1
|
Williams KS, Secomb TW, El-Kareh AW. An autonomous mathematical model for the mammalian cell cycle. J Theor Biol 2023; 569:111533. [PMID: 37196820 DOI: 10.1016/j.jtbi.2023.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
A mathematical model for the mammalian cell cycle is developed as a system of 13 coupled nonlinear ordinary differential equations. The variables and interactions included in the model are based on detailed consideration of available experimental data. A novel feature of the model is inclusion of cycle tasks such as origin licensing and initiation, nuclear envelope breakdown and kinetochore attachment, and their interactions with controllers (molecular complexes involved in cycle control). Other key features are that the model is autonomous, except for a dependence on external growth factors; the variables are continuous in time, without instantaneous resets at phase boundaries; mechanisms to prevent rereplication are included; and cycle progression is independent of cell size. Eight variables represent cell cycle controllers: the Cyclin D1-Cdk4/6 complex, APCCdh1, SCFβTrCP, Cdc25A, MPF, NuMA, the securin-separase complex, and separase. Five variables represent task completion, with four for the status of origins and one for kinetochore attachment. The model predicts distinct behaviors corresponding to the main phases of the cell cycle, showing that the principal features of the mammalian cell cycle, including restriction point behavior, can be accounted for in a quantitative mechanistic way based on known interactions among cycle controllers and their coupling to tasks. The model is robust to parameter changes, in that cycling is maintained over at least a five-fold range of each parameter when varied individually. The model is suitable for exploring how extracellular factors affect cell cycle progression, including responses to metabolic conditions and to anti-cancer therapies.
Collapse
Affiliation(s)
| | - Timothy W Secomb
- BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
2
|
Tan K, Wang K, Zhao A, Liu Z, Song W, Cheng Q, Li X, Chen Z, Yuan Y, Yang Z. Meiotic nuclear divisions 1 promotes proliferation and metastasis in hepatocellular carcinoma and is a potential diagnostic and therapeutic target gene. Med Oncol 2023; 40:14. [PMID: 36352167 PMCID: PMC9646579 DOI: 10.1007/s12032-022-01875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma is the cancer with the highest incidence among liver cancers and how to treat this cancer effectively is still a difficult problem we must face. We selected meiotic nuclear divisions 1 (MND1) as the study object by combining data from The Cancer Genome Atlas (TCGA) database with prognostic survival analysis. We validated the value of MND1 in evaluating the prognosis of hepatocellular carcinoma through a diagnostic and prognostic model. At the same time, cellular experiments were used to demonstrate the effect of MND1 on hepatocellular carcinoma proliferation and migration. We used short hairpin RNA (shRNA) to knock down MND1 in Hun7 and HCCLM3 cell lines. Through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays, we found that knocking down MND1 reduced the proliferation of cells. Through wound healing and Transwell assays, we found that knocking down MND1 reduced cell migration and invasion. Moreover, we found that MND1 can promote the proliferation, migration, and invasion of Hep3B cells by overexpressing MND1. Therefore, in general, MND1 is expected to be a gene that can effectively diagnose and treat hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kai Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, China
| | - Kunlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, China
| | - Anbang Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, China
| | - Zhicheng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, China
| | - Wenjing Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, China
| | - Qian Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, China
| | - Xinyin Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, China
| | - Zhinan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, China.
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, China.
| |
Collapse
|
3
|
Liu TH, Dong XL, Chen P, Zhang Q, Zhou XL, Lu C, Pan MH. Geminin is essential for DNA re-replication in the silk gland cells of silkworms. Exp Cell Res 2022; 410:112951. [PMID: 34843715 DOI: 10.1016/j.yexcr.2021.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022]
Abstract
Endoreplication, known as endocycles or endoreduplication, is a cell cycle variant in which the genomic DNA is re-replicated without mitosis leading to polyploidy. Endoreplication is essential for the development and functioning of the different organs in animals and plants. Deletion of Geminin, a DNA replication licensing inhibitor, causes DNA re-replication or damage. However, the role of Geminin in endoreplication is still unclear. Here, we studied the role of Geminin in the endoreplication of the silk gland cells of silkworms by constructing two transgenic silkworm strains, including BmGeminin1-overexpression and BmGeminin1-RNA interference. Interference of BmGeminin1 led to body weight gain, increased silk gland volume, increased DNA content, and enhanced DNA re-replication activity relative to wild-type Dazao. Meanwhile, overexpression of BmGeminin1 showed an opposite phenotype compared to the BmGem1-RNAi strain. Furthermore, RNA-sequencing of the transgenic strains was carried out to explore how BmGeminin1 regulates DNA re-replication. Our data demonstrated a vital role of Geminin in the regulation of endoreplication in the silk gland of silkworms.
Collapse
Affiliation(s)
- Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Department of Bioinformatics, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District of Chongqing, 400015, China
| | - Xiao-Long Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Xiao-Lin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China.
| |
Collapse
|
4
|
Ghazanfar S, Lin Y, Su X, Lin DM, Patrick E, Han ZG, Marioni JC, Yang JYH. Investigating higher-order interactions in single-cell data with scHOT. Nat Methods 2020; 17:799-806. [PMID: 32661426 PMCID: PMC7610653 DOI: 10.1038/s41592-020-0885-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Single-cell genomics has transformed our ability to examine cell fate choice. Examining cells along a computationally ordered 'pseudotime' offers the potential to unpick subtle changes in variability and covariation among key genes. We describe an approach, scHOT-single-cell higher-order testing-which provides a flexible and statistically robust framework for identifying changes in higher-order interactions among genes. scHOT can be applied for cells along a continuous trajectory or across space and accommodates various higher-order measurements including variability or correlation. We demonstrate the use of scHOT by studying coordinated changes in higher-order interactions during embryonic development of the mouse liver. Additionally, scHOT identifies subtle changes in gene-gene correlations across space using spatially resolved transcriptomics data from the mouse olfactory bulb. scHOT meaningfully adds to first-order differential expression testing and provides a framework for interrogating higher-order interactions using single-cell data.
Collapse
Affiliation(s)
- Shila Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Yingxin Lin
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - David Ming Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Ellis Patrick
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Moiseeva TN, Bakkenist CJ. Regulation of the initiation of DNA replication in human cells. DNA Repair (Amst) 2018; 72:99-106. [PMID: 30266203 DOI: 10.1016/j.dnarep.2018.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
The origin of species would not have been possible without high fidelity DNA replication and complex genomes evolved with mechanisms that control the initiation of DNA replication at multiple origins on multiple chromosomes such that the genome is duplicated once and only once. The mechanisms that control the assembly and activation of the replicative helicase and the initiation of DNA replication in yeast and Xenopus egg extract systems have been identified and reviewed [1,2]. The goal of this review is to organize currently available data on the mechanisms that control the initiation of DNA replication in human cells.
Collapse
Affiliation(s)
- Tatiana N Moiseeva
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Christopher J Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Agarwal S, Varma D. Targeting mitotic pathways for endocrine-related cancer therapeutics. Endocr Relat Cancer 2017; 24:T65-T82. [PMID: 28615236 PMCID: PMC5557717 DOI: 10.1530/erc-17-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022]
Abstract
A colossal amount of basic research over the past few decades has provided unprecedented insights into the highly complex process of cell division. There is an ever-expanding catalog of proteins that orchestrate, participate and coordinate in the exquisite processes of spindle formation, chromosome dynamics and the formation and regulation of kinetochore microtubule attachments. Use of classical microtubule poisons has still been widely and often successfully used to combat a variety of cancers, but their non-selective interference in other crucial physiologic processes necessitate the identification of novel druggable components specific to the cell cycle/division pathway. Considering cell cycle deregulation, unscheduled proliferation, genomic instability and chromosomal instability as a hallmark of tumor cells, there lies an enormous untapped terrain that needs to be unearthed before a drug can pave its way from bench to bedside. This review attempts to systematically summarize the advances made in this context so far with an emphasis on endocrine-related cancers and the avenues for future progress to target mitotic mechanisms in an effort to combat these dreadful cancers.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dileep Varma
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
7
|
Oladghaffari M, Islamian JP, Baradaran B, Monfared AS. MLN4924 therapy as a novel approach in cancer treatment modalities. J Chemother 2017; 28:74-82. [PMID: 26292710 DOI: 10.1179/1973947815y.0000000066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MLN4924 is an investigational and a newly discovered small molecule that is a potent and selective inhibitor of the NEDD8 (Neural precursor cell-Expressed Developmentally down-regulated 8) Activating Enzyme (NAE), a pivotal regulator of the Cullin Ring Ligases E3 (CRL), which has been implicated recently in DNA damage. MLN4924 effectively inhibits tumour cell growth by inducing all three common types of death, namely apoptosis, autophagy and senescence and it was also reported that the formation of capillary vessels was significantly suppressed by MLN4924.In this review, we are going to highlight the molecular mechanism of MLN4924 in cancer therapy and its pros and cons in cancer therapy.
Collapse
Affiliation(s)
- Maryam Oladghaffari
- a Cellular & Molecular Biology Research Center, Medical Physics Department , Babol University of Medical Sciences , Iran
| | - Jalil Pirayesh Islamian
- b Immonology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Medical Physics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Behzad Baradaran
- c Department of Medical Physics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Shabestani Monfared
- a Cellular & Molecular Biology Research Center, Medical Physics Department , Babol University of Medical Sciences , Iran
| |
Collapse
|
8
|
Hernández-Pérez S, Cabrera E, Salido E, Lim M, Reid L, Lakhani SR, Khanna KK, Saunus JM, Freire R. DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer. Oncogene 2017; 36:4802-4809. [PMID: 28288134 DOI: 10.1038/onc.2017.21] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/15/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Correct control of DNA replication is crucial to maintain genomic stability in dividing cells. Inappropriate re-licensing of replicated origins is associated with chromosomal instability (CIN), a hallmark of cancer progression that at the same time provides potential opportunities for therapeutic intervention. Geminin is a critical inhibitor of the DNA replication licensing factor Cdt1. To properly achieve its functions, Geminin levels are tightly regulated through the cell cycle by ubiquitin-dependent proteasomal degradation, but the de-ubiquitinating enzymes (DUBs) involved had not been identified. Here we report that DUB3 and USP7 control human Geminin. Overexpression of either DUB3 or USP7 increases Geminin levels through reduced ubiquitination. Conversely, depletion of DUB3 or USP7 reduces Geminin levels, and DUB3 knockdown increases re-replication events, analogous to the effect of Geminin depletion. In exploring potential clinical implications, we found that USP7 and Geminin are strongly correlated in a cohort of invasive breast cancers (P<1.01E-08). As expected, Geminin expression is highly prognostic. Interestingly, we found a non-monotonic relationship between USP7 and breast cancer-specific survival, with both very low or high levels of USP7 associated with poor outcome, independent of estrogen receptor status. Altogether, our data identify DUB3 and USP7 as factors that regulate DNA replication by controlling Geminin protein stability, and suggest that USP7 may be involved in Geminin dysregulation during breast cancer progression.
Collapse
Affiliation(s)
- S Hernández-Pérez
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - E Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - E Salido
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - M Lim
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - L Reid
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - S R Lakhani
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia.,The University of Queensland, School of Medicine, Herston, QLD, Australia
| | - K K Khanna
- Signal Transduction Laboratory, QIMR Berghofer Institute of Medical Research, Brisbane, QLD, Australia
| | - J M Saunus
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - R Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| |
Collapse
|
9
|
Herlihy AE, de Bruin RAM. The Role of the Transcriptional Response to DNA Replication Stress. Genes (Basel) 2017; 8:E92. [PMID: 28257104 PMCID: PMC5368696 DOI: 10.3390/genes8030092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/14/2023] Open
Abstract
During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.
Collapse
Affiliation(s)
- Anna E Herlihy
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Robertus A M de Bruin
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
- The UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|
10
|
Pozo PN, Cook JG. Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability. Genes (Basel) 2016; 8:genes8010002. [PMID: 28025526 PMCID: PMC5294997 DOI: 10.3390/genes8010002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
Successful cell proliferation requires efficient and precise genome duplication followed by accurate chromosome segregation. The Cdc10-dependent transcript 1 protein (Cdt1) is required for the first step in DNA replication, and in human cells Cdt1 is also required during mitosis. Tight cell cycle controls over Cdt1 abundance and activity are critical to normal development and genome stability. We review here recent advances in elucidating Cdt1 molecular functions in both origin licensing and kinetochore–microtubule attachment, and we describe the current understanding of human Cdt1 regulation.
Collapse
Affiliation(s)
- Pedro N Pozo
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Li YF, Chen XY, Zhang CD, Tang XF, Wang L, Liu TH, Pan MH, Lu C. Effects of starvation and hormones on DNA synthesis in silk gland cells of the silkworm, Bombyx mori. INSECT SCIENCE 2016; 23:569-578. [PMID: 25558018 DOI: 10.1111/1744-7917.12199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Silk gland cells of silkworm larvae undergo multiple cycles of endomitosis for the synthesis of silk proteins during the spinning phase. In this paper, we analyzed the endomitotic DNA synthesis of silk gland cells during larval development, and found that it was a periodic fluctuation, increasing during the vigorous feeding phase and being gradually inhibited in the next molting phase. That means it might be activated by a self-regulating process after molting. The expression levels of cyclin E, cdt1 and pcna were consistent with these developmental changes. Moreover, we further examined whether these changes in endomitotic DNA synthesis resulted from feeding or hormonal stimulation. The results showed that DNA synthesis could be inhibited by starvation and re-activated by re-feeding, and therefore appears to be dependent on nutrition. DNA synthesis was suppressed by in vivo treatment with 20-hydroxyecdysone (20E). However, there was no effect on DNA synthesis by in vitro 20E treatment or by either in vivo or in vitro juvenile hormone treatment. The levels of Akt and 4E-BP phosphorylation in the silk glands were also reduced by starvation and in vivo treatment with 20E. These results indicate that the activation of endomitotic DNA synthesis during the intermolt stages is related to feeding and DNA synthesis is inhibited indirectly by 20E.
Collapse
Affiliation(s)
- Yao-Feng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiang-Yun Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun-Dong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Xiao-Fang Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - La Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| |
Collapse
|
12
|
USP37 deubiquitinates Cdt1 and contributes to regulate DNA replication. Mol Oncol 2016; 10:1196-206. [PMID: 27296872 DOI: 10.1016/j.molonc.2016.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 01/25/2023] Open
Abstract
DNA replication control is a key process in maintaining genomic integrity. Monitoring DNA replication initiation is particularly important as it needs to be coordinated with other cellular events and should occur only once per cell cycle. Crucial players in the initiation of DNA replication are the ORC protein complex, marking the origin of replication, and the Cdt1 and Cdc6 proteins, that license these origins to replicate by recruiting the MCM2-7 helicase. To accurately achieve its functions, Cdt1 is tightly regulated. Cdt1 levels are high from metaphase and during G1 and low in S/G2 phases of the cell cycle. This control is achieved, among other processes, by ubiquitination and proteasomal degradation. In an overexpression screen for Cdt1 deubiquitinating enzymes, we isolated USP37, to date the first ubiquitin hydrolase controlling Cdt1. USP37 overexpression stabilizes Cdt1, most likely a phosphorylated form of the protein. In contrast, USP37 knock down destabilizes Cdt1, predominantly during G1 and G1/S phases of the cell cycle. USP37 interacts with Cdt1 and is able to de-ubiquitinate Cdt1 in vivo and, USP37 is able to regulate the loading of MCM complexes onto the chromatin. In addition, downregulation of USP37 reduces DNA replication fork speed. Taken together, here we show that the deubiquitinase USP37 plays an important role in the regulation of DNA replication. Whether this is achieved via Cdt1, a central protein in this process, which we have shown to be stabilized by USP37, or via additional factors, remains to be tested.
Collapse
|
13
|
Darzynkiewicz Z, Zhao H, Zhang S, Marietta YL, Ernest YL, Zhang Z. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry. Oncotarget 2015; 6:11735-50. [PMID: 26059433 PMCID: PMC4494901 DOI: 10.18632/oncotarget.4149] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 05/03/2015] [Indexed: 12/18/2022] Open
Abstract
During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, NY
| | - Hong Zhao
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, NY
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY
| | - Y.W.T. Lee Marietta
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY
| | - Y.C. Lee Ernest
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY
| |
Collapse
|
14
|
Mehta J, Asthana S, Mandal CC, Saxena S. A molecular analysis provides novel insights into androgen receptor signalling in breast cancer. PLoS One 2015; 10:e0120622. [PMID: 25781993 PMCID: PMC4364071 DOI: 10.1371/journal.pone.0120622] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/05/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Androgen Receptor (AR) is an essential transcription factor for the development of secondary sex characteristics, spermatogenesis and carcinogenesis. Recently AR has been implicated in the development and progression of breast and prostate cancers. Although some of the functions of the AR are known but the mechanistic details of these divergent processes are still not clear. Therefore understanding the regulatory mechanisms of the functioning of the AR in ER-/AR+ breast cancer will provide many novel targets for the purpose of therapeutic intervention. METHODS/RESULTS Using bioinformatics tools, we have identified 75 AR targets having prominent roles in cell cycle, apoptosis and metabolism. Herein, we validated 10 genes as AR targets by studying the regulation of these genes in MDA-MB-453 cell line on stimulation by androgens like 5α-dihydrotestosterone (DHT), using RT-qPCR and ChIP assay. It was observed that all the identified genes involved in cell cycle except MAD1L1 were found to be up regulated whereas expression of apoptosis related genes was decreased in response to DHT treatment. We performed an exhaustive, rigid-body docking between individual ARE and DNA binding domain (DBD) of the AR protein and it was found that novel residues K567, K588, K591 and R592 are involved in the process of DNA binding. To verify these specific DNA-protein interactions electrostatic energy term calculations for each residue was determined using the linearized Poisson-Boltzmann equation. Our experimental data showed that treatment of breast cancer cells with DHT promotes cell proliferation and decreases apoptosis. It was observed that bicalutamide treatment was able to reverse the effect of DHT. CONCLUSION Taken together, our results provide new insights into the mechanism by which AR promotes breast cancer progression. Moreover our work proposes to use bicalutamide along with taxanes as novel therapy for the treatment of TNBCs, which are positive for downstream AR signalling.
Collapse
Affiliation(s)
- Jatin Mehta
- National Institute of Pathology, ICMR, Safdarjang Hospital, New Delhi, India
| | - Shailendra Asthana
- National Institute of Pathology, ICMR, Safdarjang Hospital, New Delhi, India
| | | | - Sunita Saxena
- National Institute of Pathology, ICMR, Safdarjang Hospital, New Delhi, India
- * E-mail:
| |
Collapse
|
15
|
Molecular mechanisms of DNA replication checkpoint activation. Genes (Basel) 2014; 5:147-75. [PMID: 24705291 PMCID: PMC3978517 DOI: 10.3390/genes5010147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/27/2023] Open
Abstract
The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress) results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability.
Collapse
|
16
|
Tsanov N, Kermi C, Coulombe P, Van der Laan S, Hodroj D, Maiorano D. PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage. Nucleic Acids Res 2014; 42:3692-706. [PMID: 24423875 PMCID: PMC3973308 DOI: 10.1093/nar/gkt1400] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4Cdt2. Here we provide evidence that CRL4Cdt2-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4Cdt2 as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4Cdt2 pathway in the switch of PCNA partners on DNA damage.
Collapse
Affiliation(s)
- Nikolay Tsanov
- Genome Surveillance and Stability Laboratory, Department of Molecular Bases of Human Diseases, CNRS-UPR1142, Institute of Human Genetics, 141, rue de la cardonille, 34396 Cedex 5, Montpellier, France and Replication and Genome Dynamics Laboratory, Department of Genome Dynamics, CNRS-UPR1142, Institute of Human Genetics, 141, rue de la cardonille, 34396 Cedex 5, Montpellier, France
| | | | | | | | | | | |
Collapse
|
17
|
Saqcena M, Menon D, Patel D, Mukhopadhyay S, Chow V, Foster DA. Amino acids and mTOR mediate distinct metabolic checkpoints in mammalian G1 cell cycle. PLoS One 2013; 8:e74157. [PMID: 23977397 PMCID: PMC3747087 DOI: 10.1371/journal.pone.0074157] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Objective In multicellular organisms, cell division is regulated by growth factors (GFs). In the absence of GFs, cells exit the cell cycle at a site in G1 referred to as the restriction point (R) and enter a state of quiescence known as G0. Additionally, nutrient availability impacts on G1 cell cycle progression. While there is a vast literature on G1 cell cycle progression, confusion remains – especially with regard to the temporal location of R relative to nutrient-mediated checkpoints. In this report, we have investigated the relationship between R and a series of metabolic cell cycle checkpoints that regulate passage into S-phase. Methods We used double-block experiments to order G1 checkpoints that monitor the presence of GFs, essential amino acids (EEAs), the conditionally essential amino acid glutamine, and inhibition of mTOR. Cell cycle progression was monitored by uptake of [3H]-thymidine and flow cytometry, and analysis of cell cycle regulatory proteins was by Western-blot. Results We report here that the GF-mediated R can be temporally distinguished from a series of late G1 metabolic checkpoints mediated by EAAs, glutamine, and mTOR – the mammalian/mechanistic target of rapamycin. R is clearly upstream from an EAA checkpoint, which is upstream from a glutamine checkpoint. mTOR is downstream from both the amino acid checkpoints, close to S-phase. Significantly, in addition to GF autonomy, we find human cancer cells also have dysregulated metabolic checkpoints. Conclusion The data provided here are consistent with a GF-dependent mid-G1 R where cells determine whether it is appropriate to divide, followed by a series of late-G1 metabolic checkpoints mediated by amino acids and mTOR where cells determine whether they have sufficient nutrients to accomplish the task. Since mTOR inhibition arrests cells the latest in G1, it is likely the final arbiter for nutrient sufficiency prior to committing to replicating the genome.
Collapse
Affiliation(s)
- Mahesh Saqcena
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
| | | | | | | | | | | |
Collapse
|
18
|
Clijsters L, Ogink J, Wolthuis R. The spindle checkpoint, APC/C(Cdc20), and APC/C(Cdh1) play distinct roles in connecting mitosis to S phase. ACTA ACUST UNITED AC 2013; 201:1013-26. [PMID: 23775192 PMCID: PMC3691463 DOI: 10.1083/jcb.201211019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The spindle checkpoint, APC/C-Cdc20, and APC/C-Cdh1 act successively to connect disappearance of geminin and cyclin B1 to a peak of Cdt1 and Cdc6. DNA replication depends on a preceding licensing event by Cdt1 and Cdc6. In animal cells, relicensing after S phase but before mitosis is prevented by the Cdt1 inhibitor geminin and mitotic cyclin activity. Here, we show that geminin, like cyclin B1 and securin, is a bona fide target of the spindle checkpoint and APC/CCdc20. Cyclin B1 and geminin are degraded simultaneously during metaphase, which directs Cdt1 accumulation on segregating sister chromatids. Subsequent activation of APC/CCdh1 leads to degradation of Cdc6 well before Cdt1 becomes unstable in a replication-coupled manner. In mitosis, the spindle checkpoint supports Cdt1 accumulation, which promotes S phase onset. We conclude that the spindle checkpoint, APC/CCdc20, and APC/CCdh1 act successively to ensure that the disappearance of licensing inhibitors coincides exactly with a peak of Cdt1 and Cdc6. Whereas cell cycle entry from quiescence requires Cdc6 resynthesis, our results indicate that proliferating cells use a window of time in mitosis, before Cdc6 is degraded, as an earlier opportunity to direct S phase.
Collapse
Affiliation(s)
- Linda Clijsters
- Division of Cell Biology I (B5), The Netherlands Cancer Institute (NKI-AvL), 1066 CX Amsterdam, Netherlands.
| | | | | |
Collapse
|
19
|
Chen X, Liu G, Leffak M. Activation of a human chromosomal replication origin by protein tethering. Nucleic Acids Res 2013; 41:6460-74. [PMID: 23658226 PMCID: PMC3711443 DOI: 10.1093/nar/gkt368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The specification of mammalian chromosomal replication origins is incompletely understood. To analyze the assembly and activation of prereplicative complexes (pre-RCs), we tested the effects of tethered binding of chromatin acetyltransferases and replication proteins on chromosomal c-myc origin deletion mutants containing a GAL4-binding cassette. GAL4DBD (DNA binding domain) fusions with Orc2, Cdt1, E2F1 or HBO1 coordinated the recruitment of the Mcm7 helicase subunit, the DNA unwinding element (DUE)-binding protein DUE-B and the minichromosome maintenance (MCM) helicase activator Cdc45 to the replicator, and restored origin activity. In contrast, replication protein binding and origin activity were not stimulated by fusion protein binding in the absence of flanking c-myc DNA. Substitution of the GAL4-binding site for the c-myc replicator DUE allowed Orc2 and Mcm7 binding, but eliminated origin activity, indicating that the DUE is essential for pre-RC activation. Additionally, tethering of DUE-B was not sufficient to recruit Cdc45 or activate pre-RCs formed in the absence of a DUE. These results show directly in a chromosomal background that chromatin acetylation, Orc2 or Cdt1 suffice to recruit all downstream replication initiation activities to a prospective origin, and that chromosomal origin activity requires singular DNA sequences.
Collapse
Affiliation(s)
- Xiaomi Chen
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
20
|
Iliou MS, Kotantaki P, Karamitros D, Spella M, Taraviras S, Lygerou Z. Reduced Geminin levels promote cellular senescence. Mech Ageing Dev 2012; 134:10-23. [PMID: 23142824 DOI: 10.1016/j.mad.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 09/25/2012] [Accepted: 10/20/2012] [Indexed: 01/01/2023]
Abstract
Cellular senescence is a permanent out-of-cycle state regulated by molecular circuits acting during the G1 phase of the cell cycle. Cdt1 is a central regulator of DNA replication licensing acting during the G1 phase and it is negatively controlled by Geminin. Here, we characterize the cell cycle expression pattern of Cdt1 and Geminin during successive passages of primary fibroblasts and compare it to tumour-derived cell lines. Cdt1 and Geminin are strictly expressed in distinct subpopulations of young fibroblasts, similarly to cancer cells, with Geminin accumulating shortly after the onset of S phase. Cdt1 and Geminin are down-regulated when primary human and mouse fibroblasts undergo replicative or stress-induced senescence. RNAi-mediated Geminin knock-down in human cells enhances the appearance of phenotypic and molecular features of senescence. Mouse embryonic fibroblasts heterozygous for Geminin exhibit accelerated senescence compared to control fibroblasts. In contrast, ectopic expression of Geminin in mouse embryonic fibroblasts delays the appearance of the senescent phenotype. Taken together, our data suggest that changes in Geminin expression levels affect the establishment of senescence pathways.
Collapse
Affiliation(s)
- Maria S Iliou
- Laboratory of General Biology, School of Medicine, University of Patras, Rio, Patras, Greece
| | | | | | | | | | | |
Collapse
|
21
|
Zhang CD, Li FF, Chen XY, Huang MH, Zhang J, Cui H, Pan MH, Lu C. DNA replication events during larval silk gland development in the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:974-978. [PMID: 22609363 DOI: 10.1016/j.jinsphys.2012.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 06/01/2023]
Abstract
The silk gland is an important organ in silkworm as it synthesizes silk proteins and is critical to spinning. The genomic DNA content of silk gland cells dramatically increases 200-400 thousand times for the larval life span through the process of endomitosis. Using in vitro culture, DNA synthesis was measured using BrdU labeling during the larval molt and intermolt periods. We found that the cell cycle of endomitosis was activated during the intermolt and was inhibited during the molt phase. The anterior silk gland, middle silk gland, and posterior silk gland cells asynchronously exit the endomitotic cycle after day 6 in 5th instar larvae, which correlated with the reduced expression of the cell cycle-related cdt1, pcna, cyclin E, cdk2 and cdk1 mRNAs in the wandering phase. Additional starvation had no effect on the initiation of silk gland DNA synthesis of the freshly ecdysed larvae.
Collapse
Affiliation(s)
- Chun-Dong Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, PR China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Evans Braun T, Poole E, Sinclair J. Depletion of cellular pre-replication complex factors results in increased human cytomegalovirus DNA replication. PLoS One 2012; 7:e36057. [PMID: 22586460 PMCID: PMC3346814 DOI: 10.1371/journal.pone.0036057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/29/2012] [Indexed: 12/11/2022] Open
Abstract
Although HCMV encodes many genes required for the replication of its DNA genome, no HCMV-encoded orthologue of the origin binding protein, which has been identified in other herpesviruses, has been identified. This has led to speculation that HCMV may use other viral proteins or possibly cellular factors for the initiation of DNA synthesis. It is also unclear whether cellular replication factors are required for efficient replication of viral DNA during or after viral replication origin recognition. Consequently, we have asked whether cellular pre-replication (pre-RC) factors that are either initially associated with cellular origin of replication (e.g. ORC2), those which recruit other replication factors (e.g. Cdt1 or Cdc6) or those which are subsequently recruited (e.g. MCMs) play any role in the HCMV DNA replication. We show that whilst RNAi-mediated knock-down of these factors in the cell affects cellular DNA replication, as predicted, it results in concomitant increases in viral DNA replication. These data show that cellular factors which initiate cellular DNA synthesis are not required for the initiation of replication of viral DNA and suggest that inhibition of cellular DNA synthesis, in itself, fosters conditions which are conducive to viral DNA replication.
Collapse
Affiliation(s)
- Tamara Evans Braun
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Emma Poole
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - John Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Wei D, Li H, Yu J, Sebolt JT, Zhao L, Lawrence TS, Smith PG, Morgan MA, Sun Y. Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor. Cancer Res 2011; 72:282-93. [PMID: 22072567 DOI: 10.1158/0008-5472.can-11-2866] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy is used in locally advanced pancreatic cancers in which it can improve survival in combination with gemcitabine. However, prognosis is still poor in this setting in which more effective therapies remain needed. MLN4924 is an investigational small molecule currently in phase I clinical trials. MLN4924 inhibits NAE (NEDD8 Activating Enzyme), a pivotal regulator of the E3 ubiquitin ligase SCF (SKP1, Cullins, and F-box protein), that has been implicated recently in DNA damage and repair. In this study, we provide evidence that MLN4924 can be used as an effective radiosensitizer in pancreatic cancer. Specifically, MLN4924 (20-100 nmol/L) effectively inhibited cullin neddylation and sensitized pancreatic cancer cells to ionizing radiation in vitro with a sensitivity enhancement ratio of approximately 1.5. Mechanistically, MLN4924 treatment stimulated an accumulation of several SCF substrates, including CDT1, WEE1, and NOXA, in parallel with an enhancement of radiation-induced DNA damage, aneuploidy, G(2)/M phase cell-cycle arrest, and apoptosis. RNAi-mediated knockdown of CDT1 and WEE1 partially abrogated MLN4924-induced aneuploidy, G(2)/M arrest, and radiosensitization, indicating a causal effect. Furthermore, MLN4924 was an effective radiosensitizer in a mouse xenograft model of human pancreatic cancer. Our findings offer proof-of-concept for use of MLN4924 as a novel class of radiosensitizer for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dongping Wei
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression. Neoplasia 2011; 13:561-9. [PMID: 21677879 DOI: 10.1593/neo.11420] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 12/17/2022] Open
Abstract
Cullin-RING ubiquitin ligase (CRL), with its founding member of SKP1-Cullins-F-box proteins (SCF) E3 ubiquitin ligase, is the largest family of E3 ligases, which requires cullin neddylation for its activation. Recently, an inhibitor of NEDD8 activating enzyme (NAE), MLN4924, was reported to block cullin neddylation and inactivate CRL/SCF E3, resulting in apoptosis induction and tumor suppression both in vitro and in vivo. We report here that apoptosis is not the sole mechanism by which MLN4924 suppresses tumor cell growth because apoptosis is moderately induced by the drug in some cancer cell lines and drug-induced growth suppression is only partially blocked by a pan-caspase inhibitor, z-VAD. MLN4924 treatment induces the characteristics of senescence phenotypes as evidenced by enlarged and flattened cellular morphology and positive staining of senescence-associated β-Gal. MLN4924-induced senescence is associated with cellular response to DNA damage, triggered by accumulation of DNA-licensing proteins CDT1 and ORC1, as a result of inactivation of CRL/SCF E3s. The senescence occurs in the manner independent of pRB/p16 and p53, but dependent on p21, a known substrate of CRL/SCF E3s and a mediator of senescence, which accumulates on CRL/SCF inactivation by MLN4924. Furthermore, MLN4924-induced senescence is irreversible and coupled with persistent accumulation of p21 and sustained activation of DNA damage response. Our study reveals a novel mechanism of MLN4924 action and showed that MLN4924 could be further developed as an effective anticancer agent by inducing apoptosis and irreversible senescence.
Collapse
|
25
|
Abstract
DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle. Loss of proper licensing control leads to deregulated DNA replication including DNA re-replication, which can cause genome instability and tumorigenesis. Eukaryotic organisms have established several conserved mechanisms to prevent DNA re-replication and to counteract its potentially harmful effects. These mechanisms include tightly controlled regulation of licensing factors and activation of cell cycle and DNA damage checkpoints. Deregulated licensing control and its associated compromised checkpoints have both been observed in tumor cells, indicating that proper functioning of these pathways is essential for maintaining genome stability. In this review, we discuss the regulatory mechanisms of licensing control, the deleterious consequences when both licensing and checkpoints are compromised, and present possible mechanisms to prevent re-replication in order to maintain genome stability.
Collapse
Affiliation(s)
- Lan N Truong
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
26
|
Jia L, Bickel JS, Wu J, Morgan MA, Li H, Yang J, Yu X, Chan RC, Sun Y. RBX1 (RING box protein 1) E3 ubiquitin ligase is required for genomic integrity by modulating DNA replication licensing proteins. J Biol Chem 2010; 286:3379-86. [PMID: 21115485 DOI: 10.1074/jbc.m110.188425] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RBX1 (RING box protein 1), also known as ROC1 (Regulator of Cullin 1), is an essential component of SCF (Skp1/Cullins/F-box) E3 ubiquitin ligases, which target diverse proteins for proteasome-mediated degradation. Our recent study showed that RBX1 silencing triggered a DNA damage response (DDR) leading to G(2)-M arrest, senescence, and apoptosis, with the mechanism remaining elusive. Here, we show that, in human cancer cells, RBX1 silencing causes the accumulation of DNA replication licensing proteins CDT1 and ORC1, leading to DNA double-strand breaks, DDR, G(2) arrest, and, eventually, aneuploidy. Whereas CHK1 activation by RBX1 silencing is responsible for the G(2) arrest, enhanced DNA damage renders cancer cells more sensitive to radiation. In Caenorhabditis elegans, RBX-1 silencing causes CDT-1 accumulation, triggering DDR in intestinal cells, which is largely abrogated by simultaneous CDT-1 silencing. RBX-1 silencing also induces lethality during development of embryos and in adulthood. Thus, RBX1 E3 ligase is essential for the maintenance of mammalian genome integrity and the proper development and viability in C. elegans.
Collapse
Affiliation(s)
- Lijun Jia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Willemsen MH, Fernandez BA, Bacino CA, Gerkes E, de Brouwer APM, Pfundt R, Sikkema-Raddatz B, Scherer SW, Marshall CR, Potocki L, van Bokhoven H, Kleefstra T. Identification of ANKRD11 and ZNF778 as candidate genes for autism and variable cognitive impairment in the novel 16q24.3 microdeletion syndrome. Eur J Hum Genet 2010; 18:429-35. [PMID: 19920853 PMCID: PMC2987261 DOI: 10.1038/ejhg.2009.192] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/02/2009] [Accepted: 09/22/2009] [Indexed: 11/09/2022] Open
Abstract
The clinical use of array comparative genomic hybridization in the evaluation of patients with multiple congenital anomalies and/or mental retardation has recently led to the discovery of a number of novel microdeletion and microduplication syndromes. We present four male patients with overlapping molecularly defined de novo microdeletions of 16q24.3. The clinical features observed in these patients include facial dysmorphisms comprising prominent forehead, large ears, smooth philtrum, pointed chin and wide mouth, variable cognitive impairment, autism spectrum disorder, structural anomalies of the brain, seizures and neonatal thrombocytopenia. Although deletions vary in size, the common region of overlap is only 90 kb and comprises two known genes, Ankyrin Repeat Domain 11 (ANKRD11) (MIM 611192) and Zinc Finger 778 (ZNF778), and is located approximately 10 kb distally to Cadherin 15 (CDH15) (MIM 114019). This region is not found as a copy number variation in controls. We propose that these patients represent a novel and distinctive microdeletion syndrome, characterized by autism spectrum disorder, variable cognitive impairment, facial dysmorphisms and brain abnormalities. We suggest that haploinsufficiency of ANKRD11 and/or ZNF778 contribute to this phenotype and speculate that further investigation of non-deletion patients who have features suggestive of this 16q24.3 microdeletion syndrome might uncover other mutations in one or both of these genes.
Collapse
Affiliation(s)
- Marjolein H Willemsen
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, PO Box 9101, Nijmegen 6500 HB, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Romani B, Engelbrecht S. Human immunodeficiency virus type 1 Vpr: functions and molecular interactions. J Gen Virol 2009; 90:1795-1805. [PMID: 19458171 DOI: 10.1099/vir.0.011726-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is an accessory protein that interacts with a number of cellular and viral proteins. The functions of many of these interactions in the pathogenesis of HIV-1 have been identified. Deletion of the vpr gene reduces the virulence of HIV-1 dramatically, indicating the importance of this protein for the virus. This review describes the current findings on several established functions of HIV-1 Vpr and some possible roles proposed for this protein. Because Vpr exploits cellular proteins and pathways to influence the biology of HIV-1, understanding the functions of Vpr usually involves the study of cellular pathways. Several functions of Vpr are attributed to the virion-incorporated protein, but some of them are attributed to the expression of Vpr in HIV-1-infected cells. The structure of Vpr may be key to understanding the variety of its interactions. Due to the critical role of Vpr in HIV-1 pathogenicity, study of the interactions between Vpr and cellular proteins may help us to understand the mechanism(s) of HIV-1 pathogenicity.
Collapse
Affiliation(s)
- Bizhan Romani
- Department of Pathology, Division of Medical Virology, University of Stellenbosch, Tygerberg 7505, South Africa
| | - Susan Engelbrecht
- National Health Laboratory Services, Tygerberg 7505, South Africa.,Department of Pathology, Division of Medical Virology, University of Stellenbosch, Tygerberg 7505, South Africa
| |
Collapse
|
29
|
Papillomavirus DNA replication — From initiation to genomic instability. Virology 2009; 384:360-8. [DOI: 10.1016/j.virol.2008.11.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 12/25/2022]
|
30
|
Schizosaccharomyces pombe Noc3 is essential for ribosome biogenesis and cell division but not DNA replication. EUKARYOTIC CELL 2008; 7:1433-40. [PMID: 18606828 DOI: 10.1128/ec.00119-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The initiation of eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at chromosomal origins of DNA replication. Pre-RC assembly requires the essential DNA replication proteins ORC, Cdc6, and Cdt1 to load the MCM DNA helicase onto chromatin. Saccharomyces cerevisiae Noc3 (ScNoc3), an evolutionarily conserved protein originally implicated in 60S ribosomal subunit trafficking, has been proposed to be an essential regulator of DNA replication that plays a direct role during pre-RC formation in budding yeast. We have cloned Schizosaccharomyces pombe noc3(+) (Spnoc3(+)), the S. pombe homolog of the budding yeast ScNOC3 gene, and functionally characterized the requirement for the SpNoc3 protein during ribosome biogenesis, cell cycle progression, and DNA replication in fission yeast. We showed that fission yeast SpNoc3 is a functional homolog of budding yeast ScNoc3 that is essential for cell viability and ribosome biogenesis. We also showed that SpNoc3 is required for the normal completion of cell division in fission yeast. However, in contrast to the proposal that ScNoc3 plays an essential role during DNA replication in budding yeast, we demonstrated that fission yeast cells do enter and complete S phase in the absence of SpNoc3, suggesting that SpNoc3 is not essential for DNA replication in fission yeast.
Collapse
|
31
|
Abstract
Human cytomegalovirus (HCMV) has evolved numerous strategies to commandeer the host cell for producing viral progeny. The virus manipulates host cell cycle pathways from the early stages of infection to stimulate viral DNA replication at the expense of cellular DNA synthesis. At the same time, cell cycle checkpoints are by-passed, preventing apoptosis and allowing sufficient time for the assembly of infectious virus.
Collapse
Affiliation(s)
- V Sanchez
- Deaprtment of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX 77843-1266, USA
| | | |
Collapse
|
32
|
Tenca P, Brotherton D, Montagnoli A, Rainoldi S, Albanese C, Santocanale C. Cdc7 is an active kinase in human cancer cells undergoing replication stress. J Biol Chem 2006; 282:208-15. [PMID: 17062569 DOI: 10.1074/jbc.m604457200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cdc7 kinase promotes and regulates DNA replication in eukaryotic organisms. Multiple mechanisms modulating kinase activity in response to DNA replication stress have been reported, supporting the opposing notions that Cdc7 either plays an active role under these conditions or, conversely, is a final target inactivated by a checkpoint response. We have developed new immnunological reagents to study the properties of human Cdc7 kinase in cells challenged with the ribonucleotide reductase inhibitor hydroxyurea or with the DNA topoisomerase II inhibitor etoposide. We show that Cdc7.Dbf4 and Cdc7.Drf1 complexes are stable and active in multiple cell lines upon drug treatment, with Cdc7.Dbf4 accumulating on chromatin-enriched fractions. Cdc7 depletion by small interfering RNA in hydroxyurea and etoposide impairs hyper-phosphorylation of Mcm2 at specific Cdc7-dependent phosphorylation sites and drug-induced hyper-phosphorylation of chromatin-bound Mcm4. Furthermore, sustained inhibition of Cdc7 in the presence of these drugs increases cell death supporting the notion that the Cdc7 kinase plays a role in maintaining cell viability during replication stress.
Collapse
Affiliation(s)
- Pierluigi Tenca
- Department of Cell Biology, Nerviano Medical Sciences-Oncology, Via Pasteur 10, 20014 Nerviano, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Tatsumi Y, Sugimoto N, Yugawa T, Narisawa-Saito M, Kiyono T, Fujita M. Deregulation of Cdt1 induces chromosomal damage without rereplication and leads to chromosomal instability. J Cell Sci 2006; 119:3128-40. [PMID: 16835273 DOI: 10.1242/jcs.03031] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The activity of human Cdt1 is negatively regulated by multiple mechanisms. This suggests that Cdt1 deregulation may have a deleterious effect. Indeed, it has been suggested that overexpression of Cdt1 can induce rereplication in cancer cells and that rereplication activates Ataxia-telangiectasia-mutated (ATM) kinase and/or ATM- and Rad3-related (ATR) kinase-dependent checkpoint pathways. In this report, we highlight a new and interesting aspect of Cdt1 deregulation: data from several different systems all strongly indicate that unregulated Cdt1 overexpression at pathophysiological levels can induce chromosomal damage other than rereplication in non-transformed cells. The most important finding in these studies is that deregulated Cdt1 induces chromosomal damage and activation of the ATM-Chk2 DNA damage checkpoint pathway even in quiescent cells. These Cdt1 activities are negatively regulated by cyclin A/Cdks, probably through modification by phosphorylation. Furthermore, we found that deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this would be a new molecular mechanism leading to carcinogenesis.
Collapse
Affiliation(s)
- Yasutoshi Tatsumi
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Montagnoli A, Valsasina B, Brotherton D, Troiani S, Rainoldi S, Tenca P, Molinari A, Santocanale C. Identification of Mcm2 Phosphorylation Sites by S-phase-regulating Kinases. J Biol Chem 2006; 281:10281-90. [PMID: 16446360 DOI: 10.1074/jbc.m512921200] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Minichromosome maintenance 2-7 proteins play a pivotal role in replication of the genome in eukaryotic organisms. Upon entry into S-phase several subunits of the MCM hexameric complex are phosphorylated. It is thought that phosphorylation activates the intrinsic MCM DNA helicase activity, thus allowing formation of active replication forks. Cdc7, Cdk2, and ataxia telangiectasia and Rad3-related kinases regulate S-phase entry and S-phase progression and are known to phosphorylate the Mcm2 subunit. In this work, by in vitro kinase reactions and mass spectrometry analysis of the products, we have mapped phosphorylation sites in the N terminus of Mcm2 by Cdc7, Cdk2, Cdk1, and CK2. We found that Cdc7 phosphorylates Mcm2 in at least three different sites, one of which corresponds to a site also reported to be phosphorylated by ataxia telangiectasia and Rad3-related. Three serine/proline sites were identified for Cdk2 and Cdk1, and a unique site was phosphorylated by CK2. We raised specific anti-phosphopeptide antibodies and found that all the sites identified in vitro are also phosphorylated in cells. Importantly, although all the Cdc7-dependent Mcm2 phosphosites fluctuate during the cell cycle with kinetics similar to Cdc7 kinase activity and Cdc7 protein levels, phosphorylation of Mcm2 in the putative cyclin-dependent kinase (Cdk) consensus sites is constant during the cell cycle. Furthermore, our analysis indicates that the majority of the Mcm2 isoforms phosphorylated by Cdc7 are not stably associated with chromatin. This study forms the basis for understanding how MCM functions are regulated by multiple kinases within the cell cycle and in response to external perturbations.
Collapse
Affiliation(s)
- Alessia Montagnoli
- Department of Biology, Nerviano Medical Sciences-Oncology, Via Pasteur 10, 20014 Nerviano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Maiorano D, Krasinska L, Lutzmann M, Mechali M. Recombinant Cdt1 induces rereplication of G2 nuclei in Xenopus egg extracts. Curr Biol 2005; 15:146-53. [PMID: 15668171 DOI: 10.1016/j.cub.2004.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/28/2004] [Accepted: 11/10/2004] [Indexed: 11/21/2022]
Abstract
A crucial regulation for maintaining genome integrity in eukaryotes is to limit DNA replication in S phase to only one round. Several models have been proposed; one of which, the licensing model, predicted that formation of the nuclear membrane restricts access to chromatin to a positive replication factor. Cdt1, a factor binding to origins and recruiting the MCM2-7 helicase, has been identified as a component of the licensing system in Xenopus and other eukaryotes. Nevertheless, evidence is missing demonstrating a direct role for unscheduled Cdt1 expression in promoting illegitimate reinitiation of DNA synthesis. We show here that Xenopus Cdt1 is absent in G2 nuclei, suggesting that it might be either degraded or exported. Recombinant Cdt1, added to egg extracts in G2, crosses the nuclear membrane, binds to chromatin, and relicenses the chromosome for new rounds of DNA synthesis in combination with chromatin bound Cdc6. The mechanism involves rebinding of MCM3 to chromatin. Reinitiation is blocked by geminin only in G2 and is not stimulated by Cdc6, demonstrating that Cdt1, but not Cdc6, is limiting for reinitiation in egg extracts. These results suggest that removal of Cdt1 from chromatin and its nuclear exclusion in G2 is critical in regulating licensing and that override of this control is sufficient to promote illegitimate firing of origins.
Collapse
Affiliation(s)
- Domenico Maiorano
- Institute of Human Genetics, Centre National de la Recherche Scientifique, 141 rue de la Cardonille, 34396 Montpellier, France
| | | | | | | |
Collapse
|
36
|
Matsumoto Y, Maller JL. A centrosomal localization signal in cyclin E required for Cdk2-independent S phase entry. Science 2004; 306:885-8. [PMID: 15514162 DOI: 10.1126/science.1103544] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Excess cyclin E-Cdk2 accelerates entry into S phase of the cell cycle and promotes polyploidy, which may contribute to genomic instability in cancer cells. We identified 20 amino acids in cyclin E as a centrosomal localization signal (CLS) essential for both centrosomal targeting and promoting DNA synthesis. Expressed wild-type, but not mutant, CLS peptides localized on the centrosome, prevented endogenous cyclin E and cyclin A from localizing to the centrosome, and inhibited DNA synthesis. Ectopic cyclin E localized to the centrosome and accelerated S phase entry even with mutations that abolish Cdk2 binding, but not with a mutation in the CLS. These results suggest that cyclin E has a modular centrosomal-targeting domain essential for promoting S phase entry in a Cdk2-independent manner.
Collapse
Affiliation(s)
- Yutaka Matsumoto
- Howard Hughes Medical Institute (HHMI) and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
37
|
Montagnoli A, Tenca P, Sola F, Carpani D, Brotherton D, Albanese C, Santocanale C. Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res 2004; 64:7110-6. [PMID: 15466207 DOI: 10.1158/0008-5472.can-04-1547] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cdc7 is an evolutionarily conserved kinase that regulates S phase by promoting replication origin activation. Down-regulation of Cdc7 by small interfering RNA in a variety of tumor cell lines causes an abortive S phase, leading to cell death by either p53-independent apoptosis or aberrant mitosis. Unlike replication fork blockade, Cdc7-depleted tumor cells do not elicit a robust checkpoint response; thus, inhibitory signals preventing additional cell cycle progression are not generated. In normal fibroblasts, however, a p53-dependent pathway actively prevents progression through a lethal S phase in the absence of sufficient Cdc7 kinase. We show that in this experimental system, p53 is required for the lasting maintenance of this checkpoint and for cell viability. With this work we reveal and begin to characterize a novel mechanism that regulates DNA synthesis in human cells, and we suggest that inhibition of Cdc7 kinase represents a promising approach for the development of a new generation of anticancer agents.
Collapse
|
38
|
Masuda HP, Ramos GBA, de Almeida-Engler J, Cabral LM, Coqueiro VM, Macrini CMT, Ferreira PCG, Hemerly AS. Genome based identification and analysis of the pre-replicative complex of Arabidopsis thaliana. FEBS Lett 2004; 574:192-202. [PMID: 15358564 DOI: 10.1016/j.febslet.2004.07.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/09/2004] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
Eukaryotic DNA replication requires an ordered and regulated machinery to control G1/S transition. The formation of the pre-replicative complex (pre-RC) is a key step involved in licensing DNA for replication. Here, we identify all putative components of the full pre-RC in the genome of the model plant Arabidopsis thaliana. Different from the other eukaryotes, Arabidopsis houses in its genome two putative homologs of ORC1, CDC6 and CDT1. Two mRNA variants of AtORC4 subunit, with different temporal expression patterns, were also identified. Two-hybrid binary interaction assays suggest a primary architectural organization of the Arabidopsis ORC, in which AtORC3 plays a central role in maintaining the complex associations. Expression profiles differ among pre-RC components suggesting the existence of various forms of the complex, possibly playing different roles during development. In addition, the expression of the putative pre-RC genes in non-proliferating plant tissues suggests that they might have roles in processes other than DNA replication licensing.
Collapse
Affiliation(s)
- H P Masuda
- Departamento de Bioquímica Médica, ICB, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Thépaut M, Maiorano D, Guichou JF, Augé MT, Dumas C, Méchali M, Padilla A. Crystal structure of the coiled-coil dimerization motif of geminin: structural and functional insights on DNA replication regulation. J Mol Biol 2004; 342:275-87. [PMID: 15313623 DOI: 10.1016/j.jmb.2004.06.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 06/19/2004] [Accepted: 06/24/2004] [Indexed: 01/06/2023]
Abstract
We have determined the crystal structure of the coiled-coil domain of human geminin, a DNA synthesis inhibitor in higher eukaryotes. We show that a peptide encompassing the five heptad repeats of the geminin leucine zipper (LZ) domain is a dimeric parallel coiled coil characterized by a unique pattern of internal polar residues and a negatively charged surface that may target the basic domain of interacting partners. We show that the LZ domain itself is not sufficient to inhibit DNA synthesis but upstream and downstream residues are required. Analysis of a functional form of geminin by density sedimentation indicates an oligomeric structure. X-ray solution scattering experiments performed on a non-functional form of geminin having upstream basic residues and the LZ domain show a tetramer structure. Altogether, these results give a consistent identification and mapping of geminin interacting regions onto structurally important domains. They also suggest that oligomerization properties of geminin may be implicated in its inhibitory activity of DNA synthesis.
Collapse
Affiliation(s)
- Michel Thépaut
- Centre de Biochimie Structurale, CNRS UMR 5048 INSERM UMR 554, 15 Av Charles Flahault, 34060 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Xouri G, Lygerou Z, Nishitani H, Pachnis V, Nurse P, Taraviras S. Cdt1 and geminin are down-regulated upon cell cycle exit and are over-expressed in cancer-derived cell lines. ACTA ACUST UNITED AC 2004; 271:3368-78. [PMID: 15291814 DOI: 10.1111/j.1432-1033.2004.04271.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Licensing origins for replication upon completion of mitosis ensures genomic stability in cycling cells. Cdt1 was recently discovered as an essential licensing factor, which is inhibited by geminin. Over-expression of Cdt1 was shown to predispose cells for malignant transformation. We show here that Cdt1 is down-regulated at both the protein and RNA level when primary human fibroblasts exit the cell cycle into G0, and its expression is induced as cells re-enter the cell cycle, prior to S phase onset. Cdt1's inhibitor, geminin, is similarly down-regulated upon cell cycle exit at both the protein and RNA level, and geminin protein accumulates with a 3-6 h delay over Cdt1, following serum re-addition. Similarly, mouse NIH3T3 cells down-regulate Cdt1 and geminin mRNA and protein when serum starved. Our data suggest a transcriptional control over Cdt1 and geminin at the transition from quiescence to proliferation. In situ hybridization and immunohistochemistry localize Cdt1 as well as geminin to the proliferative compartment of the developing mouse gut epithelium. Cdt1 and geminin levels were compared in primary cells vs. cancer-derived human cell lines. We show that Cdt1 is consistently over-expressed in cancer cell lines at both the protein and RNA level, and that the Cdt1 protein accumulates to higher levels in individual cancer cells. Geminin is similarly over-expressed in the majority of cancer cell lines tested. The relative ratios of Cdt1 and geminin differ significantly amongst cell lines. Our data establish that Cdt1 and geminin are regulated at cell cycle exit, and suggest that the mechanisms controlling Cdt1 and geminin levels may be altered in cancer cells.
Collapse
Affiliation(s)
- Georgia Xouri
- Laboratory of General Biology, Medical School, University of Patras, Rio, Patras, Greece
| | | | | | | | | | | |
Collapse
|
41
|
Thomer M, May NR, Aggarwal BD, Kwok G, Calvi BR. Drosophila double-parked is sufficient to induce re-replication during development and is regulated by cyclin E/CDK2. Development 2004; 131:4807-18. [PMID: 15342466 DOI: 10.1242/dev.01348] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is important that chromosomes are duplicated only once per cell cycle. Over-replication is prevented by multiple mechanisms that block the reformation of a pre-replicative complex (pre-RC) onto origins in S and G2 phase. We have investigated the developmental regulation of Double-parked (Dup) protein, the Drosophila ortholog of Cdt1, a conserved and essential pre-RC component found in human and other organisms. We find that phosphorylation and degradation of Dup protein at G1/S requires cyclin E/CDK2. The N terminus of Dup, which contains ten potential CDK phosphorylation sites, is necessary and sufficient for Dup degradation during S phase of mitotic cycles and endocycles. Mutation of these ten phosphorylation sites, however, only partially stabilizes the protein, suggesting that multiple mechanisms ensure Dup degradation. This regulation is important because increased Dup protein is sufficient to induce profound rereplication and death of developing cells. Mis-expression has different effects on genomic replication than on developmental amplification from chorion origins. The C terminus alone has no effect on genomic replication, but it is better than full-length protein at stimulating amplification. Mutation of the Dup CDK sites increases genomic re-replication, but is dominant negative for amplification. These two results suggest that phosphorylation regulates Dup activity differently during these developmentally specific types of DNA replication. Moreover, the ability of the CDK site mutant to rapidly inhibit BrdU incorporation suggests that Dup is required for fork elongation during amplification. In the context of findings from human and other cells, our results indicate that stringent regulation of Dup protein is critical to protect genome integrity.
Collapse
Affiliation(s)
- Marguerite Thomer
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145, USA
| | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Isabelle A Lucas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
43
|
Liu E, Li X, Yan F, Zhao Q, Wu X. Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem 2004; 279:17283-8. [PMID: 15004027 DOI: 10.1074/jbc.c300549200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic cells tightly control DNA replication so that replication origins fire only once during S phase within the same cell cycle. Cell cycle-regulated degradation of the replication licensing factor Cdt1 plays important roles in preventing more than one round of DNA replication per cell cycle. We have previously shown that the SCF(Skp2)-mediated ubiquitination pathway plays an important role in Cdt1 degradation. In this study, we demonstrate that human Cdt1 is a substrate of Cdk2 and Cdk4 both in vivo and in vitro. Overexpression of cyclin-dependent kinase inhibitors such as p21 and p27 dramatically suppresses the phosphorylation of Cdt1, disrupts the interaction of Cdt1 with the F-box protein Skp2, and blocks the degradation of Cdt1. Further analysis reveals that Cdt1 interacts with cyclin/cyclin-dependent kinase (Cdk) complexes through a cyclin/Cdk binding consensus site, located at the N terminus of Cdt1. A Cdt1 mutant carrying four amino acid substitutions at the Cdk binding site dramatically reduces associations with cyclin/Cdk complexes. This mutant is not phosphorylated, fails to bind Skp2 and is more stable than wild-type Cdt1. These data suggest that cyclin/Cdk-mediated Cdt1 phosphorylation is required for the association of Cdt1 with the SCF(Skp2) ubiquitin ligase and thus is important for the cell cycle dependent degradation of Cdt1 in mammalian cells.
Collapse
Affiliation(s)
- Enbo Liu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
44
|
Cook JG, Chasse DAD, Nevins JR. The Regulated Association of Cdt1 with Minichromosome Maintenance Proteins and Cdc6 in Mammalian Cells. J Biol Chem 2004; 279:9625-33. [PMID: 14672932 DOI: 10.1074/jbc.m311933200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromosomal DNA replication requires the recruitment of the six-subunit minichromosome maintenance (Mcm) complex to chromatin through the action of Cdc6 and Cdt1. Although considerable work has described the functions of Cdc6 and Cdt1 in yeast and biochemical systems, evidence that their mammalian counterparts are subject to distinct regulation suggests the need to further explore the molecular relationships involving Cdc6 and Cdt1. Here we demonstrate that Cdc6 and Cdt1 are mutually dependent on one another for loading Mcm complexes onto chromatin in mammalian cells. The association of Cdt1 with Mcm2 is regulated by cell growth. Mcm2 prepared from quiescent cells associates very weakly with Cdt1, whereas Mcm2 from serum-stimulated cells associates with Cdt1 much more efficiently. Cdc6, which normally accumulates as cells progress from quiescence into G(1), is capable of inducing the binding of Mcm2 to Cdt1 when ectopically expressed in quiescent cells. We further show that Cdc6 physically associates with Cdt1 via its N-terminal noncatalytic domain, a region we had previously shown to be essential for Cdc6 function. Cdt1 activity is inhibited by the geminin protein, and we provide evidence that the mechanism of this inhibition involves blocking the binding of Cdt1 to both Mcm2 and Cdc6. These results identify novel molecular functions for both Cdc6 and geminin in controlling the association of Cdt1 with other components of the replication apparatus and indicate that the association of Cdt1 with the Mcm complex is controlled as cells exit and reenter the cell cycle.
Collapse
Affiliation(s)
- Jeanette Gowen Cook
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
45
|
Higa LAA, Mihaylov IS, Banks DP, Zheng J, Zhang H. Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nat Cell Biol 2003; 5:1008-15. [PMID: 14578910 DOI: 10.1038/ncb1061] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2003] [Accepted: 09/23/2003] [Indexed: 11/09/2022]
Abstract
Genomic integrity is maintained by checkpoints that guard against undesired replication after DNA damage. Here, we show that CDT1, a licensing factor of the pre-replication complex (preRC), is rapidly proteolysed after UV- or gamma-irradiation. The preRC assembles on replication origins at the end of mitosis and during G1 to license DNA for replication in S phase. Once the origin recognition complex (ORC) binds to origins, CDC6 and CDT1 associate with ORC and promote loading of the MCM2-7 proteins onto chromatin, generating the preRC. We show that radiation-mediated CDT1 proteolysis is independent of ATM and CHK2 and can occur in G1-phase cells. Loss of the COP9-signalosome (CSN) or CUL4-ROC1 complexes completely suppresses CDT1 proteolysis. CDT1 is specifically polyubiquitinated by CUL4 complexes and the interaction between CDT1 and CUL4 is regulated in part by gamma-irradiation. Our study reveals an evolutionarily conserved and uncharacterized G1 checkpoint that induces CDT1 proteolysis by the CUL4-ROC1 ubiquitin E3 ligase and CSN complexes in response to DNA damage.
Collapse
Affiliation(s)
- Leigh Ann A Higa
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
46
|
Kulartz M, Kreitz S, Hiller E, Damoc EC, Przybylski M, Knippers R. Expression and phosphorylation of the replication regulator protein geminin. Biochem Biophys Res Commun 2003; 305:412-20. [PMID: 12745091 DOI: 10.1016/s0006-291x(03)00773-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been described that the replication regulator protein geminin is rapidly degraded at the end of mitosis and newly expressed at the beginning of the next S phase in the metazoan cell cycle. We have performed experiments to investigate the synthesis of geminin in cycling human HeLa cells. The levels of geminin-mRNA vary only modestly during the cell cycle with a 2-3-fold higher mRNA level at the G1/S phase transition, whereas newly synthesized geminin can only be detected in post-G1 phases. Surprisingly, geminin, once synthesized, does not remain stable, but is turned over during S phase with a half-life of 3-4h. We also show that geminin becomes phosphorylated as S phase proceeds and identify by MALDI mass spectrometry two specific major phosphorylation sites.
Collapse
Affiliation(s)
- Monika Kulartz
- Department of Biology, Universität Konstanz, D-78457, Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Biswas N, Sanchez V, Spector DH. Human cytomegalovirus infection leads to accumulation of geminin and inhibition of the licensing of cellular DNA replication. J Virol 2003; 77:2369-76. [PMID: 12551974 PMCID: PMC141111 DOI: 10.1128/jvi.77.4.2369-2376.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that infection of G(0)-synchronized human fibroblasts by human cytomegalovirus (HCMV) results in a block to cellular DNA synthesis. In this study, we have examined the effect of viral infection on the formation of the host cell DNA prereplication complex (pre-RC). We found that the Cdc6 protein level was significantly upregulated in the virus-infected cells and that there was a delay in the expression of the Mcm family of proteins. The loading of the Mcm proteins onto the DNA pre-RC complex also appeared to be defective in the virus-infected cells. This inhibition of DNA replication licensing was associated with the accumulation of geminin, a replication inhibitor. Cdt1, which participates in the loading of the Mcm proteins, was also downregulated and modified differentially in the infected cells. Early viral gene expression was sufficient for the virus-induced alteration of the pre-RC, and the immediate-early protein IE1 was not required. These studies show that the inhibition of replication licensing in HCMV-infected cells is one of the multiple pathways by which the virus dysregulates the host cell cycle.
Collapse
Affiliation(s)
- Nilima Biswas
- Molecular Biology Section and Center for Molecular Genetics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0366, USA
| | | | | |
Collapse
|
48
|
Yanagi KI, Mizuno T, You Z, Hanaoka F. Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J Biol Chem 2002; 277:40871-80. [PMID: 12192004 DOI: 10.1074/jbc.m206202200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication is controlled by the stepwise assembly of a pre-replicative complex and the replication apparatus. Cdt1 is a novel component of the pre-replicative complex and plays a role in loading the minichromosome maintenance (MCM) 2-7 complex onto chromatin. Cdt1 activity is inhibited by geminin, which is essential for the G(2)/M transition in metazoan cells. To understand the molecular basis of the Cdt1-geminin regulatory mechanism in mammalian cells, we cloned and expressed the mouse Cdt1 homologue cDNA in bacterial cells and purified mouse Cdt1 to near homogeneity. We found by yeast two-hybrid analysis that mouse Cdt1 associates with geminin, MCM6, and origin recognition complex 2. MCM6 interacts with the Cdt1 carboxyl-terminal region (amino acids 407-477), which is conserved among eukaryotes, whereas geminin associates with the Cdt1 central region (amino acids 177-380), which is conserved only in metazoans. In addition, we found that Cdt1 can bind DNA in a sequence-, strand-, and conformation-independent manner. The Cdt1 DNA binding domain overlaps with the geminin binding domain, and the binding of Cdt1 to DNA is inhibited by geminin. Taken together, we have defined structural domains and novel biochemical properties for mouse Cdt1 that suggest that Cdt1 behaves as an intrinsic DNA binding factor in the pre-replicative complex.
Collapse
Affiliation(s)
- Ken-ichiro Yanagi
- Cellular Physiology Laboratory, RIKEN (The Institute of Physical and Chemical Research) and CREST, Japan Science and Technology Corporation, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
49
|
Thépaut M, Hoh F, Dumas C, Calas B, Strub MP, Padilla A. Crystallization and preliminary X-ray crystallographic analysis of human Geminin coiled-coil domain. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1599:149-51. [PMID: 12479416 DOI: 10.1016/s1570-9639(02)00391-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Initially discovered in Xenopus laevis, Geminin is a DNA replication initiation inhibitor found in higher eukaryotes. The coiled-coil domain of Human Geminin (termed GemH-37) has been crystallized by the vapor-diffusion sitting-drop method. A complete 1.74 A data set has been collected on a single orthorhombic crystal with unit cell parameters a = 25.25, b = 44.35, c = 68.58 A. Successful molecular replacement shows that GemH-37 is a dimeric parallel coiled-coil. Structural analysis is now in progress.
Collapse
Affiliation(s)
- Michael Thépaut
- Centre de Biochimie Structurale, CNRS UMR 5048 INSERM UMR 554, Faculté de Pharmacie, 15 Av Charles Flahault, 34060 Montpellier, France
| | | | | | | | | | | |
Collapse
|