1
|
Tomasina R, González FC, Francia ME. Structural and Functional Insights into the Microtubule Organizing Centers of Toxoplasma gondii and Plasmodium spp. Microorganisms 2021; 9:2503. [PMID: 34946106 PMCID: PMC8705618 DOI: 10.3390/microorganisms9122503] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Microtubule organizing centers (MTOCs) perform critical cellular tasks by nucleating, stabilizing, and anchoring microtubule's minus ends. These capacities impact tremendously a wide array of cellular functions ranging from ascribing cell shape to orchestrating cell division and generating motile structures, among others. The phylum Apicomplexa comprises over 6000 single-celled obligate intracellular parasitic species. Many of the apicomplexan are well known pathogens such as Toxoplasma gondii and the Plasmodium species, causative agents of toxoplasmosis and malaria, respectively. Microtubule organization in these parasites is critical for organizing the cortical cytoskeleton, enabling host cell penetration and the positioning of large organelles, driving cell division and directing the formation of flagella in sexual life stages. Apicomplexans are a prime example of MTOC diversity displaying multiple functional and structural MTOCs combinations within a single species. This diversity can only be fully understood in light of each organism's specific MT nucleation requirements and their evolutionary history. Insight into apicomplexan MTOCs had traditionally been limited to classical ultrastructural work by transmission electron microscopy. However, in the past few years, a large body of molecular insight has emerged. In this work we describe the latest insights into nuclear MTOC biology in two major human and animal disease causing Apicomplexans: Toxoplasma gondii and Plasmodium spp.
Collapse
Affiliation(s)
- Ramiro Tomasina
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabiana C. González
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Maria E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
2
|
Abstract
To gain a holistic understanding of cellular function, we must understand not just the role of individual organelles, but also how multiple macromolecular assemblies function collectively. Centrioles produce fundamental cellular processes through their ability to organise cytoskeletal fibres. In addition to nucleating microtubules, centrioles form lesser-known polymers, termed rootlets. Rootlets were identified over a 100 years ago and have been documented morphologically since by electron microscopy in different eukaryotic organisms. Rootlet-knockout animals have been created in various systems, providing insight into their physiological functions. However, the precise structure and function of rootlets is still enigmatic. Here, I consider common themes of rootlet function and assembly across diverse cellular systems. I suggest that the capability of rootlets to form physical links from centrioles to other cellular structures is a general principle unifying their functions in diverse cells and serves as an example of how cellular function arises from collective organellar activity.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
3
|
von der Heyde EL, Hallmann A. Babo1, formerly Vop1 and Cop1/2, is no eyespot photoreceptor but a basal body protein illuminating cell division in Volvox carteri. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:276-298. [PMID: 31778231 DOI: 10.1111/tpj.14623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
In photosynthetic organisms many processes are light dependent and sensing of light requires light-sensitive proteins. The supposed eyespot photoreceptor protein Babo1 (formerly Vop1) has previously been classified as an opsin due to the capacity for binding retinal. Here, we analyze Babo1 and provide evidence that it is no opsin. Due to the localization at the basal bodies, the former Vop1 and Cop1/2 proteins were renamed V.c. Babo1 and C.r. Babo1. We reveal a large family of more than 60 Babo1-related proteins from a wide range of species. The detailed subcellular localization of fluorescence-tagged Babo1 shows that it accumulates at the basal apparatus. More precisely, it is located predominantly at the basal bodies and to a lesser extent at the four strands of rootlet microtubules. We trace Babo1 during basal body separation and cell division. Dynamic structural rearrangements of Babo1 particularly occur right before the first cell division. In four-celled embryos Babo1 was exclusively found at the oldest basal bodies of the embryo and on the corresponding d-roots. The unequal distribution of Babo1 in four-celled embryos could be an integral part of a geometrical system in early embryogenesis, which establishes the anterior-posterior polarity and influences the spatial arrangement of all embryonic structures and characteristics. Due to its retinal-binding capacity, Babo1 could also be responsible for the unequal distribution of retinoids, knowing that such concentration gradients of retinoids can be essential for the correct patterning during embryogenesis of more complex organisms. Thus, our findings push the Babo1 research in another direction.
Collapse
Affiliation(s)
- Eva L von der Heyde
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr 25, 33615, Bielefeld, Germany
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr 25, 33615, Bielefeld, Germany
| |
Collapse
|
4
|
Chlamydomonas Basal Bodies as Flagella Organizing Centers. Cells 2018; 7:cells7070079. [PMID: 30018231 PMCID: PMC6070942 DOI: 10.3390/cells7070079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
During ciliogenesis, centrioles convert to membrane-docked basal bodies, which initiate the formation of cilia/flagella and template the nine doublet microtubules of the flagellar axoneme. The discovery that many human diseases and developmental disorders result from defects in flagella has fueled a strong interest in the analysis of flagellar assembly. Here, we will review the structure, function, and development of basal bodies in the unicellular green alga Chlamydomonas reinhardtii, a widely used model for the analysis of basal bodies and flagella. Intraflagellar transport (IFT), a flagella-specific protein shuttle critical for ciliogenesis, was first described in C. reinhardtii. A focus of this review will be on the role of the basal bodies in organizing the IFT machinery.
Collapse
|
5
|
de Andrade Rosa I, Caruso MB, de Oliveira Santos E, Gonzaga L, Zingali RB, de Vasconcelos ATR, de Souza W, Benchimol M. The costa of trichomonads: A complex macromolecular cytoskeleton structure made of uncommon proteins. Biol Cell 2017; 109:238-253. [PMID: 28369980 DOI: 10.1111/boc.201600050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION The costa is a prominent striated fibre that is found in protozoa of the Trichomonadidae family that present an undulating membrane. It is composed primarily of proteins that have not yet been explored. In this study, we used cell fractionation to obtain a highly enriched costa fraction whose structure and composition was further analysed by electron microscopy and mass spectrometry. RESULTS Electron microscopy of negatively stained samples revealed that the costa, which is a periodic structure with alternating electron-dense and electron-lucent bands, displays three distinct regions, named the head, neck and body. Fourier transform analysis showed that the electron-lucent bands present sub-bands with a regular pattern. An analysis of the costa fraction via one- and two-dimensional electrophoresis and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) allowed the identification of 54 hypothetical proteins. Fourteen of those proteins were considered to be major components of the fraction. CONCLUSIONS The costa of T. foetus is a complex and organised cytoskeleton structure made of a large number of proteins which is assembled into filamentous structures. Some of these proteins exhibit uncharacterised domains and no function related according to gene ontology, suggesting that the costa structure may be formed by a new class of proteins that differ from those previously described in other organisms. Seven of these proteins contain prefoldin domains displaying coiled-coil regions. This propriety is shared with proteins of the striated fibres of other protozoan as well as in intermediate filaments. SIGNIFICANCE Our observations suggest the presence of a new class of the cytoskeleton filaments in T. foetus. We believe that our data could auxiliate in determining the specific locations of these proteins in the distinct regions that compose the costa, as well as to define the functional roles of each component. Therefore, our study will help in the better understanding of the organisation and function of this structure in unicellular organisms.
Collapse
Affiliation(s)
- Ivone de Andrade Rosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil
| | - Marjolly Brigido Caruso
- Unidade de Espectrometria de Massas e Proteômica, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eidy de Oliveira Santos
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil.,UEZO-Universidade Estadual da Zona Oeste, Rio de Janeiro, Brazil
| | - Luiz Gonzaga
- Laboratório Nacional de Computação Cientifica (LNCC/MCT), Petrópolis, Rio de Janeiro, Brazil
| | - Russolina Benedeta Zingali
- Unidade de Espectrometria de Massas e Proteômica, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlene Benchimol
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,UNIGRANRIO-Universidade do Grande Rio, Caxias, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Wei S, Bian Y, Zhao Q, Chen S, Mao J, Song C, Cheng K, Xiao Z, Zhang C, Ma W, Zou H, Ye M, Dai S. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics. FRONTIERS IN PLANT SCIENCE 2017; 8:810. [PMID: 28588593 PMCID: PMC5441111 DOI: 10.3389/fpls.2017.00810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/30/2017] [Indexed: 05/05/2023]
Abstract
Palmella stage is critical for some unicellular algae to survive in extreme environments. The halotolerant algae Dunaliella salina is a good single-cell model for studying plant adaptation to high salinity. To investigate the molecular adaptation mechanism in salinity shock-induced palmella formation, we performed a comprehensive physiological, proteomics and phosphoproteomics study upon palmella formation of D. salina using dimethyl labeling and Ti4+-immobilized metal ion affinity chromatography (IMAC) proteomic approaches. We found that 151 salinity-responsive proteins and 35 salinity-responsive phosphoproteins were involved in multiple signaling and metabolic pathways upon palmella formation. Taken together with photosynthetic parameters and enzyme activity analyses, the patterns of protein accumulation and phosphorylation level exhibited the mechanisms upon palmella formation, including dynamics of cytoskeleton and cell membrane curvature, accumulation and transport of exopolysaccharides, photosynthesis and energy supplying (i.e., photosystem II stability and activity, cyclic electron transport, and C4 pathway), nuclear/chloroplastic gene expression regulation and protein processing, reactive oxygen species homeostasis, and salt signaling transduction. The salinity-responsive protein-protein interaction (PPI) networks implied that signaling and protein synthesis and fate are crucial for modulation of these processes. Importantly, the 3D structure of phosphoprotein clearly indicated that the phosphorylation sites of eight proteins were localized in the region of function domain.
Collapse
Affiliation(s)
- Sijia Wei
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Alkali Soil Natural Environmental Science Center, Ministry of Education, Northeast Forestry UniversityHarbin, China
| | - Yangyang Bian
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Qi Zhao
- College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, Unites States
| | - Jiawei Mao
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Chunxia Song
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Kai Cheng
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Zhen Xiao
- College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Chuanfang Zhang
- College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Weimin Ma
- College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Hanfa Zou
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Mingliang Ye
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
- *Correspondence: Mingliang Ye
| | - Shaojun Dai
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Alkali Soil Natural Environmental Science Center, Ministry of Education, Northeast Forestry UniversityHarbin, China
- College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
- Shaojun Dai
| |
Collapse
|
7
|
Reck J, Schauer AM, VanderWaal Mills K, Bower R, Tritschler D, Perrone CA, Porter ME. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas. Mol Biol Cell 2016; 27:2404-22. [PMID: 27251063 PMCID: PMC4966982 DOI: 10.1091/mbc.e16-03-0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.
Collapse
Affiliation(s)
- Jaimee Reck
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 R&D Systems, Minneapolis, MN 55413
| | - Alexandria M Schauer
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Anoka Technical College, Anoka, MN 55303
| | - Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Catherine A Perrone
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Medtronic, Minneapolis, MN 55432
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
8
|
Francia ME, Dubremetz JF, Morrissette NS. Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium. Cilia 2016; 5:3. [PMID: 26855772 PMCID: PMC4743101 DOI: 10.1186/s13630-016-0025-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, including the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9+2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the relationship between asexual stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian apicomplexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure. Moreover, the UNIMOD components (SAS6, SAS4/CPAP, and BLD10/CEP135) are conserved in these organisms. However, other widely conserved basal body and flagellar biogenesis elements are missing from apicomplexan genomes. These differences may indicate variations in flagellar biogenesis pathways and in basal body arrangement within the phylum. As apicomplexan basal bodies are distinct from their metazoan counterparts, it may be possible to selectively target parasite structures in order to inhibit microgamete motility which drives generation of genetic diversity in Toxoplasma and transmission for Plasmodium.
Collapse
|
9
|
Cross FR, Umen JG. The Chlamydomonas cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:370-392. [PMID: 25690512 PMCID: PMC4409525 DOI: 10.1111/tpj.12795] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 05/18/2023]
Abstract
The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants; and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that has been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell division, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth and the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole-basal body-flagellar cycle. Here, we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell-cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell-cycle control, compared with this model. We next review the cytology and cell biology of the multiple-fission cell cycle of Chlamydomonas. Lastly, we review recent genetic approaches and insights into Chlamydomonas cell-cycle regulation that have been enabled by a new generation of genomics-based tools.
Collapse
Affiliation(s)
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
10
|
Galati DF, Bonney S, Kronenberg Z, Clarissa C, Yandell M, Elde NC, Jerka-Dziadosz M, Giddings TH, Frankel J, Pearson CG. DisAp-dependent striated fiber elongation is required to organize ciliary arrays. ACTA ACUST UNITED AC 2015; 207:705-15. [PMID: 25533842 PMCID: PMC4274257 DOI: 10.1083/jcb.201409123] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DisAp is a novel kinetodesmal fiber component that is essential for force-dependent fiber elongation and the alignment of basal body orientation in multiciliary arrays. Cilia-organizing basal bodies (BBs) are microtubule scaffolds that are visibly asymmetrical because they have attached auxiliary structures, such as striated fibers. In multiciliated cells, BB orientation aligns to ensure coherent ciliary beating, but the mechanisms that maintain BB orientation are unclear. For the first time in Tetrahymena thermophila, we use comparative whole-genome sequencing to identify the mutation in the BB disorientation mutant disA-1. disA-1 abolishes the localization of the novel protein DisAp to T.thermophila striated fibers (kinetodesmal fibers; KFs), which is consistent with DisAp’s similarity to the striated fiber protein SF-assemblin. We demonstrate that DisAp is required for KFs to elongate and to resist BB disorientation in response to ciliary forces. Newly formed BBs move along KFs as they approach their cortical attachment sites. However, because they contain short KFs that are rotated, BBs in disA-1 cells display aberrant spacing and disorientation. Therefore, DisAp is a novel KF component that is essential for force-dependent KF elongation and BB orientation in multiciliary arrays.
Collapse
Affiliation(s)
- Domenico F Galati
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Stephanie Bonney
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Zev Kronenberg
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Christina Clarissa
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Mark Yandell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Maria Jerka-Dziadosz
- Department of Cell Biology, M. Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Thomas H Giddings
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Joseph Frankel
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242
| | - Chad G Pearson
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
11
|
Okamoto N, Keeling PJ. The 3D structure of the apical complex and association with the flagellar apparatus revealed by serial TEM tomography in Psammosa pacifica, a distant relative of the Apicomplexa. PLoS One 2014; 9:e84653. [PMID: 24392150 PMCID: PMC3879320 DOI: 10.1371/journal.pone.0084653] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 11/17/2013] [Indexed: 11/18/2022] Open
Abstract
The apical complex is one of the defining features of apicomplexan parasites, including the malaria parasite Plasmodium, where it mediates host penetration and invasion. The apical complex is also known in a few related lineages, including several non-parasitic heterotrophs, where it mediates feeding behaviour. The origin of the apical complex is unclear, and one reason for this is that in apicomplexans it exists in only part of the life cycle, and never simultaneously with other major cytoskeletal structures like flagella and basal bodies. Here, we used conventional TEM and serial TEM tomography to reconstruct the three dimensional structure of the apical complex in Psammosa pacifica, a predatory relative of apicomplexans and dinoflagellates that retains the archetype apical complex and the flagellar apparatus simultaneously. The P. pacifica apical complex is associated with the gullet and consists of the pseudoconoid, micronemes, and electron dense vesicles. The pseudoconoid is a convex sheet consisting of eight short microtubules, plus a band made up of microtubules that originate from the flagellar apparatus. The flagellar apparatus consists of three microtubular roots. One of the microtubular roots attached to the posterior basal body is connected to bypassing microtubular strands, which are themselves connected to the extension of the pseudoconoid. These complex connections where the apical complex is an extension of the flagellar apparatus, reflect the ancestral state of both, dating back to the common ancestor of apicaomplexans and dinoflagellates.
Collapse
Affiliation(s)
- Noriko Okamoto
- The Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J. Keeling
- The Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Strenkert D, Schmollinger S, Schroda M. Heat shock factor 1 counteracts epigenetic silencing of nuclear transgenes in Chlamydomonas reinhardtii. Nucleic Acids Res 2013; 41:5273-89. [PMID: 23585280 PMCID: PMC3664811 DOI: 10.1093/nar/gkt224] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We found previously that the Chlamydomonas HSP70A promoter counteracts transcriptional silencing of downstream promoters in a transgene setting. To elucidate the underlying mechanisms, we analyzed chromatin state and transgene expression in transformants containing HSP70A-RBCS2-ble (AR-ble) constructs harboring deletions/mutations in the A promoter. We identified histone modifications at transgenic R promoters indicative for repressive chromatin, i.e. low levels of histone H3/4 acetylation and H3-lysine 4 trimethylation and high levels of H3-lysine 9 monomethylation. Transgenic A promoters also harbor lower levels of active chromatin marks than the native A promoter, but levels were higher than those at transgenic R promoters. Strikingly, in AR promoter fusions, the chromatin state at the A promoter was transferred to R. This effect required intact HSE4, HSE1/2 and TATA-box in the A promoter and was mediated by heat shock factor (HSF1). However, time-course analyses in strains inducibly depleted of HSF1 revealed that a transcriptionally competent chromatin state alone was not sufficient for activating the R promoter, but required constitutive HSF1 occupancy at transgenic A. We propose that HSF1 constitutively forms a scaffold at the transgenic A promoter, presumably containing mediator and TFIID, from which local chromatin remodeling and polymerase II recruitment to downstream promoters is realized.
Collapse
Affiliation(s)
- Daniela Strenkert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
13
|
Glanz S, Jacobs J, Kock V, Mishra A, Kück U. Raa4 is a trans-splicing factor that specifically binds chloroplast tscA intron RNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:421-431. [PMID: 21954961 DOI: 10.1111/j.1365-313x.2011.04801.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During trans-splicing of discontinuous organellar introns, independently transcribed coding sequences are joined together to generate a continuous mRNA. The chloroplast psaA gene from Chlamydomonas reinhardtii encoding the P(700) core protein of photosystem I (PSI) is split into three exons and two group IIB introns, which are both spliced in trans. Using forward genetics, we isolated a novel PSI mutant, raa4, with a defect in trans-splicing of the first intron. Complementation analysis identified the affected gene encoding the 112.4 kDa Raa4 protein, which shares no strong sequence identity with other known proteins. The chloroplast localization of the protein was confirmed by confocal fluorescence microscopy, using a GFP-tagged Raa4 fusion protein. RNA-binding studies showed that Raa4 binds specifically to domains D2 and D3, but not to other conserved domains of the tripartite group II intron. Raa4 may play a role in stabilizing folding intermediates or functionally active structures of the split intron RNA.
Collapse
Affiliation(s)
- Stephanie Glanz
- Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
14
|
Keller LC, Wemmer KA, Marshall WF. Influence of centriole number on mitotic spindle length and symmetry. Cytoskeleton (Hoboken) 2010; 67:504-18. [PMID: 20540087 DOI: 10.1002/cm.20462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The functional role of centrioles or basal bodies in mitotic spindle assembly and function is currently unclear. Although supernumerary centrioles have been associated with multipolar spindles in cancer cells, suggesting centriole number might dictate spindle polarity, bipolar spindles are able to assemble in the complete absence of centrioles, suggesting a level of centriole-independence in the spindle assembly pathway. In this report we perturb centriole number using mutations in Chlamydomonas reinhardtii, and measure the response of the mitotic spindle to these perturbations in centriole number. Although altered centriole number increased the frequency of monopolar and multipolar spindles, the majority of spindles remained bipolar regardless of the centriole number. But even when spindles were bipolar, abnormal centriole numbers led to asymmetries in tubulin distribution, half-spindle length and spindle pole focus. Half spindle length correlated directly with number of centrioles at a pole, such that an imbalance in centriole number between the two poles of a bipolar spindle correlated with increased asymmetry between half spindle lengths. These results are consistent with centrioles playing an active role in regulating mitotic spindle length. Mutants with centriole number alteration also show increased cytokinesis defects, but these do not correlate with centriole number in the dividing cell and may therefore reflect downstream consequences of defects in preceding cell divisions.
Collapse
Affiliation(s)
- Lani C Keller
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California 94158, USA
| | | | | |
Collapse
|
15
|
Cui Y, Wang J, Jiang P, Bian S, Qin S. Transformation of Platymonas (Tetraselmis) subcordiformis (Prasinophyceae, Chlorophyta) by agitation with glass beads. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0342-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Neupert J, Karcher D, Bock R. Generation of Chlamydomonas strains that efficiently express nuclear transgenes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:1140-50. [PMID: 19036032 DOI: 10.1111/j.1365-313x.2008.03746.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is both an invaluable model organism for plant biology and an attractive biotechnological production system. Despite the availability of efficient methods for introduction of foreign genes into the nuclear genome of the alga, transgene expression levels are usually very poor. This is a serious limitation that has severely hampered both post-genomics research in Chlamydomonas and use of the alga in molecular farming. Here we report a solution to this problem. We have designed a genetic screen that facilitates isolation of algal strains that efficiently express introduced transgenes. The levels of accumulation of foreign protein in our expression strains are almost uniformly high in all transgenic clones and are little influenced by position effects. The possibility of expressing transgenes to high levels will greatly facilitate post-genomics research in Chlamydomonas, and will also boost exploitation of the alga as an inexpensive production host for biopharmaceuticals and other valuable compounds.
Collapse
Affiliation(s)
- Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, Germany
| | | | | |
Collapse
|
17
|
Nuclear transformation of eukaryotic microalgae: historical overview, achievements and problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:1-11. [PMID: 18161486 DOI: 10.1007/978-0-387-75532-8_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transformation of microalgae is a first step in their use for biotechnological applications involving foreign protein production or molecular modifications of specific cell metabolic pathways. Since the first reliable achievements of nuclear transformation in Chlamydomonas, other eukaryotic microalgae have become transformed with molecular markers that allow a direct selection. Different methods--glass beads, electroporation, particle bombardment, or Agrobacterium--and constructions have been set up in several organisms and successfully used. However, some problems associated with efficiency, integration, or stability of the transgenes still persist and are analysed herein. Though the number of microalgae species successfully transformed is not very high, prospects for transformation of many more are good enough on the basis of what has been achieved so far.
Collapse
|
18
|
Vila M, Couso I, León R. Carotenoid content in mutants of the chlorophyte Chlamydomonas reinhardtii with low expression levels of phytoene desaturase. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Schroda M. RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 2005; 49:69-84. [PMID: 16308700 DOI: 10.1007/s00294-005-0042-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/19/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
The generation of a comprehensive EST library and the sequencing of its genome set the stage for reverse genetics approaches in Chlamydomonas reinhardtii. However, these also require tools for the specific downregulation of target gene expression. Consequently, a large number of diverse constructs were developed aimed at reducing target gene expression in Chlamydomonas via the stable expression of antisense or inverted repeat-containing RNA. Double-stranded RNA (dsRNA) generated by the annealing of antisense and sense RNAs or by hairpin formation of an inverted repeat, feeds into the RNA silencing pathway. In this pathway, dsRNA is cleaved into approximately 25-bp small interfering RNAs (siRNAs) by the endonuclease Dicer. One of the two complementary strands of a siRNA is then loaded onto an Argonaute-like protein present as core component within larger complexes. Guided by this single-stranded RNA, the Argonaute-like protein either detects homologous transcripts and cleaves these endonucleolytically, or initiates transcriptional gene silencing. This article summarizes current information derived mainly from the Chlamydomonas genome project on components that are assumed to be involved in RNA silencing mechanisms in Chlamydomonas. Furthermore, all approaches employed in Chlamydomonas to date to downregulate target gene expression by antisense or inverted repeat constructs are reviewed and discussed critically.
Collapse
Affiliation(s)
- Michael Schroda
- Institute of Biology II/Plant Biochemistry, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
20
|
Keller LC, Romijn EP, Zamora I, Yates JR, Marshall WF. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr Biol 2005; 15:1090-8. [PMID: 15964273 DOI: 10.1016/j.cub.2005.05.024] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND The centriole is one of the most enigmatic organelles in the cell. Centrioles are cylindrical, microtubule-based barrels found in the core of the centrosome. Centrioles also act as basal bodies during interphase to nucleate the assembly of cilia and flagella. There are currently only a handful of known centriole proteins. RESULTS We used mass-spectrometry-based MudPIT (multidimensional protein identification technology) to identify the protein composition of basal bodies (centrioles) isolated from the green alga Chlamydomonas reinhardtii. This analysis detected the majority of known centriole proteins, including centrin, epsilon tubulin, and the cartwheel protein BLD10p. By combining proteomic data with information about gene expression and comparative genomics, we identified 45 cross-validated centriole candidate proteins in two classes. Members of the first class of proteins (BUG1-BUG27) are encoded by genes whose expression correlates with flagellar assembly and which therefore may play a role in ciliogenesis-related functions of basal bodies. Members of the second class (POC1-POC18) are implicated by comparative-genomics and -proteomics studies to be conserved components of the centriole. We confirmed centriolar localization for the human homologs of four candidate proteins. Three of the cross-validated centriole candidate proteins are encoded by orthologs of genes (OFD1, NPHP-4, and PACRG) implicated in mammalian ciliary function and disease, suggesting that oral-facial-digital syndrome and nephronophthisis may involve a dysfunction of centrioles and/or basal bodies. CONCLUSIONS By analyzing isolated Chlamydomonas basal bodies, we have been able to obtain the first reported proteomic analysis of the centriole.
Collapse
Affiliation(s)
- Lani C Keller
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
21
|
Schoppmeier J, Mages W, Lechtreck KF. GFP as a tool for the analysis of proteins in the flagellar basal apparatus ofChlamydomonas. ACTA ACUST UNITED AC 2005; 61:189-200. [PMID: 15940689 DOI: 10.1002/cm.20074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Green fluorescent protein (GFP) was used to analyse three proteins in the flagellar basal apparatus of C. reinhardtii: (1) Striated fiber assemblin (SFA), the major component of the striated microtubule-associated fibers; (2) Centrin, present in the nucleus basal body connectors (NBBCs) and the distal connecting fiber (dCF) between the two basal bodies; and (3) DIP13, the Chlamydomonas homologue of human autoantigen NA14. The fusions co-localized with the wild-type proteins when expressed moderately. Overexpression of centrin-GFP and DIP13-GFP resulted in the formation of large aggregates and disturbed the distribution of the respective wild-type proteins. The amount of wild-type DIP13 was significantly reduced in cells overexpressing DIP13-GFP. Moreover, the cells frequently failed to assemble full-length flagella and flagellar regeneration was delayed, indicating a role of DIP13 during flagellar assembly. In contrast, overexpression of GFP-SFA, which retained more wild-type properties than SFA-GFP, increased the size of the striated fibers without altering the cross-shaped pattern. Abnormal patterns were observed in centrin-deficient cells, suggesting that centrin is required for proper localization of SFA. Photobleaching of GFP-SFA fibers indicated that GFP-SFA in the fibers is turned over slowly. Conditionally expressed centrin-GFP was incorporated into NBBCs in regions close to the basal bodies, but underrepresented in the dCF, indicative of a different dynamic of these two centrin fibers. Bending of the NBBCs was observed in vivo during flagellar motion, indicating that the filaments are flexible. In conclusion, in Chlamydomonas GFP-tagging is a useful tool for yielding new insights into the function and properties of the analyzed proteins.
Collapse
|
22
|
Fuhrmann M, Hausherr A, Ferbitz L, Schödl T, Heitzer M, Hegemann P. Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. PLANT MOLECULAR BIOLOGY 2004. [PMID: 15604722 DOI: 10.1007/s11103-005-2150-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
For monitoring the expression profile of selected nuclear genes in Chlamydomonas reinhardtii in response to altered environmental parameters or during cell cycle, in the past many RNA or protein samples had to be taken and analyzed by RNA hybridization or protein immunoblotting. Here we report the synthesis of a gene that codes for the luciferase of Renilla reniformis (RLuc) and is adapted to the nuclear codon usage of C. reinhardtii . This crluc gene was expressed alone or as a fusion to the zeocin resistance gene ble under control of different promoter variants. Luciferase activity was monitored in living cells, increased with the promoter strength and paralleled the amount of expressed protein. Under control of the Lhcb-1 promoter the Luc-activity in synchronized cultures was dependent on the dark-light cycle. Additionally, crluc was placed under control of the Chop-2 promoter and activity was measured under different light conditions. Chop-2 promoter activity was found to be most pronouced under low-light and dark conditions, further supporting that channelrhodopsin-2 is most active in dark-adapted cells. We conclude that crluc is a reliable tool for convenient monitoring of nuclear gene expression in C. reinhardtii .
Collapse
Affiliation(s)
- Markus Fuhrmann
- Institut für Biochemie I, Universität Regensburg, 93040 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z. Chlamydomonas reinhardtii at the crossroads of genomics. EUKARYOTIC CELL 2004; 2:1137-50. [PMID: 14665449 PMCID: PMC326643 DOI: 10.1128/ec.2.6.1137-1150.2003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305. Biology Department, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Geimer S, Melkonian M. The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J Cell Sci 2004; 117:2663-74. [PMID: 15138287 DOI: 10.1242/jcs.01120] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biflagellate unicellular green alga Chlamydomonas reinhardtii is a classic model organism for the analysis of flagella and their organizers, the basal bodies. In this cell, the two flagella-bearing basal bodies, along with two probasal bodies and an array of fibers and microtubules, form a complex organelle called the basal apparatus. The ultrastructure of the basal apparatus was analysed in detail by serial thin-section electron microscopy of isolated cytoskeletons and several newly discovered features are described, including a marker for the rotational asymmetry inherent in the basal bodies and probasal bodies. In addition, the complex three-dimensional basal apparatus ultrastructure is resolved and illustrated, including the attachment sites of all basal apparatus elements to specific microtubular triplets of the basal bodies and probasal bodies. These data will facilitate both the localization of novel basal apparatus proteins and the analysis of mutants and RNA interference cells with only subtle defects in basal apparatus ultrastructure. The early harbinger of radial asymmetry described here could play a crucial role during basal body maturation by orienting the asymmetric attachment of the various associated fibers and therefore might define the orientation of the basal bodies and, ultimately, the direction of flagellar beating.
Collapse
Affiliation(s)
- Stefan Geimer
- Botanisches Institut, Universität zu Köln, Gyrhofstrasse 15, 50931 Köln, Germany.
| | | |
Collapse
|
25
|
Franklin SE, Mayfield SP. Prospects for molecular farming in the green alga Chlamydomonas. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:159-165. [PMID: 15003216 DOI: 10.1016/j.pbi.2004.01.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein-based therapeutics have enjoyed great success over the past decade. Unfortunately, this clinical success has come with a heavy price tag that is due to the inherently high costs of the capitalization and production of these complex molecules using current mammalian-based fermentation systems. Recent progress has been made in the production of recombinant proteins, including antibodies, in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. C. reinhardtii offers an attractive alternative to traditional mammalian-based expression systems for several reasons, including its ability to provide stable plastid and nuclear transformants rapidly and its inherently low costs for capitalization and production.
Collapse
Affiliation(s)
- Scott E Franklin
- The Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
26
|
Koblenz B, Schoppmeier J, Grunow A, Lechtreck KF. Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation. J Cell Sci 2003; 116:2635-46. [PMID: 12746491 DOI: 10.1242/jcs.00497] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centrin, a 20 kDa calcium-binding protein, is a constituent of contractile basal body-associated fibers in protists and of various centrosomal structures. A construct inducing centrin RNAi was used to study the effect of centrin deficiency in Chlamydomonas. Transformants contained variable amounts of residual centrin (down to 5% of wild-type) and lacked centrin fibers. They displayed a variable flagellar number phenotype with mostly nonflagellate cells, suggesting that centrin is required for basal body assembly. Furthermore, basal bodies often failed to dock to the plasma membrane and to assemble flagella, and displayed defects in the flagellar root system indicating that centrin deficiency interferes with basal body development. Multiple basal bodies caused the formation of additional microtubular asters, whereas the microtubular cytoskeleton was disordered in most cells without basal bodies. The number of multinucleated cells was increased, indicating that aberrant numbers of basal bodies interfered with the cytokinesis of Chlamydomonas. In contrast to wild-type cells, basal bodies in centrin-RNAi cells were separated from the spindle poles, suggesting a role of centrin in tethering basal bodies to the spindle. To test whether an association with the spindle poles is required for correct basal body segregation, we disrupted centrin fibers in wild-type cells by over-expressing a nonfunctional centrin-GFP. In these cells, basal bodies were disconnected from the spindle but segregation errors were not observed. We propose that basal body segregation in Chlamydomonas depends on an extranuclear array of microtubules independent of the mitotic spindle.
Collapse
Affiliation(s)
- Bettina Koblenz
- Department of Botany, University of Cologne, Gyrhofstr. 15, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
27
|
Abstract
In eukaryotic cells, basal bodies and their structural equivalents, centrioles, play essential roles. They are needed for the assembly of flagella or cilia as well as for cell division. Chlamydomonas reinhardtii provides an excellent model organism for the study of the basal body and centrioles. Genes for two new members of the tubulin superfamily are needed for basal body/centriole duplication. In addition, other genes that play roles in the duplication and segregation of basal bodies are discussed.
Collapse
Affiliation(s)
- Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
|
29
|
Abstract
Giardia lamblia is a ubiquitous intestinal pathogen of mammals. Evolutionary studies have also defined it as a member of one of the earliest diverging eukaryotic lineages that we are able to cultivate and study in the laboratory. Despite early recognition of its striking structure resembling a half pear endowed with eight flagella and a unique ventral disk, a molecular understanding of the cytoskeleton of Giardia has been slow to emerge. Perhaps most importantly, although the association of Giardia with diarrhoeal disease has been known for several hundred years, little is known of the mechanism by which Giardia exacts such a toll on its host. What is clear, however, is that the flagella and disk are essential for parasite motility and attachment to host intestinal epithelial cells. Because peristaltic flow expels intestinal contents, attachment is necessary for parasites to remain in the small intestine and cause diarrhoea, underscoring the essential role of the cytoskeleton in virulence. This review presents current day knowledge of the cytoskeleton, focusing on its role in motility and attachment. As the advent of new molecular technologies in Giardia sets the stage for a renewed focus on the cytoskeleton and its role in Giardia virulence, we discuss future research directions in cytoskeletal function and regulation.
Collapse
Affiliation(s)
- Heidi G Elmendorf
- Department of Biology, Georgetown University, 348 Reiss Building 37th and O Sts. NW, Washington, DC 20057, USA.
| | | | | |
Collapse
|
30
|
Fuhrmann M. Expanding the molecular toolkit for Chlamydomonas reinhardtii--from history to new frontiers. Protist 2002; 153:357-64. [PMID: 12627865 DOI: 10.1078/14344610260450082] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Dutcher SK, Morrissette NS, Preble AM, Rackley C, Stanga J. Epsilon-tubulin is an essential component of the centriole. Mol Biol Cell 2002; 13:3859-69. [PMID: 12429830 PMCID: PMC133598 DOI: 10.1091/mbc.e02-04-0205] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Centrioles and basal bodies are cylinders composed of nine triplet microtubule blades that play essential roles in the centrosome and in flagellar assembly. Chlamydomonas cells with the bld2-1 mutation fail to assemble doublet and triplet microtubules and have defects in cleavage furrow placement and meiosis. Using positional cloning, we have walked 720 kb and identified a 13.2-kb fragment that contains epsilon-tubulin and rescues the Bld2 defects. The bld2-1 allele has a premature stop codon and intragenic revertants replace the stop codon with glutamine, glutamate, or lysine. Polyclonal antibodies to epsilon-tubulin show peripheral labeling of full-length basal bodies and centrioles. Thus, epsilon-tubulin is encoded by the BLD2 allele and epsilon-tubulin plays a role in basal body/centriole morphogenesis.
Collapse
Affiliation(s)
- Susan K Dutcher
- Department of Genetics,Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|