyric acid A receptors (GABA(A) Rs) at a specific subset of inhibitory synapses. Our understanding of the in vivo function of collybistin has been hampered by lack of information about the synaptic localization of this protein in brain circuits. Here we describe the subcellular localization of endogenous collybistin by using antibodies raised against distinct molecular domains that should recognize the majority of endogenous collybistin isoforms. We show that collybistin co-clusters with gephyrin and GABA(A) Rs in synaptic puncta and is recruited to postsynaptic specializations early during synapse development. Notably, collybistin is present in only a subset of gephyrin-positive synapses, with variable co-localization values in different brain regions. Moreover, collybistin co-localizes with GABA(A) Rs containing the α1, α2, or α3 subunits, arguing against a selective association with specific GABA(A) R subtypes. Surprisingly, we found that collybistin is expressed only transiently in Purkinje cells, suggesting that in these cerebellar neurons collybistin plays a selective role during the initial assembly of postsynaptic specializations. These data reveal a remarkable heterogeneity in the organization of GABAergic synapses and provide an anatomical basis for interpreting the variable effects caused by disruption of the collybistin gene in human X-linked intellectual disability and mouse knockout models.
Collapse
Affiliation(s)
- Annarita Patrizi
- Department of Anatomy, Pharmacology, and Forensic Medicine, National Institute of Neuroscience, Turin, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Abbasi K, DuBois KN, Dacks JB, Field MC. A novel Rho-like protein TbRHP is involved in spindle formation and mitosis in trypanosomes. PLoS One 2011; 6:e26890. [PMID: 22096505 PMCID: PMC3214021 DOI: 10.1371/journal.pone.0026890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 10/06/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In animals and fungi Rho subfamily small GTPases are involved in signal transduction, cytoskeletal function and cellular proliferation. These organisms typically possess multiple Rho paralogues and numerous downstream effectors, consistent with the highly complex contributions of Rho proteins to cellular physiology. By contrast, trypanosomatids have a much simpler Rho-signaling system, and the Trypanosoma brucei genome contains only a single divergent Rho-related gene, TbRHP (Tb927.10.6240). Further, only a single RhoGAP-like protein (Tb09.160.4180) is annotated, contrasting with the >70 Rho GAP proteins from Homo sapiens. We wished to establish the function(s) of TbRHP and if Tb09.160.4180 is a potential GAP for this protein. METHODS/FINDINGS TbRHP represents an evolutionarily restricted member of the Rho GTPase clade and is likely trypanosomatid restricted. TbRHP is expressed in both mammalian and insect dwelling stages of T. brucei and presents with a diffuse cytoplasmic location and is excluded from the nucleus. RNAi ablation of TbRHP results in major cell cycle defects and accumulation of multi-nucleated cells, coinciding with a loss of detectable mitotic spindles. Using yeast two hybrid analysis we find that TbRHP interacts with both Tb11.01.3180 (TbRACK), a homolog of Rho-kinase, and the sole trypanosome RhoGAP protein Tb09.160.4180, which is related to human OCRL. CONCLUSIONS Despite minimization of the Rho pathway, TbRHP retains an important role in spindle formation, and hence mitosis, in trypanosomes. TbRHP is a partner for TbRACK and an OCRL-related trypanosome Rho-GAP.
Collapse
Affiliation(s)
- Kanwal Abbasi
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Kelly N. DuBois
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joel B. Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
Boulter E, Estrach S, Garcia-Mata R, Féral CC. Off the beaten paths: alternative and crosstalk regulation of Rho GTPases. FASEB J 2011; 26:469-79. [PMID: 22038046 DOI: 10.1096/fj.11-192252] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rho proteins are small GTPases of the Ras superfamily that regulate a wide variety of biological processes, ranging from gene expression to cell migration. Mechanistically, the major Rho GTPases function as molecular switches cycling between an inactive GDP-bound and an active GTP-bound conformation, although several Rho proteins spontaneously exchange nucleotides or are simply devoid of GTPase activity. For over a decade, RhoGEFs and RhoGAPs have been established as the mainstream regulators of Rho proteins, respectively flipping the switch on or off. However, regulation by GEFs and GAPs leaves several fundamental questions on the operation of the Rho switch unanswered, indicating that the regulation of Rho proteins does not rely exclusively on RhoGEFs and RhoGAPs. Recent evidence indeed suggests that Rho GTPases are finely tuned by multiple alternative regulatory mechanisms, including post-translational modifications and protein degradation, as well as crosstalk mechanisms between Rho proteins. Here we review these alternative mechanisms and discuss how they alter Rho protein function and signaling. We also envision how the classic binary Rho switch may indeed function more like a switchboard with multiple switches and dials that can all contribute to the regulation of Rho protein function.
Collapse
Affiliation(s)
- Etienne Boulter
- Institut National de la Santé et de la Recherche Médicale Avenir Team, Nice Sophia-Antipolis University, Nice, France.
| | | | | | | |
Collapse
|
37
|
Park YJ, Ahn HJ, Kim YS, Cho Y, Joo DJ, Ju MK. Illumina-microarray analysis of mycophenolic acid-induced cell death in an insulin-producing cell line and primary rat islet cells: New insights into apoptotic pathways involved. Cell Signal 2010; 22:1773-82. [DOI: 10.1016/j.cellsig.2010.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/07/2010] [Indexed: 11/25/2022]
|
38
|
Bethea CL, Reddy AP. Effect of ovarian hormones on genes promoting dendritic spines in laser-captured serotonin neurons from macaques. Mol Psychiatry 2010; 15:1034-44. [PMID: 19687787 PMCID: PMC3910421 DOI: 10.1038/mp.2009.78] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 05/29/2009] [Accepted: 06/25/2009] [Indexed: 01/08/2023]
Abstract
Dendritic spines are the elementary structural units of neuronal plasticity and the cascades that promote dendritic spine remodeling center on Rho GTPases and downstream effectors of actin dynamics. In a model of hormone replacement therapy, we sought the effect of estradiol (E) and progesterone (P) on gene expression in these cascades in laser-captured serotonin neurons from rhesus macaques with complementary DNA array analysis. Ovariectomized rhesus macaques were treated with either placebo, E or E+P through Silastic implant for 1 month before euthanasia. The midbrain was obtained, sectioned and immunostained for tryptophan hydroxylase (TPH). TPH-positive neurons were laser captured using an Arcturus Laser Dissection Microscope (PixCell II). RNA from laser-captured serotonin neurons (n=2 animals/treatment) was hybridized to Rhesus Affymetrix GeneChips. With E±P treatment, there was a significant change in 744 probe sets (analysis of variance, P<0.05), but 10,493 probe sets exhibited a twofold or greater change. Pivotal changes in pathways leading to dendritic spine proliferation and transformation included twofold or greater increases in expression of the Rho GTPases called CDC42, Rac1 and RhoA. In addition, twofold or greater increases occurred in downstream effectors of actin dynamics, including p21-activated kinase (PAK1), Rho-associated coiled-coil-containing protein kinase (ROCK), PIP5K, IRSp53, Wiskott-Aldrich syndrome protein (WASP), WASP family Verprolin-homologous protein (WAVE), MLC, cofilin, gelsolin, profilin and three subunits of actin-related protein (ARP2/3). Finally, twofold or greater decreases occurred in CRIPAK, LIMK2 and myosin light chain kinase (MLCK). The regulation of RhoA, Rac1, CDC42, ROCK, PIP5k, IRSp53, WASP, WAVE, LIMK2, CRIPAK1, MLCK, ARP2/3 subunit 3, gelsolin, profilin and cofilin was confirmed with nested quantitative reverse transcriptase-PCR on laser-captured RNA (n=3 animals/treatment). The data indicate that ovarian steroids target gene expression of the Rho GTPases and pivotal downstream proteins, that in turn would promote dendritic spine proliferation and stabilization on serotonin neurons of the dorsal raphe nucleus.
Collapse
Affiliation(s)
- C L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR97006, USA.
| | | |
Collapse
|
39
|
Samuel F, Hynds DL. RHO GTPase signaling for axon extension: is prenylation important? Mol Neurobiol 2010; 42:133-42. [PMID: 20878268 DOI: 10.1007/s12035-010-8144-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/12/2010] [Indexed: 12/27/2022]
Abstract
Many lines of evidence indicate the importance of the Rho family guanine nucleotide triphosphatases (GTPases) in directing axon extension and guidance. The signaling networks that involve these proteins regulate actin cytoskeletal dynamics in navigating neuronal growth cones. However, the intricate patterns that regulate Rho GTPase activation and signaling are not yet fully defined. Activity and subcellular localization of the Rho GTPases are regulated by post-translational modification. The addition of a geranylgeranyl group to the carboxy (C-) terminus targets Rho GTPases to the plasma membrane and promotes their activation by facilitating interaction with guanine nucleotide exchange factors and allowing sequestering by association with guanine dissociation inhibitors. However, it is unclear how these modifications affect neurite extension or how subcellular localization alters signaling from the classical Rho GTPases (RhoA, Rac1, and Cdc42). Here, we review recent data addressing this issue and propose that Rho GTPase geranylgeranylation regulates outgrowth.
Collapse
Affiliation(s)
- Filsy Samuel
- Department of Biology, Texas Woman's University, PO Box 425799, Denton, TX 46204-5799, USA
| | | |
Collapse
|
40
|
van Helden SFG, Hordijk PL. Podosome regulation by Rho GTPases in myeloid cells. Eur J Cell Biol 2010; 90:189-97. [PMID: 20573421 DOI: 10.1016/j.ejcb.2010.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/17/2010] [Accepted: 05/22/2010] [Indexed: 01/16/2023] Open
Abstract
Myeloid cells form a first line of defense against infections. They migrate from the circulation to the infected tissues by adhering to and subsequently crossing the vascular wall. This process requires precise control and proper regulation of these interactions with the environment is therefore crucial. Podosomes are the most prominent adhesion structures in myeloid cells. Podosomes control both the adhesive and migratory properties of myeloid cells and the regulation of podosomes is key to the proper functioning of these cells. Here we discuss the regulation of podosomes by Rho GTPases, well known regulators of adhesion and migration, focusing on myeloid cells. In addition, the regulation of podosomes by GTPase regulators such as GEFs and GAPs, as well as the effects of some Rho GTPase effector pathways, will be discussed.
Collapse
Affiliation(s)
- Suzanne F G van Helden
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
41
|
Samson T, Welch C, Monaghan-Benson E, Hahn KM, Burridge K. Endogenous RhoG is rapidly activated after epidermal growth factor stimulation through multiple guanine-nucleotide exchange factors. Mol Biol Cell 2010; 21:1629-42. [PMID: 20237158 PMCID: PMC2861620 DOI: 10.1091/mbc.e09-09-0809] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this article it is shown that EGF stimulation leads to rapid activation of RhoG through Vav GEFs and the GEF PLEKHG6. Importantly, different cellular responses induced by EGF are determined by the available GEFs. Furthermore, this article presents results showing that EGF-stimulated cell migration and EGFR internalization are regulated by RhoG. RhoG is a member of the Rac-like subgroup of Rho GTPases and has been linked to a variety of different cellular functions. Nevertheless, many aspects of RhoG upstream and downstream signaling remain unclear; in particular, few extracellular stimuli that modulate RhoG activity have been identified. Here, we describe that stimulation of epithelial cells with epidermal growth factor leads to strong and rapid activation of RhoG. Importantly, this rapid activation was not observed with other growth factors tested. The kinetics of RhoG activation after epidermal growth factor (EGF) stimulation parallel the previously described Rac1 activation. However, we show that both GTPases are activated independently of one another. Kinase inhibition studies indicate that the rapid activation of RhoG and Rac1 after EGF treatment requires the activity of the EGF receptor kinase, but neither phosphatidylinositol 3-kinase nor Src kinases. By using nucleotide-free RhoG pull-down assays and small interfering RNA-mediated knockdown studies, we further show that guanine-nucleotide exchange factors (GEFs) of the Vav family mediate EGF-induced rapid activation of RhoG. In addition, we found that in certain cell types the recently described RhoG GEF PLEKHG6 can also contribute to the rapid activation of RhoG after EGF stimulation. Finally, we present results that show that RhoG has functions in EGF-stimulated cell migration and in regulating EGF receptor internalization.
Collapse
Affiliation(s)
- Thomas Samson
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
42
|
Fan L, Pellegrin S, Scott A, Mellor H. The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells. J Cell Sci 2010; 123:1247-52. [PMID: 20233848 DOI: 10.1242/jcs.061754] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Actin stress fibers are fundamental components of the actin cytoskeleton that produce contractile force in non-muscle cells. The formation of stress fibers is controlled by the small GTPase RhoA and two highly related proteins, RhoB and RhoC. Together, this subgroup of actin-regulatory proteins represents the canonical pathway of stress-fiber formation. Here, we show that the Rif GTPase is an alternative trigger of stress-fiber formation in epithelial cells. Rif is distantly related to RhoA; however, we show that the two proteins share a common downstream partner in stress-fiber formation--the Diaphanous-related formin mDia1. Rif-induced stress fibers also depend on the activity of the ROCK protein kinase. Unlike RhoA, Rif does not raise ROCK activity in cells, instead Rif appears to regulate the localization of myosin light chain phosphorylation. This study establishes Rif as a general regulator of Diaphanous-related formins and shows how non-classical Rho family members can access classical Rho pathways to create new signaling interfaces in cytoskeletal regulation.
Collapse
Affiliation(s)
- Lifei Fan
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
43
|
Costa P, Parsons M. New insights into the dynamics of cell adhesions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:57-91. [PMID: 20801418 DOI: 10.1016/s1937-6448(10)83002-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adhesion to the extracellular matrix (ECM) and to adjacent cells is a fundamental requirement for survival, differentiation, and migration of numerous cell types during both embryonic development and adult homeostasis. Different types of adhesion structures have been classified within different cell types or tissue environments. Much is now known regarding the complexity of protein composition of these critical points of cell contact with the extracellular environment. It has become clear that adhesions are highly ordered, dynamic structures under tight spatial control at the subcellular level to enable localized responses to extracellular cues. However, it is only in the last decade that the relative dynamics of these adhesion proteins have been closely studied. Here, we provide an overview of the recent data arising from such studies of cell-matrix and cell-cell contact and an overview of the imaging strategies that have been developed and implemented to study the intricacies and hierarchy of protein turnover within adhesions.
Collapse
Affiliation(s)
- Patricia Costa
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, United Kingdom
| | | |
Collapse
|
44
|
Arkwright PD, Luchetti F, Tour J, Roberts C, Ayub R, Morales AP, Rodríguez JJ, Gilmore A, Canonico B, Papa S, Esposti MD. Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes. Cell Res 2009; 20:72-88. [PMID: 19770844 DOI: 10.1038/cr.2009.112] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Fas/CD95 surface receptor mediates rapid death of various cell types, including autoreactive T cells with the potential for triggering autoimmunity. Here, we present novel aspects of Fas signalling that define a 'social' dimension to receptor-induced apoptosis. Fas stimulation rapidly induces extensive membrane nanotube formation between neighbouring T cells. This is critically dependent on Rho GTPases but not on caspase activation. Bidirectional transfer of membrane and cytosolic elements including active caspases can be observed to occur via these nanotubes. Nanotube formation and intercellular exchanges of death signals are defective in T lymphocytes from patients with autoimmune lymphoproliferative syndrome harbouring mutations in the Fas receptor. We conclude that nanotube-mediated exchanges constitute a novel form of intercellular communication that augments the propagation of death signalling between neighbouring T cells.
Collapse
Affiliation(s)
- Peter D Arkwright
- University of Manchester, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Rac1 is a member of the Rho family of small GTPases that not only regulates signaling pathways involved in cell adhesion and migration but also regulates gene transcription. Here we show that the transcriptional repressor BCL-6 is regulated by Rac1 signaling. Transfection of active Rac1 mutants into colorectal DLD-1 cells led to increased expression of a BCL-6-controlled luciferase reporter construct. Conversely, inhibition of endogenous Rac1 activation by the Rac1 inhibitor NSC23766 decreased reporter activity. Moreover, BCL-6 lost its typical localization to nuclear dots upon activation of Rac1 and became predominantly soluble in a non-chromatin-bound cell fraction. Rac1 signaling also regulated the expression of endogenous BCL-6-regulated genes, including the p50 precursor NF-kappaB1/p105 and the cell adhesion molecule CD44. Interestingly, these effects were not stimulated by the alternative splice variant Rac1b. The mechanism of BCL-6 inhibition does not involve formation of a stable Rac1/BCL-6 complex and is independent of Rac-induced reactive oxygen species production or Jun NH(2)-terminal kinase activation. We show that PAK1 mediates inhibition downstream of Rac and can directly phosphorylate BCL-6. Together, these data provide substantial evidence that Rac1 signaling inhibits the transcriptional repressor BCL-6 in colorectal cells and reveal a novel pathway that links Rac1 signaling to the regulation of gene transcription.
Collapse
|
46
|
Chen LM, Tran BN, Lin Q, Lim TK, Wang F, Hew CL. iTRAQ analysis of Singapore grouper iridovirus infection in a grouper embryonic cell line. J Gen Virol 2008; 89:2869-2876. [DOI: 10.1099/vir.0.2008/003681-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report, here, the first proteomics study of a grouper embryonic cell line (GEC) infected by Singapore grouper iridovirus (SGIV). The differential proteomes of GEC with and without viral infection were studied and quantified with iTRAQ labelling followed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Forty-nine viral proteins were recognized, of which 11 were identified for the first time. Moreover, 743 host proteins were revealed and classified into 218 unique protein groups. Fourteen host proteins were upregulated and five host proteins were downregulated upon viral infection. The iTRAQ analysis of SGIV infection in GEC provides an insight to viral and host gene products at the protein level. This should facilitate further study and the understanding of virus–host interactions, molecular mechanisms of viral infection and pathogenesis.
Collapse
Affiliation(s)
- Li Ming Chen
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Bich Ngoc Tran
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Fan Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Choy-Leong Hew
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
47
|
Derangeon M, Bourmeyster N, Plaisance I, Pinet-Charvet C, Chen Q, Duthe F, Popoff MR, Sarrouilhe D, Hervé JC. RhoA GTPase and F-actin dynamically regulate the permeability of Cx43-made channels in rat cardiac myocytes. J Biol Chem 2008; 283:30754-65. [PMID: 18667438 DOI: 10.1074/jbc.m801556200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gap junctions are clusters of transmembrane channels allowing a passive diffusion of ions and small molecules between adjacent cells. Connexin43, the main channel-forming protein expressed in ventricular myocytes, can associate with zonula occludens-1, a scaffolding protein linked to the actin cytoskeleton and to signal transduction molecules. The possible influence of Rho GTPases, major regulators of cellular junctions and of the actin cytoskeleton, in the modulation of gap junctional intercellular communication (GJIC) was examined. The activation of RhoA by cytoxic necrotizing factor 1 markedly enhanced GJIC, whereas its specific inhibition by the Clostridium botulinum C3 exoenzyme significantly reduced it. RhoA activity affects GJIC without major cellular redistribution of junctional plaques or changes in the Cx43 phosphorylation pattern. As these GTPases frequently act via the cortical cytoskeleton, the importance of F-actin in the modulation of GJIC was investigated by means of agents interfering with actin polymerization. Cytoskeleton stabilization by phalloidin slowed down the kinetics of channel rundown in the absence of ATP, whereas its disruption by cytochalasin D rapidly and markedly reduced GJIC despite ATP presence. Cytoskeleton stabilization by phalloidin markedly reduced the consequences of RhoA activation or inactivation. This mechanism appears to be the first described capable to both up- or down-regulate GJIC through RhoA activation or, conversely, inhibition. The inhibition of Rho downstream kinase effectors had no effect on GJIC. The present results provide further insight into the gating and regulation of junctional channels and identify a new downstream target for the small G-protein RhoA.
Collapse
Affiliation(s)
- Mickaël Derangeon
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, F-86022 Poitiers, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The Rho GTPase family of signaling proteins controls a wide range of highly dynamic cellular processes. Activation of Rho GTPases can be investigated and quantified in cell extracts using so-called pull-down assays. Proteins that bind specifically to the activated form of the Rho GTPase are used to capture it onto a bead support. Western blotting of the captured samples with specific antibodies then allows for quantification of the level of Rho GTPase activation in the sample. This unit describes the techniques for preparing the reagents required for assays of RhoA, Rac, and Cdc42 and gives practical tips for the successful application of the assay in a range of situations.
Collapse
Affiliation(s)
- Stéphanie Pellegrin
- Mammalian Cell Biology Laboratory, Department of Biochemistry, School of Medical Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
49
|
Köhli M, Buck S, Schmitz HP. The function of two closely related Rho proteins is determined by an atypical switch I region. J Cell Sci 2008; 121:1065-75. [PMID: 18334559 DOI: 10.1242/jcs.015933] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We show here that the encoded proteins of the two duplicated RHO1 genes from the filamentous fungus Ashbya gossypii, AgRHO1a and AgRHO1b have functionally diverged by unusual mutation of the conserved switch I region. Interaction studies and in vitro assays suggest that a different regulation by the two GTPase activating proteins (GAPs) AgLrg1 and AgSac7 contributes to the functional differences. GAP-specificity and protein function is determined to a large part by a single position in the switch I region of the two Rho1 proteins. In AgRho1b, this residue is a tyrosine that is conserved among the Rho-protein family, whereas AgRho1a carries an atypical histidine at the same position. Mutation of this histidine to a tyrosine changes GAP-specificity, protein function and localization of AgRho1a. Furthermore, it enables the mutated allele to complement the lethality of an AgRHO1b deletion. In summary, our findings show that a simple mutation in the switch I region of a GTP-binding protein can change its affinity towards its GAPs, which finally leads to a decoupling of very similar protein function without impairing effector interaction.
Collapse
Affiliation(s)
- Michael Köhli
- Applied Microbiology, Biozentrum Universität Basel, Klingelbergstr. 50-70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
50
|
Kawai K, Iwamae Y, Yamaga M, Kiyota M, Ishii H, Hirata H, Homma Y, Yagisawa H. Focal adhesion-localization of START-GAP1/DLC1 is essential for cell motility and morphology. Genes Cells 2008; 14:227-41. [PMID: 19170769 DOI: 10.1111/j.1365-2443.2008.01265.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is a class of GTPase activating proteins for the Rho family GTPases (RhoGAPs) that contain the steroidogenic acute regulatory protein (STAR)-related lipid transfer (START) domain. In mammals three genes encode such proteins and they are designated START-GAP1-3 or deleted in liver cancer 1-3 (DLC1-3). In this study, we examined the intracellular localization and roles of START-GAP1/DLC1 in cell motility. Immunofluorescence microscopic analysis of NRK cells and HeLa cells revealed that START-GAP1 was localized in focal adhesions. Amino acid residues 265-459 of START-GAP1 were found to be necessary for focal adhesion targeting and we name the region "the focal adhesion-targeting (FAT) domain." It was previously known that ectopic expression of START-GAP1 induced cell rounding. We demonstrated that the FAT domain of START-GAP1 was partially required for this morphological change. Furthermore, expression of this domain in HeLa cells resulted in dissociation of endogenous START-GAP1 from focal adhesions as a dominant negative modulator, reducing cell migration and spreading. Taken together, START-GAP1 is targeted to focal adhesions via the FAT domain and regulates actin rearrangement through down-regulation of active RhoA and Cdc42. Its absence from focal adhesions could, therefore, cause abnormal cell motility and spreading.
Collapse
Affiliation(s)
- Katsuhisa Kawai
- University of Hyogo, Harima Science Garden City, Hyogo-ken, Japan
| | | | | | | | | | | | | | | |
Collapse
|