1
|
Zhang Y, Naguro I, Ryuno H, Herr A. Contact Blot: Microfluidic Control and Measurement of Cell-Cell Contact State to Assess Contact-Inhibited ERK Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565857. [PMID: 37986875 PMCID: PMC10659358 DOI: 10.1101/2023.11.06.565857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Extracellular signal-regulated kinase (ERK) signaling is essential to regulated cell behaviors, including cell proliferation, differentiation, and apoptosis. The influence of cell-cell contacts on ERK signaling is central to epithelial cells, yet few studies have sought to understand the same in cancer cells, particularly with single-cell resolution. To acquire same-cell measurements of both phenotypic (cell-contact state) and targeted-protein profile (ERK phosphorylation), we prepend high-content, whole-cell imaging prior to endpoint cellular-resolution western blot analyses for each of hundreds of individual HeLa cancer cells cultured on that same chip, which we call contact Blot. By indexing the phosphorylation level of ERK in each cell or cell-cluster to the imaged cell-contact state, we compare ERK signaling between isolated and in-contact cells. We observe attenuated (~2×) ERK signaling in HeLa cells which are in-contact versus isolated. Attenuation is sustained when the HeLa cells are challenged with hyperosmotic stress. Our findings show the impact of cell-cell contacts on ERK activation with isolated and in-contact cells, while introducing a multi omics tool for control and scrutiny of cell-cell interactions.
Collapse
|
2
|
Vanamee ÉS, Faustman DL. The benefits of clustering in TNF receptor superfamily signaling. Front Immunol 2023; 14:1225704. [PMID: 37662920 PMCID: PMC10469783 DOI: 10.3389/fimmu.2023.1225704] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The tumor necrosis factor (TNF) receptor superfamily is a structurally and functionally related group of cell surface receptors that play crucial roles in various cellular processes, including apoptosis, cell survival, and immune regulation. This review paper synthesizes key findings from recent studies, highlighting the importance of clustering in TNF receptor superfamily signaling. We discuss the underlying molecular mechanisms of signaling, the functional consequences of receptor clustering, and potential therapeutic implications of targeting surface structures of receptor complexes.
Collapse
Affiliation(s)
- Éva S. Vanamee
- Immunobiology Department, Massachusetts General Hospital, Boston, MA, United States
| | - Denise L. Faustman
- Immunobiology Department, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Stam JC, de Maat S, de Jong D, Arens M, van Lint F, Gharu L, van Roosmalen MH, Roovers RC, Strokappe NM, Wagner R, Kliche A, de Haard HJ, van Bergen En Henegouwen PM, Nijhuis M, Verrips CT. Directing HIV-1 for degradation by non-target cells, using bi-specific single-chain llama antibodies. Sci Rep 2022; 12:13413. [PMID: 35927444 PMCID: PMC9352707 DOI: 10.1038/s41598-022-15993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
While vaccination against HIV-1 has been so far unsuccessful, recently broadly neutralizing antibodies (bNAbs) against HIV-1 envelope glycoprotein were shown to induce long-term suppression in the absence of antiretroviral therapy in patients with antibody-sensitive viral reservoirs. The requirement of neutralizing antibodies indicates that the antibody mediated removal (clearance) of HIV-1 in itself is not efficient enough in these immune compromised patients. Here we present a novel, alternative approach that is independent of a functional immune system to clear HIV-1, by capturing the virus and redirecting it to non-target cells where it is internalized and degraded. We use bispecific antibodies with domains derived from small single chain Llama antibodies (VHHs). These bind with one domain to HIV-1 envelope proteins and with the other domain direct the virus to cells expressing epidermal growth factor receptor (EGFR), a receptor that is ubiquitously expressed in the body. We show that HIV envelope proteins, virus-like particles and HIV-1 viruses (representing HIV-1 subtypes A, B and C) are efficiently recruited to EGFR, internalized and degraded in the lysosomal pathway at low nM concentrations of bispecific VHHs. This directed degradation in non-target cells may provide a clearance platform for the removal of viruses and other unwanted agents from the circulation, including toxins, and may thus provide a novel method for curing.
Collapse
Affiliation(s)
- Jord C Stam
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| | - Steven de Maat
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dorien de Jong
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathia Arens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Fenna van Lint
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark H van Roosmalen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Intervet, Wim de Körverstraat 35, 5831 AN, Boxmeer, The Netherlands
| | - Rob C Roovers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
- LAVA Therapeutics, Yalelaan 60, 3584CM, Utrecht, The Netherlands
| | - Nika M Strokappe
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Ralf Wagner
- Molecular Microbiology and Gene Therapy, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Alexander Kliche
- Molecular Microbiology and Gene Therapy, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Hans J de Haard
- Argenx, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Belgium
| | - Paul M van Bergen En Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Theo Verrips
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
- QVQ Holding BV, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
4
|
Endocytic trafficking of GAS6-AXL complexes is associated with sustained AKT activation. Cell Mol Life Sci 2022; 79:316. [PMID: 35622156 PMCID: PMC9135597 DOI: 10.1007/s00018-022-04312-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
AXL, a TAM receptor tyrosine kinase (RTK), and its ligand growth arrest-specific 6 (GAS6) are implicated in cancer metastasis and drug resistance, and cellular entry of viruses. Given this, AXL is an attractive therapeutic target, and its inhibitors are being tested in cancer and COVID-19 clinical trials. Still, astonishingly little is known about intracellular mechanisms that control its function. Here, we characterized endocytosis of AXL, a process known to regulate intracellular functions of RTKs. Consistent with the notion that AXL is a primary receptor for GAS6, its depletion was sufficient to block GAS6 internalization. We discovered that upon receptor ligation, GAS6–AXL complexes were rapidly internalized via several endocytic pathways including both clathrin-mediated and clathrin-independent routes, among the latter the CLIC/GEEC pathway and macropinocytosis. The internalization of AXL was strictly dependent on its kinase activity. In comparison to other RTKs, AXL was endocytosed faster and the majority of the internalized receptor was not degraded but rather recycled via SNX1-positive endosomes. This trafficking pattern coincided with sustained AKT activation upon GAS6 stimulation. Specifically, reduced internalization of GAS6–AXL upon the CLIC/GEEC downregulation intensified, whereas impaired recycling due to depletion of SNX1 and SNX2 attenuated AKT signaling. Altogether, our data uncover the coupling between AXL endocytic trafficking and AKT signaling upon GAS6 stimulation. Moreover, our study provides a rationale for pharmacological inhibition of AXL in antiviral therapy as viruses utilize GAS6–AXL-triggered endocytosis to enter cells.
Collapse
|
5
|
Zeronian MR, Doulkeridou S, van Bergen En Henegouwen PMP, Janssen BJC. Structural insights into the non-inhibitory mechanism of the anti-EGFR EgB4 nanobody. BMC Mol Cell Biol 2022; 23:12. [PMID: 35232398 PMCID: PMC8887186 DOI: 10.1186/s12860-022-00412-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background The epidermal growth factor receptor (EGFR) is involved in various developmental processes, and alterations of its extracellular segment are associated with several types of cancers, in particular glioblastoma multiforme (GBM). The EGFR extracellular region is therefore a primary target for therapeutic agents, such as monoclonal antibodies and variable domains of heavy chain antibodies (VHH), also called nanobodies. Nanobodies have been previously shown to bind to EGFR, and to inhibit ligand-mediated EGFR activation. Results Here we present the X-ray crystal structures of the EgB4 nanobody, alone (to 1.48 Å resolution) and bound to the full extracellular EGFR-EGF complex in its active conformation (to 6.0 Å resolution). We show that EgB4 binds to a new epitope located on EGFR domains I and II, and we describe the molecular mechanism by which EgB4 plays a non-inhibitory role in EGFR signaling. Conclusion This work provides the structural basis for the application of EgB4 as a tool for research, for targeted therapy, or as a biomarker to locate EGFR-associated tumors, all without affecting EGFR activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00412-x.
Collapse
Affiliation(s)
- Matthieu R Zeronian
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sofia Doulkeridou
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Present address: Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Bert J C Janssen
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Bivalent EGFR-Targeting DARPin-MMAE Conjugates. Int J Mol Sci 2022; 23:ijms23052468. [PMID: 35269611 PMCID: PMC8909960 DOI: 10.3390/ijms23052468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a validated tumor marker overexpressed in various cancers such as squamous cell carcinoma (SSC) of the head and neck and gliomas. We constructed protein-drug conjugates based on the anti-EGFR Designed Ankyrin Repeat Protein (DARPin) E01, and compared the bivalent DARPin dimer (DD1) and a DARPin-Fc (DFc) to the monomeric DARPin (DM) and the antibody derived scFv425-Fc (scFvFc) in cell culture and a mouse model. The modular conjugation system, which was successfully applied for the preparation of protein-drug and -dye conjugates, uses bio-orthogonal protein-aldehyde generation by the formylglycine-generating enzyme (FGE). The generated carbonyl moiety is addressed by a bifunctional linker with a pyrazolone for a tandem Knoevenagel reaction and an azide for strain-promoted azide-alkyne cycloaddition (SPAAC). The latter reaction with a PEGylated linker containing a dibenzocyclooctyne (DBCO) for SPAAC and monomethyl auristatin E (MMAE) as the toxin provided the stable conjugates DD1-MMAE (drug-antibody ratio, DAR = 2.0) and DFc-MMAE (DAR = 4.0) with sub-nanomolar cytotoxicity against the human squamous carcinoma derived A431 cells. In vivo imaging of Alexa Fluor 647-dye conjugates in A431-xenografted mice bearing subcutaneous tumors as the SCC model revealed unspecific binding of bivalent DARPins to the ubiquitously expressed EGFR. Tumor-targeting was verified 6 h post-injection solely for DD1 and scFvFc. The total of four administrations of 6.5 mg/kg DD1-MMAE or DFc-MMAE twice weekly did not cause any sequela in mice. MMAE conjugates showed no significant anti-tumor efficacy in vivo, but a trend towards increased necrotic areas (p = 0.2213) was observed for the DD1-MMAE (n = 5).
Collapse
|
7
|
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics 2022; 14:241. [PMID: 35213974 PMCID: PMC8879084 DOI: 10.3390/pharmaceutics14020241] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in the proliferation and metastatization of cancer cells. Aberrancies in the expression and activation of EGFR are hallmarks of many human malignancies. As such, EGFR-targeted therapies hold significant potential for the cure of cancers. In recent years, photodynamic therapy (PDT) has gained increased interest as a non-invasive cancer treatment. In PDT, a photosensitizer is excited by light to produce reactive oxygen species, resulting in local cytotoxicity. One of the critical aspects of PDT is to selectively transport enough photosensitizers to the tumors environment. Accordingly, an increasing number of strategies have been devised to foster EGFR-targeted PDT. Herein, we review the recent nanobiotechnological advancements that combine the promise of PDT with EGFR-targeted molecular cancer therapy. We recapitulate the chemistry of the sensitizers and their modes of action in PDT, and summarize the advantages and pitfalls of different targeting moieties, highlighting future perspectives for EGFR-targeted photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
8
|
Betriu N, Andreeva A, Semino CE. Erlotinib Promotes Ligand-Induced EGFR Degradation in 3D but Not 2D Cultures of Pancreatic Ductal Adenocarcinoma Cells. Cancers (Basel) 2021; 13:4504. [PMID: 34572731 PMCID: PMC8470972 DOI: 10.3390/cancers13184504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022] Open
Abstract
The epithelial growth factor receptor (EGFR) is a tyrosine kinase receptor that participates in many biological processes such as cell proliferation. In addition, EGFR is overexpressed in many epithelial cancers and therefore is a target for cancer therapy. Moreover, EGFR responds to lots of stimuli by internalizing into endosomes from where it can be recycled to the membrane or further sorted into lysosomes where it undergoes degradation. Two-dimensional cell cultures have been classically used to study EGFR trafficking mechanisms in cancer cells. However, it has been widely demonstrated that in 2D cultures cells are exposed to a non-physiological environment as compared to 3D cultures that provide the normal cellular conformation, matrix dimensionality and stiffness, as well as molecular gradients. Therefore, the microenvironment of solid tumors is better recreated in 3D culture models, and this is why they are becoming a more physiological alternative to study cancer physiology. Here, we develop a new model of EGFR internalization and degradation upon erlotinib treatment in pancreatic ductal adenocarcinoma (PDAC) cells cultured in a 3D self-assembling peptide scaffold. In this work, we show that treatment with the tyrosine kinase inhibitor erlotinib promotes EGFR degradation in 3D cultures of PDAC cell lines but not in 2D cultures. We also show that this receptor degradation does not occur in normal fibroblast cells, regardless of culture dimensionality. In conclusion, we demonstrate not only that erlotinib has a distinct effect on tumor and normal cells but also that pancreatic ductal adenocarcinoma cells respond differently to drug treatment when cultured in a 3D microenvironment. This study highlights the importance of culture systems that can more accurately mimic the in vivo tumor physiology.
Collapse
Affiliation(s)
| | | | - Carlos E. Semino
- Tissue Engineering Research Laboratory, Department of Bioengineering, IQS-School of Engineering, Ramon Llull University, 08017 Barcelona, Spain; (N.B.); (A.A.)
| |
Collapse
|
9
|
Single Domain Antibodies as Carriers for Intracellular Drug Delivery: A Proof of Principle Study. Biomolecules 2021; 11:biom11070927. [PMID: 34206656 PMCID: PMC8301836 DOI: 10.3390/biom11070927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are currently used for the targeted delivery of drugs to diseased cells, but intracellular drug delivery and therefore efficacy may be suboptimal because of the large size, slow internalization and ineffective intracellular trafficking of the antibody. Using a phage display method selecting internalizing phages only, we developed internalizing single domain antibodies (sdAbs) with high binding affinity to rat PDGFRβ, a receptor involved in different types of diseases. We demonstrate that these constructs have different characteristics with respect to internalization rates but all traffic to lysosomes. To compare their efficacy in targeted drug delivery, we conjugated the sdAbs to a cytotoxic drug. The conjugates showed improved cytotoxicity correlating to their internalization speed. The efficacy of the conjugates was inhibited in the presence of vacuolin-1, an inhibitor of lysosomal maturation, suggesting lysosomal trafficking is needed for efficient drug release. In conclusion, sdAb constructs with different internalization rates can be designed against the same target, and sdAbs with a high internalization rate induce more cell killing than sdAbs with a lower internalization rate in vitro. Even though the overall efficacy should also be tested in vivo, sdAbs are particularly interesting formats to be explored to obtain different internalization rates.
Collapse
|
10
|
Xi X, Sun W, Li H, Fan Q, Zhang X, Sun F. A comparative study and evaluation of anti-EGFR nanobodies expressed in Pichia pastoris and Escherichia coli as antitumor moieties. Protein Expr Purif 2021; 184:105888. [PMID: 33857600 DOI: 10.1016/j.pep.2021.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022]
Abstract
Anti-EGFR nanobodies have been successfully applied as antitumor moieties in the photodynamic therapy and drug delivery systems. But the yields of nanobodies were still limited due to the volumetric capacity of the periplasmic compartments and inclusion bodies of Escherichia coli. A comparative study of Pichia pastoris and Escherichia coli was done through characterizing their products. Nanobody 7D12 and 7D12-9G8 were successfully expressed in Pichia pastoris with 6-13.6-fold higher yield. Both two types of nanobodies had internalization ability to be developed as antitumor moieties.
Collapse
Affiliation(s)
- Xi Xi
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Weihan Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Hongrui Li
- Institute of Frontier Medical Science, Jilin University, No. 1163 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Qingjie Fan
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xitian Zhang
- Changchun Intellicrown Pharmaceutical Co., Ltd, No. 1688 Jichang Road, Changchun, 130507, Jilin, People's Republic of China
| | - Fei Sun
- Institute of Frontier Medical Science, Jilin University, No. 1163 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
11
|
Xenaki KT, Dorresteijn B, Muns JA, Adamzek K, Doulkeridou S, Houthoff H, Oliveira S, van Bergen en Henegouwen PMP. Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics 2021; 11:5525-5538. [PMID: 33859761 PMCID: PMC8039960 DOI: 10.7150/thno.57510] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background: The non-homogenous distribution of antibody-drug conjugates (ADCs) within solid tumors is a major limiting factor for their wide clinical application. Nanobodies have been shown to rapidly penetrate into xenografts, achieving more homogeneous tumor targeting. However, their rapid renal clearance can hamper their application as nanobody drug conjugates (NDCs). Here, we evaluate whether half-life extension via non-covalent interaction with albumin can benefit the efficacy of a HER2-targeted NDC. Methods: HER2-targeted nanobody 11A4 and the irrelevant nanobody R2 were genetically fused to an albumin-binding domain (ABD) at their C-terminus. Binding to both albumin and tumor cells was determined by ELISA-based assays. The internalization potential as well as the in vitro efficacy of NDCs were tested on HER2 expressing cells. Serum half-life of iodinated R2 and R2-ABD was studied in tumor-free mice. The distribution of fluorescently labelled 11A4 and 11A4-ABD was assessed in vitro in 3D spheroids. Subsequently, the in vivo distribution was evaluated by optical molecular imaging and ex vivo by tissue biodistribution and tumor immunohistochemical analysis after intravenous injection of IRDye800-conjugated nanobodies in mice bearing HER2-positive subcutaneous xenografts. Finally, efficacy studies were performed in HER2-positive NCI-N87 xenograft-bearing mice intravenously injected with a single dose (250 nmol/kg) of nanobodies conjugated to auristatin F (AF) either via a maleimide or the organic Pt(II)‑based linker, coined Lx®. Results: 11A4-ABD was able to bind albumin and HER2 and was internalized by HER2 expressing cells, irrespective of albumin presence. Interaction with albumin did not alter its distribution through 3D spheroids. Fusion to ABD resulted in a 14.8-fold increase in the serum half-life, as illustrated with the irrelevant nanobody. Furthermore, ABD fusion prolonged the accumulation of 11A4-ABD in HER2-expressing xenografts without affecting the expected homogenous intratumoral distribution. Next to that, reduced kidney retention of ABD-fused nanobodies was observed. Finally, a single dose administration of either 11A4-ABD-maleimide-AF or 11A4-ABD-Lx-AF led to long-lasting tumor remission in HER2-positive NCI-N87 xenograft-bearing mice. Conclusion: Our results demonstrate that genetic fusion of a nanobody to ABD can significantly extend serum half-life, resulting in prolonged and homogenous tumor accumulation. Most importantly, as supported by the impressive anti-tumor efficacy observed after a single dose administration of 11A4-ABD-AF, our data reveal that monovalent internalizing ABD-fused nanobodies have potential for the development of highly effective NDCs.
Collapse
|
12
|
Zavoiura O, Brunner B, Casteels P, Zimmermann L, Ozog M, Boutton C, Helms MW, Wagenaar T, Adam V, Peterka J, Metz-Weidmann C, Deschaght P, Scheidler S, Jahn-Hofmann K. Nanobody-siRNA Conjugates for Targeted Delivery of siRNA to Cancer Cells. Mol Pharm 2021; 18:1048-1060. [PMID: 33444501 DOI: 10.1021/acs.molpharmaceut.0c01001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Targeted extrahepatic delivery of siRNA remains a challenging task in the field of nucleic acid therapeutics. An ideal delivery tool must internalize siRNA exclusively into the cells of interest without affecting the silencing activity of siRNA. Here, we report the use of anti-EGFR Nanobodies (trademark of Ablynx N.V.) as tools for targeted siRNA delivery. A straightforward procedure for site-specific conjugation of siRNA to an engineered C-terminal cysteine residue on the Nanobody (trademark of Ablynx N.V.) is described. We show that siRNA-conjugated Nanobodies (Nb-siRNA) retain their binding to EGFR and enter EGFR-positive cells via receptor-mediated endocytosis. The activity of Nb-siRNAs was assessed by measuring the knockdown of a housekeeping gene (AHSA1) in EGFR-positive and EGFR-negative cells. We demonstrate that Nb-siRNAs are active in vitro and induce mRNA cleavage in the targeted cell line. In addition, we discuss the silencing activity of siRNA conjugated to fused Nbs with various combinations of EGFR-binding building blocks. Finally, we compare the performance of Nb-siRNA joined by four different linkers and discuss the advantages and limitations of using cleavable and noncleavable linkers in the context of Nanobody-mediated siRNA delivery.
Collapse
Affiliation(s)
- Oleksandr Zavoiura
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Bodo Brunner
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Peter Casteels
- Ablynx, a Sanofi Company, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Luciana Zimmermann
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Matthias Ozog
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Carlo Boutton
- Ablynx, a Sanofi Company, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Mike W Helms
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Timothy Wagenaar
- Sanofi, Research, 640 Memorial Drive, Cambridge, 02139 Massachusetts, United States
| | - Volker Adam
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Josefine Peterka
- Sanofi, TIDES platform, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | | | - Pieter Deschaght
- Ablynx, a Sanofi Company, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Sabine Scheidler
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Kerstin Jahn-Hofmann
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Ben-Sasson AJ, Watson JL, Sheffler W, Johnson MC, Bittleston A, Somasundaram L, Decarreau J, Jiao F, Chen J, Mela I, Drabek AA, Jarrett SM, Blacklow SC, Kaminski CF, Hura GL, De Yoreo JJ, Ruohola-Baker H, Kollman JM, Derivery E, Baker D. Design of biologically active binary protein 2D materials. Nature 2021; 589:468-473. [PMID: 33408408 PMCID: PMC7855610 DOI: 10.1038/s41586-020-03120-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Ordered two-dimensional arrays such as S-layers1,2 and designed analogues3-5 have intrigued bioengineers6,7, but with the exception of a single lattice formed with flexible linkers8, they are constituted from just one protein component. Materials composed of two components have considerable potential advantages for modulating assembly dynamics and incorporating more complex functionality9-12. Here we describe a computational method to generate co-assembling binary layers by designing rigid interfaces between pairs of dihedral protein building blocks, and use it to design a p6m lattice. The designed array components are soluble at millimolar concentrations, but when combined at nanomolar concentrations, they rapidly assemble into nearly crystalline micrometre-scale arrays nearly identical to the computational design model in vitro and in cells without the need for a two-dimensional support. Because the material is designed from the ground up, the components can be readily functionalized and their symmetry reconfigured, enabling formation of ligand arrays with distinguishable surfaces, which we demonstrate can drive extensive receptor clustering, downstream protein recruitment and signalling. Using atomic force microscopy on supported bilayers and quantitative microscopy on living cells, we show that arrays assembled on membranes have component stoichiometry and structure similar to arrays formed in vitro, and that our material can therefore impose order onto fundamentally disordered substrates such as cell membranes. In contrast to previously characterized cell surface receptor binding assemblies such as antibodies and nanocages, which are rapidly endocytosed, we find that large arrays assembled at the cell surface suppress endocytosis in a tunable manner, with potential therapeutic relevance for extending receptor engagement and immune evasion. Our work provides a foundation for a synthetic cell biology in which multi-protein macroscale materials are designed to modulate cell responses and reshape synthetic and living systems.
Collapse
Affiliation(s)
- Ariel J. Ben-Sasson
- Department of Biochemistry, University of Washington,
Seattle, WA 98195, USA,Institute for Protein Design, University of Washington,
Seattle, WA 98195, USA
| | - Joseph L. Watson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge, UK
| | - William Sheffler
- Department of Biochemistry, University of Washington,
Seattle, WA 98195, USA,Institute for Protein Design, University of Washington,
Seattle, WA 98195, USA
| | | | - Alice Bittleston
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge, UK
| | - Logeshwaran Somasundaram
- Institute for Stem Cell and Regenerative Medicine,
University of Washington, School of Medicine, Seattle, WA 98109, USA
| | - Justin Decarreau
- Department of Biochemistry, University of Washington,
Seattle, WA 98195, USA,Institute for Protein Design, University of Washington,
Seattle, WA 98195, USA
| | - Fang Jiao
- Department of Materials Science and Engineering, University
of Washington, Seattle, WA 98195, USA
| | - Jiajun Chen
- Department of Materials Science and Engineering, University
of Washington, Seattle, WA 98195, USA,Physical Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99352, USA
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology,
University of Cambridge, Cambridge, UK
| | - Andrew A. Drabek
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sanchez M. Jarrett
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA,Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology,
University of Cambridge, Cambridge, UK
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence
Berkeley National Lab, Berkeley, CA 94720, USA
| | - James J De Yoreo
- Department of Materials Science and Engineering, University
of Washington, Seattle, WA 98195, USA,Physical Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99352, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington,
Seattle, WA 98195, USA,Institute for Stem Cell and Regenerative Medicine,
University of Washington, School of Medicine, Seattle, WA 98109, USA
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington,
Seattle, WA 98195, USA
| | - Emmanuel Derivery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge, UK
| | - David Baker
- Department of Biochemistry, University of Washington,
Seattle, WA 98195, USA,Institute for Protein Design, University of Washington,
Seattle, WA 98195, USA,Howard Hughes Medical Institute, University of
Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Sharifi J, Khirehgesh MR, Safari F, Akbari B. EGFR and anti-EGFR nanobodies: review and update. J Drug Target 2020; 29:387-402. [DOI: 10.1080/1061186x.2020.1853756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jafar Sharifi
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Fatemeh Safari
- School of Paramedical Sciences, Diagnostic Laboratory Sciences and Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Yao N, Wang CR, Liu MQ, Li YJ, Chen WM, Li ZQ, Qi Q, Lu JJ, Fan CL, Chen MF, Qi M, Li XB, Hong J, Zhang DM, Ye WC. Discovery of a novel EGFR ligand DPBA that degrades EGFR and suppresses EGFR-positive NSCLC growth. Signal Transduct Target Ther 2020; 5:214. [PMID: 33033232 PMCID: PMC7544691 DOI: 10.1038/s41392-020-00251-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation.
Collapse
Affiliation(s)
- Nan Yao
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Chen-Ran Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Ming-Qun Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying-Jie Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zheng-Qiu Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chun-Lin Fan
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Min-Feng Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Xiao-Bo Li
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Jian Hong
- School of Medicine, Jinan University, Guangzhou, China
| | - Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China.
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China.
| |
Collapse
|
16
|
Dobner J, Simons IM, Rufinatscha K, Hänsch S, Schwarten M, Weiergräber OH, Abdollahzadeh I, Gensch T, Bode JG, Hoffmann S, Willbold D. Deficiency of GABARAP but not its Paralogs Causes Enhanced EGF-induced EGFR Degradation. Cells 2020; 9:E1296. [PMID: 32456010 PMCID: PMC7291022 DOI: 10.3390/cells9051296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
The γ-aminobutyric acid type A receptor-associated protein (GABARAP) and its close paralogs GABARAPL1 and GABARAPL2 constitute a subfamily of the autophagy-related 8 (Atg8) protein family. Being associated with a variety of dynamic membranous structures of autophagic and non-autophagic origin, Atg8 proteins functionalize membranes by either serving as docking sites for other proteins or by acting as membrane tethers or adhesion factors. In this study, we describe that deficiency for GABARAP alone, but not for its close paralogs, is sufficient for accelerated EGF receptor (EGFR) degradation in response to EGF, which is accompanied by the downregulation of EGFR-mediated MAPK signaling, altered target gene expression, EGF uptake, and EGF vesicle composition over time. We further show that GABARAP and EGFR converge in the same distinct compartments at endogenous GABARAP expression levels in response to EGF stimulation. Furthermore, GABARAP associates with EGFR in living cells and binds to synthetic peptides that are derived from the EGFR cytoplasmic tail in vitro. Thus, our data strongly indicate a unique and novel role for GABARAP during EGFR trafficking.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
| | - Indra M. Simons
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Kerstin Rufinatscha
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (K.R.); (J.G.B.)
| | - Sebastian Hänsch
- Department of Biology, Center for Advanced Imaging (CAi), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Melanie Schwarten
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Oliver H. Weiergräber
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Iman Abdollahzadeh
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
- Institute of Biological Information Processing: Molecular and Cell Physiology (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Thomas Gensch
- Institute of Biological Information Processing: Molecular and Cell Physiology (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Johannes G. Bode
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (K.R.); (J.G.B.)
| | - Silke Hoffmann
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| |
Collapse
|
17
|
Deken MM, Kijanka MM, Beltrán Hernández I, Slooter MD, de Bruijn HS, van Diest PJ, van Bergen En Henegouwen PMP, Lowik CWGM, Robinson DJ, Vahrmeijer AL, Oliveira S. Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session. J Control Release 2020; 323:269-281. [PMID: 32330574 PMCID: PMC7116241 DOI: 10.1016/j.jconrel.2020.04.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Rationale A substantial number of breast cancer patients with an overexpression of the human epidermal growth factor receptor 2 (HER2) have residual disease after neoadjuvant therapy or become resistant to trastuzumab. Photodynamic therapy (PDT) using nanobodies targeted to HER2 is a promising treatment option for these patients. Here we investigate the in vitro and in vivo antitumor efficacy of HER2-targeted nanobody-photosensitizer (PS) conjugate PDT. Methods Nanobodies targeting HER2 were obtained from phage display selections. Monovalent nanobodies were engineered into a biparatopic construct. The specificity of selected nanobodies was tested in immunofluorescence assays and their affinity was evaluated in binding studies, both performed in a panel of breast cancer cells varying in HER2 expression levels. The selected HER2-targeted nanobodies 1D5 and 1D5-18A12 were conjugated to the photosensitizer IRDye700DX and tested in in vitro PDT assays. Mice bearing orthotopic HCC1954 trastuzumab-resistant tumors with high HER2 expression or MCF-7 tumors with low HER2 expression were intravenously injected with nanobody-PS conjugates. Quantitative fluorescence spectroscopy was performed for the determination of the local pharmacokinetics of the fluorescence conjugates. After nanobody-PS administration, tumors were illuminated to a fluence of 100 J∙cm-2, with a fluence rate of 50 mW∙cm-2, and thereafter tumor growth was measured with a follow-up until 30 days. Results The selected nanobodies remained functional after conjugation to the PS, binding specifically and with high affinity to HER2-positive cells. Both nanobody-PS conjugates potently and selectively induced cell death of HER2 overexpressing cells, either sensitive or resistant to trastuzumab, with low nanomolar LD50 values. In vivo, quantitative fluorescence spectroscopy showed specific accumulation of nanobody-PS conjugates in HCC1954 tumors and indicated 2 h post injection as the most suitable time point to apply light. Nanobody-targeted PDT with 1D5-PS and 1D5-18A12-PS induced significant tumor regression of trastuzumab-resistant high HER2 expressing tumors, whereas in low HER2 expressing tumors only a slight growth delay was observed. Conclusion Nanobody-PS conjugates accumulated selectively in vivo and their fluorescence could be detected through optical imaging. Upon illumination, they selectively induced significant tumor regression of HER2 overexpressing tumors with a single treatment session. Nanobody-targeted PDT is therefore suggested as a new additional treatment for HER2-positive breast cancer, particularly of interest for trastuzumab-resistant HER2-positive breast cancer. Further studies are now needed to assess the value of this approach in clinical practice.
Collapse
Affiliation(s)
- Marion M Deken
- Dept. of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marta M Kijanka
- Division of Cell Biology, Neurobiology and Biophysics, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Irati Beltrán Hernández
- Pharmaceutics, Dept. of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Maxime D Slooter
- Dept. of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Leiden, the Netherlands
| | - Henriette S de Bruijn
- Dept. of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Paul J van Diest
- Dept. of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul M P van Bergen En Henegouwen
- Division of Cell Biology, Neurobiology and Biophysics, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Clemens W G M Lowik
- Dept. of Radiology, Optical Molecular Imaging, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dominic J Robinson
- Dept. of Surgery, Leiden University Medical Center, Leiden, the Netherlands; Dept. of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Sabrina Oliveira
- Division of Cell Biology, Neurobiology and Biophysics, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Pharmaceutics, Dept. of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
18
|
The Potential of Nanobody-Targeted Photodynamic Therapy to Trigger Immune Responses. Cancers (Basel) 2020; 12:cancers12040978. [PMID: 32326519 PMCID: PMC7226123 DOI: 10.3390/cancers12040978] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Nanobody-targeted photodynamic therapy (NB-PDT) has been recently developed as a more tumor-selective approach rather than conventional photodynamic therapy (PDT). NB-PDT uses nanobodies that bind to tumor cells with high affinity, to selectively deliver a photosensitizer, i.e., a chemical which becomes cytotoxic when excited with light of a particular wavelength. Conventional PDT has been reported to be able to induce immunogenic cell death, characterized by the exposure/release of damage-associated molecular patterns (DAMPs) from dying cells, which can lead to antitumor immunity. We explored this aspect in the context of NB-PDT, targeting the epidermal growth factor receptor (EGFR), using high and moderate EGFR-expressing cells. Here we report that, after NB-PDT, the cytoplasmic DAMP HSP70 was detected on the cell membrane of tumor cells and the nuclear DAMP HMGB1 was found in the cell cytoplasm. Furthermore, it was shown that NB-PDT induced the release of the DAMPs HSP70 and ATP, as well as the pro- inflammatory cytokines IL- 1β and IL-6. Conditioned medium from high EGFR-expressing tumor cells treated with NB-PDT led to the maturation of human dendritic cells, as indicated by the upregulation of CD86 and MHC II on their cell surface, and the increased release of IL-12p40 and IL-1β. Subsequently, these dendritic cells induced CD4+ T cell proliferation, accompanied by IFNγ release. Altogether, the initial steps reported here point towards the potential of NB-PDT to stimulate the immune system, thus giving this selective-local therapy a systemic reach.
Collapse
|
19
|
London M, Gallo E. Epidermal growth factor receptor (EGFR) involvement in epithelial-derived cancers and its current antibody-based immunotherapies. Cell Biol Int 2020; 44:1267-1282. [PMID: 32162758 DOI: 10.1002/cbin.11340] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/08/2020] [Indexed: 12/17/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein that is part of the family of tyrosine kinase receptors. The binding of EGFR to its cognate ligands leads to its autophosphorylation and subsequent activation of the signal transduction pathways involved in regulating cellular proliferation, differentiation, and survival. Accordingly, this receptor carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues. Correspondingly, the loss of EGFR regulation results in many human diseases, with the most notable cancer. This receptor is overexpressed and/or mutated in multiple epithelial-derived tumors, and associated with poor prognosis and survival in cancer patients. Here, we discuss in detail the role of EGFR in specific epithelial-derived cancer pathologies; these include lung cancer, colorectal cancer, and squamous cell carcinomas. The development of multiple anticancer agents against EGFR diminished the progression and metastasis of tumors. Some of the most versatile therapeutic anti-EGFR agents include the monoclonal antibodies (mAbs), demonstrating success in clinical settings when used in combination with cytotoxic treatments, such as chemotherapy and/or radiation. We thus discuss the development and application of two of the most notable therapeutic mAbs, cetuximab, and panitumumab, currently utilized in various EGFR-related epithelial cancers.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| |
Collapse
|
20
|
de Bruijn HS, Mashayekhi V, Schreurs TJL, van Driel PBAA, Strijkers GJ, van Diest PJ, Lowik CWGM, Seynhaeve ALB, Hagen TLMT, Prompers JJ, Henegouwen PMPVBE, Robinson DJ, Oliveira S. Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging. Theranostics 2020; 10:2436-2452. [PMID: 32089747 PMCID: PMC7019176 DOI: 10.7150/thno.37949] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/30/2019] [Indexed: 01/10/2023] Open
Abstract
Targeted photodynamic therapy (PDT) has the potential to selectively damage tumor tissue and to increase tumor vessel permeability. Here we characterize the tissue biodistribution of two EGFR-targeted nanobody-photosensitizer conjugates (NB-PS), the monovalent 7D12-PS and the biparatopic 7D12-9G8-PS. In addition, we report on the local and acute phototoxic effects triggered by illumination of these NB-PS which have previously shown to lead to extensive tumor damage. Methods: Intravital microscopy and the skin-fold chamber model, containing OSC-19-luc2-cGFP tumors, were used to investigate: a) the fluorescence kinetics and distribution, b) the vascular response and c) the induction of necrosis after illumination at 1 or 24 h post administration of 7D12-PS and 7D12-9G8-PS. In addition, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of a solid tumor model was used to investigate the microvascular status 2 h after 7D12-PS mediated PDT. Results: Image analysis showed significant tumor colocalization for both NB-PS which was higher for 7D12-9G8-PS. Intravital imaging showed clear tumor cell membrane localization 1 and 2 h after administration of 7D12-9G8-PS, and fluorescence in or close to endothelial cells in normal tissue for both NB-PS. PDT lead to vasoconstriction and leakage of tumor and normal tissue vessels in the skin-fold chamber model. DCE-MRI confirmed the reduction of tumor perfusion after 7D12-PS mediated PDT. PDT induced extensive tumor necrosis and moderate normal tissue damage, which was similar for both NB-PS conjugates. This was significantly reduced when illumination was performed at 24 h compared to 1 h after administration. Discussion: Although differences were observed in distribution of the two NB-PS conjugates, both led to similar necrosis. Clearly, the response to PDT using NB-PS conjugates is the result of a complex mixture of tumor cell responses and vascular effects, which is likely to be necessary for a maximally effective treatment.
Collapse
Affiliation(s)
- Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Dept. of Otolaryngology and Head & Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Vida Mashayekhi
- Cell Biology Division, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Tom J L Schreurs
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pieter B A A van Driel
- Division of Optical Molecular Imaging, Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gustav J Strijkers
- Amsterdam University Medical Centers, University of Amsterdam, Dept. of Biomedical Engineering and Physics, The Netherlands
| | - Paul J van Diest
- Dept. of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Clemens W G M Lowik
- Division of Optical Molecular Imaging, Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ann L B Seynhaeve
- Laboratory of Experimental Oncology, Dept. of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Laboratory of Experimental Oncology, Dept. of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Dept. of Otolaryngology and Head & Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Sabrina Oliveira
- Cell Biology Division, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Pharmaceutics Division, Dept. of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Patient-Derived Head and Neck Cancer Organoids Recapitulate EGFR Expression Levels of Respective Tissues and Are Responsive to EGFR-Targeted Photodynamic Therapy. J Clin Med 2019; 8:jcm8111880. [PMID: 31694307 PMCID: PMC6912517 DOI: 10.3390/jcm8111880] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 01/10/2023] Open
Abstract
Patients diagnosed with head and neck squamous cell carcinoma (HNSCC) are currently treated with surgery and/or radio- and chemotherapy. Despite these therapeutic interventions, 40% of patients relapse, urging the need for more effective therapies. In photodynamic therapy (PDT), a light-activated photosensitizer produces reactive oxygen species that ultimately lead to cell death. Targeted PDT, using a photosensitizer conjugated to tumor-targeting molecules, has been explored as a more selective cancer therapy. Organoids are self-organizing three-dimensional structures that can be grown from both normal and tumor patient-material and have recently shown translational potential. Here, we explore the potential of a recently described HNSCC–organoid model to evaluate Epidermal Growth Factor Receptor (EGFR)-targeted PDT, through either antibody- or nanobody-photosensitizer conjugates. We find that EGFR expression levels differ between organoids derived from different donors, and recapitulate EGFR expression levels of patient material. EGFR expression levels were found to correlate with the response to EGFR-targeted PDT. Importantly, organoids grown from surrounding normal tissues showed lower EGFR expression levels than their tumor counterparts, and were not affected by the treatment. In general, nanobody-targeted PDT was more effective than antibody-targeted PDT. Taken together, patient-derived HNSCC organoids are a useful 3D model for testing in vitro targeted PDT.
Collapse
|
22
|
Huang H, Wu T, Shi H, Wu Y, Yang H, Zhong K, Wang Y, Liu Y. Modular design of nanobody-drug conjugates for targeted-delivery of platinum anticancer drugs with an MRI contrast agent. Chem Commun (Camb) 2019; 55:5175-5178. [PMID: 30984937 DOI: 10.1039/c9cc01391a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A multifunctional nanobody-drug conjugate (NDC) was constructed in this work for the targeted delivery of a platinum prodrug and an MRI contrast agent. The NDC can be specifically internalized into EGFR positive cancer cells, resulting in higher therapeutic effect and lower side-effects relative to cisplatin. The Gd-binding domain enables the in situ detection of the drug distribution in vivo.
Collapse
Affiliation(s)
- Hai Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Resolving the conformational dynamics of ErbB growth factor receptor dimers. J Struct Biol 2019; 207:225-233. [PMID: 31163211 DOI: 10.1016/j.jsb.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 12/30/2022]
Abstract
The combinatorial dimerization of the ErbB growth factor receptors (ErbB1- ErbB4) are critical for their function. Here, we have characterized the conformational dynamics of ErbB transmembrane homo-dimers and hetero-dimers by using a coarse-grain simulation framework. All dimers, except ErbB4-4 and ErbB1-4, exhibit at least two conformations. The reported NMR structures correspond to one of these conformations, representing the N-terminal active state in ErbB1-1 (RH2), ErbB2-2 (RH1) and ErbB4-4 (RH) homo-dimers and the LH dimer in ErbB3-3 homo-dimer, validating the computational approach. Further, we predict a right-handed ErbB3-3 dimer conformer that warrants experimental testing. The five hetero-dimers that have not yet been experimentally resolved display prominent right-handed dimers associating by the SmXXXSm motif. Our results provide insights into the constitutive signaling of ErbB4 after cleavage of the extracellular region. The presence of the inactive-like dimer conformers leading to symmetric kinase domains gives clues on the autoinhibition of the receptor dimers. The dimer states characterized here represent an important step towards understanding the combinatorial cross associations in the ErbB family.
Collapse
|
24
|
Wang YN, Lee HH, Hung MC. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. J Biomed Sci 2018; 25:83. [PMID: 30449278 PMCID: PMC6241042 DOI: 10.1186/s12929-018-0484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ribonuclease is known to participate in host defense system against pathogens, such as parasites, bacteria, and virus, which results in innate immune response. Nevertheless, its potential impact to host cells remains unclear. Of interest, several ribonucleases do not act as catalytically competent enzymes, suggesting that ribonucleases may be associated with certain intrinsic functions other than their ribonucleolytic activities. Most recently, human pancreatic ribonuclease 5 (hRNase5; also named angiogenin; hereinafter referred to as hRNase5/ANG), which belongs to the human ribonuclease A superfamily, has been demonstrated to function as a ligand of epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase family. As a newly identified EGFR ligand, hRNase5/ANG associates with EGFR and stimulates EGFR and the downstream signaling in a catalytic-independent manner. Notably, hRNase5/ANG, whose level in sera of pancreatic cancer patients, serves as a non-invasive serum biomarker to stratify patients for predicting the sensitivity to EGFR-targeted therapy. Here, we describe the hRNase5/ANG-EGFR pair as an example to highlight a ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases, which are thought as two unrelated protein families associated with distinct biological functions. The notion of serum biomarker-guided EGFR-targeted therapies will also be discussed. Furthering our understanding of this novel ligand-receptor interaction will shed new light on the search of ligands for their cognate receptors, especially those orphan receptors without known ligands, and deepen our knowledge of the fundamental research in membrane receptor biology and the translational application toward the development of precision medicine.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404 Taiwan
| |
Collapse
|
25
|
Pirzer T, Becher KS, Rieker M, Meckel T, Mootz HD, Kolmar H. Generation of Potent Anti-HER1/2 Immunotoxins by Protein Ligation Using Split Inteins. ACS Chem Biol 2018; 13:2058-2066. [PMID: 29920062 DOI: 10.1021/acschembio.8b00222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell targeting protein toxins have gained increasing interest for cancer therapy aimed at increasing the therapeutic window and reducing systemic toxicity. Because recombinant expression of immunotoxins consisting of a receptor-binding and a cell-killing moiety is hampered by their high toxicity in a eukaryotic production host, most applications rely on recombinant production of fusion proteins consisting of an antibody fragment and a protein toxin in bacterial hosts such as Escherichia coli ( E. coli). These fusions often lack beneficial properties of whole antibodies like extended serum half-life or efficient endocytic uptake via receptor clustering. Here, we describe the production of full-length antibody immunotoxins using self-splicing split inteins. To this end, the short (11 amino acids) N-terminal intein part of the artificially designed split intein M86, a derivative of the Ssp DnaB intein, was recombinantly fused to the heavy chain of trastuzumab, a human epidermal growth factor receptor 2 (HER2) receptor targeting antibody and to a nanobody-Fc fusion targeting the HER1 receptor, respectively. Both antibodies were produced in Expi293F cells. The longer C-terminal counterpart of the intein was genetically fused to the protein toxins gelonin or Pseudomonas Exotoxin A, respectively, and expressed in E. coli via fusion to maltose binding protein. Using optimized in vitro splicing conditions, we were able to generate a set of specific and potent immunotoxins with IC50 values in the mid- to subpicomolar range.
Collapse
Affiliation(s)
- Thomas Pirzer
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| | - Kira-Sophie Becher
- Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Straße 2 , D-48149 Münster , Germany
| | - Marcel Rieker
- Antibody Drug Conjugates and Targeted NBE Therapeutics , Merck KGaA , Frankfurter Straße 250 , D-64293 Darmstadt , Germany
- Protein Engineering and Antibody Technologies , Merck KGaA , Frankfurter Straße 250 , D-64293 Darmstadt , Germany
| | - Tobias Meckel
- Macromolecular Chemistry & Paper Chemistry, Department of Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 8 , D-64287 Darmstadt , Germany
| | - Henning D Mootz
- Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Straße 2 , D-48149 Münster , Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| |
Collapse
|
26
|
Mitchell RA, Luwor RB, Burgess AW. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp Cell Res 2018; 371:1-19. [PMID: 30098332 DOI: 10.1016/j.yexcr.2018.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Research on the epidermal growth factor (EGF) family and the family of receptors (EGFR) has progressed rapidly in recent times. New crystal structures of the ectodomains with different ligands, the activation of the kinase domain through oligomerisation and the use of fluorescence techniques have revealed profound conformational changes on ligand binding. The control of cell signaling from the EGFR-family is complex, with heterodimerisation, ligand affinity and signaling cross-talk influencing cellular outcomes. Analysis of tissue homeostasis indicates that the control of pro-ligand processing is likely to be as important as receptor activation events. Several members of the EGFR-family are overexpressed and/or mutated in cancer cells. The perturbation of EGFR-family signaling drives the malignant phenotype of many cancers and both inhibitors and antagonists of signaling from these receptors have already produced therapeutic benefits for patients. The design of affibodies, antibodies, small molecule inhibitors and even immunotherapeutic drugs targeting the EGFR-family has yielded promising new approaches to improving outcomes for cancer patients. In this review, we describe recent discoveries which have increased our understanding of the structure and dynamics of signaling from the EGFR-family, the roles of ligand processing and receptor cross-talk. We discuss the relevance of these studies to the development of strategies for designing more effective targeted treatments for cancer patients.
Collapse
Affiliation(s)
- Ruth A Mitchell
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Antony W Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
27
|
Sinclair JKL, Walker AS, Doerner AE, Schepartz A. Mechanism of Allosteric Coupling into and through the Plasma Membrane by EGFR. Cell Chem Biol 2018; 25:857-870.e7. [PMID: 29731426 DOI: 10.1016/j.chembiol.2018.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) interacts through its extracellular domain with seven different growth factors. These factors induce different structures within the cytoplasmic juxtamembrane (JM) segment of the dimeric receptor and propagate different growth factor-dependent signals to the cell interior. How this process occurs is unknown. Here we apply diverse experimental and computational tools to show that growth factor identity is encoded by the EGFR transmembrane (TM) helix into discrete helix dimer populations that differ in both cross-location and cross-angle. Helix dimers with smaller cross-angles at multiple cross locations are decoded to induce an EGF-type coiled coil in the adjacent JM, whereas helix dimers with larger cross-angles at fewer cross locations induce the TGF-α-type coiled coil. We propose an updated model for how conformational coupling across multiple EGFR domains results in growth factor-specific information transfer, and demonstrate that this model applies to both EGFR and the related receptor ErbB2.
Collapse
Affiliation(s)
| | - Allison S Walker
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Amy E Doerner
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
28
|
Chen M, Lu X, Lu C, Shen N, Jiang Y, Chen M, Wu H. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway. Arthritis Res Ther 2018; 20:20. [PMID: 29415757 PMCID: PMC5803867 DOI: 10.1186/s13075-018-1512-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In addition to the kidney, the intestine is one of the most important organs involved in uric acid excretion. However, the mechanism of urate excretion in the intestine remains unclear. Therefore, the relationship between soluble uric acid and the gut excretion in human intestinal cells was explored. The relevant signaling molecules were then also examined. METHODS HT-29 and Caco-2 cell lines were stimulated with soluble uric acid. Western blotting and qRT-PCR were used to measure protein and mRNA levels. Subcellular fractionation methods and immunofluorescence were used to quantify the proteins in different subcellular compartments. Flow cytometry experiments examined the function of ATP-binding cassette transporter, subfamily G, member 2 (ABCG2). Small interfering RNA transfection was used to assess the interaction between ABCG2 and PDZ domain-containing 1 (PDZK1). RESULTS Soluble uric acid increased the expression of PDZK1 and ABCG2. The stimulation of soluble uric acid also facilitated the translocation of ABCG2 from the intracellular compartment to the plasma membrane and increased its transport activity. Moreover, the upregulation of PDZK1 and ABCG2 by soluble uric acid was partially decreased by either TLR4-NLRP3 inflammasome inhibitors or PI3K/Akt signaling inhibitors. Furthermore, PDZK1 knockdown significantly inhibited the expression and transport activity of ABCG2 regardless of the activation by soluble uric acid, demonstrating a pivotal role for PDZK1 in the regulation of ABCG2. CONCLUSIONS These findings suggest that urate upregulates the expression of PDZK1 and ABCG2 for excretion in intestinal cells via activating the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Mo Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, 310007, Hangzhou, China
| | - Xiaoyong Lu
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Ci Lu
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Ning Shen
- Department of Rheumatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Yujie Jiang
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Menglu Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.
| |
Collapse
|
29
|
Zhang Y, Zhu T, Liu J, Liu J, Gao D, Su T, Zhao R. FLNa negatively regulated proliferation and metastasis in lung adenocarcinoma A549 cells via suppression of EGFR. Acta Biochim Biophys Sin (Shanghai) 2018; 50:164-170. [PMID: 29272322 DOI: 10.1093/abbs/gmx135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 01/30/2023] Open
Abstract
Filamin A (FLNa) is a ubiquitously expressed cytoplasmic protein, which composes of an N-terminal actin binding domain (ABD) followed by 24 Ig-like repeats. FLNa functions as a cytoskeletal protein that links transmembrane receptors, including integrins, to F-actin and serves as a signaling intermediate. Recent studies have identified FLNa as a scaffold protein that interacts with over 90 proteins and plays vital roles in cellular signaling transduction. Mutations or defects in human FLNa gene have been shown to cause numerous developmental defects. Moreover, aberrant expression of FLNa has been observed in many cancers, such as parathyroid tumor, cervical cancer, and breast cancer. However, its role in lung adenocarcinoma has seldom been discussed. In the present study, our in vitro and in vivo studies demonstrated that silencing FLNa expression in lung cancer cell line A549 cells promoted proliferation, migration, and invasiveness of A549 cells by enhancing the activation of epidermal growth factor receptor and ERK signaling pathway. These results shed light on novel functions of FLNa in lung cancer and uncovered novel mechanisms, these results provided possible targets for the prediction and treatment for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuna Zhang
- Department of Endocrinology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Tienian Zhu
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Jingpu Liu
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Jiankun Liu
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Dongmei Gao
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Tongyi Su
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Ruijing Zhao
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
30
|
van Lith SAM, van den Brand D, Wallbrecher R, van Duijnhoven SMJ, Brock R, Leenders WPJ. A Conjugate of an Anti-Epidermal Growth Factor Receptor (EGFR) VHH and a Cell-Penetrating Peptide Drives Receptor Internalization and Blocks EGFR Activation. Chembiochem 2017; 18:2390-2394. [DOI: 10.1002/cbic.201700444] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Sanne A. M. van Lith
- Radboud University Medical Centre; Department of Pathology; P. O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Dirk van den Brand
- Radboud Institute for Molecular Life Sciences; Department of Biochemistry; Geert-Grooteplein 26 6525 GA Nijmegen The Netherlands
- Radboud University Medical Centre; Department of Gynecology; P. O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Rike Wallbrecher
- Radboud Institute for Molecular Life Sciences; Department of Biochemistry; Geert-Grooteplein 26 6525 GA Nijmegen The Netherlands
| | | | - Roland Brock
- Radboud Institute for Molecular Life Sciences; Department of Biochemistry; Geert-Grooteplein 26 6525 GA Nijmegen The Netherlands
| | - William P. J. Leenders
- Radboud University Medical Centre; Department of Pathology; P. O. Box 9101 6500 HB Nijmegen The Netherlands
- Radboud Institute for Molecular Life Sciences; Department of Biochemistry; Geert-Grooteplein 26 6525 GA Nijmegen The Netherlands
| |
Collapse
|
31
|
Xenaki KT, Oliveira S, van Bergen En Henegouwen PMP. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors. Front Immunol 2017; 8:1287. [PMID: 29075266 PMCID: PMC5643388 DOI: 10.3389/fimmu.2017.01287] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/25/2017] [Indexed: 01/10/2023] Open
Abstract
The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody–drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are clearly still necessary. A major factor limiting the efficacy of antibody-targeted cancer therapies may be the incomplete penetration of the antibody or antibody–drug conjugate into the tumor. Incomplete tumor penetration also affects the outcome of molecular imaging, when using such targeting agents. From the injection site until they arrive inside the tumor, targeting molecules are faced with several barriers that impact intratumoral distribution. The primary means of antibody transport inside tumors is based on diffusion. The diffusive penetration inside the tumor is influenced by both antibody properties, such as size and binding affinity, as well as tumor properties, such as microenvironment, vascularization, and targeted antigen availability. Engineering smaller antibody fragments has shown to improve the rate of tumor uptake and intratumoral distribution. However, it is often accompanied by more rapid clearance from the body and in several cases also by inherent destabilization and reduction of the binding affinity of the antibody. In this perspective, we discuss different cancer targeting approaches based on antibodies or their fragments. We carefully consider how their size and binding properties influence their intratumoral uptake and distribution, and how this may affect cancer imaging and therapy of solid tumors.
Collapse
Affiliation(s)
- Katerina T Xenaki
- Division of Cell Biology, Science Faculty, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Sabrina Oliveira
- Division of Cell Biology, Science Faculty, Department of Biology, Utrecht University, Utrecht, Netherlands.,Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
32
|
Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy. Nat Commun 2017; 8:15507. [PMID: 28593948 PMCID: PMC5472176 DOI: 10.1038/ncomms15507] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 04/03/2017] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) lacks effective treatment options due to the absence of traditional therapeutic targets. The epidermal growth factor receptor (EGFR) has emerged as a promising target for TNBC therapy because it is overexpressed in about 50% of TNBC patients. Here we describe a PEG engager that simultaneously binds polyethylene glycol and EGFR to deliver PEGylated nanomedicines to EGFR+ TNBC. The PEG engager displays conditional internalization by remaining on the surface of TNBC cells until contact with PEGylated nanocarriers triggers rapid engulfment of nanocargos. PEG engager enhances the anti-proliferative activity of PEG-liposomal doxorubicin to EGFR+ TNBC cells by up to 100-fold with potency dependent on EGFR expression levels. The PEG engager significantly increases retention of fluorescent PEG probes and enhances the antitumour activity of PEGylated liposomal doxorubicin in human TNBC xenografts. PEG engagers with specificity for EGFR are promising for improved treatment of EGFR+ TNBC patients. The majority of treatment options for cancers are ineffective due to limited therapeutic targeting. Here, the authors develop bispecific antibodies that effectively target nanomaterials to triple-negative breast cancer cell receptors and deliver therapeutics leading to inhibition of tumour growth.
Collapse
|
33
|
Mincione G, Di Marcantonio MC, Tarantelli C, Savino L, Ponti D, Marchisio M, Lanuti P, Sancilio S, Calogero A, Di Pietro R, Muraro R. Identification of the zinc finger 216 (ZNF216) in human carcinoma cells: a potential regulator of EGFR activity. Oncotarget 2016; 7:74947-74965. [PMID: 27732953 PMCID: PMC5342714 DOI: 10.18632/oncotarget.12509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/25/2016] [Indexed: 02/05/2023] Open
Abstract
Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling.
Collapse
Affiliation(s)
- Gabriella Mincione
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio” Chieti-Pescara, Italy
- Center for Aging Science and Translational Medicine (CeSI-MeT), Chieti, Italy
| | | | - Chiara Tarantelli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio” Chieti-Pescara, Italy
- Current Address: Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
| | - Luca Savino
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio” Chieti-Pescara, Italy
| | - Donatella Ponti
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Marco Marchisio
- Center for Aging Science and Translational Medicine (CeSI-MeT), Chieti, Italy
- Department of Medicine and Ageing Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Paola Lanuti
- Center for Aging Science and Translational Medicine (CeSI-MeT), Chieti, Italy
- Department of Medicine and Ageing Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Silvia Sancilio
- Department of Pharmacy, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Antonella Calogero
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Raffaella Muraro
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio” Chieti-Pescara, Italy
- Center for Aging Science and Translational Medicine (CeSI-MeT), Chieti, Italy
| |
Collapse
|
34
|
Feiner RC, Müller KM. Recent progress in protein-protein interaction study for EGFR-targeted therapeutics. Expert Rev Proteomics 2016; 13:817-32. [PMID: 27424502 DOI: 10.1080/14789450.2016.1212665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) expression is upregulated in many tumors and its aberrant signaling drives progression of many cancer types. Consequently, EGFR has become a clinically validated target as extracellular tumor marker for antibodies as well as for tyrosine kinase inhibitors. Within the last years, new mechanistic insights were uncovered and, based on clinical experience as well as progress in protein engineering, novel bio-therapeutic approaches were developed and tested. AREAS COVERED The potential therapeutic targeting arsenal in the fight against cancer now encompasses bispecific or biparatopic antibodies, DARPins, Adnectins, Affibodies, peptides and combinations of these binding molecules with viral- and nano-particles. We review past and recent binding proteins from the literature and include a brief description of the various targeting approaches. Special attention is given to the binding modes with the EGFR. Expert commentary: Clinical data from the three approved anti EGFR antibodies indicate that there is room for improved therapeutic efficacy. Having choices in size, affinity, avidity and the mode of EGFR binding as well as the possibility to combine various effector functions opens the possibility to rationally design more effective therapeutics.
Collapse
Affiliation(s)
- Rebecca Christine Feiner
- a Cellular and Molecular Biotechnology group, Faculty of Technology , Bielefeld University , Bielefeld , Germany
| | - Kristian Mark Müller
- a Cellular and Molecular Biotechnology group, Faculty of Technology , Bielefeld University , Bielefeld , Germany
| |
Collapse
|
35
|
van Driel PBAA, Boonstra MC, Slooter MD, Heukers R, Stammes MA, Snoeks TJA, de Bruijn HS, van Diest PJ, Vahrmeijer AL, van Bergen En Henegouwen PMP, van de Velde CJH, Löwik CWGM, Robinson DJ, Oliveira S. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer. J Control Release 2016; 229:93-105. [PMID: 26988602 PMCID: PMC7116242 DOI: 10.1016/j.jconrel.2016.03.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) induces cell death through local light activation of a photosensitizer (PS) and has been used to treat head and neck cancers. Yet, common PS lack tumor specificity, which leads to collateral damage to normal tissues. Targeted delivery of PS via antibodies has pre-clinically improved tumor selectivity. However, antibodies have long half-lives and relatively poor tissue penetration, which could limit therapeutic efficacy and lead to long photosensitivity. Here, in this feasibility study, we evaluate at the pre-clinical level a recently introduced format of targeted PDT, which employs nanobodies as targeting agents and a water-soluble PS (IRDye700DX) that is traceable through optical imaging. In vitro, the PS solely binds to cells and induces phototoxicity on cells overexpressing the epidermal growth factor receptor (EGFR), when conjugated to the EGFR targeted nanobodies. To investigate whether this new format of targeted PDT is capable of inducing selective tumor cell death in vivo, PDT was applied on an orthotopic mouse tumor model with illumination at 1h post-injection of the nanobody-PS conjugates, as selected from quantitative fluorescence spectroscopy measurements. In parallel, and as a reference, PDT was applied with an antibody-PS conjugate, with illumination performed 24h post-injection. Importantly, EGFR targeted nanobody-PS conjugates led to extensive tumor necrosis (approx. 90%) and almost no toxicity in healthy tissues, as observed through histology 24h after PDT. Overall, results show that these EGFR targeted nanobody-PS conjugates are selective and able to induce tumor cell death in vivo. Additional studies are now needed to assess the full potential of this approach to improving PDT.
Collapse
Affiliation(s)
- Pieter B A A van Driel
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maxime D Slooter
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Raimond Heukers
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marieke A Stammes
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Thomas J A Snoeks
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Henriette S de Bruijn
- Department of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Paul M P van Bergen En Henegouwen
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cornelis J H van de Velde
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Clemens W G M Löwik
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Dominic J Robinson
- Department of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Sabrina Oliveira
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
36
|
Treda C, Popeda M, Ksiazkiewicz M, Grzela DP, Walczak MP, Banaszczyk M, Peciak J, Stoczynska-Fidelus E, Rieske P. EGFR Activation Leads to Cell Death Independent of PI3K/AKT/mTOR in an AD293 Cell Line. PLoS One 2016; 11:e0155230. [PMID: 27153109 PMCID: PMC4859505 DOI: 10.1371/journal.pone.0155230] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) and its mutations contribute in various ways to tumorigenesis and biology of human cancers. They are associated with tumor proliferation, progression, drug resistance and the process of apoptosis. There are also reports that overexpression and activation of wild-type EGFR may lead to cell apoptosis. To study this phenomenon, we overexpressed in an AD293 cell line two most frequently observed forms of the EGFR receptor: wild-type and the constitutively active mutant–EGFR variant III (EGFRvIII). Then, we compared the effect of EGF stimulation on cell viability and downstream EGFR signaling. AD293 cells overexpressing wild-type EGFR, despite a significant proliferation increase in serum supplemented medium, underwent apoptosis after EGF stimulation in serum free conditions. EGFRvIII expressing cells, however, were unaffected by either serum starvation or EGF treatment. The effect of EGF was completely neutralized by tyrosine kinase inhibitors (TKIs), indicating the specificity of this observation. Moreover, apoptosis was not prevented by inhibiting EGFR downstream proteins (PI3K, AKT and mTOR). Here we showed another EGFR function, dependent on environmental factors, which could be employed in therapy and drug design. We also proposed a new tool for EGFR inhibitor analysis.
Collapse
Affiliation(s)
- Cezary Treda
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- * E-mail:
| | - Marta Popeda
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
| | | | - Dawid P. Grzela
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
| | - Maciej P. Walczak
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
| | - Mateusz Banaszczyk
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Joanna Peciak
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Stoczynska-Fidelus
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Piotr Rieske
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
37
|
Bill A, Gutierrez A, Kulkarni S, Kemp C, Bonenfant D, Voshol H, Duvvuri U, Gaither LA. ANO1/TMEM16A interacts with EGFR and correlates with sensitivity to EGFR-targeting therapy in head and neck cancer. Oncotarget 2016; 6:9173-88. [PMID: 25823819 PMCID: PMC4496210 DOI: 10.18632/oncotarget.3277] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/07/2015] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) contributes to the pathogenesis of head&neck squamous cell carcinoma (HNSCC). However, only a subset of HNSCC patients benefit from anti-EGFR targeted therapy. By performing an unbiased proteomics screen, we found that the calcium-activated chloride channel ANO1 interacts with EGFR and facilitates EGFR-signaling in HNSCC. Using structural mutants of EGFR and ANO1 we identified the trans/juxtamembrane domain of EGFR to be critical for the interaction with ANO1. Our results show that ANO1 and EGFR form a functional complex that jointly regulates HNSCC cell proliferation. Expression of ANO1 affected EGFR stability, while EGFR-signaling elevated ANO1 protein levels, establishing a functional and regulatory link between ANO1 and EGFR. Co-inhibition of EGFR and ANO1 had an additive effect on HNSCC cell proliferation, suggesting that co-targeting of ANO1 and EGFR could enhance the clinical potential of EGFR-targeted therapy in HNSCC and might circumvent the development of resistance to single agent therapy. HNSCC cell lines with amplification and high expression of ANO1 showed enhanced sensitivity to Gefitinib, suggesting ANO1 overexpression as a predictive marker for the response to EGFR-targeting agents in HNSCC therapy. Taken together, our results introduce ANO1 as a promising target and/or biomarker for EGFR-directed therapy in HNSCC.
Collapse
Affiliation(s)
- Anke Bill
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Abraham Gutierrez
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Sucheta Kulkarni
- University of Pittsburgh, Medical Center, Department of Otolaryngology, Pittsburgh, PA 15213, USA
| | - Carolyn Kemp
- University of Pittsburgh, Medical Center, Department of Otolaryngology, Pittsburgh, PA 15213, USA
| | - Debora Bonenfant
- Novartis Institutes for Biomedical Research, Basel, CH-4002, Switzerland
| | - Hans Voshol
- Novartis Institutes for Biomedical Research, Basel, CH-4002, Switzerland
| | - Umamaheswar Duvvuri
- University of Pittsburgh, Medical Center, Department of Otolaryngology, Pittsburgh, PA 15213, USA.,VA Pittsburgh HealthCare System, Pittsburgh, PA 15213, USA
| | - L Alex Gaither
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Sharma N, Longjam G, Schreiber G. Type I Interferon Signaling Is Decoupled from Specific Receptor Orientation through Lenient Requirements of the Transmembrane Domain. J Biol Chem 2015; 291:3371-84. [PMID: 26679999 DOI: 10.1074/jbc.m115.686071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Indexed: 01/09/2023] Open
Abstract
Type I interferons serve as the first line of defense against pathogen invasion. Binding of IFNs to its receptors, IFNAR1 and IFNAR2, is leading to activation of the IFN response. To determine whether structural perturbations observed during binding are propagated to the cytoplasmic domain, multiple mutations were introduced into the transmembrane helix and its surroundings. Insertion of one to five alanine residues near either the N or C terminus of the transmembrane domain (TMD) likely promotes a rotation of 100° and a translation of 1.5 Å per added residue. Surprisingly, the added alanines had little effect on the binding affinity of IFN to the cell surface receptors, STAT phosphorylation, or gene induction. Similarly, substitution of the juxtamembrane residues of the TMD with alanines, or replacement of the TMD of IFNAR1 with that of IFNAR2, did not affect IFN binding or activity. Finally, only the addition of 10 serine residues (but not 2 or 4) between the extracellular domain of IFNAR1 and the TMD had some effect on signaling. Bioinformatic analysis shows a correlation between high sequence conservation of TMDs of cytokine receptors and the ability to transmit structural signals. Sequence conservation near the TMD of IFNAR1 is low, suggesting limited functional importance for this region. Our results suggest that IFN binding to the extracellular domains of IFNAR1 and IFNAR2 promotes proximity between the intracellular domains and that differential signaling is a function of duration of activation and affinity of binding rather than specific conformational changes transmitted from the outside to the inside of the cell.
Collapse
Affiliation(s)
- Nanaocha Sharma
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Geeta Longjam
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gideon Schreiber
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
39
|
Kijanka M, Dorresteijn B, Oliveira S, van Bergen en Henegouwen PMP. Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond) 2015; 10:161-74. [PMID: 25597775 DOI: 10.2217/nnm.14.178] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The development of tumor-targeted therapies using monoclonal antibodies has been successful during the last 30 years. Nevertheless, the efficacy of antibody-based therapy is still limited and further improvements are eagerly awaited. One of the promising novel developments that may overcome the drawbacks of monoclonal antibody-based therapies is the employment of nanobodies. Current nanobody-based therapeutics can be divided into three different platforms with nanobodies functioning as: receptor antagonists; targeting moieties of effector domains; or targeting molecules on the surface of nanoparticles. In this article, we describe factors that affect their performance at three different stages: their systemic circulation upon intravenous injection; their extravasation and tumor penetration; and, finally, their interaction with target molecules.
Collapse
Affiliation(s)
- Marta Kijanka
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
40
|
Fortian A, Dionne LK, Hong SH, Kim W, Gygi SP, Watkins SC, Sorkin A. Endocytosis of Ubiquitylation-Deficient EGFR Mutants via Clathrin-Coated Pits is Mediated by Ubiquitylation. Traffic 2015; 16:1137-54. [PMID: 26251007 DOI: 10.1111/tra.12314] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
Signaling by epidermal growth factor receptor (EGFR) is controlled by endocytosis. However, mechanisms of EGFR endocytosis remain poorly understood. Here, we found that the EGFR mutant lacking known ubiquitylation, acetylation and clathrin adaptor AP-2-binding sites (21KRΔAP2) was internalized at relatively high rates via the clathrin-dependent pathway in human duodenal adenocarcinoma HuTu-80 cells. RNA interference analysis revealed that this residual internalization is strongly inhibited by depletion of Grb2 and the E2 ubiquitin-conjugating enzyme UbcH5b/c, and partially affected by depletion of the E3 ubiquitin ligase Cbl and ubiquitin-binding adaptors, indicating that an ubiquitylation process is involved. Several new ubiquitin conjugation sites were identified by mass spectrometry in the 21KRΔAP2 mutant, suggesting that cryptic ubiquitylation may mediate endocytosis of this mutant. Total internal reflection fluorescence microscopy imaging of HuTu-80 cells transfected with labeled ubiquitin adaptor epsin1 demonstrated that the ubiquitylation-deficient EGFR mutant was endocytosed through a limited population of epsin-enriched clathrin-coated pits (CCPs), although with a prolonged CCP lifetime. Native EGFR was recruited with the same efficiency into CCPs containing either AP-2 or epsin1 that were tagged with fluorescent proteins by genome editing of MDA-MD-231 cells. We propose that two redundant mechanisms, ubiquitylation and interaction with AP-2, contribute to EGFR endocytosis via CCPs in a stochastic fashion.
Collapse
Affiliation(s)
- Arola Fortian
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA,, USA
| | - Lai K Dionne
- Department of Pharmacology, University of Colorado Anschutz Medical Center, Aurora, CO,, USA
| | - Sun H Hong
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA,, USA
| | - Woong Kim
- Department of Cell Biology, University of Harvard School of Medicine, Boston, MA,, USA
| | - Steven P Gygi
- Department of Cell Biology, University of Harvard School of Medicine, Boston, MA,, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA,, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA,, USA
| |
Collapse
|
41
|
Studzian M, Bartosz G, Pulaski L. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1759-71. [PMID: 25918011 DOI: 10.1016/j.bbamcr.2015.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 12/16/2022]
Abstract
ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods.
Collapse
Affiliation(s)
- Maciej Studzian
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland
| | - Lukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
42
|
Popov-Čeleketić D, van Bergen En Henegouwen PMP. Membrane domain formation-a key factor for targeted intracellular drug delivery. Front Physiol 2014; 5:462. [PMID: 25520666 PMCID: PMC4251288 DOI: 10.3389/fphys.2014.00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/11/2014] [Indexed: 01/23/2023] Open
Abstract
Protein molecules, toxins and viruses internalize into the cell via receptor-mediated endocytosis (RME) using specific proteins and lipids in the plasma membrane. The plasma membrane is a barrier for many pharmaceutical agents to enter into the cytoplasm of target cells. In the case of cancer cells, tissue-specific biomarkers in the plasma membrane, like cancer-specific growth factor receptors, could be excellent candidates for RME-dependent drug delivery. Recent data suggest that agent binding to these receptors at the cell surface, resulting in membrane domain formation by receptor clustering, can be used for the initiation of RME. As a result, these pharmaceutical agents are internalized into the cells and follow different routes until they reach their final intracellular targets like lysosomes or Golgi. We propose that clustering induced formation of plasma membrane microdomains enriched in receptors, sphingolipids, and inositol lipids, leads to membrane bending which functions as the onset of RME. In this review we will focus on the role of domain formation in RME and discuss potential applications for targeted intracellular drug delivery.
Collapse
Affiliation(s)
- Dušan Popov-Čeleketić
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands
| | | |
Collapse
|
43
|
Lindsey S, Langhans SA. Epidermal growth factor signaling in transformed cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:1-41. [PMID: 25619714 DOI: 10.1016/bs.ircmb.2014.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the epidermal growth factor receptor (EGFR/ErbB) family play a critical role in normal cell growth and development. However, many ErbB family members, especially EGFR, are aberrantly expressed or deregulated in tumors and are thought to play crucial roles in cancer development and metastatic progression. In this chapter, we provide an overview of key mechanisms contributing to aberrant EGFR/ErbB signaling in transformed cells, which results in many phenotypic changes associated with the earliest stages of tumor formation, including several hallmarks of epithelial-mesenchymal transition (EMT). These changes often occur through interaction with other major signaling pathways important to tumor progression, causing a multitude of transcriptional changes that ultimately impact cell morphology, proliferation, and adhesion, all of which are crucial for tumor progression. The resulting mesh of signaling networks will need to be taken into account as new regimens are designed for targeting EGFR for therapeutic intervention. As new insights are gained into the molecular mechanisms of cross talk between EGFR signaling and other signaling pathways, including their roles in therapeutic resistance to anti-EGFR therapies, a continual reassessment of clinical therapeutic regimes and strategies will be required. Understanding the consequences and complexity of EGF signaling and how it relates to tumor progression is critical for the development of clinical compounds and establishing clinical protocols for the treatment of cancer.
Collapse
Affiliation(s)
- Stephan Lindsey
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
44
|
Quantification and kinetic analysis of Grb2-EGFR interaction on micro-patterned surfaces for the characterization of EGFR-modulating substances. PLoS One 2014; 9:e92151. [PMID: 24658383 PMCID: PMC3962377 DOI: 10.1371/journal.pone.0092151] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/17/2014] [Indexed: 11/25/2022] Open
Abstract
The identification of the epidermal growth factor receptor (EGFR) as an oncogene has led to the development of several anticancer therapeutics directed against this receptor tyrosine kinase. However, drug resistance and low efficacy remain a severe challenge, and have led to a demand for novel systems for an efficient identification and characterization of new substances. Here we report on a technique which combines micro-patterned surfaces and total internal reflection fluorescence (TIRF) microscopy (μ-patterning assay) for the quantitative analysis of EGFR activity. It does not simply measure the phosphorylation of the receptor, but instead quantifies the interaction of the key signal transmitting protein Grb2 (growth factor receptor-bound protein 2) with the EGFR in a live cell context. It was possible to demonstrate an EGF dependent recruitment of Grb2 to the EGFR, which was significantly inhibited in the presence of clinically tested EGFR inhibitors, including small tyrosine kinase inhibitors and monoclonal antibodies targeting the EGF binding site. Importantly, in addition to its potential use as a screening tool, our experimental setup offers the possibility to provide insight into the molecular mechanisms of bait-prey interaction. Recruitment of the EGFR together with Grb2 to clathrin coated pits (CCPs) was found to be a key feature in our assay. Application of bleaching experiments enabled calculation of the Grb2 exchange rate, which significantly changed upon stimulation or the presence of EGFR activity inhibiting drugs.
Collapse
|
45
|
van Driel PBAA, van der Vorst JR, Verbeek FPR, Oliveira S, Snoeks TJA, Keereweer S, Chan B, Boonstra MC, Frangioni JV, van Bergen en Henegouwen PMP, Vahrmeijer AL, Lowik CWGM. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. Int J Cancer 2013; 134:2663-73. [PMID: 24222574 DOI: 10.1002/ijc.28601] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/27/2013] [Indexed: 12/30/2022]
Abstract
Intraoperative near-infrared (NIR) fluorescence imaging is a technology with high potential to provide the surgeon with real-time visualization of tumors during surgery. Our study explores the feasibility for clinical translation of an epidermal growth factor receptor (EGFR)-targeting nanobody for intraoperative imaging and resection of orthotopic tongue tumors and cervical lymph node metastases. The anti-EGFR nanobody 7D12 and the negative control nanobody R2 were conjugated to the NIR fluorophore IRDye800CW (7D12-800CW and R2-800CW). Orthotopic tongue tumors were induced in nude mice using the OSC-19-luc2-cGFP cell line. Tumor-bearing mice were injected with 25 µg 7D12-800CW, R2-800CW or 11 µg 800CW. Subsequently, other mice were injected with 50 or 75 µg of 7D12-800CW. The FLARE imaging system and the IVIS spectrum were used to identify, delineate and resect the primary tumor and cervical lymph node metastases. All tumors could be clearly identified using 7D12-800CW. A significantly higher tumor-to-background ratio (TBR) was observed in mice injected with 7D12-800CW compared to mice injected with R2-800CW and 800CW. The highest average TBR (2.00 ± 0.34 and 2.72 ± 0.17 for FLARE and IVIS spectrum, respectively) was observed 24 hr after administration of the EGFR-specific nanobody. After injection of 75 µg 7D12-800CW cervical lymph node metastases could be clearly detected. Orthotopic tongue tumors and cervical lymph node metastases in a mouse model were clearly identified intraoperatively using a recently developed fluorescent EGFR-targeting nanobody. Translation of this approach to the clinic would potentially improve the rate of radical surgical resections.
Collapse
Affiliation(s)
- P B A A van Driel
- Department of Radiology and Molecular Imaging, Leiden University Medical Center, Leiden, The Netherlands; Percuros B.V., Enschede, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|