1
|
Gleixner S, Zahn I, Dietrich J, Singh S, Drobny A, Schneider Y, Schwendner R, Socher E, Blavet N, Bräuer L, Gostian AO, Balk M, Schulze-Tanzil G, Günther C, Paulsen F, Arnold P. A New Immortalized Human Lacrimal Gland Cell Line. Cells 2024; 13:622. [PMID: 38607061 PMCID: PMC11011892 DOI: 10.3390/cells13070622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The lacrimal gland is crucial for maintaining ocular health by producing the aqueous component of the tear film, which hydrates and nourishes the ocular surface. Decreased production of this component results in dry eye disease, a condition affecting over 250 million people worldwide. However, the scarcity of primary human material for studying its underlying mechanisms and the absence of a cell model for human lacrimal gland epithelial cells present significant challenges. Here, we describe the generation of immortalized human lacrimal gland cell lines through the introduction of an SV40 antigen. We successfully isolated and characterized three cell clones from a female lacrimal gland donor, confirming their epithelial identity through genomic and protein analyses, including PCR, RNAseq, immunofluorescence and cultivation in a 3D spheroid model. Our findings represent a significant advancement, providing improved accessibility to investigate the molecular pathogenesis mechanisms of dry eye disease and potential therapeutic interventions. We identified the expression of typical epithelial cell marker genes and demonstrated the cells' capability to form 2D cell sheets and 3D spheroids. This establishment of immortalized human lacrimal gland cells with epithelial characteristics holds promise for future comprehensive studies, contributing to a deeper understanding of dry eye disease and its cellular mechanisms.
Collapse
Affiliation(s)
- Sophie Gleixner
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Ingrid Zahn
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Swati Singh
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
- Hariram Motumal Nasta & Renu Hariram Nasta Ophthalmic Plastic Surgery Services, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Yanni Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Raphael Schwendner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eileen Socher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Nicolas Blavet
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lars Bräuer
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Antoniu-Oreste Gostian
- Department of Otorhinolaryngology, Merciful Brothers Hospital St. Elisabeth, 94315 Straubing, Germany
- Department of Otolaryngology, Head & Neck Surgery, Comprehensive Cancer Center Erlangen, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Matthias Balk
- Department of Otolaryngology, Head & Neck Surgery, Comprehensive Cancer Center Erlangen, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| |
Collapse
|
2
|
Lectin-Based Affinity Enrichment and Characterization of N-Glycoproteins from Human Tear Film by Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020648. [PMID: 36677706 PMCID: PMC9864693 DOI: 10.3390/molecules28020648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
The glycosylation of proteins is one of the most common post-translational modifications (PTMs) and plays important regulatory functions in diverse biological processes such as protein stability or cell signaling. Accordingly, glycoproteins are also a consistent part of the human tear film proteome, maintaining the proper function of the ocular surface and forming the first defense barrier of the ocular immune system. Irregularities in the glycoproteomic composition of tear film might promote the development of chronic eye diseases, indicating glycoproteins as a valuable source for biomarker discovery or drug target identification. Therefore, the present study aimed to develop a lectin-based affinity method for the enrichment and concentration of tear glycoproteins/glycopeptides and to characterize their specific N-glycosylation sites by high-resolution mass spectrometry (MS). For method development and evaluation, we first accumulated native glycoproteins from human tear sample pools and assessed the enrichment efficiency of different lectin column systems by 1D gel electrophoresis and specific protein stainings (Coomassie and glycoproteins). The best-performing multi-lectin column system (comprising the four lectins ConA, JAC, WGA, and UEA I, termed 4L) was applied to glycopeptide enrichment from human tear sample digests, followed by MS-based detection and localization of their specific N-glycosylation sites. As the main result, our study identified a total of 26 N glycosylation sites of 11 N-glycoproteins in the tear sample pools of healthy individuals (n = 3 biological sample pools). Amongst others, we identified tear film proteins lactotransferrin (N497 and N642, LTF), Ig heavy chain constant α-1 (N144 and 340, IGHA1), prolactin-inducible protein (N105, PIP), and extracellular lacritin (N105, LACRT) as highly reliable and significant N glycoproteins, already associated with the pathogenesis of various chronic eye diseases such as dry eye syndrome (DES). In conclusion, the results of the present study will serve as an important tear film N-glycoprotein catalog for future studies focusing on human tear film and ocular surface-related inflammatory diseases.
Collapse
|
3
|
A phase II randomized trial to evaluate the long-term (12-week) efficacy and safety of OC-01 (varenicline solution) nasal spray for dry eye disease: The MYSTIC study. Ocul Surf 2021; 24:15-21. [PMID: 34920097 DOI: 10.1016/j.jtos.2021.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Dry eye disease is characterized by loss of tear film stability. OC-01 (varenicline solution) is a small-molecule nicotinic acetylcholine receptor agonist administered as a nasal spray that stimulates tear production. METHODS In MYSTIC (NCT03873246) patients aged ≥22 years with dry eye disease were randomized 1:1:1 to OC-01 0.03 mg, OC-01 0.06 mg, or vehicle (n = 41 per group), administered twice daily via intranasal spray, for 12 weeks (84 days). Primary efficacy endpoint was mean change from baseline in anesthetized Schirmer's test score (STS) in study eye at day (D) 84. RESULTS Patients receiving OC-01 0.03 and 0.06 mg had statistically significantly increased tear production at D84 versus vehicle; least squares mean changes from baseline in STS were 10.8 mm and 11.0 mm for OC-01 0.03 and 0.06 mg, respectively. A trend toward a higher proportion of patients experiencing ≥10-mm improvement in STS from baseline was observed with OC-01 0.03 mg (36.6%; p > 0.05), and was significant for OC-01 0.06 mg (48.8%; p = 0.024), versus vehicle (24.4%). Non-ocular treatment-emergent adverse events (TEAEs) were reported by 21 patients; the most common was sneezing (OC-01 0.03 mg, 2 [4.9%]; OC-01 0.06 mg, 3 [7.3%]), with similar frequencies between treatment groups. No severe or serious TEAEs were reported. CONCLUSIONS OC-01 (varenicline solution) nasal spray improved tear production in patients with dry eye disease over a long-term (12-week) period, and represents a receptor neuro-activator with a nasal route of administration that spares the ocular surface to stimulate tear production.
Collapse
|
4
|
Hegarty DM, David LL, Aicher SA. Lacrimal Gland Denervation Alters Tear Protein Composition and Impairs Ipsilateral Eye Closures and Corneal Nociception. Invest Ophthalmol Vis Sci 2019; 59:5217-5224. [PMID: 30372750 PMCID: PMC6203219 DOI: 10.1167/iovs.18-25267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose To evaluate spontaneous and evoked ocular sensory responses in rats after denervation of the lacrimal gland, as well as protein changes in tears that may mediate functional changes. Methods Sprague-Dawley rats served as subjects. The left lacrimal gland was partially denervated with saporin toxin conjugated to p75. Unilateral and bilateral eye closures (winks and blinks) and grooming behaviors were measured weekly. Nociceptive responses were evoked by ocular application of menthol; tear production was assessed using the phenol thread test. Relative changes in tear protein abundances were measured using a Tandem Mass Tagging approach. Results Denervation of the lacrimal gland reduced eye closure behavior, particularly in the ipsilateral eye, and eye wipe responses to noxious menthol were also reduced. Tear volume did not change, but tear protein composition was altered. Proteins implicated in the structural integrity of epithelial cells and in protective functions were reduced by lacrimal denervation, including keratins, serotransferrin, and beta-defensin. Other proteins that may modulate TRPM8 channels and alter sensory neuronal function were reduced, including arachidonate 15-lipoxygenase B. A low-abundance protein that responds to oxidative stress and injury, proteasome subunit beta type 10, was upregulated in denervated rats. Conclusions Denervation of the lacrimal gland causes long-lasting hypoalgesia, impairs the blink response, and alters tear proteins. Tear proteins were altered without changing tear volume. We speculate that impaired TRPM8 function in corneal sensory nerves may contribute to ocular hypoalgesia, supporting growing evidence that this transduction molecule is important for both nociceptive and spontaneous blinking behaviors.
Collapse
Affiliation(s)
- Deborah M Hegarty
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States
| | - Sue A Aicher
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
5
|
Xu W, Gulvady AC, Goreczny GJ, Olson EC, Turner CE. Paxillin-dependent regulation of apical-basal polarity in mammary gland morphogenesis. Development 2019; 146:dev.174367. [PMID: 30967426 DOI: 10.1242/dev.174367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/03/2019] [Indexed: 01/31/2023]
Abstract
Establishing apical-basal epithelial cell polarity is fundamental for mammary gland duct morphogenesis during mammalian development. While the focal adhesion adapter protein paxillin is a well-characterized regulator of mesenchymal cell adhesion signaling, F-actin cytoskeleton remodeling and single cell migration, its role in epithelial tissue organization and mammary gland morphogenesis in vivo has not been investigated. Here, using a newly developed paxillin conditional knockout mouse model with targeted ablation in the mammary epithelium, in combination with ex vivo three-dimensional organoid and acini cultures, we identify new roles for paxillin in the establishment of apical-basal epithelial cell polarity and lumen formation, as well as mammary gland duct diameter and branching. Paxillin is shown to be required for the integrity and apical positioning of the Golgi network, Par complex and the Rab11/MyoVb trafficking machinery. Paxillin depletion also resulted in reduced levels of apical acetylated microtubules, and rescue experiments with the HDAC6 inhibitor tubacin highlight the central role for paxillin-dependent regulation of HDAC6 activity and associated microtubule acetylation in controlling epithelial cell apical-basal polarity and tissue branching morphogenesis.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Gregory J Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Eric C Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, 505 Irving Ave, Syracuse, NY 13210, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
6
|
Isola M, Ekström J, Isola R, Loy F. Melatonin release by exocytosis in the rat parotid gland. J Anat 2019; 234:338-345. [PMID: 30536666 PMCID: PMC6365479 DOI: 10.1111/joa.12921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
Several beneficial effects on oral health are ascribed to melatonin. Due to its lipophilic nature, non-protein-bound circulating melatonin is usually thought to enter the saliva by passive diffusion through salivary acinar gland cells. Recently, however, using transmission electron microscopy (TEM), melatonin was found in acinar secretory granules of human salivary glands. To test the hypothesis that granular located melatonin is actively discharged into the saliva by exocytosis, i.e. contrary to the general belief, the β-adrenergic receptor agonist isoprenaline, which causes the degranulation of acinar parotid serous cells, was administered to anaesthetised rats. Sixty minutes after an intravenous bolus injection of isoprenaline (5 mg kg-1 ), the right parotid gland was removed; pre-administration, the left control gland had been removed. Samples were processed to demonstrate melatonin reactivity using the immunogold staining method. Morphometric assessment was made using TEM. Gold particles labelling melatonin appeared to be preferentially associated with secretory granules, occurring in their matrix and at membrane level but, notably, it was also associated with vesicles, mitochondria and nuclei. Twenty-six per cent of the total granular population (per 100 μm2 per cell area) displayed melatonin labelling in the matrix; three-quarters of this fraction disappeared (P < 0.01) in response to isoprenaline, and melatonin reactivity appeared in dilated lumina. Thus, evidence is provided of an alternative route for melatonin to reach the gland lumen and the oral cavity by active release through exocytosis, a process which is under the influence of parasympathetic and sympathetic nervous activity and is the final event along the so-called regulated secretory pathway. During its stay in granules, anti-oxidant melatonin may protect their protein/peptide constituents from damage.
Collapse
Affiliation(s)
- Michela Isola
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| | - Jörgen Ekström
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
- Institute of Neuroscience and PhysiologyDepartment of PharmacologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Raffaella Isola
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| | - Francesco Loy
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| |
Collapse
|
7
|
Bar Shira E, Friedman A. Innate immune functions of avian intestinal epithelial cells: Response to bacterial stimuli and localization of responding cells in the developing avian digestive tract. PLoS One 2018; 13:e0200393. [PMID: 29979771 PMCID: PMC6034880 DOI: 10.1371/journal.pone.0200393] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
Intestinal epithelial cells are multi-tasked cells that participate in digestion and absorption as well as in protection of the digestive tract. While information on the physiology and immune functions of intestinal epithelial cells in mammals is abundant, little is known of their immune function in birds and other species. Our main objectives were to study the development of anti-bacterial innate immune functions in the rapidly developing gut of the pre- and post-hatch chick and to determine the functional diversity of epithelial cells. After establishing primary intestinal epithelial cell cultures, we demonstrated their capacity to uptake and process bacteria. The response to bacterial products, LPS and LTA, induced expression of pro-inflammatory cytokine genes (IL-6, IL-18) as well as the expression of the acute phase proteins avidin, lysozyme and the secretory component derived from the polymeric immunoglobulin receptor. These proteins were then localized in gut sections, and the goblet cell was shown to store avidin, lysozyme as well as secretory component. Lysozyme staining was also located in a novel rod-shaped intestinal cell, situated at different loci along the villus, thus deviating from the classical Paneth cell in the mammal, that is restricted to crypts. Thus, in the chicken, the intestinal epithelium, and particularly goblet cells, are committed to innate immune protection. The unique role of the goblet cell in chicken intestinal immunity, as well as the unique distribution of lysozyme-positive cells highlight alternative solutions of gut protection in the bird.
Collapse
Affiliation(s)
- Enav Bar Shira
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aharon Friedman
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail:
| |
Collapse
|
8
|
Boyaka PN. Inducing Mucosal IgA: A Challenge for Vaccine Adjuvants and Delivery Systems. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28630108 DOI: 10.4049/jimmunol.1601775] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mucosal IgA or secretory IgA (SIgA) are structurally equipped to resist chemical degradation in the harsh environment of mucosal surfaces and enzymes of host or microbial origin. Production of SIgA is finely regulated, and distinct T-independent and T-dependent mechanisms orchestrate Ig α class switching and SIgA responses against commensal and pathogenic microbes. Most infectious pathogens enter the host via mucosal surfaces. To provide a first line of protection at these entry ports, vaccines are being developed to induce pathogen-specific SIgA in addition to systemic immunity achieved by injected vaccines. Mucosal or epicutaneous delivery of vaccines helps target the inductive sites for SIgA responses. The efficacy of such vaccines relies on the identification and/or engineering of vaccine adjuvants capable of supporting the development of SIgA alongside systemic immunity and delivery systems that improve vaccine delivery to the targeted anatomic sites and immune cells.
Collapse
Affiliation(s)
- Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
9
|
Farquhar RE, Rodrigues E, Hamilton KL. The Role of the Cytoskeleton and Myosin-Vc in the Targeting of KCa3.1 to the Basolateral Membrane of Polarized Epithelial Cells. Front Physiol 2017; 7:639. [PMID: 28101059 PMCID: PMC5209343 DOI: 10.3389/fphys.2016.00639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/06/2016] [Indexed: 12/27/2022] Open
Abstract
Understanding the targeting of KCa3.1 to the basolateral membrane (BLM) of polarized epithelial cells is still emerging. Here, we examined the role of the cytoskeleton (microtubules and microfilaments) and Myosin-Vc (Myo-Vc) in the targeting of KCa3.1 in Fischer rat thyroid epithelial cells. We used a pharmacological approach with immunoblot (for the BLM expression of KCa3.1), Ussing chamber (functional BLM expression of KCa3.1) and siRNA experiments. The actin cytoskeleton inhibitors cytochalasin D (10 μM, 5 h) and latrunculin A (10 μM, 5 h) reduced the targeting of KCa3.1 to the BLM by 88 ± 4 and 70 ± 5%, respectively. Colchicine (10 μM, 5 h) a microtubule inhibitor reduced targeting of KCa3.1 to the BLM by 63 ± 7% and decreased 1-EBIO-stimulated KCa3.1 K+ current by 46 ± 18%, compared with control cells. ML9 (10 μM, 5 h), an inhibitor of myosin light chain kinase, decreased targeting of the channel by 83 ± 2% and reduced K+ current by 54 ± 8% compared to control cells. Inhibiting Myo-V with 2,3-butanedione monoxime (10 mM, 5 h) reduced targeting of the channel to the BLM by 58 ± 5% and decreased the stimulated current of KCa3.1 by 48 ± 12% compared with control cells. Finally, using siRNA for Myo-Vc, we demonstrated that knockdown of Myo-Vc reduced the BLM expression of KCa3.1 by 44 ± 7% and KCa3.1 K+ current by 1.04 ± 0.14 μA compared with control cells. These data suggest that the microtubule and microfilament cytoskeleton and Myo-Vc are critical for the targeting of KCa3.1.
Collapse
Affiliation(s)
- Rachel E Farquhar
- Department of Physiology, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Ely Rodrigues
- Department of Medicine, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Kirk L Hamilton
- Department of Physiology, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| |
Collapse
|
10
|
Meng Z, Edman MC, Hsueh PY, Chen CY, Klinngam W, Tolmachova T, Okamoto CT, Hamm-Alvarez SF. Imbalanced Rab3D versus Rab27 increases cathepsin S secretion from lacrimal acini in a mouse model of Sjögren's Syndrome. Am J Physiol Cell Physiol 2016; 310:C942-54. [PMID: 27076615 DOI: 10.1152/ajpcell.00275.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/06/2016] [Indexed: 02/04/2023]
Abstract
The mechanism responsible for the altered spectrum of tear proteins secreted by lacrimal gland acinar cells (LGAC) in patients with Sjögren's Syndrome (SS) remains unknown. We have previously identified increased cathepsin S (CTSS) activity as a unique characteristic of tears of patients with SS. Here, we investigated the role of Rab3D, Rab27a, and Rab27b proteins in the enhanced release of CTSS from LGAC. Similar to patients with SS and to the male nonobese diabetic (NOD) mouse model of SS, CTSS activity was elevated in tears of mice lacking Rab3D. Findings of lower gene expression and altered localization of Rab3D in NOD LGAC reinforce a role for Rab3D in suppressing excess CTSS release under physiological conditions. However, CTSS activity was significantly reduced in tears of mice lacking Rab27 isoforms. The reliance of CTSS secretion on Rab27 activity was supported by in vitro findings that newly synthesized CTSS was detected in and secreted from Rab27-enriched secretory vesicles and that expression of dominant negative Rab27b reduced carbachol-stimulated secretion of CTSS in cultured LGAC. High-resolution 3D-structured illumination microscopy revealed microdomains of Rab3D and Rab27 isoforms on the same secretory vesicles but present in different proportions on different vesicles, suggesting that changes in their relative association with secretory vesicles may tailor the vesicle contents. We propose that a loss of Rab3D from secretory vesicles, leading to disproportionate Rab27-to-Rab3D activity, may contribute to the enhanced release of CTSS in tears of patients with SS.
Collapse
Affiliation(s)
- Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Maria C Edman
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Pang-Yu Hsueh
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Chiao-Yu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | | | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California;
| |
Collapse
|
11
|
Vergés M. Retromer in Polarized Protein Transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:129-79. [PMID: 26944621 DOI: 10.1016/bs.ircmb.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of receptors for lysosomal hydrolases. It is constituted by a heterotrimer encoded by the vacuolar protein sorting (VPS) gene products Vps26, Vps35, and Vps29, which selects cargo, and a dimer of phosphoinositide-binding sorting nexins, which deforms the membrane. Recent progress in the mechanism of retromer assembly and functioning has strengthened the link between sorting at the endosome and cytoskeleton dynamics. Retromer is implicated in endosomal sorting of many cargos and plays an essential role in plant and animal development. Although it is best known for endosome sorting to the trans-Golgi network, it also intervenes in recycling to the plasma membrane. In polarized cells, such as epithelial cells and neurons, retromer may also be utilized for transcytosis and long-range transport. Considerable evidence implicates retromer in establishment and maintenance of cell polarity. That includes sorting of the apical polarity module Crumbs; regulation of retromer function by the basolateral polarity module Scribble; and retromer-dependent recycling of various cargoes to a certain surface domain, thus controlling polarized location and cell homeostasis. Importantly, altered retromer function has been linked to neurodegeneration, such as in Alzheimer's or Parkinson's disease. This review will underline how alterations in retromer localization and function may affect polarized protein transport and polarity establishment, thereby causing developmental defects and disease.
Collapse
Affiliation(s)
- Marcel Vergés
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Sciences Department, University of Girona, Girona, Spain.
| |
Collapse
|
12
|
Perumal N, Funke S, Wolters D, Pfeiffer N, Grus FH. Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4). Proteomics 2015; 15:3370-81. [DOI: 10.1002/pmic.201400239] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 01/07/2015] [Accepted: 07/02/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Natarajan Perumal
- Department of Ophthalmology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| | - Sebastian Funke
- Department of Ophthalmology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| | - Dominik Wolters
- Department of Ophthalmology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| | - Franz H. Grus
- Department of Ophthalmology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| |
Collapse
|
13
|
Hsueh PY, Edman MC, Sun G, Shi P, Xu S, Lin YA, Cui H, Hamm-Alvarez SF, MacKay JA. Tear-mediated delivery of nanoparticles through transcytosis of the lacrimal gland. J Control Release 2015; 208:2-13. [PMID: 25523518 PMCID: PMC4456098 DOI: 10.1016/j.jconrel.2014.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/06/2014] [Accepted: 12/14/2014] [Indexed: 11/16/2022]
Abstract
Rapid clearance from the tears presents a formidable obstacle to the delivery of peptide drugs to the eye surface. This impedes therapies for ocular infections, wound healing, and dry-eye disease that affect the vision of millions worldwide. To overcome this challenge, this manuscript explores a novel strategy to reach the ocular surface via receptor-mediated transcytosis across the lacrimal gland (LG), which produces the bulk of human tears. The LG abundantly expresses the coxsackievirus and adenovirus receptor (CAR); furthermore, we recently reported a peptide-based nanoparticle (KSI) that targets CAR on liver cells. This manuscript reports the unexpected finding that KSI both targets and transcytoses into the LG acinar lumen, which drains to tear ducts. When followed using ex vivo live cell imaging KSI rapidly accumulates in lumen formed by LG acinar cells. LG transduction with a myosin Vb tail, which is dominant negative towards transcytosis, inhibits lumenal accumulation. Transcytosis of KSI was confirmed in vivo by confocal and TEM imaging of LG tissue following administration of KSI nanoparticles. These findings suggest that it is possible to target nanomaterials to the tears by targeting certain receptors on the LG. This design strategy represents a new opportunity to overcome barriers to ocular delivery.
Collapse
Affiliation(s)
- Pang-Yu Hsueh
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Maria C Edman
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Guoyong Sun
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Pu Shi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Shi Xu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Yi-An Lin
- Department of Chemical and Biomolecular Engineering, John Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, John Hopkins University, Baltimore, MD 21218, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
Coupling of two non-processive myosin 5c dimers enables processive stepping along actin filaments. Sci Rep 2014; 4:4907. [PMID: 24809456 PMCID: PMC4014986 DOI: 10.1038/srep04907] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/11/2014] [Indexed: 11/09/2022] Open
Abstract
Myosin 5c (Myo5c) is a low duty ratio, non-processive motor unable to move continuously along actin filaments though it is believed to participate in secretory vesicle trafficking in vertebrate cells. Here, we measured the ATPase kinetics of Myo5c dimers and tested the possibility that the coupling of two Myo5c molecules enables processive movement. Steady-state ATPase activity and ADP dissociation kinetics demonstrated that a dimer of Myo5c-HMM (double-headed heavy meromyosin 5c) has a 6-fold lower Km for actin filaments than Myo5c-S1 (single-headed myosin 5c subfragment-1), indicating that the two heads of Myo5c-HMM increase F-actin-binding affinity. Nanometer-precision tracking analyses showed that two Myo5c-HMM dimers linked with each other via a DNA scaffold and moved processively along actin filaments. Moreover, the distance between the Myo5c molecules on the DNA scaffold is an important factor for the processive movement. Individual Myo5c molecules in two-dimer complexes move stochastically in 30-36 nm steps. These results demonstrate that two dimers of Myo5c molecules on a DNA scaffold increased the probability of rebinding to F-actin and enabled processive steps along actin filaments, which could be used for collective cargo transport in cells.
Collapse
|
15
|
Isola M, Ekström J, Diana M, Solinas P, Cossu M, Lilliu MA, Loy F, Isola R. Subcellular distribution of melatonin receptors in human parotid glands. J Anat 2013; 223:519-24. [PMID: 23998562 DOI: 10.1111/joa.12105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 12/29/2022] Open
Abstract
The hormone melatonin influences oral health through a variety of actions, such as anti-inflammatory, anti-oxidant, immunomodulatory and antitumour. Many of these melatonin functions are mediated by a family of membrane receptors expressed in the oral epithelium and salivary glands. Using immunoblotting and immunohistochemistry, recent studies have shown that the melatonin membrane receptors, MT1 and MT2, are present in rat and human salivary glands. To date, no investigation has dealt with the ultrastructural distribution of the melatonin receptors. This was the aim of the present study, using the immunogold method applied to the human parotid gland. Reactivity to MT1 and, with less intensity, to MT2 appeared in the secretory granules of acinar cells and in the cytoplasmic vesicles of both acinar and ductal cells. Plasma membranes were also stained, albeit slightly. The peculiar intracytoplasmic distribution of these receptors may indicate that there is an uptake/transport system for melatonin from the circulation into the saliva.
Collapse
Affiliation(s)
- M Isola
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | | | | | | | | | | | | | |
Collapse
|